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Contemporary biomechanical modeling of traumatic brain injury (TBI) focuses on either the global brain as an
organ or a representative tiny section of a single axon. In addition, while it is common for a global brain model to
employ real-world impacts as input, axonal injury models have largely been limited to inputs of either tension or
compression with assumed peak strain and strain rate. These major gaps between global and microscale
modeling preclude a systematic and mechanistic investigation of how tissue strain from impact leads to down-
stream axonal damage throughout the white matter. In this study, a unique subject-specific multimodality
dataset from a male ice-hockey player sustaining a diagnosed concussion is used to establish an efficient and
scalable computational pipeline. It is then employed to derive voxelized brain deformation, maximum principal
strains and white matter fiber strains, and finally, to produce diverse fiber strain profiles of various shapes in
temporal history necessary for the development and application of a deep learning axonal injury model in the
future. The pipeline employs a structured, voxelized representation of brain deformation with adjustable spatial
resolution independent of model mesh resolution. The method can be easily extended to other head impacts or
individuals. The framework established in this work is critical for enabling large-scale (i.e., across the entire
white matter region, head impacts, and individuals) and multiscale (i.e., from organ to cell length scales)
modeling for the investigation of traumatic axonal injury (TAI) triggering mechanisms. Ultimately, these efforts
could enhance the assessment of concussion risks and design of protective headgear. Therefore, this work con-
tributes to improved strategies for concussion detection, mitigation, and prevention.

is also considered as the key substrate of concussion [9]. Given that DAI
has a predisposition for white matter tracts including the corpus cal-
losum and gray-white matter junction, it is suggested that the term,
traumatic axonal injury (TAI), may be a more accurate description,
especially for milder injuries with similar radiological features [10]. In
this study, “TAI” is used throughout the manuscript for consistency to

1. Introduction

Sixty-nine million people worldwide suffer traumatic brain injury
(TBI) each year [1], with ~75% of them [2], and 224 per 100 k

person-years [3], sustaining a mild TBI (mTBI) often referred to as
“concussion”. Concussion is particularly common in athletes playing
contact sports [4,5]. Diffuse axonal injury (DAI) is one of the most
prominent pathologies found in all severities of TBI, including mTBI [6].
It is characterized by neuropathologically swollen axons across the brain
white matter, leading to disrupted neuronal communications [7]. While
DAI has been historically used to describe more severe TBI with loss of
consciousness lasting 6 h or more but without a visible mass lesion [8], it

indicate the investigation of microscale axonal injury, regardless of the
presence or severity of clinical symptoms.

The pathological mechanism of TAI is complicated; however, a clear
understanding is critical to the diagnosis and clinical management [11].
There are a number of potential biomechanical triggering mechanisms
for this type of injury, including microtubule (MT) disruption leading to
impedance of normal axonal transport [12,13], neurofilament (NF)
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Nomenclature

1. [DAI] Diffuse Axonal Injury: A form of brain injury where
widespread lesions occur in the white matter tracts of
the brain, often associated with traumatic brain injuries

2. [DWI] Diffusion Weighted Imaging: A type of magnetic

resonance imaging that measures the diffusion of water

molecules in biological tissues, such as the brain

Finite Element: A computational modeling method used

to simulate and analyze complex structures, such as the

human brain, under various conditions

4. [iMG] Instrumented Mouthguard: Mouthguard with electronic
sensors to record head impacts in sports, providing data
for the analysis of traumatic brain injury

5. [MPS] Maximum Principal Strain: A measure to quantify the

maximum extent of deformation or strain in material

Microtubule: A microscopic tubular structure present in

axons, involved in maintaining cell structure and

transport within nerve cells

7. [mTBI] Mild Traumatic Brain Injury: A mild form TBI, often

referred to as a concussion, representing less severe

brain injuries that still may have significant
neurological consequences

Neurofilament: A type of intermediate filament in

neurons, providing structural support and playing a role

in cell signaling

9. [TAI] Traumatic Axonal Injury: Injury to the brain white
matter axons defined as multiple, scattered, small
hemorrhagic or non-hemorrhagic lesions, together with
impaired axoplasmic transport, axonal swelling, and
disconnection

10. [TBI] Traumatic Brain Injury: A type of brain injury that
occurs due to external impact, often leading to a range
of physical and neurological symptoms

11. [WHIM] Worcester Head Injury Model: A finite element
model of the human brain developed at the Worcester
Polytechnic Institute. It is a subject-specific brain model
that can be also warped to create subject-specific brain
injury models of other individuals

3. [FE]

6. [MT]

8. [NF]

compaction [14,15], axonal alteration and tau protein failure [14,16],
and axolemma mechanoporation [17]. Regardless, it is generally
believed that tissue-level brain deformation, when large or rapid
enough, initiates the cascade of events leading to TAI [10]. It is infea-
sible to directly measure brain tissue or axonal deformation in vivo,
especially for an injury-level insult. As a result, physics-based models of
the brain have been developed across different length scales. At the
global, organ level, earlier analytical models have evolved into two- and
then three-dimensional finite element (FE) brain models with more
complete anatomical features and refined mesh [18-20]. These models
synthesize tissue structures and material properties and apply loading
and boundary conditions to simulate impact, from which to derive
mechanical responses such as strain, strain rate, stress, and pressure
[20]. Some recent model advancements include the incorporation of
brain material property anisotropy [21-23] and heterogeneity [24,25],
whole-brain tractography [26-28], cerebral vasculatures [29,30],
explicit gray-white matter interface [31,32] and other anatomical re-
gions [33,34], and with improved subject-specificity [35-37] to achieve
mesh convergence [38].

