
Computers in Biology and Medicine 171 (2024) 108109

Available online 10 February 2024
0010-4825/© 2024 Elsevier Ltd. All rights reserved.

A computational pipeline towards large-scale and multiscale modeling of 
traumatic axonal injury 

Chaokai Zhang a, Lara Bartels b, Adam Clansey c, Julian Kloiber b, Daniel Bondi c, Paul van 
Donkelaar d, Lyndia Wu c, Alexander Rauscher b, Songbai Ji a,e,* 

a Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 
b Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada 
c Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada 
d School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada 
e Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA   

A R T I C L E  I N F O   

Keywords: 
Concussion 
Deep learning 
Fiber strain 
Displacement voxelization 
Multimodal analysis 
Multiscale modeling 
Traumatic axonal injury 
Traumatic brain injury 

A B S T R A C T   

Contemporary biomechanical modeling of traumatic brain injury (TBI) focuses on either the global brain as an 
organ or a representative tiny section of a single axon. In addition, while it is common for a global brain model to 
employ real-world impacts as input, axonal injury models have largely been limited to inputs of either tension or 
compression with assumed peak strain and strain rate. These major gaps between global and microscale 
modeling preclude a systematic and mechanistic investigation of how tissue strain from impact leads to down
stream axonal damage throughout the white matter. In this study, a unique subject-specific multimodality 
dataset from a male ice-hockey player sustaining a diagnosed concussion is used to establish an efficient and 
scalable computational pipeline. It is then employed to derive voxelized brain deformation, maximum principal 
strains and white matter fiber strains, and finally, to produce diverse fiber strain profiles of various shapes in 
temporal history necessary for the development and application of a deep learning axonal injury model in the 
future. The pipeline employs a structured, voxelized representation of brain deformation with adjustable spatial 
resolution independent of model mesh resolution. The method can be easily extended to other head impacts or 
individuals. The framework established in this work is critical for enabling large-scale (i.e., across the entire 
white matter region, head impacts, and individuals) and multiscale (i.e., from organ to cell length scales) 
modeling for the investigation of traumatic axonal injury (TAI) triggering mechanisms. Ultimately, these efforts 
could enhance the assessment of concussion risks and design of protective headgear. Therefore, this work con
tributes to improved strategies for concussion detection, mitigation, and prevention.   

1. Introduction 

Sixty-nine million people worldwide suffer traumatic brain injury 
(TBI) each year [1], with ~75% of them [2], and 224 per 100 k 
person-years [3], sustaining a mild TBI (mTBI) often referred to as 
“concussion”. Concussion is particularly common in athletes playing 
contact sports [4,5]. Diffuse axonal injury (DAI) is one of the most 
prominent pathologies found in all severities of TBI, including mTBI [6]. 
It is characterized by neuropathologically swollen axons across the brain 
white matter, leading to disrupted neuronal communications [7]. While 
DAI has been historically used to describe more severe TBI with loss of 
consciousness lasting 6 h or more but without a visible mass lesion [8], it 

is also considered as the key substrate of concussion [9]. Given that DAI 
has a predisposition for white matter tracts including the corpus cal
losum and gray-white matter junction, it is suggested that the term, 
traumatic axonal injury (TAI), may be a more accurate description, 
especially for milder injuries with similar radiological features [10]. In 
this study, “TAI” is used throughout the manuscript for consistency to 
indicate the investigation of microscale axonal injury, regardless of the 
presence or severity of clinical symptoms. 

The pathological mechanism of TAI is complicated; however, a clear 
understanding is critical to the diagnosis and clinical management [11]. 
There are a number of potential biomechanical triggering mechanisms 
for this type of injury, including microtubule (MT) disruption leading to 
impedance of normal axonal transport [12,13], neurofilament (NF) 

* Corresponding author. Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA. 
E-mail address: sji@wpi.edu (S. Ji).  

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2024.108109 
Received 13 November 2023; Received in revised form 26 January 2024; Accepted 4 February 2024   

mailto:sji@wpi.edu
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2024.108109
https://doi.org/10.1016/j.compbiomed.2024.108109
https://doi.org/10.1016/j.compbiomed.2024.108109


