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Abstract

The large amount of training samples required to develop a deep learning brain injury model demands enormous compu-
tational resources. Here, we study how a transformer neural network (TNN) of high accuracy can be used to efficiently
generate pretraining samples for a convolutional neural network (CNN) brain injury model to reduce computational cost.
The samples use synthetic impacts emulating real-world events or augmented impacts generated from limited measured
impacts. First, we verify that the TNN remains highly accurate for the two impact types (N =100 each; R? of 0.948-0.967 with
root mean squared error, RMSE, ~0.01, for voxelized peak strains). The TNN-estimated samples (1000-5000 for each data
type) are then used to pretrain a CNN, which is further finetuned using directly simulated training samples (250-5000). An
independent measured impact dataset considered of complete capture of impact event is used to assess estimation accuracy
(N=191). We find that pretraining can significantly improve CNN accuracy via transfer learning compared to a baseline
CNN without pretraining. It is most effective when the finetuning dataset is relatively small (e.g., 2000-4000 pretraining
synthetic or augmented samples improves success rate from 0.72 to 0.81 with 500 finetuning samples). When finetuning
samples reach 3000 or more, no obvious improvement occurs from pretraining. These results support using the TNN to
rapidly generate pretraining samples to facilitate a more efficient training strategy for future deep learning brain models, by
limiting the number of costly direct simulations from an alternative baseline model. This study could contribute to a wider
adoption of deep learning brain injury models for large-scale predictive modeling and ultimately, enhancing safety protocols
and protective equipment.
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into a voxelized format (at an isotropic spatial resolution of
4 mm in this study).

Synthetic impacts: impact kinematics (specifically, rota-
tional velocity profiles) generated based on feature distribu-
tions obtained from measured impacts.

Introduction

Finite element (FE) models of the human brain simulate the
transient process of head impact based on physical laws.
They provide spatially and temporally detailed mechanical
responses such as strain, strain rate, and stress of the entire
parenchyma. These responses are critical to the understand-
ing of why and where brain injury occurs [25] but are dif-
ficult or infeasible to measure in a live brain under injury-
relevant conditions [2]. Therefore, there is consensus that
brain injury models play a critical role in the investigation
of biomechanical mechanisms of traumatic brain injury
(TBI). Over the past several decades, brain injury models
have significantly evolved in sophistication [14, 24, 37]. A
major limitation, nonetheless, is that these models are noto-
riously demanding in computational resources in terms of
both runtime and hardware. They are impractical for routine
applications.

To dramatically improve efficiency while retaining high
accuracy, several deep learning brain injury models have
been developed [6, 11, 26, 33-35, 40]. The basic idea is to
train a neural network by iteratively adjusting its weighting
parameters to learn the complex and nonlinear but smooth
and continuous high-dimensional mapping relationship
between head impact kinematics and the resulting brain
responses. If a deep learning model achieves sufficient accu-
racy relative to the baseline counterpart, it can then be used
as an efficient surrogate. This could enable the underlying
baseline FE model for large-scale impact simulations critical
for rapid concussion risk estimation [6, 11, 40], incorpora-
tion of the cumulative effects from many subconcussive head
impacts [27], and iterative design and testing of protective
headgears [10]. As a result, the brain modeling community
has recommended further integration of deep learning mod-
els into future TBI biomechanics research and practice [14].
The potential for routine and large-scale model simulations
could have profound implications for injury biomechanics
and other related fields in general, given that applications of
deep learning techniques may well be extended beyond TBI
biomechanics as focused here.

Nevertheless, to achieve high accuracy, a deep learn-
ing brain model usually requires a large amount of training
samples. This poses two major challenges. First, generat-
ing response samples from impact kinematics still relies on
computationally rather costly FE model simulations. For
example, an earlier convolutional neural network (CNN)
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using ~ 5700 impacts in contact sports required ~ 8 months
nonstop simulations [11] and ~ 10 months for ~ 3200 impacts
from automotive impacts [33], even with parallel processing.
These studies have already taken advantage of the head geo-
metrical symmetry property relative to the mid-sagittal plane
to halve the parametric space [16]. Another study using a
fully connected network required an estimated total runtime
of ~26 months to generate ~2500 response samples (without
considering parallel processing [40]).

