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Abstract
Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigat-
ing traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; 
however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression 
models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex 
information (N = 191; 141 males and 50 females with age ranging 14–25 years). The regression models are then used to 
approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical 
accuracy is assessed using adjusted R2 and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain 
volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-
induced brain strains are compared with those from “morphed models” derived from neuroimage-based mesh warping. We 
find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts 
but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01–1.03 for gray and 
white matter regions versus 1.16–1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight 
the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of 
approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. 
The scaled models may improve subject specificity for future TBI investigations.

Keywords  Concussion · Brain injury model · Subject-specific model · Head morphology · Worcester head injury model 
(WHIM)

1  Introduction

Sixty-nine million people worldwide are estimated to suffer 
traumatic brain injury (TBI) each year (Dewan et al. 2019), 
with ~ 75% of them mild TBI (mTBI) (Laker 2011). In the 
USA alone, more than 200 million adults and children par-
ticipate in organized physical activities (Centers for Disease 
Control and Prevention 2007). Sports and recreation activi-
ties are major causes of mTBI, which is often referred to as 
concussion. There are nearly 4 million concussion incidents 
annually (Langlois et al. 2006), which is likely underesti-
mated because of the significant under-reporting issue (Fer-
dinand Pennock et al. 2020). Studies have also suggest that 
females are, in general, at a greater risk of concussion than 
males (Iverson et al. 2017).

There is general consensus that impact-induced “brain 
strain” is the primary cause of brain injury, including 
mTBI (Ji et al. 2022). A viable approach to estimating 
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injury-causing brain strains in live humans is through 
impact simulation using a validated brain model. Over 
the past half-century, numerous finite element (FE) brain 
models have been developed (Yang et al. 2006; Ji et al. 
2022). Model sophistications have also steadily increased, 
with recent advancements to incorporate more anatomical 
details such as sulci (Miller et al. 2016; Ghajari et al. 2017; 
Li et al. 2020), cerebral vasculatures (Zhao and Ji 2022), 
white matter material property anisotropy (Giordano 
et al. 2017; Zhao and Ji 2019), more realistic brain-skull 
boundary conditions (Zhou et al. 2019), explicit modeling 
of white matter fibers (Wu et al. 2019b; Garimella et al. 
2019), mesh conformity of internal anatomical boundaries 
(Atsumi et al. 2018; Li et al. 2020), among others.

Nevertheless, most models represent a generic, 
50th-percentile male head (Ji et al. 2022) and they do not 
account for variance in brain morphology. Therefore, these 
models may suffer in accuracy when investigating injury 
risks on a subject-specific basis, especially for youth 
(Rowson and Duma 2020) and females (Mollayeva et al. 
2018) due to the anticipated larger morphological differ-
ences relative to the generic adult male head (Rollins et al. 
2010) and the significance of model geometry on brain 
responses. For example, brain size is linearly related to 
pressure from linear acceleration (Bradshaw and Morfey 
2001; Zhao et al. 2015). Increasing brain size significantly 
increases maximum effective stress (Kleiven and von Holst 
2002) and strain (Li et al. 2020; Liu et al. 2021, 2022). 
Significant variations also exist in the spatiotemporal 
locations of peak strains due to disparities in brain shape 
(Li et al. 2020). Collectively, these findings highlight the 
importance of accounting for strain differences resulting 
from head and brain morphological variations.

To do so, a generic model can be scaled linearly 
(Kleiven and von Holst 2002) or following affine (Danel-
son et al. 2008) or nonrigid registration through mesh 
warping (Li et al. 2011, 2016, 2020; Ji et al. 2015; Alsha-
reef et al. 2021; Li 2021; Liu et al. 2022). Subject-specific 
models can also be developed directly from individual neu-
roimages using a conventional meshing process (Ji et al. 
2011; Li et al. 2020) or converting voxels directly into 
hexahedral elements (Miller et al. 2016) with additional 
surface voxel smoothing to mitigate numerical artifacts 
(Chen and Ostoja-Starzewski 2010). Linear scaling does 
not require neuroimages, which is also commonly applied 
when validating a model against experimental data (Zhao 
and Ji 2020; Alshareef et al. 2021) when no neuroimages 
are publicly available (Hardy et al. 2007; Knutsen et al. 
2014; Chan et al. 2018; Alshareef et al. 2018). For simple 
scaling, basic information about head or brain morphology 
such as length and width would suffice. Neuroimage-based 
methods are expected to improve model geometrical accu-
racy. Nevertheless, they require individual neuroimages 

that may not always be available. This could pose chal-
lenges for practical use.

When information on head and brain dimensions does not 
exist or no neuroimages are available, an alternative strategy 
to estimate head and brain size is through a pre-established 
statistical model. For example, age-based regression models 
(Danelson et al. 2008) were developed from manual measure-
ments in a series of axial MRI for both males and females. 
They enabled deriving shape- and size-related scaling factors 
for multiple brain regions. This allowed scaling the SIMon 
adult head model (Takhounts et al. 2008) to match with pedi-
atric brains in multiple age groups from newborns to 21 years 
old. However, model geometrical accuracy may suffer because 
the statistical models do not account for individual variations 
beyond age and sex (Rollins et al. 2010). A recent work sys-
tematically analyzed scalp and skull inner surfaces of 101 ado-
lescents and young adults (14–25 years old) segmented from 
CT (Liu et al. 2022). The study identified that the size of the 
head and brain, tragion-to-top distance, as well as head length 
and breadth are the top principal components most signifi-
cantly influencing head geometric variations. Consistent with 
other studies, brain size was found to significantly correlate 
with peak maximum principal strain (MPS) of the whole brain.