Computers in Biology and Medicine 171 (2024) 108109

2

compaction [14,15], axonal alteration and tau protein failure [14,16], 
and axolemma mechanoporation [17]. Regardless, it is generally 
believed that tissue-level brain deformation, when large or rapid 
enough, initiates the cascade of events leading to TAI [10]. It is infea
sible to directly measure brain tissue or axonal deformation in vivo, 
especially for an injury-level insult. As a result, physics-based models of 
the brain have been developed across different length scales. At the 
global, organ level, earlier analytical models have evolved into two- and 
then three-dimensional finite element (FE) brain models with more 
complete anatomical features and refined mesh [18–20]. These models 
synthesize tissue structures and material properties and apply loading 
and boundary conditions to simulate impact, from which to derive 
mechanical responses such as strain, strain rate, stress, and pressure 
[20]. Some recent model advancements include the incorporation of 
brain material property anisotropy [21–23] and heterogeneity [24,25], 
whole-brain tractography [26–28], cerebral vasculatures [29,30], 
explicit gray-white matter interface [31,32] and other anatomical re
gions [33,34], and with improved subject-specificity [35–37] to achieve 
mesh convergence [38]. 

A primary use of these global brain models is to correlate brain re
sponses with the occurrence of real-world brain injury, from which to 
establish injury risk functions or tissue injury thresholds through 
regression models [20,39]. However, these statistical correlations do not 

infer the cause of injury. They are not sufficient to study the TAI injury 
mechanisms, in part, because their millimeter spatial resolution [19,20] 
is unable to infer how axonal structures are damaged at the microscale 
[7]. 

Mechanisms of microscale axonal damage can be investigated using 
axonal injury models. Earlier mathematical models consist of a bundle of 
MTs cross-linked by short side-arm tau proteins, e.g., with two MTs in a 
unit cell model [40,41] or more complete MTs arranged in a hexagonal 
cross-sectional pattern [42–44]. They are used to study MT bundle be
haviors in steady state, quasistatic, and at higher strain/strain rate 
magnitudes that have the potential for MT breakage or cross-link failure 
in dynamic stretch loading. More sophisticated axonal FE models have 
also been developed to include other important cytoskeletal structures 
such as tau proteins, neurofilament (NF), axolemma, and myelin sheath 
[45–47]. These models enable the investigation of additional TAI trig
gering mechanisms beyond MT breakage, such as axolemma mechano
poration and failure of tau and NF. 

There are at least two outstanding gaps between global and micro
scale model-based injury studies. First, while a global model simulation 
provides spatially detailed tissue responses of the entire brain, a 
microscale model only investigates a tiny section of a single axon 
through a unit cell model. Although region-specific axonal models in the 
corpus callosum [48] and sex-specific models [47] are also available, 
they remain limited to studying a tiny section of a single axon. Given 
that axonal stretch temporal history profiles serving as model input are 
expected to differ across the brain, responses from a rather small section 
of a single axon cannot be extended to other brain regions without fresh 
simulations. However, this is infeasible because of the rather high 
computational cost even for a single model simulation (many hours). 

Second, while it is common to use real-world impact kinematics as 
input to a global brain model for injury analysis [20,49], microscale 
axonal injury models have largely been limited to using inputs with 
assumed peak strain and strain rate magnitudes but without an 
unloading or recovery phase for the axon to return to a globally unde
formed, initial state [40,42,44–46,50]. Without such an unloading/
recovery phase, the axonal responses may not be realistic [47] because 
that would prevent the reproduction of MT undulation as observed in 
experiment [12,13]. It is critical to apply a realistic input for axonal 
injury model simulations to ensure relevance to real-world injury. The 
lack of a systematic investigation of the biomechanical basis of 
concussion across the organ-to-cell length scales is, in part, because of 
limited multimodal data available from the same individuals in terms of 
impact biomechanics, neuroimaging, and clinical diagnosis of 
concussion. 

In this study, a unique subject-specific multimodality dataset is uti
lized to develop an efficient and scalable computational pipeline to 
allow large-scale microscale injury model simulations throughout the 
entire white matter. The multimodality dataset contains the injury- 
causing impact kinematics recording as well as high-resolution neuro
imaging that enables detailed white matter tractography. This large- 
scale (i.e., throughout the entire white matter, and to be extended to 
various head impacts from arbitrary individuals in the future) and 
multiscale (i.e., from organ to cell length scales) modeling framework is 
necessary to enable a mechanistic investigation of TAI triggering 
mechanisms for real-world head impacts. Large-scale global model 
simulations are now possible with deep learning to dramatically 
improve efficiency while retaining high accuracy (e.g., from typically 
hours of simulation for one head impact on a high-performance com
puter to less than a second on a laptop [36,51–55]). This deep learning 
technique has been successfully applied in diverse problems such as 
computational biomechanics [56], diagnosis of Alzheimer’s disease 
[57], and prediction of TBI outcomes [58], genomic data [59], and oral 
mucositis [60]. It is anticipated that a deep learning model will be 
similarly effective for a microscale injury model as well because both 
models use time series data as input [61]. Nevertheless, a streamlined 
computational pipeline is necessary to efficiently and accurately 