A primary use of these global brain models is to correlate brain re-
sponses with the occurrence of real-world brain injury, from which to
establish injury risk functions or tissue injury thresholds through
regression models [20,39]. However, these statistical correlations do not
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infer the cause of injury. They are not sufficient to study the TAI injury
mechanisms, in part, because their millimeter spatial resolution [19,20]
is unable to infer how axonal structures are damaged at the microscale
[71.

Mechanisms of microscale axonal damage can be investigated using
axonal injury models. Earlier mathematical models consist of a bundle of
MTs cross-linked by short side-arm tau proteins, e.g., with two MTs in a
unit cell model [40,41] or more complete MTs arranged in a hexagonal
cross-sectional pattern [42-44]. They are used to study MT bundle be-
haviors in steady state, quasistatic, and at higher strain/strain rate
magnitudes that have the potential for MT breakage or cross-link failure
in dynamic stretch loading. More sophisticated axonal FE models have
also been developed to include other important cytoskeletal structures
such as tau proteins, neurofilament (NF), axolemma, and myelin sheath
[45-47]. These models enable the investigation of additional TAI trig-
gering mechanisms beyond MT breakage, such as axolemma mechano-
poration and failure of tau and NF.

There are at least two outstanding gaps between global and micro-
scale model-based injury studies. First, while a global model simulation
provides spatially detailed tissue responses of the entire brain, a
microscale model only investigates a tiny section of a single axon
through a unit cell model. Although region-specific axonal models in the
corpus callosum [48] and sex-specific models [47] are also available,
they remain limited to studying a tiny section of a single axon. Given
that axonal stretch temporal history profiles serving as model input are
expected to differ across the brain, responses from a rather small section
of a single axon cannot be extended to other brain regions without fresh
simulations. However, this is infeasible because of the rather high
computational cost even for a single model simulation (many hours).

Second, while it is common to use real-world impact kinematics as
input to a global brain model for injury analysis [20,49], microscale
axonal injury models have largely been limited to using inputs with
assumed peak strain and strain rate magnitudes but without an
unloading or recovery phase for the axon to return to a globally unde-
formed, initial state [40,42,44-46,50]. Without such an unloading/-
recovery phase, the axonal responses may not be realistic [47] because
that would prevent the reproduction of MT undulation as observed in
experiment [12,13]. It is critical to apply a realistic input for axonal
injury model simulations to ensure relevance to real-world injury. The
lack of a systematic investigation of the biomechanical basis of
concussion across the organ-to-cell length scales is, in part, because of
limited multimodal data available from the same individuals in terms of
impact biomechanics, neuroimaging, and clinical diagnosis of
concussion.

In this study, a unique subject-specific multimodality dataset is uti-
lized to develop an efficient and scalable computational pipeline to
allow large-scale microscale injury model simulations throughout the
entire white matter. The multimodality dataset contains the injury-
causing impact kinematics recording as well as high-resolution neuro-
imaging that enables detailed white matter tractography. This large-
scale (i.e., throughout the entire white matter, and to be extended to
various head impacts from arbitrary individuals in the future) and
multiscale (i.e., from organ to cell length scales) modeling framework is
necessary to enable a mechanistic investigation of TAI triggering
mechanisms for real-world head impacts. Large-scale global model
simulations are now possible with deep learning to dramatically
improve efficiency while retaining high accuracy (e.g., from typically
hours of simulation for one head impact on a high-performance com-
puter to less than a second on a laptop [36,51-55]). This deep learning
technique has been successfully applied in diverse problems such as
computational biomechanics [56], diagnosis of Alzheimer’s disease
[57], and prediction of TBI outcomes [58], genomic data [59], and oral
mucositis [60]. It is anticipated that a deep learning model will be
similarly effective for a microscale injury model as well because both
models use time series data as input [61]. Nevertheless, a streamlined
computational pipeline is necessary to efficiently and accurately
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generate inputs required for the microscale axonal injury model before
developing and applying such a deep learning surrogate.

The computational pipeline employs a displacement voxelization
scheme that essentially resamples the displacement field using a 3D
image volume [62]. The resampling spatial resolution can be adjusted to
balance accuracy and efficiency. This technique is effective at resolving
the classical mesh-image mismatch problem and avoids the conven-
tional strain tensor projection that could compromise accuracy and ef-
ficiency [27,37,63-65]. Based on the neuroimages and white matter
tractography from the dataset, fiber strain profiles either in targeted
regions or sampled from the entire white matter are also produced that
could serve as input for downstream axonal injury models. This is
important to facilitate future development of a deep learning axonal
injury model to allow for large-scale and multiscale biomechanical
modeling of TAI to uncover the mechanism of axonal damage at the
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microscale. Ultimately, these efforts could contribute to improved safety
protocols and protective equipment to better protect the brain.