Therefore, these investigations motivate our current study 
to further develop statistical models between measurements 
of brain outer surface morphological features and those of 
the head, beyond age and sex alone. The additional head 
dimensions are expected to improve accuracy over those 
using information only about age and sex (Danelson et al. 
2008). An important advantage of the approach is that, once 
the statistical models are established, subject-specific mod-
els can be approximated by scaling a generic model to match 
with an individual brain, and without relying on neuroim-
ages. This could make the technique valuable to improve 
subject specificity when no neuroimages are available in 
practice. To assess accuracy, 11 subjects were selected to 
create subject-specific models by scaling (based on external 
head dimensions along with age and sex, or age and sex only 
as a comparison (Danelson et al. 2008)). They were com-
pared with the generic model as well as the corresponding 
baseline subject-specific models developed from the more 
sophisticated mesh warping method (Ji et al. 2015). A con-
cussive head impact is used for impact simulation, based 
on which to quantify the accuracy improvement. This study 
contributes toward improving subject specificity for brain 
models in future TBI investigations.

2 � Methods

The overall procedure of this study is illustrated in Fig. 1. 
First, the head and brain morphologies were measured 
semi-automatically based on individual high-resolution 
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neuroimages. These measures, along with subject’s age and 
sex information, were used to establish statistical models 
via stepwise regression. The quality of the regression mod-
els was assessed by comparing predicted brain geometric 
measures with the actual measurements. A subset of subjects 
were then selected to approximate subject-specific models 
via simple scaling based on the baseline anisotropic Worces-
ter head injury model (WHIM) V1.0 (Zhao and Ji 2019), and 
without neuroimages. Their accuracy in terms of impact-
induced brain strains was compared with those from cor-
responding morphed subject-specific models created from 
image-based mesh warping, as well as with those from the 
generic model. The details of each step are described in sub-
sections below (Fig. 1).

2.1 � Worcester head injury model (WHIM)

The anisotropic WHIM Version 1.0 (Zhao and Ji 2019) was 
used as the baseline generic model. It uses the same mesh 

from the isotropic counterpart (Ji et al. 2015), which was 
created with high mesh quality and geometrical accuracy 
based on high-resolution T1-weighted magnetic resonance 
image (MRI) of a concussed athlete. The details of mesh 
quality in terms of element warpage, aspect ratio, skew, min-
imum length, Jacobian, and minimum and maximum angles 
have been reported previously (Ji et al. 2015). In total, the 
brain contains 56.6 k nodes and 55.1 k hexahedral elements 
with an average element size of 3.3 ± 0.79 mm (Fig. 1). The 
WHIM was recently validated against a wide-range of blunt 
impact conditions, including relative brain-skull displace-
ment and marker-based strain in high- and mid-rate cadav-
eric impacts, as well as strain from in vivo head rotations 
(Zhao and Ji 2020). It achieves an average peak strain mag-
nitude ratio (simulation vs. experiment) of 0.94 ± 0.30 based 
on marker-based strains in 12 cadaveric impacts. A ratio of 
1.00 ± 0.00 would indicate an identical peak response rela-
tive to experiment (albeit errors in experimental data, them-
selves, should not be ignored). The head coordinate system 

Fig. 1   Overview of the semi-automatic head and brain morphological 
measurements and regression-based scaling to approximate subject-
specific models via linear scaling along the three anatomical direc-
tions. The baseline MRI is used as a template for rigid registration to 
facilitate consistent measurement of head and brain dimensions and 

does not directly contribute to the multivariable regression models. 
Instead, the brain dimensions of the generic model from the baseline 
MRI serve as reference to derive scaling factors. The resulting scaled 
model approximates subject-specific brain model for the individual
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was chosen such that the posterior-to-anterior, right-to-left, 
and inferior-to-superior directions corresponded to the x, 
y, and z directions, respectively. Deep white matter (WM) 
and cortical gray matter (GM) regions have been previously 
identified by co-registering with the corresponding neuroim-
age atlases (Zhao et al. 2017; Wu et al. 2020).

2.2 � Head and brain morphological measurements

Neuroimage acquisitions were part of the previous effort 
to investigate the biomechanical basis of mild TBI in col-
legiate and high school contact sport athletes. Data from 
varsity athletes on the Dartmouth College football team and 
men’s and women’s ice hockey teams, and the Hanover High 
School football team were collected between 2007 and 2011 
as reported previously (McAllister et al. 2012). T1-weighted 
MR images (isotropic resolution of 1.5 mm × 1.5 mm × 
1.5 mm, with image dimension of 112 × 171 × 171) were 
collected from 191 subjects (141 males, 14–25 years old; 
50 females, 18–24 years old; approved by the Institutional 
Review Board at Dartmouth College).

2.3 � Head and brain morphological measurements

To facilitate consistent measurement, the T1-weighted MRI 
used to develop the WHIM (Ji et al. 2015) was first rigidly 
rotated so that the Frankfort plane was horizontal. Using 
the rotated MRI as a template, individual MRI images of 
each subject were then rigidly registered in FSL. This rigid 
registration did not alter any head or brain morphology but 
ensured a consistent head orientation to facilitate subsequent 
semi-automatic measurements.