Nomenclature 

1. [DAI] Diffuse Axonal Injury: A form of brain injury where 
widespread lesions occur in the white matter tracts of 
the brain, often associated with traumatic brain injuries 

2. [DWI] Diffusion Weighted Imaging: A type of magnetic 
resonance imaging that measures the diffusion of water 
molecules in biological tissues, such as the brain 

3. [FE] Finite Element: A computational modeling method used 
to simulate and analyze complex structures, such as the 
human brain, under various conditions 

4. [iMG] Instrumented Mouthguard: Mouthguard with electronic 
sensors to record head impacts in sports, providing data 
for the analysis of traumatic brain injury 

5. [MPS] Maximum Principal Strain: A measure to quantify the 
maximum extent of deformation or strain in material 

6. [MT] Microtubule: A microscopic tubular structure present in 
axons, involved in maintaining cell structure and 
transport within nerve cells 

7. [mTBI] Mild Traumatic Brain Injury: A mild form TBI, often 
referred to as a concussion, representing less severe 
brain injuries that still may have significant 
neurological consequences 

8. [NF] Neurofilament: A type of intermediate filament in 
neurons, providing structural support and playing a role 
in cell signaling 

9. [TAI] Traumatic Axonal Injury: Injury to the brain white 
matter axons defined as multiple, scattered, small 
hemorrhagic or non-hemorrhagic lesions, together with 
impaired axoplasmic transport, axonal swelling, and 
disconnection 

10. [TBI] Traumatic Brain Injury: A type of brain injury that 
occurs due to external impact, often leading to a range 
of physical and neurological symptoms 

11. [WHIM] Worcester Head Injury Model: A finite element 
model of the human brain developed at the Worcester 
Polytechnic Institute. It is a subject-specific brain model 
that can be also warped to create subject-specific brain 
injury models of other individuals  
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generate inputs required for the microscale axonal injury model before 
developing and applying such a deep learning surrogate. 

The computational pipeline employs a displacement voxelization 
scheme that essentially resamples the displacement field using a 3D 
image volume [62]. The resampling spatial resolution can be adjusted to 
balance accuracy and efficiency. This technique is effective at resolving 
the classical mesh-image mismatch problem and avoids the conven
tional strain tensor projection that could compromise accuracy and ef
ficiency [27,37,63–65]. Based on the neuroimages and white matter 
tractography from the dataset, fiber strain profiles either in targeted 
regions or sampled from the entire white matter are also produced that 
could serve as input for downstream axonal injury models. This is 
important to facilitate future development of a deep learning axonal 
injury model to allow for large-scale and multiscale biomechanical 
modeling of TAI to uncover the mechanism of axonal damage at the 

microscale. Ultimately, these efforts could contribute to improved safety 
protocols and protective equipment to better protect the brain. 

2. Methods 

A multimodality dataset from a varsity male ice-hockey player (21 
years) who sustained a diagnosed concussion at the University of British 
Columbia (UBC) was used for this study. Subject recruitment and data 
collection (approved by Research Ethics Board at UBC ID #: H21-00400) 
are part of a larger study to investigate prospectively and longitudinally 
the concussive and subconcussive mechanisms of mild traumatic brain 
injury. Fig. 1 shows the overall procedure of the computational pipeline. 
The modeling framework takes head impact kinematics as input to 
generate detailed strain throughout the brain for the global, organ 
model. The deformation field is resampled into a structured, voxelized 

Fig. 1. Overall procedure of the computational pipeline. Individual neuroimages are used to create the subject-specific global brain injury model. It takes impact 
kinematics of the same concussed individual for impact simulation. The resulting voxelized deformation is combined with information from neuroimaging to 
generate detailed strain maps as well as temporal history of white matter fiber strain profiles in specific regions. They will next be used as input to an axonal injury 
model to produce a training dataset necessary to develop a deep learning surrogate in the future (hence, dashed box). 
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data format to greatly facilitate multimodal strain analysis. The strain 
profiles along white matter fiber directions will be further used as input 
to a cellular axonal injury model to estimate cytoskeletal damage in the 
future. 