In addition, although more training samples are antici-
pated to improve estimation accuracy, it is unclear what
an “optimal” or minimum training data size is for a given
desired accuracy. For example, with ~5700 training sam-
ples, a high success rate (SR, a measure that considers the
accuracy in both magnitude and spatial distribution pattern)
of up to 97.1% was achieved [11]. When the training sam-
ple size was substantially reduced to ~ 1400, the SR only
dropped to 86.2% for a morphologically individualized
CNN via transfer learning (i.e., ~75.4% reduction in sam-
ple size vs.~11.2% decrease in SR) [22]. Transfer learn-
ing is to initiate the neural network weighting factors based
on a converged network instead of using random values;
thus, expedites training [5]. Identifying a minimum training
sample size is important to limit the cost of direct model
simulations.

The second challenge is that real-world measured head
impacts are usually difficult to acquire, and only relatively
small datasets have been reported (e.g., dozens for labora-
tory reconstructed impacts [30], a few hundred for on-field
measurements [13, 34, 40] or automotive impacts [9, 33]).
As a work-around, data augmentation has been used to
increase training sample size [11, 34, 35]. Measured impacts
from helmet testing [6, 10] or through dummy head model
simulation [40] can reach thousands, but their kinematic
profiles are relatively “simple” in “feature” space. They are
mostly composed of single peak/single rotational axis. Thus,
they may not be representative of much more complex real-
world impacts on live humans, where multiple peaks and
rotational axes during the impact temporal window seem
more common [13].

Given the previously simulated large amount of head
impacts now available, here we explore how best to design
an efficient training strategy to develop a deep learning
brain model. There are two aims of this study. First, we
evaluate whether a recently developed transformer neural
network (TNN) of high accuracy (e.g., coefficient of deter-
mination, R?>0.99, for spatially detailed peak strains) can
be utilized to efficiently generate brain response samples
without relying on the costly direct simulation from the
baseline FE model. With sufficient accuracy, the response
samples can then be employed to pretrain a CNN model
[33] before finetuning via transfer learning with additional
directly simulated training samples. This is anticipated to
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reduce training samples required compared to baseline
training without transfer learning.

Second, we also explore whether it is feasible to gen-
erate synthetic impacts based on kinematic feature char-
acteristics from limited measured impacts. A data-driven
emulator based on principal component analysis (PCA)
was previously developed to generate synthetic impacts
[1]. However, it does not allow direct control of kinematic
profile complexity, which, intuitively, may have impli-
cations for the accuracy of the surrogate deep learning
model. If synthetic data would facilitate model training
when limited real-world training samples are available, as
similarly found in image recognition [21] and car detection
[32] problems, they may alleviate some burden of having
sufficient measured data that could be difficult to obtain
in the real-world.

We expect findings from this study may quantify the
effectiveness of pretraining for CNN model development
in the context of TBI biomechanical modeling. While
these findings may not directly benefit deep learning brain
models that have already been developed, they could offer
important insight into an economical training strategy for
a future deep learning surrogate model aimed at efficiently
replicating responses of an alternative or an upgraded
baseline FE model. As fresh impact-response samples
are necessary from direct and costly model simulations,
a guideline for generating training samples and training
strategies could be valuable, especially if application of
deep learning is to be expanded on a large scale [14], or to
be potentially extended to microscale axonal injury models
[28, 41] as well. These efforts could contribute to a wider
adoption of deep learning brain injury models for large-
scale predictive modeling and ultimately, enhancing safety
protocols and protective equipment.

CNN pretraining and finetuning

. %
S_ynthetlc 4%
impacts

Augmented
impacts

Fig. 1 Procedure for generating pretraining samples for a CNN deep
learning brain model and finetuning. In this study, both pretraining
and finetuning samples are based on the same baseline FE model for

CNN
Augmented
samples

Methods

Figure 1 illustrates the overall procedure of the study. Two
separate impact datasets (synthetic based on extracted fea-
tures vs. augmented based on limited measured data) are
fed into the TNN to efficiently generate their respective
voxelwise maximum principal strain (MPS) of the whole
brain without FE model simulation (seconds vs. weeks or
months). The impact kinematics and the corresponding vox-
elwise peak MPS constitute pretraining samples. They are
then used to initially train a CNN. The resulting pretrained
CNN is further refined using finetuning training samples
that are simulated directly from the baseline FE model, and
then resampled into voxelwise MPS. The resulting target
CNN is finally used for performance evaluation on a separate
testing dataset. The details of each step are elaborated in the
following sections.