For a given subject, head and brain morphological fea-
tures including head breadth (left-to-right), length (ante-
rior-to-posterior) and circumference as well as brain width, 
length and volume were measured following the same pro-
cedures detailed in previous studies (Rivara et al. 1999; Tang 

et al. 2010; Thai et al. 2015). Briefly, an axial plane having 
the largest head circumference was first selected (Fig. 3) 
based on which to measure: (1) the head breath as the maxi-
mum distance between the left and right temples above the 
ear; (2) the head and brain lengths as the maximum distance 
in the anterior–posterior direction; (3) the brain width as 
the horizontal distance between the left and right poles on 
the axial plane; and (4) the head circumference measured as 
the boundary length of the head on the selected axial plane. 
Finally, the brain volume was also determined from the BET 
(Brain Extraction Tool) segmentation by first removing non-
brain tissues (Smith 2002). Intuitively, providing additional 
information of the head dimension in the inferior-superior 
direction would improve the quality of statistical models 
(Liu et al. 2022). Therefore, tragion-to-top distance was also 
measured as illustrated in Fig. 3 (Lee et al. 2006). Figure 4 
summarizes the histograms of subjects across the age range 
for male and female subjects, as well as the various head and 
brain morphological measurements across the value ranges.

2.4 � Multivariate linear regression models

Stepwise regression (Draper and Smith 1998) was used to 
establish statistical models between the measured brain 
dimensions and those of the head, along with age and sex. 
The technique begins with a single independent variable and 
then iteratively adds or removes another independent vari-
able to select the best subset to construct multivariable linear 
regression equations according to the Bayesian information 
criterion (BIC) (Draper and Smith 1998). This criterion 
heavy penalizes complex regression models to minimize 
model overfitting.

Tragion-to-top distance is a significant principal compo-
nent in skull geometrical variation (Liu et al. 2022). Nev-
ertheless, this feature may not be typically measured on the 
sports field (Collins et al. 2014). Therefore, we fitted two 
separate sets of regression models by either including or 

Fig. 2   The Worcester Head Injury Model (WHIM) showing the head exterior (a), intracranial components (b), 50 deep white matter regions (c), 
and (d) 54 cortical gray matter regions
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excluding tragion-to-top distance. As a comparison, a third 
set of regression models was also generated to only consider 
age and sex (Danelson et al. 2008). Adjusted coefficient of 
determination (adjusted R2 ) was used to evaluate the regres-
sion performance. In addition, absolute percentage error 
(APE) between predicted and measured brain dimension 
was also reported.

2.5 � Approximating subject‑specific models 
by linear scaling

Eleven subjects with brain volume ranging from the smallest 
to the largest (N = 11; 7 males and 4 females) were selected 
to generate subject-specific brain models. Their descriptive 
statistics are reported in Table 1. Statistics for the “generic 
subject” used to develop the baseline WHIM are also shown, 
which are close to the average values of the 11 subjects, as 
expected.

Linear scaling factors along the three orthogonal directions, 
x, y, and z were used to scale the generic WHIM (Fig. 1). First, 
the scaling factors along the x and y directions for brain length 
( �1 ) and width ( �2 ), respectively, were readily available from 
the established regression models. They were determined by 
the ratio of the predicted brain length and width with respect 
to their counterparts from the generic subject.

where L
b
and W

b
are the length and width of the brain derived

from the baseline MRI; l
b
 and wb are the predicted length 

and width of the brain from the regression models of a given 
individual subject.

To obtain the scaling factor along the z direction, �3 , a 
dimensional analysis was used. Brain volume is expected 
to be proportional to the product of brain length, width, 
and the third dimension referred to as “brain height.” This 
is given as below:

where Vb and vb are the brain volume derived from the 
generic subject and that predicted from the regression 
model, respectively; Hb and hb are the “brain height” from 
the baseline and subject-specific MRI, respectively. Their 
actual values are not necessary to derive their ratio, �3 , 
which can be approximated via the dimensional analysis 
according to the following equation:

(1)�1 =

l
b

L
b

and �2 =
w
b

W
b

(2)
vb

Vb

=

lb

Lb
×

wb

Wb

×

hb

Hb

Fig. 3   Illustration of various measurements of the head (top) 
and brain (bottom) based on surface rendering of the scalp from 
T1-weighted MRI as well as mid-sagittal and coronal images. An 
axial plane of the largest head circumference was used determine the 

head/brain length, head breath, brain width, and head circumference. 
Tragion-to-top was measured as the distance between the tragion and 
the top of the head. Brain volume was measured based on the seg-
mented brain



	 S. Wu et al.

1 3

Fig. 4   Histograms of the number of male (N = 141) and female (N = 50) subjects across the age range (top) and various head (middle) and brain 
(bottom) morphological measurements across the value ranges

Table 1   Summary of the various head and brain measurements (units 
are in cm or cm3 for volume) and age (in years) for the 11 selected 
subjects (7 males and 4 females) with the brain volume ranging from 

the smallest to the largest. Statistics of the “generic subject” used to 
develop the baseline WHIM are also reported (in parenthesis)

Head length Head breadth Head circumference Tragion-to-top

Range
mean ± std
(Generic)

17.7–21.6
20.1 ± 1.1
(19.8)

13.8–16.2
15.4 ± 0.8
(15.0)

50.6–61.2
57.0 ± 3.0
(55.66)

11.7–15.2
13.6 ± 0.6
(12.3)

Brain length Brain width Brain volume Age

Range
mean ± std
(Generic)

16.1–18.6
17.6 ± 0.7
(17.7)

13.1–15.0
14.1 ± 0.6
(13.7)

1223.2–2049.9
1662.9 ± 88.1
(1618.1)

14–25
19.3 ± 2.9
(18)
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Three sets of scaling factors were obtained from the three 
sets of statistical regression models: (1) with or (2) without 
tragion-to-top distance measures as model feature input, and 
(3) using only age and sex in the regression models.