2. Methods

A multimodality dataset from a varsity male ice-hockey player (21
years) who sustained a diagnosed concussion at the University of British
Columbia (UBC) was used for this study. Subject recruitment and data
collection (approved by Research Ethics Board at UBC ID #: H21-00400)
are part of a larger study to investigate prospectively and longitudinally
the concussive and subconcussive mechanisms of mild traumatic brain
injury. Fig. 1 shows the overall procedure of the computational pipeline.
The modeling framework takes head impact kinematics as input to
generate detailed strain throughout the brain for the global, organ
model. The deformation field is resampled into a structured, voxelized
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Fig. 1. Overall procedure of the computational pipeline. Individual neuroimages are used to create the subject-specific global brain injury model. It takes impact
kinematics of the same concussed individual for impact simulation. The resulting voxelized deformation is combined with information from neuroimaging to
generate detailed strain maps as well as temporal history of white matter fiber strain profiles in specific regions. They will next be used as input to an axonal injury
model to produce a training dataset necessary to develop a deep learning surrogate in the future (hence, dashed box).
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data format to greatly facilitate multimodal strain analysis. The strain
profiles along white matter fiber directions will be further used as input
to a cellular axonal injury model to estimate cytoskeletal damage in the
future.

2.1. Biomechanical data

Head impacts were recorded using a custom-fitted instrumented
mouthguard (iMG; Prevent Biometrics, Minneapolis, USA) throughout
the ice hockey play season. The rigid coupling between mouthguard and
the upper dentition helps improve the accuracy of recorded skull impact
kinematics. As a result, it is used in various contact sports, including
American football [66], Rugby [67,68], and boxing [69]. Previous
validation studies on the iMG showed concordance correlation co-
efficients of 0.97 [70] and 0.98 [71] for the accuracy of kinematics with
crash test dummy headform, with positive prediction values of 96% [70]
and 94% [71] based on on-field video verification. The iMG recorded
impact kinematic profiles during play when any axis on the acceler-
ometer exceeded a 5 g trigger threshold, capturing 10 ms of pre- and 40
ms post-trigger data at a sampling rate of 3.2 kHz.

Prior to season start, the subject already had 5 previously diagnosed
sports related concussions. During play, the subject was diagnosed with
another concussion, experiencing typical post-concussion symptoms
including headache, anxiety, and difficulty in concentration but no loss
of consciousness. Retrospectively, the head impact of the largest peak
rotational velocity magnitude on the day of diagnosis was identified.
The concussive impact was further verified by time-synchronized multi-
angle video recordings. Fig. 2 shows the impact kinematic profile pre-
scribed at the head center of gravity over a duration of 50 ms. An
additional 20 ms of zero acceleration (constant velocity) was appended
at the end to ensure peak strains were reached in the simulation [72].

2.2. Neuroimage acquisition, preprocessing, and tractography
reconstruction

Pre-season neuroimaging was acquired on a 3T MRI scanner (Philips
Elition) equipped with a 32 channel SENSE head coil. MRI data acquired
included a 3D T1 weighted scan (echo time = 4.33 ms, repetition time =
9.3 ms, isotropic voxel size of 0.8 mm) and diffusion weighted imaging
(DWI; 128 diffusion directions, b = 0, 500, 1000, 2000; echo time = 95
ms, repetition time = 4250 ms, isotropic voxel size of 2 mm, 75 slices,
and multi-band factor = 3). QSIPrep 0.16.1 [73] was used for neuro-
image preprocessing of the T1 weighted and diffusion data as well as for
tractography reconstruction. The main procedures are briefly described

(a) (b)

20
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below and detailed in Appendix A.

The T1-weighted image was corrected for intensity non-uniformity
[74] (ANTs 2.4.0) and was used as a reference throughout the work-
flow. The reference was skull-stripped and spatially normalized to a
template [75,76]. Cortical surfaces were reconstructed using Free-
Surfer’s recon-all (FreeSurfer 7.3.2 [77]) within the FMRIPrep frame-
work [78]. DWI was denoised [79] and corrected for Bl field
inhomogeneity [74]. FSL’s eddy was used for head motion correction
and Eddy current correction [80]. The susceptibility-induced off--
resonance field was estimated using a method similar to that described
in Refs. [80,81]. The DWI time-series were resampled at 2 mm isotropic
spatial resolution.

For tractography, fiber orientation distributions (FODs) were esti-
mated via constrained spherical deconvolution [82,83] using an unsu-
pervised multi-tissue method [84,85]. FODs were intensity-normalized
using mtnormalize [86]. Anatomically constrained probabilistic trac-
tography was then performed in MRtrix3 [87,88] based on the tissue
segmentations generated by Freesurfer. The resulting ~10 million
streamlines were downsampled to 50 k for subsequent brain strain
analysis. Finally, the T1l-weighted anatomical image volume was
resampled at an isotropic resolution of 1 mm for convenience in sub-
sequent strain analyses.