Synthetic Impacts
Feature Extraction

Assuming a rigid body skull, head impact kinematic profiles
about the three anatomical axes at the head center of gravity
fully describe the head excursion. Linear acceleration, alone,
generates little brain strain due to brain’s near incompress-
ibility. The exception is the inferior-to-superior component
that could generate strain in the brainstem [33] due to the
mobility along the neural axis, but which may be compen-
sated for via superposition [10]. Therefore, isolated head
rotational kinematics are sufficient for brain strain estimation
[3, 18]. This simplifies model input. Both magnitudes and
temporal locations of local extrema (peaks and valleys) in
a rotational velocity profile are important “features” [4, 29]
because they dictate the physical process of head accelera-
tion and deceleration. Head impact profiles typically have
various numbers of peaks, which lead to varied strain time

Simulated
samples

Target
Finetune CNN

Pretrained

evaluation. For future applications, however, the finetuning dataset
could be from an alternative baseline FE model that requires costly
model simulations to generate fresh training samples.
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history patterns [1, 15]. Based on these observations, there-
fore, we considered kinematic features of interest to include
the number, magnitudes, and temporal locations of local
extrema in the three rotational velocity profile components.
Other kinematic features also exist, such as combinations of
extrema magnitudes of accelerations, velocities, and other
variants including integrations and differences [40]. They
were not used here due to the loss of temporal information
necessary to derive impact kinematic profiles.

The two sets of measured impacts were employed to
extract features of interest (NV=163, from 53 reconstructed
NFL impacts [30] and 110 mouthguard impacts [13]). The
mouthguard impacts were mostly from 30 collegiate Ameri-
can football players, along with impacts from 2 professional
box players and 1 mixed martial artist [13]. First, all notable
peaks and valleys for each component of the rotational veloc-
ity profile were identified (“findpeaks.m” in Matlab). To
avoid an excessive number of extrema, smaller prominences
and depressions (< 10% of the maximal resultant velocity)
were neglected. When two peaks or valleys were too close
to each other (< 10 ms), only the one with the larger magni-
tude was collected, as they were mostly bumps, summits, or
saddles in the same acceleration/deceleration phase. Given
the importance of rotational velocity magnitude on brain
strain, we ordered the resulting kinematic features based on
the magnitude. Specifically, the maximum magnitudes in the
three components were first arranged in a descending order,
from which two ratios between a smaller value and its larger
neighbor were calculated, along with their temporal loca-
tions relative to the maximum peak. Figure 2 illustrates the

Extract Features

procedure for feature extraction. Specific anatomical axes
were not considered in analyzing features.

Within each profile component, the identified extrema
magnitudes were similarly ordered to calculate ratios
between two consecutive (i.e., adjacent) neighbors. In addi-
tion, the extrema temporal locations relative to the ordered
neighbor (of a larger magnitude) were also recorded. The
resulting magnitude ratios (ranging from O to 1) and rela-
tive temporal locations (ranging from — 100 ms to 100 ms)
were measured to construct their corresponding statistical
distributions. Quantifying these features based on ordered
peak magnitudes allowed an effective control of kinematic
profile shapes to focus more on larger velocity extrema when
generating synthetic data. Velocity profile shapes are known
to be important to the induced brain strains [3, 43]. Figure 3
reports the statistical distributions of the features for the top
three extrema and those of the number of extrema points.

Generating Synthetic Rotational Velocity Profiles

The ordered peak magnitude ratios and their corresponding
relative temporal locations were used to generate synthetic
rotational velocity profiles for each component indepen-
dently. First, the number of local extrema was randomly
generated following its distribution. Next, the temporal loca-
tion of the largest peak with a normalized magnitude of 1.0
was randomly generated within a range of 30-70 ms, as the
TNN estimates strains starting from 30 ms. The upper limit
ensured sufficient time for brain strains to reach peak values
within the given 100 ms time window [15, 23].
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Fig.2 Procedure for feature extraction of the three rotational velocity profile components, by first identifying peaks and valleys, from which to
obtain their temporal locations and magnitude ratios. The features are sorted in a descending order based on magnitude ratios.
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Starting from this largest peak, smaller peaks were itera-
tively generated following the corresponding distributions
for magnitude ratios and temporal locations (Figure 3). A
scaling factor of —1.0 was applied to the magnitude, when
necessary, to create a valley between two consecutive peaks
(and vice versa). The resulting peaks and valleys served as
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“key points” for the rotational velocity profile, and they were
up-sampled via “spline” interpolation to create a temporally
continuous curve at 1000 Hz.