2.6 � Baseline subject‑specific models by mesh 
warping

In addition, subject-specific models via mesh warping (Ji 
et al. 2015) were also generated (“morphed models”) for the 
selected 11 subjects. An affine registration and an additional 
B-spline nonrigid registration were executed to generate the 
deformation field, which was then used to warp the mesh 
nodes of the generic model (Ji et al. 2015). The morphed 
models were considered as more geometrically “accurate” 
and were used as baselines to assess the impact simulation 
accuracy.

2.7 � Comparison among scaled and morphed 
subject‑specific models and the generic model

The scaled models and their morphed counterparts were 
compared in terms of impact-induced brain strains. A rep-
resentative concussive head impact from the reanalyzed 
National Football League (NFL) dataset (Sanchez et al. 
2018) was used for simulation. This impact was a predomi-
nantly sagittal concussive impact, with peak linear accel-
eration, rotational acceleration and rotational velocity of 
1041.7 m/s2, 5860.9 rad/s2, and 42.3 rad/s, respectively. 
The impact kinematic profiles are reported in the Supple-
mentary (Fig. S1). First, peak MPS values of the whole 
brain from the two sets of models were compared, as this 
strain measure currently serves as the de facto benchmark 
to assess the quality of numerous kinematics-based injury 
metrics (Bian and Mao 2020; Fahlstedt et al. 2021). Accu-
racy was assessed using coefficients of determination ( R2 ) 
and root mean squared error (RMSE).

To further examine differences in regional peak strains, 
peak MPS in the 50 deep white matter (WM) regions of 
interests (ROIs) and 54 Gy matter (GM) ROIs were also 
compared. These anatomical regions were identified based 
on the generic WHIM using the co-registered ICBM WM 
(Varentsova et al. 2014) and LPBA40 GM atlases (Shat-
tuck et al. 2008), respectively. The details of the image reg-
istration and identification of the anatomical regions were 
reported previously (Zhao et al. 2017; Wu et al. 2020). Mesh 
elements corresponding to each ROI remained identical in 
the scaled, morphed, and generic models. Linear regressions 
were performed between MPS values in the WM and GM 

(3)�3 =
hb

Hb

=

vb
/

Vb

wb
/

Wb
×
lb
/

Lb

ROIs. In addition to R2 and RMSE, the regression slope (k) 
was also reported to indicate an overall under- or overestima-
tion relative to the baseline. For all comparisons, the generic 
model was also used as a reference.

2.8 � Data analysis

The qualities of the three regression models for predicting 
individual brain length, width, and volume were compared 
using adjusted R2 and mean absolute percentage errors 
(MAPE) relative to the actual measurements for the entire 
dataset. For each prediction method, the number of subjects 
that exceeded 5% and 10% MAPE was also reported to high-
light their performance differences. The generic model was 
used as a reference for comparison.

For the selected 11 subjects, whole-brain and regional 
peak MPS (assessed at the 95th-percentile level) from the 
scaled models were compared with those from the morphed 
models as well as the generic WHIM. Since we expected 
scaled models to improve performance, one-tailed t-test with 
Bonferroni correction was used for performance compari-
sons among different regression models. F-test of equality 
of variances was also conducted when needed. In all statisti-
cal tests, significance was defined at the family-wise level 
of 0.05. All impact simulations were conducted in Abaqus 
(Version 2018; Dassault Systèmes, France), and all data 
analyses were performed in MATLAB (R2020a; Math-
Works, Natick, MA).

3 � Results

3.1 � Statistical regression models

With the inclusion of tragion-to-top distance, the statistical 
models for predicting brain length ( lb ; in cm), width ( wb ; in 
cm), and volume ( vb ; in cm3) were given by the following 
equations (all coefficients were statistically significant with 
p < 0.05):

where lenhd , breadthhd , circhd and traghd are the length, 
breadth, circumference of the head and tragion-to-top dis-
tance (all in cm); age and sex refer to age (in years) and sex 

(4)
l
b
= 0.81 × lenhd − 0.15 × circhd − 0.03 × age + 0.19 × traghd + 7.59

(5)
w
b
= 0.66 × breadthhd + 0.10 × traghd − 0.07 × len

hd
+ 3.86

(6)

v
b
=58.10 × lenhd + 53.77 × breadthhd + 84.24

× traghd − 8.91 × age − 1317.6
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(categorical variable, with 0 for male and 1 for female) infor-
mation for the given subject. Notably, sex was not selected 
as a contributing feature in the above regression models.