2.3. Subject-specific brain model

A previously developed mesh warping method [63] was used to
create a subject-specific brain model based on a series of image regis-
trations (as illustrated in Fig. 1). The subject’s segmented brain was
co-registered (rigid, affine, and then non-rigid) with that of the subject
used to develop the anisotropic Worcester Head Injury Model (WHIM)
Version 1.0 [21]. The model assumes the white matter as an anisotropic
material based on tractography information from neuroimaging and an
isotropic material for the gray matter. The deformation field was used to
warp the WHIM mesh nodes without altering the nodal connectivity or
mesh topology. The brain was 24.3% larger than the generic WHIM in
volume, with scaling factors along the x, y, and 2z directions (posteri-
or-to-anterior, right-to-left, and inferior-to-superior, respectively) of
1.08, 1.06, and 1.09, respectively, as determined from the affine regis-
tration. However, the subject-specific brain model has the same numbers
of nodes and elements relative to the generic WHIM (56.6 k nodes and
55.1 k hexahedral elements for the brain, respectively; Fig. 3).

The generic WHIM has been extensively validated across a wide
range of blunt conditions, including relative brain-skull displacement
and sparse marker-based strain in high and mid-rate cadaveric impacts,
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Fig. 2. Linear acceleration (a), rotational velocity (b), and rotational acceleration (c¢) profiles believed to be related to the diagnosed concussion for the subject
(largest peak rotational velocity magnitude among recorded impacts on the day of concussion). An additional 20 ms of zero acceleration is appended at the end of
impact to ensure peak strains are reached in simulation. Discontinuity in acceleration is automatically smoothed in simulation to avoid any numerical artefact. The
resultant linear acceleration, rotational velocity, and rotational acceleration of the impact are 14.7 m/s%, 18.7 rad/s, and 6670.2 rad/s respectively. The varying
magnitudes of kinematics across the three axes over time suggest complex head motion during impact.



C. Zhang et al.

/<
— 200
150
~" 100
50
X (in mm)
|WHIM Scalp

Computers in Biology and Medicine 171 (2024) 108109

(b)

150
100
N
50
0
/
150 <" 200
100 - 150
,//(1 00
50 — 50
Y 0 0 X (in mm)
Brain WM tractography

Fig. 3. (a) The subject-specific global brain model, with the brain outer surface mesh overlaid against the brain and scalp surfaces segmented from the individual’s
T1-weighted neuroimages. (b) Randomly selected tractography streamlines (5% of the total of 50 k) overlaid against surface renderings of the white matter, brain
parenchyma and scalp based on neuroimage segmentation in the brain model space.

as well as full-field strains from in vivo head rotations [89]. For
marker-based strain validation against mid-rate impacts simulating
those in contact sports, the model achieved a peak strain ratio of 0.94 +
0.30 relative to those in 12 experiments (a ratio of 1.0 &+ 0.0 would be
“perfect”, albeit experimental errors, themselves, should not be ignored
[90]). These validations are important to ensure sufficient confidence in
downstream axonal injury model simulations because fiber strain pro-
files are directly used as input [47,48].

2.4. Voxelwise strains via displacement field voxelization

Both subject-specific neuroimages and FE mesh discretize the brain.
However, their mismatch could pose some challenges in effective multi-
modal injury analysis. Here, a displacement voxelization scheme was
adopted to resolve the issue [62]. First, voxel corner nodes of the sub-
ject’s T1-w images in the model space were used to interpolate (via
“scatteredInterpolant.m” in Matlab) relative brain-skull displacement
from the FE model simulation at every time frame for output (temporal
resolution of 1 ms). This led to a high-dimensional structured image
representation of the simulated spatiotemporal deformation (with a
dimension of 194 x 230 x 194). Voxelwise strain tensors can then be
determined via standard shape functions with high efficiency, as the
Jacobian matrix involved is degenerated into an identity matrix for
isotropic voxels [62]. Voxelwise maximum principal strain (MPS) was
then determined as the maximum eigenvalue of the strain tensor for
each voxel at the centroid (with a dimension of 193 x 229 x 193).

To determine fiber strain, displacement at every white matter fiber
sampling point (~4.47 million points from 50 k streamlines) was first
calculated from the voxelized displacement field through standard
hexahedral element shape functions [62]. The displacement difference
between two adjacent fiber sampling points readily determined the

cro?s[ng fibers

Major & Crossing: N =204 and 12

stretch at their mid-point, which was defined as the fiber strain sampling
point. This process was repeated at every time point, from which peak
fiber strain was calculated. Next, embedding voxels for all fiber strain
sampling points were identified to compute voxelwise weighted aver-
ages of peak fiber strains [26], including those from “major” or crossing
fibers (illustrated in Fig. 4). The white matter mask was finally applied
to remove artefacts due to spurious tractography.