To combine the three component profiles, the two with
smaller peak magnitudes were randomly scaled based on the
distribution of peak magnitude ratios (Figure 3a). They were

@ Springer



N. Linetal.

further randomly shifted in time according to the established
distributions of the relative temporal locations before ran-
domly assigned to the x, y, and z axes. The three anatomical
axes correspond to the posterior—anterior, right-left, and
inferior—superior directions, respectively. Finally, the com-
ponent magnitudes were uniformly scaled so that the peak
resultant magnitude followed a uniform distribution in the
range of 2-40 rad/s [11].

Intuitively, the number of local extrema reflects the
complexity of the rotational velocity profile. Therefore, we
empirically designated the resulting kinematic profile as
“simple”, if only one peak existed in the resultant rotational
velocity profile, or “complex”, otherwise.

Augmented Impact Dataset

For comparison, we also used the same earlier data augmen-
tation scheme [11, 36] to generate a separate pretraining
dataset. Briefly, the augmentation first permutes the x, y,
and z components of the measured rotational velocity profile
and then randomly rotates the rotational axis about the head
center of gravity. The three anatomical axes correspond to
head posterior-to-anterior, right-to-left, and inferior-to-supe-
rior direction, respectively. Finally, the resulting rotational
velocity components are randomly and synchronously scaled
so that the peak resultant magnitude follows a uniform dis-
tribution within the range of 2—40 rad/s. Similar to the syn-
thetic impacts, the augmented impacts were also divided
into “simple” vs. “complex’ subsets, if the resultant velocity
profile had one or more peaks, respectively.

TNN to Generate Pretraining Samples

The recently developed TNN served as a data generator in
this study [35]. This neural network architecture is widely
used in natural language processing tasks, which often has
a superior performance due to its self-attention mechanism
[12]. In this study, the TNN was retrained using the same
earlier training samples [35] to predict relative brain-skull
displacement for 70 ms duration (from 31° to 100" time
frames; vs. 60 ms duration in the earlier study, from 31% to
90™: displacement and strain values for the first 30 ms are
usually quite small to be of any interest) at a spatial isotropic
resolution of 4 mm. Voxelized temporal MPS values at cen-
troids were then obtained for each time frame.

To use the TNN for estimation, the same earlier preproc-
essing was employed for a given impact so that the dominant
peak of rotational velocity occurred at a fixed temporal loca-
tion of 50 ms (e.g., Figure 4). The rotational velocity profile
was then concatenated with its corresponding acceleration
profile (generated via forward differentiation; further scaled
to 1% to maintain a comparable data range) before serv-
ing as TNN input. The TNN-estimated voxelwise relative
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brain-skull displacement from 31% to 100" ms were then
used to calculate voxelwise MPS at every time point [17].
The peak MPS over the estimation time window of 70 ms
were finally obtained to compare with the simulated coun-
terparts resampled at the same voxel centroids.

CNN Pretraining and Finetuning

We adopted the previous CNN architecture [11] for train-
ing and evaluation. To be consistent with the voxelwise
TNN output, the CNN output size was adjusted accordingly
(N=20036 voxels for the brain parenchyma [35]). The CNN
was first trained using the TNN-estimated pretraining sam-
ples from either the synthetic or augmented dataset. The
network weights of the resulting pretrained CNN was further
adjusted using finetuning training samples.

To investigate how the pretraining and finetuning sample
sizes influenced CNN estimation accuracy, the two datasets
were systematically varied in size. The pretraining dataset
of sizes 1000 to 5000 (at a step size of 1000; N=5) with
either synthetic or augmented impacts (N =2) were ran-
domly selected from their respective pool of data. For each
resulting pretrained CNN, finetuning dataset of sizes 250,
500, and then 1000 to 5000 (at a step size of 1000; N=7)
were also randomly selected. To further investigate whether
pretraining profile complexity affects CNN estimation accu-
racy, each pretraining dataset was also divided into “simple”
vs. “complex” subsets for analysis (N=2). They led to a total
of 70 (=5 X7 x2) pretraining/finetuning combinations. For
each combination, 5 independent trials were executed, from
which an averaged performance was obtained. In total, 350
(=70x5) CNN models were pretrained and then finetuned
for assessment. Finally, a baseline training without pretrain-
ing was conducted for each finetuning dataset (N=7) for
additional comparison.