Excluding tragion-to-top distance, the following regres-
sion models were derived (similarly, all coefficients were 
statistically significant with p < 0.05):

Finally, the regression models using age and sex only 
were the following:

3.2 � Regression model geometrical accuracy

For all brain measurement regressions, performances sig-
nificantly improved when external head dimensions were 
included in the statistical models over those only considering 
age and sex (Table 2). The performances improved slightly 
when the additional head tragion-to-top measurement was 
incorporated, compared to those without.

In terms of absolute percentage error (APE) relative to 
the actual measurements, the two regression models that 
incorporated head dimensions were statistically indistin-
guishable (p > 0.05), regardless of whether tragion-to-top 
was utilized. However, they significantly improved over 
those only considering age and sex, or the generic model 
that did not incorporate any subject-specific information at 
all (Fig. 5).

The performance differences were more evident when 
comparing the number of subjects with brain dimension 

(7)lb = 0.82 × lenhd − 0.11 × circhd − 0.03 × age + 8.19

(8)wb = 0.67 × breadthhd + 3.77

(9)vb = 40.06 × circhd − 61.97 × sex − 8.83 × age − 439.7

(10)lb = 18.24 − 0.02 × age − 0.65 × sex

(11)wb = 14.07 − 0.01 × age − 0.43 × sex

(12)vb = 1799.10 − 4.63 × age − 178.46 × sex

prediction errors exceeding a given threshold (Fig. 6). At 
the 5% and 10% threshold levels, the two best performing 
regression models led to few subjects exceeding the error 
thresholds, especially for brain length and width. In con-
trast, the regression model with only age and sex as well as 
the generic model performed poorly for all brain measures. 
For example, about 55% the subjects had an APE greater 
than 5% for brain volume with the generic model, which 
decreased to 23% of subjects at the 10% threshold.

3.3 � Scaled models vs. morphed models for brain 
strain comparison

Four of the 11 selected subjects were used to graphically 
compare the two scaled models based on whether tragion-
to-top was utilized for statistical regression or not. Except for 
the smallest and the largest brains, the other two scaled mod-
els were virtually identical in mesh outer boundaries, which 
also matched well with the actual axial MRI (Fig. 7). Some 
differences were seen for the smallest and largest brains. 
However, the average mesh surface distances between the 
two scaled models were within 1 voxel resolution of 1.5 mm. 
The distance slightly increased (< 1.9 mm) when compar-
ing with the corresponding segmented brain surfaces. These 
findings suggest accurate brain model geometry overall. For 
the smallest brain, overlays of the different brain models in 
3D are shown in the Supplementary for additional compari-
sons (Fig. S2).

The three sets of scaled models and the generic WHIM 
were compared against the morphed models in terms of Dice 
coefficient across the 11 subjects for geometrical accuracy. 
In addition, they were compared in terms of peak MPS of 
the whole brain (Table 3). All scaled models improved geo-
metrical accuracy as well as response accuracy relative to 
the generic model. Again, the scaled model that utilized 
tragion-to-top distance as an input feature for regression had 
the best accuracy, but the improvement was marginal relative 
to that without using this feature.

For regional peak MPS, the three scaled models were not 
statistically different (p > 0.1 for all comparisons) in terms 
of R2 and RMSE (Fig. 8). However, they all significantly 
improved over the generic model. Only the regression slopes 
of the two scaled models, with and without TT, were not 
significantly different from 1.0, indicating no over- or under-
estimation existed overall. The same scaled models also had 
significantly smaller variance compared to the age-and-sex-
only model and the generic model.

Using the morphed model as the baseline, the best-
performing scaled model (with tragion-to-top included in 
regression) was compared with the age-and-sex-only model 
as well as the generic model. Scatter plots for regional peak 
MPS for two subjects with the smallest or largest brain vol-
ume are shown (Fig. 9). In both subjects, the scaled model 

Table 2   Comparison of adjusted R2 for regression models with and 
without tragion-to-top measurement as features, along with that only 
considering age and sex for predicting brain length, width, and vol-
ume (bold indicates best performances)

Adjusted R2 With 
tragion-to-
top

Without 
tragion-to-top

Age and sex only

brain length ( l
b
) 0.713 0.693 0.222

brain width ( w
b
) 0.620 0.608 0.170

brain volume ( v
b
) 0.720 0.613 0.405
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Fig. 5   Boxplot of the absolute percentage errors (APE) between 
the directly measure brain dimensions (length, width, and volume) 
for 191 subjects and those predicted using the three statistical mod-
els that incorporate head measurements with or without tragion-

to-top (TT), and models only relying on age and sex information. 
Measurements from the generic model are also provided as a refer-
ence. Not all statistical relationships are shown to improve clarity. *: 
0.0001 < p < 0.05; **: 1 × 10

−6<p < 0.0001; ***: p < 10−6 ; ^: p > 0.05

Fig. 6   Summary of the number of subjects with the absolute percent-
age error (APE) above 5% (a) and 10% (b) threshold for predicting 
three brain measurements (brain length, width, and volume) among 

three sets of regression models (with or without TT, or age-and-sex-
only) as well as the generic model
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with tragion-to-top had the highest R2 , smallest RMSE, and 
with k values closest to 1.0. The generic model performed 
the worst in all categories.