2.5. Scalability of the computational pipeline

To demonstrate the scalability of the computational pipeline to
balance accuracy and efficiency, the T1-weighted neuroimages (of 1 mm
isotropic resolution) were systematically downsampled to an isotropic
resolution of 2 mm and 4 mm. This was achieved by conveniently
skipping 1 or 3 consecutive indices along each direction of the three-
dimensional matrix data, respectively. The same process was repeated
to determine voxelwise MPS and fiber strain at the corresponding spatial
resolutions. Given that the same tractography was used for fiber strain
(&n), its accuracy was quantitatively compared against the baseline ob-
tained from the 1 mm resolution (&, pgseiine) in terms of relative per-
centage differences (Eqns. (1) and (2)):

i —
n.error —

£ eln_baxline - 6'; (1)

n i

£
relative percentage difference = mean ( Z &) x 100% 2)

i=1 En_basline

where i represents the sampling point number and n is the total number.
In addition, the computational efficiency for each step involved was also
compared. Comparing the accuracy of voxelwise MPS was not feasible,
as voxel centroids did not align among the spatial resolutions

Major & Crossing: N =36 and 0

Fig. 4. (a) Illustration of the “major fibers” within the voxel with the largest number of streamlines enclosed and crossing fibers of less streamlines (if present).
Voxelwise fiber strain is determined through a weighted averaging process based on the number of fiber strain sampling points (dots). A 3D resampling voxel with (b)
the most major fibers or (¢) no crossing fibers are reported for the subject (the numbers of major and crossing fibers are shown in figure).
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considered.
2.6. Representative white matter fiber strain profiles

The computational pipeline produced dense fiber strain profiles
throughout the white matter. Typical locations of TAI include gray-
white matter interface (especially in the frontotemporal regions) and
corpus callosum [6,91]. To demonstrate the convenience of conducting
a multimodal injury analysis using voxelized deformation and infor-
mation from neuroimaging, representative fiber strain profiles in these
areas were also reported for illustration. The corpus callosum region has
been defined in the WHIM space, but the white matter mask was given
by the individual’s neuroimages (isotropic resolution of 1 mm). Voxels
near the gray-white matter interface were identified by subtracting the
binary mask by a slightly eroded image volume (with an empirical
structural element size of 4). These regions were used to constrain the
identification of fiber strain sampling points.

2.7. Diverse fiber strain profiles

Neighboring fiber strains within the same tract are expected to be
similar because of the continuous displacement field and similar
streamline orientations in the neighborhood (Fig. 3; unless a sharp turn
occurs). Intuitively, however, diverse rather than similar training sam-
ples are favored when developing a deep learning axonal injury model to
maximize generalizability. Diverse fiber strain inputs would also pro-
vide the most comprehensive sampling to facilitate neural network
training, which would lead to fewer training samples necessary to
reduce the computational cost for their generation [61].

To identify diverse fiber strain profiles throughout the white matter,
impact-induced relative brain-skull displacement from simulation was
resampled at an empirical isotropic resolution of 6 mm. This led to N =
5698 voxels for the brain, from which N = 2432 contained white matter.
The latter was consistent with the typical number of training samples for
a deep learning global brain model [61]; hence, the chosen resampling
resolution. For each voxel containing white matter, the fiber strain
sampling point of the largest peak fiber strain magnitude was identified.
The coarse resampling resolution helped maintain (albeit not necessarily
ensure) distinct spatial locations among the identified fiber strain sam-
pling points. However, it did not influence the “accuracy” of fiber strains
as they were determined with a resampling resolution of 1 mm.

Next, pairwise cross-correlation coefficients between the identified
fiber strain profiles were calculated. The coefficients had a range from
—1 (most diverse) to 1 (most similar). The pair with the lowest corre-
lation coefficient were determined and removed from subsequent
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consideration. This process was repeated until all pairs were scrutinized.
The resulting sequence effectively established a descending order of
diverse pairwise fiber strain profiles. Fig. 5 illustrates the adjacency
matrix with cross-correlation coefficients for 50 randomly selected fiber
strain profiles (vs. N = 2938 to improve visualization).

3. Data analysis

The computational framework allows processing simulated biome-
chanical data (displacement and strain) using a neuroimaging data
structure at an arbitrary sampling resolution. In this study, we compared
the computational efficiency and accuracy of dense white matter fiber
strains across different spatial sampling resolutions based on the same
tractography. Next, representative fiber strain profiles were reported at
the gray-white matter interface and in the corpus callosum, regions
known to be particularly vulnerable to TAI Finally, the diverse fiber
strain profiles were also analyzed using the distribution of pairwise
cross-correlation coefficients across the entire white matter. This was
important to identify training samples necessary to develop a deep
learning axonal injury model in the future.

The impact was simulated using the anisotropic WHIM V1.0 in
SIMULIA Abaqus/Explicit (version 2022; double precision) on multicore
Windows Terminal Servers using 20 cores (Intel Xeon Gold 6348, 2.4
GHz, 128 GB memory). All data analyses were conducted in MATLAB
(R2020a; Mathworks, Natick, MA) on a desktop computer (AMD 3950 x
16 cores, 64 GB RAM). To create the subject-specific brain models, the
most time-consuming step was brain extraction (~5.6 h; “recon-all” in
FreeSurfer [77]). The remaining registrations and mesh warping took
3.5 min in total.