For all training tasks, mean squared error (MSE) between
estimated peak MPS and those from direct simulation was
used as the loss function. To determine network training
hyperparameters, samples were divided into 90% for training
and 10% for validation, for both pretraining and finetuning
samples. For pretraining models, the batch size and learning
rate were observed to be identical to the previous study (256
and 0.001, respectively [11]). The number of epochs was
determined based on validation loss during cross-validation
with an early stopping criterion [34] to avoid overfitting.

To optimize hyperparamters for finetuning, we systemati-
cally varied the batch size (4 to 256), learning rate (le—5 to
le—3; < 10% of that of the pretraining recommended [5]),
and the number of maximum epochs (ranging from 300 to
1000) to yield the smallest validation loss with one random
fold in a 10-fold cross-validation scheme. The resulting
hyperparameters are given in the Appendix for each finetun-
ing sample size and impact data type. In general, a smaller
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Fig.4 Procedure for generating synthetic head impact rotational velocity profiles. A zero rotational velocity is assumed at the two ends of the
100 ms impact window. The combined profile is further shifted to leave a non-zero velocity magnitude at the end of the impact window.

training dataset required a smaller learning rate, a smaller
batch size, but a larger number of epochs, to converge.

CNN Performance Evaluation

The CNN performance was evaluated based on an independ-
ent dataset of head impacts measured from American high
school football (HF, N=314, impact duration of 50 ms).
Their previous direct model simulations were used to gen-
erate resampled voxelwise peak MPS. A relatively short
impact duration may not allow the brain to reach peak strain
values during the simulation time window [15, 23]. There-
fore, we followed a recent study to exclude impacts when
the peak rotational velocity occurred near the end of the
impact recording window [22]. Specifically, impacts were
excluded if the peak resultant rotational velocity occurred

within the last 5 ms relative to the temporal window right-
handed boundary (as empirically used earlier [15]). This led
to 191 impacts for CNN performance evaluation.

Data Analysis

To evaluate TNN estimation accuracy, we randomly gen-
erated 100 synthetic impacts and 100 augmented impacts,
respectively, for estimation and direct model simulation.
Estimation accuracies for both TNN and CNN were evalu-
ated by comparing estimated voxelwise peak MPS with
those from direct model simulations in terms of R?, RMSE
and SR. An estimation was said to be successful with suffi-
cient accuracy when the linear regression slope (k) and Pear-
son correlation coefficient (r), between the estimation and
the simulated counterpart, did not deviate from the “perfect
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scores” of 1.0 (when identical) by more than a given thresh-
old. In this study, we chose two thresholds of either 0.1 or
0.05 for a more relaxed or a more stringent criterion for
assessment, respectively.

CNN estimation accuracies for all pretraining/finetuning
configurations were reported and compared with those from
the baseline training (i.e., using finetuning samples alone
for training without transfer learning from pretraining). A
pretraining model alone, without using real-world measured
data for training, could place a bottleneck in performance
[21, 32]. Therefore, we also reported accuracies of pre-
trained CNN models based on either synthetic or augmented
impacts as a comparison. All CNN trainings were conducted
in Python (Intel Xeon E5-2698 with 256 GB and A100 GPU
with 80 GB). Generating one batch of pretraining samples of
5000 took one full day (from voxelized relative displacement
to strain at every time frame, and finally to voxelized peak
strain), most of which was on disk input/output. Each fine-
tuning training took ~ 30 min to complete. All data analyses
were executed in MATLAB (Version R2022b).

Results
TNN Accuracy Performances

Figure 5 reports the k-r plots for TNN-estimated responses.
For both impact types, the TNN remained highly accurate in
terms of R? (0.948-0.967) and RMSE (0.012-0.015), virtu-
ally comparable to previous report [35]. However, in terms
of the regression slope, the TNN appeared to have slightly
over-estimated the peak responses, with the average k val-
ues 0.05-0.06 above the “perfect” score of 1.0. To further
investigate, an example “failed” case for each impact data
type was selected for further scrutiny at several time points
(Figures Al and A2 in the Appendix).