Finally, the subject with the smallest brain was used to high-
light MPS similarities and differences relative to those from 
the morphed model on two representative axial MRI imag-
ing planes. The two scaled models that included head external 
features were almost identical (95% of the brain volume had 
a difference less than 0.01). Therefore, only the one with the 
inclusion of tragion-to-top in the regression model was illus-
trated. It had a similar MPS response relative to the morphed 
counterpart (e.g., 95% of the volume had a difference < 0.02). 
However, much larger differences were observed for the age-
and-sex-only model (e.g., 38% of the brain volume had a dif-
ference > 0.02, and 6% volume had a difference > 0.04) and 
the generic model (e.g., 58% of the brain volume had a differ-
ence > 0.02, and 17% volume had a difference > 0.04).

4 � Discussion

In this study, we developed a technique to approximate 
subject-specific brain injury models by linearly scaling a 
generic counterpart. The three scaling factors along the 

anatomical axes are based on predictions from statistical 
regression models established from easily measurable 
external head dimensions and subject’s age and sex infor-
mation. A notable advantage of our work relative to other 
statistical models (Danelson et al. 2008) or neuroimage-
based techniques (Ji et al. 2015; Miller et al. 2016; Giudice 
et al. 2020; Li et al. 2020; Alshareef et al. 2021; Li 2021) 
is that it does not require neuroimages to approximate sub-
ject-specific brain models. Our scaled models are compa-
rable to the morphed counterparts in regional brain strains 
(Fig. 9) as well as detailed whole-brain strains (Fig. 10), 
but they are much more efficient to generate than mesh 
warping (< 1 s vs. hours, e.g., Giudice et al. 2020; Li et al. 
2020; Li 2021)). Simple linear scaling also maintains vir-
tually the same mesh quality relative to the generic model, 
as the scaling factors are typically around 0.9–1.1 for most 
subjects. In contrast, morphed models could degrade mesh 
quality in regions due to large local displacements from 
nonrigid registration (confirmed but results not shown).

These notable and appealing advantages of our technique 
could substantially enhance subject-specificity for future 
brain impact modeling. The simple linear scaling factors are 
also ideal for serving as additional inputs to deep learning 
brain models (Ghazi et al. 2021; Wu et al. 2022) to improve 

Fig. 7   Comparison of brain mesh outer boundaries overlaid on axial 
MRI for 4 representative subjects-specific scaled models. From left to 
right: subject with brain volume the smallest (left: a female subject of 
age 23) to the largest (right: a male subject of age 20). Red and green 
lines represent the mesh outer boundaries using the regression model 

that either incorporated tragion-to-top, or not. For the two subjects in 
the middle (a female and a male subject both of age 19), their mesh 
outer boundaries from the two scaled models are virtually identical 
that also approximate the corresponding axial MRI well. Scale bar 
length: 2 mm

Table 3   Summary of Dice coefficient of the three scaled models 
and the generic model relative to the corresponding baseline mor-
phed models for the 11 subjects, along with R2 and RMSE (including 
its range) in terms of their peak MPS of the whole brain. The three 

scaled models are generated using the corresponding set of statisti-
cal regression models: with and without tragion-to-top (TT), and age-
and-sex-only

With TT Without TT Age and sex Generic WHIM

Dice coefficient 
mean ± std (min, 
max)

0.977 ± 0.017 (0.942, 0.998) 0.969 ± 0.021 (0.916, 0.988) 0.924 ± 0.042 (0.806, 0.951) 0.901 ± 0.039 (0.803, 0.950)

R
2 0.908 0.815 0.686 0.500

RMSE
(min, max)

0.009 (0.001, 0.015) 0.011 (0.001, 0.020) 0.015 (0.002, 0.036) 0.021 (0.001, 0.049)
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subject specificity while instantly estimating detailed brain 
strains. It is envisioned that such enhanced deep learning 
models accounting for individual head/brain morphologi-
cal variations could elevate state-of-the-art and large-scale, 
population-based brain impact modeling to the next level 
(Ji et al. 2022).

4.1 � Comparison with previous work

By including easily measurable external head dimensions, 
in addition to age and sex alone (Danelson et al. 2008) as 
input features, our regression models were significantly 
more accurate in geometry for all brain measures including 
length, width, and volume. For example, the adjusted R2 for 
the age-and-sex-only model for brain length and width was 
only in the range of 0.1–0.2, vs. 0.6–0.7 when using addi-
tional head dimensions (Table 2). The higher performance 
of the two best performing scaled models that incorporated 
head dimensions was also evident when conducting pairwise 
comparisons in terms of absolute percentage error (Fig. 5) 
and counting how many subjects had an absolute percent-
age error greater than the 5% or 10% threshold (Fig. 6). The 
two best performing scaled models only had a few “failed” 
cases. In contrast, the scaled model using age and sex infor-
mation alone and the generic model had many failed cases, 
especially for brain volume.

Inclusion of the tragion-to-top distance into the regres-
sion model also improved the fitting performance over 
those without (e.g., adjusted R2 of 0.720 vs. 0.613 for 
brain volume; Table 2). The stepwise regression consist-
ently identified tragion-to-top as a statistically significant 
feature for all regression models (Eqns. (4), (5) (6). This 
was in agreement with the finding that tragion-to-top is a 
principal component influencing head geometrical varia-
tion (Liu et al. 2022). However, the two regression models 
were statistically indistinguishable when applied to predict 
brain dimensions in terms of absolute percentage error 
relative to the actual measurements (p > 0.05; Fig. 5).