4. Results
4.1. Voxelwise strains

Fig. 6 shows voxelized relative brain-skull displacement magnitudes
(when the corpus callosum fiber strain reached its first major peak;
Fig. 8) on three neuroimaging planes and the corresponding voxelwise
peak MPS and peak fiber strains. The three displacement components
are reported in Appendix B (Figure Al), where positive and negative
displacements are both present on the same imaging planes, demon-
strating a “sloshing” motion. The planes for displacement and strains
differed by half a voxel spacing as the former were given on voxel corner
nodes while strains were on voxel centroids. The subject-specific neu-
roimage was slightly misaligned; hence, some left-right asymmetry
observable on the axial image plane. The displacement magnitude, MPS,
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Fig. 5. Illustration of diverse fiber strain profiles based on pairwise cross-correlation coefficient shown as an adjacency matrix. The scores have a range from —1
(most diverse) to 1 (most similar), which are used to identify distinct fiber strain pairs. Three pairs are illustrated, with their spatial locations within the voxelized
brain surface shown (at an isotropic voxel resolution of 6 mm). Not surprisingly, the two spatially close sampling points have rather similar fiber strain profiles (R

of 0.99).
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Fig. 6. Voxelized magnitude of relative brain-skull displacement from impact simulation (top row) at the time when corpus callosum fiber strain reached its first
major peak (~31 ms; see Fig. 8) in coronal (left), axial (middle column) and para-sagittal (right) planes, along with the corresponding voxelwise peak MPS (second

row) and averaged fiber strains (bottom row).

and fiber strains shown here are all invariant to the coordinate system
used.

Fig. 7 compares voxelwise relative brain-skull displacement, peak
MPS and fiber strains at three voxel resampling resolutions. Their ac-
curacy in peak fiber strains and computational efficiency relative to the
baseline are compared in Table 1. The white matter region “grew” when
increasing the sampling voxel size, for example, by 16.2% and 45.7%
relative the white matter volume ratio of 24.6% at the 1 mm when
instead, resampled at 2 mm and 4 mm, respectively. This was because a
larger voxel is considered as “white matter” even if only a partial volume
(from the smaller voxels) was designated as white matter.

4.2. MPS of the whole brain and corpus callosum fiber strain

Fig. 8 shows the temporal profiles of MPS of the whole brain and
corpus callosum fiber strain overlaid on those of the normalized resul-
tant rotational velocity and acceleration profiles. It can be observed that
the former largely followed the shape of the resultant rotational velocity
but not the latter, as indicated by their corresponding cross-correlation
coefficient of 0.83 and —0.52, respectively (p < 0.01 for both). Their
cross-correlation coefficients relative to the resultant rotational accel-
eration profile were 0.44 (p < 0.01) and —0.20 (p = 0.089), respectively.
The first major peak of MPS of the whole brain virtually coincided with
the peak of the resultant rotational velocity/acceleration profiles, but
there was a 18.5 ms delay for the first major peak of corpus callosum
fiber strain.

4.3. Representative fiber strain profiles

As an illustration, representative fiber strain profiles are shown near
the gray-white matter interface in two contralateral regions and in the

corpus callosum (Fig. 9). They were identified based on segmentation of
individual neuroimages, and the region defined by the WHIM model,
respectively. It was also observed that the left and right hemispherical
regions experienced tension and compression in opposite phases. This
was expected given the nearly incompressible brain, that tissue in
different regions will experience tension and compression at the same
time to maintain a nearly constant volume.

4.4. Diverse fiber strain profiles

Finally, the distribution of pairwise cross-correlation coefficients is
shown (Fig. 10). Because the fiber strain profile selection strategy
favored the identification of more diverse profiles from the 2432 x 2432
adjacency matrix (Fig. 4), most of the identified pairs from the 2432
samples or 1216 pairs had a cross-correlation coefficient below zero (i.
e., 840 out of the 1216 pairs, or 69%). From these, 96% of them clus-
tered below —0.8 (e.g., 804 pairs out of the 840 pairs). For each histo-
gram bin, a representative pair is shown.

5. Discussion

A multiscale modeling framework unifying a global and a microscale
injury model is critical for a mechanistic investigation of TAL The
framework would bridge the gaps among external head impact, tissue
strain, and microscale axonal damage at the cellular level, which cannot
be achieved otherwise using either model, alone. However, a large-scale
simulation is necessary to estimate axonal structural damage in specific
anatomical regions or the entire white matter. Injury biomechanical
findings can then be assessed by structural, functional, and physiological
biomarkers measured at the tissue and organ level. To further enable
population-based TBI and TAI investigations such as deriving injury risk
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Fig. 7. Comparison of voxelwise displacement magnitude, peak MPS, and peak fiber strains at three sampling resolutions on a coronal plane (from left to right
columns: isotropic resolution of 1 mm, 2 mm, and 4 mm, respectively). With the increase in resampling voxel size, the white matter region appears “growing”,
because a larger voxel is considered as “white matter” even if only a partial volume is designated as white matter.
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functions and thresholds, it is also important to extend the multiscale
modeling framework across head impacts and across individuals as well
due to the cumulative effects of subconcussive impacts on the onset of
sports-related concussion. A large-scale and multiscale mechanistic
modeling of TAI could significantly enhance state-of-the-art approaches
to improving the detection, mitigation, and prevention of TBI in the

future. Large-scale impact modeling for the global brain is now possible
through deep learning [20]; but a deep learning surrogate for an axonal
injury model has yet to be developed.