CNN Performances

Figure 6 reports CNN estimation performances based on SR
(at two success thresholds of 0.1 and 0.05), R? and RMSE for

Fig.5 k—r plots to report TNN

(a) S|1? = 0.84, R? = 0.948, RMSE = 0.015

different combinations of pretraining (of synthetic impacts)
and finetuning samples. Figure 7 reports the same when
using augmented impacts as pretraining samples. Figure 8
synthesizes the results into “theoretical trendlines” for the
performance metrics relative to pretraining and finetuning
dataset sizes (performance trendlines for SR and R? simi-
lar). Figure 9 compares the accuracy performances using
each pretrained CNN model without finetuning. Finally,
one-tailed nonparametric Mann Whitney U tests were used
to test whether using transfer learning improved model per-
formance for each combination of pretraining and finetuning
dataset size over the baseline training. Table 1 summarizes
the number of significant results for different combinations
of pretraining and finetuning datasets. More detailed results
are in Table A2 in the Appendix. Figure A3 illustrates exam-
ples of significant or insignificant tests with box plots show-
ing the scatter of independent trials.

Discussion

When deep learning brain models were first developed, it
was unclear how many training samples were necessary. A
domain-relevant guideline does not exist. Hence, most of
them have used thousands of training samples, given that
more samples are anticipated to improve accuracy. However,
as few as 80 samples were also found sufficient for a much
lighter weight fully connected neural network for a porcine
brain model (vs. human brain in others), which was designed
to conduct sensitivity analysis for controlled cortical impact
(3 important input parameters with 4 outputs [26]). A more
complex network architecture with larger input and output
sizes such as predicting peak strains of the entire brain will
likely require a larger training dataset [6, 11, 34, 40]. Nev-
ertheless, using the fewest training samples to achieve a suf-
ficient estimation accuracy can limit the associated compu-
tational cost, which is important in practice.

In this study, we employed a large amount of impacts and
their direct model simulations already available from previ-
ous endeavors to study how accuracy varied with respect
to the amount of training samples and the training strategy.

(b) SR = 0.84, R? = 0.967, RMSE = 0.012

accuracy performances based
on 100 randomly generated
(a) synthetic or (b) augmented
impacts. Their corresponding
SR, R? and RMSE are reported. |
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success threshold of either 0.1 or 0.05, a and b, respectively), (c) R,
and (d) RMSE using synthetic samples for pretraining. The pretrain-

Findings from this study may not directly benefit deep learn-
ing models already built, but they could provide insight into
an economical approach for developing a future deep learn-
ing brain model either at the global or the microscale level,
when fresh training samples are necessary that would require
costly simulations using the updated baseline FE model.
These efforts could contribute to a wider adoption of deep
learning brain models in the future.

A 5k

1k [[@O2k EE3k BE4k 5K
pretraining: complex

ing samples are further divided into “simple” vs. “complex” impacts
according to the number of extrema points in the resultant rotational
velocity profiles.

We find that pretraining was effective at improving a
CNN model estimation accuracy, especially when the fine-
tuning dataset was relatively small (e.g., < 1000 samples;
Figures 6-7). The trends are clearer in the synthesized theo-
retical trendlines (Figure 8). Statistical tests further indicated
that pretraining was most effective in terms of R? as sig-
nificant improvements occurred in most of the pretraining-
finetuning combinations (e.g., 47 and 64 out of a total of 70
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Fig.7 Summary of CNN estimation accuracy in terms of SR (with success threshold of either 0.1 or 0.05, a and b, respectively), (¢) R?, and (d)

RMSE using augmented impact samples for pretraining.

combinations were significant using synthetic impacts and
augmented impacts, respectively; Table 1). Both synthetic
and augmented impacts were similarly effective in pretrain-
ing in terms of SR, but augmented impacts improved R? and
RMSE more than the synthetic impacts (by up to 2% and
3-8%, respectively). This suggested synthetic impacts may
have some different features than those in the real-world.
From the more detailed Table A2, there was some trend that

@ Springer

pretrained models were more beneficial when the finetuning
dataset was relatively small, and a large pretrained dataset
was usually preferred. However, there was no clear trend
between simple vs. complex pretraining impacts.

Given these observations, pretraining is recommended
if finetuning samples are relatively few (~1000 or less).
However, when sufficient finetuning samples are avail-
able (e.g.,>2000), baseline training without pretraining is
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Fig.8 Synthesized “theoretical trendlines” to illustrate performance
variations in terms of (a, ¢) SR/R? and (b, d) RMSE with respect to
(a, b) finetuning and (c, d) pretraining dataset sizes. SR and R? have
an upper limit of 1.0, while RMSE has a lower limit of 0.0 (when
predictions are identical to target values). A larger or a smaller data-

sufficient. In fact, when the size of finetuning samples is
even larger (e.g.,>4000), pretraining could occasionally
degrade the CNN performance as indicated by one-tailed
Mann Whitney U test. From a biomechanical perspective,
focusing on head rotational kinematics and taking advantage
of the head/brain geometrical symmetry property relative to
the mid-sagittal plane would also reduce the training sam-
ples required.