In terms of impact-induced brain strains for the selected 
11 subjects, once again, the scaled models that incorpo-
rated external head dimensions as features for regression 
performed the best in terms of R2 and RMSE for peak MPS 
of the whole brain (Table 3). In terms of regional peak 
MPS, the three scaled models all significantly improved 
over the generic model. However, they were not statisti-
cally different among themselves in terms of R2 and RMSE 
(Fig. 8). Nevertheless, the regression slope for both the 
age-and-sex-only model and the generic model was sig-
nificantly different from 1.0, indicating the two models 
could under- or overestimate regional strains overall. For 
example, both considerably overestimated regional peak 
MPS for the smallest brain, while underestimated for the 

Fig. 8   Boxplot of the R2 , RMSE, and k values for the three scaled 
models and the generic one using responses from the morphed model 
as the baseline for the 50 WM ROIs (top) and 54 GM ROIs (bottom). 

Not all statistical relationships for pairwise comparisons are shown to 
improve clarity. For k values, statistical tests were conducted to test 
whether the mean was significantly different from 1.0. *: p < 0.05; ^: 
p > 0.05
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largest brains (Fig. 9). In contrast, the scaled models based 
on head external measures had a regression slope not sta-
tistically different from 1.0, indicating no overall under- or 
overestimation in regional peak strains existed. For the 
same two subjects, their slopes differed from 1.0 by no 
more than 2–3%.

These findings highlight the necessity of incorporating 
individual brain morphological variations in head impact 
simulation. Nevertheless, no statistical difference existed 
between the two scaled models either using or not using 
tragion-to-top in terms of both geometrical accuracy and 
brain strain. This suggested that incorporating tragion-to-top 
measurement into the regression model may have limited 
effect on the accuracy in approximating subject-specific 
models, even though it was identified as a top feature to 
explain head and brain size variance (Liu et al. 2022). In 
practice, measuring head length, breadth, and circumference 
would seem sufficient to generate scaled subject-specific 
brain models.

Given that external head dimensions can be easily meas-
ured on the field (Park et al. 2021) and that individualized 

neuroimages are not typically available, this study has 
important implications as it enables large-scale, subject-
specific brain injury studies without relying on individual 
neuroimages in the future. In addition to peak MPS of the 
whole brain commonly used at present (Li et al. 2020; Fahl-
stedt et al. 2021; Liu et al. 2021, 2022), we also system-
atically compared regional peak strains in gray and white 
matter ROIs. This is an important advancement given the 
emerging recognition of the importance of strain spatial dis-
tribution in studying the biomechanical basis of concussion 
(Wu et al. 2020; Anderson et al. 2020).

4.2 � Subject age and sex

While age was selected in most of the regression models 
(except for Eqns. (5) and (8) and the corresponding coef-
ficients were all statistically significant, the regression coef-
ficients were relatively small in magnitude, and all were 
negative. This indicated an overall trend of decreasing brain 
length/width and volume over age for the population studied 
(age 14–25). This was consistent with previous findings that 

Fig. 9   Scatter plots comparing regional peak MPS in the deep 50 
WM and 54 GM ROIs obtained from the best performing scaled 
models (utilizing tragion-to-top in regression), age-and-sex-only 
model, and the generic model relative to those from the morphed 
models for two subjects with the smallest (top) or largest (bottom) 

brain volume. The R2 , RMSE, and linear regression slope, k, for the 
two groups of regions are also reported (subscripts “G” and “W” 
indicate gray matter and white matter ROIs, respectively). Significant 
over- (top) or underestimation (bottom) occurred for the two subjects 
using the age-and-sex-only model or the generic model
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identified brain volume decreasing from adolescence onward 
but not head circumference (Courchesne et al. 2000; Bar-
tholomeusz et al. 2002). In addition, age was found to cor-
relate with brain length and volume (p < 0.05), but not with 
other head or brain measures (p > 0.05). These correlation 
statistics were consistent with the regression models that 
incorporated external head dimensions as features.

It is interesting to note that sex was rarely selected as an 
independent contributing feature in the two sets of regres-
sion models that accounted for external head dimensions 
(except for Eq. (9). However, this does not necessarily 
indicate that sex was not important. Rather, its effects have 
already been considered by using other head dimension 
measures as contributing features. In fact, sex was found 
to be highly correlated (p < 0.001) with all external head 
measures as well as internal brain measures. When step-
wise regression was used, the external measures selection 
identified external head measures, but not sex, to achieve 
the best fit.

Because external head dimensions were more effective 
than age and sex alone in regression, it was not surprising 
that the quality of the fitting was much improved over the 
ones that only considered age and sex Eqns. (10), (11), (12); 
Table 2. The coefficients for both sex and age were nega-
tive, indicating that females are generally of smaller brain 
dimensions, and that the brain shrinks in all dimensions over 
age for the population studied (age 14–25). The adjusted R2 
values for brain length and width (0.170–0.222) were con-
siderably smaller than that for brain volume (0.405; Table 2), 
indicating more variations in brain shape for this age group 
than for brain volume. Finally, for brain length and width, 
they were mostly dependent on the length and breadth of the 
head. Even if other features were included, their coefficients 
were much smaller (Eqns. (4) and (5), Eqns. (7) and (8), 
which was somewhat expected. Nevertheless, the additional 
features slightly improved model fitting performance (e.g., 
adjusted R2 increased from 0.66 for brain length using head 
length only, to 0.713; from 0.608 for brain width using head 
breadth only, to 0.620, when tragion-to-top was included).