The computational pipeline established in this study is necessary for
the development and application of a deep learning axonal injury model.
The pipeline integrates individualized neuroimages to produce
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Table 1

Comparison of fiber strain error (in percentage, %) and computational efficiency
(in sec) for three displacement resampling resolutions relative to those from the
resampling resolution of 1 mm.

Sampling spatial isotropic resolution 1 mm 2 mm 4 mm
Error relative to baseline N/A 6.4% 14.2%
Voxelwise displacement (sec) 130.8 19.7 3.3
Voxelwise MPS (sec) 37.6 8.0 1.3
Voxelwise fiber strain (sec) 367.2 60.8 12.2
Total time (sec) 535.6 88.5 16.8
Time reduction relative to baseline N/A 83.4% 96.9%

voxelwise relative brain-skull displacement and strain from a subject-
specific global model. The resulting high-dimensional structured
deformation field allows convenient determination of white matter fiber
strains along dense tractography. The temporal fiber strain profiles
would then serve as inputs to a microscale axonal injury model to esti-
mate the extent of axonal structural damage such as MT, tau, and NF
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breakage, either in specific anatomical regions such as the gray-white
matter interface and corpus callosum (Fig. 9) or the entire white mat-
ter (Fig. 10). The diverse fiber strain profiles are expected to facilitate
the generation of training samples through direct axonal model simu-
lations for a deep learning surrogate. Once developed, the deep learning
model could dramatically improve simulation efficiency with high ac-
curacy, similar to the global model as both use time series data, either
the impact rotational kinematics profile or axonal stretch time history,
as model inputs.

5.1. Computational efficiency

The computational pipeline is scalable. When subject-specific neu-
roimages are available, the image volume can be transformed into FE
model space to resample relative brain-skull displacement at the voxel
corner nodes. This strategy ensures a one-to-one direct correspondence
between image voxels and voxelwise strains, which would facilitate
biomechanics-neuroimaging multimodal injury analysis. When
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individual neuroimages are not otherwise available, a generic grid can
be used for response resampling [36,53]. In both cases, the voxel spatial
resolution can be adjusted to balance accuracy and efficiency in
response resampling (Fig. 7).

The computational efficiency dramatically improved with the in-
crease of the deformation resampling voxel size. When the sampling
voxel size increased from 1 mm® to 2 mm® (4 mm?), a reduction of
83.4% (96.9%) in computation time was achieved, which also led to a
relative error in fiber strain of 6.4% (14.2%) (Table 1). These results
suggest that a sampling resolution of 2 mm?® might offer an appropriate
tradeoff between accuracy and efficiency.

Outside of the post-simulation processing, brain extraction was the
most time-consuming operation (>5.6 h) when developing the subject-
specific brain model. The FSL BET package could dramatically
improve efficiency (4.6 s vs. >5.6 h). However, the presence of residual
tissues such as the dura, nasal concha, and sphenoid sinus precluded
proper registrations with the brain from the baseline WHIM when
developing the subject-specific model. On the other hand, the recent
‘fastsurfer’ toolbox [92,93] may mitigate these challenges and can be
applied in the future for development of subject-specific models.

5.2. Fiber strain profiles

Given the near incompressibility of the brain, it is expected that some
white matter fibers will experience tension while others will experience
compression at a given time point (Figs. 9 and 10) so that the total brain
volume remains nearly unchanged. Some compressibility is expected for
the intact brain within the skull [94-96], which was enabled by using an
elastic cap in the foramen magnum [63]. Mechanical responses of axons
differ greatly in tension and compression [42,97]. Therefore, when
developing a deep learning surrogate, it is important that the training
samples include both tension- and compression-dominant profiles to
maximize generalizability.

For this reason, a strategy was designed to identify a diverse range of
fiber strain profiles across white matter. The coarse sampling (of 6 mm)
purposefully divided the brain into relatively distinct regions to mini-
mize the chance of selecting similar profiles between fiber strains, as
only one strain profile was selected from each voxel. Peak fiber strain
magnitude was used for the identification, because higher, rather than
lower, fiber strain magnitudes are likely more relevant to axonal dam-
age; thus, they were intended to contribute to the deep learning training
samples. Similar fiber strain profiles could still be selected for two
neighboring voxels when peak strains occurred near the voxel boundary.
However, they can be detected by the pair-wise cross-correlation strat-
egy, which favored the selection of more diverse fiber strain profiles
(Fig. 5).