TNN Performance

The TNN remained highly accurate when estimating either
the synthetic or augmented impacts, with R? of 0.948-0.967
and RMSE of 0.012-0.015 (approximately 6—7.5% of the
injury threshold of 0.2 previously established based on the
reconstructed NFL impacts [42]). The R? was slightly lower
than the value of >0.99 achieved at the time when the MPS
was at peak [35], in part, because it was the accumulated
peak strains used for evaluation in this study.

Interestingly, the SR was only 84% when using the suc-
cess threshold of 0.1 (Figure 5), which was somewhat lower
than earlier studies where >96% could be achieved [11,
22]. While the majority of testing impacts had a Pearson
correlation coefficient, r, above 0.95, most of them had a k
value greater than 1.0, with an average of 1.054—1.063. This
suggests a general over-estimation of 5-6% for this dataset
evaluated here.

Notably, R?> and RMSE are commonly used for accuracy
assessment in TBI biomechanical studies [9, 31, 34, 38].
The SR is a relatively recent accuracy metric [11]. It is pos-
sible to have a perfect R? of 1.0, but the accuracy in terms of
RMSE could still be poor (e.g., consider two samples where
the values of one are exactly twice of the other). There-
fore, R?, alone, may not be sufficient to quantify accuracy
between two samples of the same variable. While a non-
zero RMSE could reflect the discrepancy between the two

# of pretraining samples # of pretraining samples

set refers to>3000 or < 1000, respectively. With sufficient finetuning
samples (>3000 as in a, b), performances converge to the same value
regardless of the pretraining sample size. Pretraining is most effective
when finetuning sample size is relatively small (i.e., < 1000).

samples, it does not indicate whether an overall over- or
under-estimation occurs. In this case, the regression slope,
k, could provide valuable additional insight (e.g., detect-
ing a 5-6% over-estimation for the dataset evaluated here).
Therefore, using multiple accuracy metrics is recommended
for a comprehensive understanding of the agreement among
different methods.

The error in peak MPS seemed to be the accumulation
of errors when converting from estimation of relative brain-
skull displacement into strain over time (see Figures Al and
A2 in the Appendix). By design, the TNN was trained to
estimate voxelized relative brain-skull displacement over
time so that to significantly reduce the amount of data to
handle (vs. directly estimating the complete strain tensor)
[35]. Further evaluation of TNN accuracy in terms of accu-
mulated peak strain is necessary to determine if this strain
over-estimation is specific to the testing dataset employed
here or more systematic. In the latter case, a simple scaling
could mitigate the systematic error.

Impact Samples

Without finetuning, pretraining models also had some capa-
bility in estimating brain strains. However, their accuracies
were considerably lower than those with additional finetun-
ing, and they were also largely invariant with respect to the
amount of pretraining samples used (Figure 9). This was in
contrast to CNNs with additional finetuning, where accuracy
generally improved with the increase in finetuning sample
size. For example, the SR for pretraining models (with the
success threshold of 0.1) was approximately 0.5 and 0.6,
respectively, when using synthetic and augmented datasets,
respectively. This was considerably lower than 0.8-0.9 when
at least 500 finetuning samples were used in training.
Pretrained CNNs with augmented impacts consistently
outperformed those with synthetic data. This again suggests
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Fig.9 Pretrained CNN performances in terms of SR, R? and RMSE using four pretraining impact data types with a range of sample sizes, with-
out additional finetuning.

Table 1 Summary of the number of Mann Whitney U tests reporting significant improvement (p <0.05) in CNN prediction accuracy when using
a pretrained model compared to baseline training without transfer learning

SR (threshold=0.1) SR (threshold =0.05) R? RMSE
Syn (simple/complex) 21 (9/12) 31 (17/14) 47 (25/22) 23 (15/8)
Aug (simple/complex) 23 (10/13) 33 (17/16) 64 (32/32) 32 (13/19)

For each combination of pretraining and finetuning datasets (of size of 5 and 7, respectively), the total number of tests is 35 (= 5 X 7). For exam-
ple, for 9 out of 35 combinations using simple synthetic impacts, pretraining significantly improves prediction accuracy in terms of SR (with
threshold of 0.1), but significant improvement occurs in terms of R? for 25 out of them. “Syn”: synthetic impacts; “Aug”: augmented impacts
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some differences between the two types of impacts. The syn-
thetic impacts assumed a zero rotational velocity at both
ends of the 100 ms impact window to facilitate data gen-
eration. After impact profile shifting, a non-zero velocity
usually occurred at the end of the impact window, similar to
real-world impacts. Nevertheless, more work is necessary
to devise pretraining samples that best represent real-world
impacts, perhaps, by considering features in both time and
frequency domains [1, 7].