Fig. 10   Resampled peak MPS 
over the entire impact simula-
tion on two axial planes using 
the morphed model (top), 
along with the absolute differ-
ences in peak MPS using the 
best-performing scaled model 
(with TT), the age-and-sex-only 
model (Age & sex), and the 
generic model for the subject 
with the smallest brain volume



	 S. Wu et al.

1 3

4.3 � Statistical models to account for morphological 
variations

Statistical models are commonly used to account for mor-
phological variations (Hu 2018) in developing FE models, 
such as the rib cage (Wang et al. 2016), liver (Lu and Untar-
oiu 2014), brain (Danelson et al. 2008), and skull (Urban 
et al. 2016). They can be broadly classified into three cat-
egories, using either multivariate regression models, gener-
alized Procrustes alignment (GPA), or principal component 
analysis (PCA). Multivariate regression models correlate 
morphological parameters of the anatomy along with age, 
sex, and stature for geometry prediction (Bartholomeusz 
et al. 2002; Wang et al. 2004, 2016). GPA-based method 
is applied to match geometrical landmarks and meshes of 
the FE models from subjects for further statistical analysis, 
which is widely used in anthropology and anatomy (Dijk-
sterhuis and Gower 1991; Slice 2005). In comparison, PCA-
based method relies on the principal component (PC) scores 
to characterize shape variation. This method could also be 
used as preprocessing to correlate with other features (e.g., 
age, sex, and body mass) for subject-specific anatomical 
geometry estimation (Shi et al. 2014).

Nevertheless, these models operate on the anatomy 
of interest directly. In comparison, our regression-based 
method approximates brain morphology indirectly using 
features from external head, without relying on neuroim-
ages or landmark identifications that may be time consuming 
and sensitive to noises (Wu et al. 2019a). This contributes 
to the general statistical methods for approximating subject-
specific models.

4.4 � Limitations and further development

Due to the relatively limited age range (14–25 years), the 
regression models may not be extended to younger subjects 
(e.g., < 7 year old), where greater variability is expected and 
that the head and brain dimensions have a different growth 
trend (e.g., rapid growth of brain volume and head circum-
ference vs. shrinking brain size with more or less constant 
head circumference for the older subjects (Courchesne et al. 
2000; Bartholomeusz et al. 2002)). In addition, the sample 
size for females (N = 50) was also smaller than that of the 
males (N = 141). Therefore, there may be more accuracy 
degradation for female subjects. Nevertheless, the tech-
niques developed in this study can be readily applied to the 
appropriate neuroimaging dataset, which can be explored in 
the future. This may be important for model-based investiga-
tions of TBI for younger and female athletes.

We did not use the CT data in (Liu et al. 2022) to augment 
our MRI data for analysis, because they do not capture the 

same anatomical surfaces (skull inner surface vs. brain outer 
surface and skull outer surface vs. scalp outer surface). Nev-
ertheless, some additional analysis was performed to probe 
the sensitivity of the regression model coefficients relative 
to the number of subjects. By randomly halving the subject 
numbers, most coefficients differed by less than 5%, with a 
few differed by 11–15% (Tables S1–S3 in the Supplemen-
tary). These results suggest reasonably stable results in our 
study.

Another limitation is that variations of internal brain 
anatomies such as ventricles are not considered in this 
study. Neuroimage-based mesh warping may have the ben-
efit of accounting for these internal brain anatomies (Giudice 
et al. 2020; Li et al. 2020; Li 2021); albeit, at the expense of 
necessitating neuroimages in the first place. It is also possi-
ble to further extend our work to internal anatomies (Danel-
son et al. 2008). However, there are a few considerations 
worthy of note before such an effort. First, to appropriately 
model internal brain anatomies, their material properties as 
well as internal boundary conditions such as those between 
the sulci folding are also necessary. However, they are not 
well characterized at present. In addition, current experimen-
tal data for model validation are not sufficient to distinguish 
or to confirm model biofidelity for strain responses (Zhao 
and Ji 2020; Zhao et al. 2021). Therefore, although mod-
els with detailed internal anatomical representations may 
offer improved strain distributions, additional verification 
from pathological neuroimages is necessary to confirm their 
effectiveness. From the model utility perspective, detailed 
brain strains are not yet commonly used for any result inter-
pretation (Fahlstedt et al. 2021; Ji et al. 2022). Given these 
considerations, therefore, simple linear scaling may be suffi-
cient for certain applications to approximate subject-specific 
models due to the ease of use and efficiency, and no need 
for neuroimages.

Finally, brain strain evaluations were only conducted 
using one representative head impact and one specific head 
injury model. More comprehensive evaluations using impact 
kinematics over a range of impact directions and severities 
are necessary to better understand the role of brain mor-
phological variation on strain. In addition, comparison in 
terms of white matter fiber strain (Giordano and Kleiven 
2014; Ji et al. 2015; Sahoo et al. 2016) is also warranted, 
given its improved characterization of tissue strains. How-
ever, this is beyond the scope of the current study and will 
be pursued in the future. Lastly, evaluation with other head 
injury models may also help confirm findings in this study, 
for which the techniques developed herein would remain 
equally valid. The evaluations can be achieved by replacing 
the head and brain dimensions of the generic model accord-
ingly (Table 1).
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