The strategy seemed effective, as 90% of the pairwise fiber strains
had a cross-correlation coefficient between —1 and —0.8 (1103 out of
1216 pairs; Fig. 10). Nevertheless, given that only one fiber strain was
selected from each voxel when identifying the diverse fiber strain pro-
files, crossing fibers were effectively excluded in the process (Fig. 4).
However, they can be easily incorporated as necessary, e.g., if the
resulting deep learning model does not sufficiently generalize. The
diverse range of axonal fiber strain profiles (Fig. 10) provides rather rich
characteristics of temporal shapes and magnitudes of fiber strains across
the brain, both of which strongly affect axonal micromechanical be-
haviors. They offer much improved insight into axonal damage than
peak fiber strain magnitude, alone.

In comparison, axonal injury model simulations have been largely
limited to using a simplistic stretch profile as the loading condition for
input to date, for example, pure tension or pure compression with a fixed
strain peak magnitude or strain rate [42,97]. However, they are not
realistic because they do not contain a “recovery phase” for the strain to
return to an initial, undeformed state given that no residual strain is
anticipated in a live human brain after mild impact. Not all fiber strain
profiles illustrated in this study returned to a “zero strain state” within
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the impact temporal window due to limitations with the impact kine-
matic data. Nonetheless, it was common that both tension and
compression were present in fiber strain profiles, irrespective of the
order of the two phases. This reflects a “sloshing” motion of the brain
parenchyma inside the skull during impact, as expected. Regardless, the
diverse fiber strain profiles may serve as a database for more realistic
loading conditions when investigating axonal dynamic responses in the
future, using either mathematical or computational FE models.

5.3. Biomechanics of brain strain

The temporal profile of the MPS of the whole brain largely followed
that of the resultant rotational velocity (cross-correlation coefficient of
0.83). However, this was not the case for the fiber strain profile in the
corpus callosum (cross-correlation coefficient of —0.52; Fig. 8). Appar-
ently, the MPS of the whole brain was much more influenced by impact
kinematics than strain deep in the brain. For the impact simulation in
this study using WHIM, MPS of the whole brain usually occurred near
the brain surface, due to tissue tethering through the boundary condi-
tion at the brain-skull interface (sharing nodes via the cerebrospinal
fluid layer [63]). Therefore, any change in head rotational velocity
would be immediately translated into strains in this area. For the corpus
callosum, however, it takes time for the shear wave to travel from the
brain-skull surface to deep regions. The peak-to-peak time of 18.5 ms
was slightly larger than that of 14 ms reported before [72], which was
likely, in part, a result of the larger brain studied here.

The time-delay in corpus callosum strain relative to impact kine-
matics suggests that strain in deep brain regions may not reach peak
during the given time window, even if the kinematic peak has been
captured. For the simulated head impact, the peak kinematics occurred
early in the time window. Therefore, the second peak of corpus callosum
fiber strain (in compression) was captured even without the additional
20 ms duration (Fig. 8b). Nevertheless, the additional simulation time
allowed the fiber strain to attempt to return to a “zero strain”, which
would be more realistic for subsequent axonal injury modeling [47].

6. Limitations and future work

While this study is a critical step towards large-scale and multiscale
brain injury modeling, additional development is necessary. In partic-
ular, a deep learning-based microscale axonal injury model is required
to dramatically reduce FE model simulation runtime. The technique is
effective for a global model, e.g., reducing hours of impact simulation on
a high-end computing platform to under a second on a regular laptop,
and with high accuracy [36,51-53]. A similar result is anticipated for
the microscale axonal injury model because both models use time series
data, either impact kinematic profiles or axonal stretch history [47,48],
as input. Nevertheless, a large training sample is expected to train a
neural network for a desired accuracy. A diverse set of fiber strain
profiles would facilitate its development.

The diverse fiber strain profiles identified in this study from a single
head impact simulation may still not be sufficient to represent those
from diverse head impacts and individuals. To generalize the training
data across impacts and subjects, the same computational pipeline can
be applied to a range of global model simulations, for which a deep
learning surrogate is already available to instantly generate spatiotem-
poral responses for a generic brain model [53], and in a convenient
voxelized data structure [62].

7. Conclusion

Using a unique subject-specific multimodality dataset from a male
concussed ice-hockey player, this study develops an efficient and scal-
able computational pipeline to generate voxelized deformation field
over time. The structured, voxelized data format allows accurate and
efficient determination of voxelwise maximum principal strains at voxel
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centroids as well as white matter fiber strains for embedded tractog-
raphy. The spatial resolution of the voxelized deformation field
(displacement and strain) can be adjusted, and an isotropic resolution of
2 mm was found to provide a reasonable balance between accuracy and
efficiency. The voxelized deformation also facilitates seamless multi-
modal biomechanical analysis in key anatomical regions, such as gray-
white matter interface and corpus callosum as examples in this study.

The computational pipeline is critical for producing diverse fiber
strain profiles necessary for the development and application of a deep
learning axonal injury model in the future. In turn, these efforts would
allow large-scale (i.e., across the entire white matter region, head im-
pacts, and individuals) and multiscale (i.e., from organ to cell length
scales) modeling to investigate the mechanisms of traumatic axonal
injury (TAI). By bridging gaps between global and microscale modeling
of TAI, this study contributes to improved strategies for concussion
detection, mitigation, and prevention.
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