Impact Kinematic Profiles

We have intentionally and empirically categorized pretrain-
ing impacts into “simple” vs. “complex” based on the num-
ber of extrema found in the resultant profile. However, it was
not obvious whether there were any performance differences
between the two, either with or without additional finetun-
ing. This observation may, at least in part, be due to the
relatively “simple” independent testing samples that had a
considerably shorter impact duration than other augmented
and measured impacts (50 ms, vs.~100 ms). The utility of
the “simple” vs. “complex” profiles require further investi-
gation in the future, e.g., when dealing with longer impact
durations such as those in automotive impacts.

However, it is important to ensure loading profiles to
capture the complete or at least the majority of the tran-
sient impact process. For all real-world head impacts, there
is a basic expectation that the head will eventually come
to a stop. Therefore, both acceleration and deceleration are
expected. When focusing on rotational acceleration peak
magnitude (as in earlier studies [19]) without considering
deceleration, it is questionable that the resulting simulated
brain strains are trustworthy [15, 23]. This could compro-
mise strain-based injury detection and risk assessment,
which is likely more of a concern when considering the
spatial distribution of brain strains.

Generality of Findings

Impacts in this study were mostly from American football,
either measured on the field or reconstructed in laboratory.
The synthetic impacts were also generated based on these
measured impacts. There is some evidence suggesting kin-
ematic differences from impacts in different sports or events
(e.g., the same kinematic-based injury criteria correspond to
different strain levels [39]). However, the findings from this
study may be more universal across sports and level (e.g.,
collegiate vs. high school) from several perspectives.

First, the TNN and a separate multi-task CNN (i.e., sepa-
rating the continuous impact duration into multiple segments
to facilitate training, which shares the same neural network
architecture as those in the current study) have shown to be
accurate for a range of impact types exhaustively chosen

from the literature [35]. Therefore, it is likely that the CNN
model will remain applicable to other head impact types,
such as ice-hockey, lacrosse, and soccer. One explanation
is that random data augmentation may provide a range of
impact kinematic profiles that could represent those in dif-
ferent sports. Their kinematic features will likely overlap
in the “feature space” (albeit automotive impacts may have
larger differences due to their typically much longer impact
durations, which would pose additional challenges [33]).
Both rotational velocity peak magnitudes and their temporal
locations are considered, as their influence on brain strain
is universal [4, 29].

Second, we expect that transfer learning may be univer-
sally effective for other sports, another baseline FE model
other than the WHIM, and even microscale axonal injury
models [28, 41]. This is because they all use time series
data such as impact kinematics or axonal stretch history as
input. A monotonic input-output relationship is anticipated,
where larger input values would lead to elevated response
magnitudes. Therefore, a pretrained model that has already
learned the basic mapping would likely reduce the number
of finetuning samples required for training a deep learning
model.

Limitations

This study was limited to using CNN for training and assess-
ment. While the specific findings/recommendations may not
be directly applicable to other neural network architectures
such as U-Net [6] and fully connected neural networks [26,
40], we anticipate that at least the approach herein remains
applicable. A generative adversarial network (GAN) may
also be a more advanced alternative to generate synthetic
impact profiles, as recently demonstrated to augment mate-
rial microstructural patterns from a relatively small training
dataset [20]. Regardless, the utility of TNN for rapid genera-
tion of pretraining samples from these augmented impacts
for neural network training likely remains.

In addition, we have also focused on spatially detailed and
voxelwise peak strains of the entire brain. However, a “sca-
lar” value such as peak strain of the whole brain or cumu-
lative strain damage measure (CSDM) [31] remains com-
monly used at present [8, 14]. While it is trivial to compute a
scalar value from a spatially detailed peak strain distribution,
developing a deep learning brain model directly for a single
scalar output or a vector output for a few selected anatomi-
cal regions [10] would dramatically reduce the number of
outputs (~20 thousand here vs. 1 or a few). Without the need
to consider brain strain spatial distribution, a simpler deep
learning architecture may suffice that would also require
considerably fewer training samples to limit the demand of
computational resources.
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