2.1. Biomechanical data 

Head impacts were recorded using a custom-fitted instrumented 
mouthguard (iMG; Prevent Biometrics, Minneapolis, USA) throughout 
the ice hockey play season. The rigid coupling between mouthguard and 
the upper dentition helps improve the accuracy of recorded skull impact 
kinematics. As a result, it is used in various contact sports, including 
American football [66], Rugby [67,68], and boxing [69]. Previous 
validation studies on the iMG showed concordance correlation co
efficients of 0.97 [70] and 0.98 [71] for the accuracy of kinematics with 
crash test dummy headform, with positive prediction values of 96% [70] 
and 94% [71] based on on-field video verification. The iMG recorded 
impact kinematic profiles during play when any axis on the acceler
ometer exceeded a 5 g trigger threshold, capturing 10 ms of pre- and 40 
ms post-trigger data at a sampling rate of 3.2 kHz. 

Prior to season start, the subject already had 5 previously diagnosed 
sports related concussions. During play, the subject was diagnosed with 
another concussion, experiencing typical post-concussion symptoms 
including headache, anxiety, and difficulty in concentration but no loss 
of consciousness. Retrospectively, the head impact of the largest peak 
rotational velocity magnitude on the day of diagnosis was identified. 
The concussive impact was further verified by time-synchronized multi- 
angle video recordings. Fig. 2 shows the impact kinematic profile pre
scribed at the head center of gravity over a duration of 50 ms. An 
additional 20 ms of zero acceleration (constant velocity) was appended 
at the end to ensure peak strains were reached in the simulation [72]. 

2.2. Neuroimage acquisition, preprocessing, and tractography 
reconstruction 

Pre-season neuroimaging was acquired on a 3T MRI scanner (Philips 
Elition) equipped with a 32 channel SENSE head coil. MRI data acquired 
included a 3D T1 weighted scan (echo time = 4.33 ms, repetition time =
9.3 ms, isotropic voxel size of 0.8 mm) and diffusion weighted imaging 
(DWI; 128 diffusion directions, b = 0, 500, 1000, 2000; echo time = 95 
ms, repetition time = 4250 ms, isotropic voxel size of 2 mm, 75 slices, 
and multi-band factor = 3). QSIPrep 0.16.1 [73] was used for neuro
image preprocessing of the T1 weighted and diffusion data as well as for 
tractography reconstruction. The main procedures are briefly described 

below and detailed in Appendix A. 
The T1-weighted image was corrected for intensity non-uniformity 

[74] (ANTs 2.4.0) and was used as a reference throughout the work
flow. The reference was skull-stripped and spatially normalized to a 
template [75,76]. Cortical surfaces were reconstructed using Free
Surfer’s recon-all (FreeSurfer 7.3.2 [77]) within the FMRIPrep frame
work [78]. DWI was denoised [79] and corrected for B1 field 
inhomogeneity [74]. FSL’s eddy was used for head motion correction 
and Eddy current correction [80]. The susceptibility-induced off-
resonance field was estimated using a method similar to that described 
in Refs. [80,81]. The DWI time-series were resampled at 2 mm isotropic 
spatial resolution. 

For tractography, fiber orientation distributions (FODs) were esti
mated via constrained spherical deconvolution [82,83] using an unsu
pervised multi-tissue method [84,85]. FODs were intensity-normalized 
using mtnormalize [86]. Anatomically constrained probabilistic trac
tography was then performed in MRtrix3 [87,88] based on the tissue 
segmentations generated by Freesurfer. The resulting ~10 million 
streamlines were downsampled to 50 k for subsequent brain strain 
analysis. Finally, the T1-weighted anatomical image volume was 
resampled at an isotropic resolution of 1 mm for convenience in sub
sequent strain analyses. 

2.3. Subject-specific brain model 

A previously developed mesh warping method [63] was used to 
create a subject-specific brain model based on a series of image regis
trations (as illustrated in Fig. 1). The subject’s segmented brain was 
co-registered (rigid, affine, and then non-rigid) with that of the subject 
used to develop the anisotropic Worcester Head Injury Model (WHIM) 
Version 1.0 [21]. The model assumes the white matter as an anisotropic 
material based on tractography information from neuroimaging and an 
isotropic material for the gray matter. The deformation field was used to 
warp the WHIM mesh nodes without altering the nodal connectivity or 
mesh topology. The brain was 24.3% larger than the generic WHIM in 
volume, with scaling factors along the x, y, and z directions (posteri
or-to-anterior, right-to-left, and inferior-to-superior, respectively) of 
1.08, 1.06, and 1.09, respectively, as determined from the affine regis
tration. However, the subject-specific brain model has the same numbers 
of nodes and elements relative to the generic WHIM (56.6 k nodes and 
55.1 k hexahedral elements for the brain, respectively; Fig. 3). 

The generic WHIM has been extensively validated across a wide 
range of blunt conditions, including relative brain-skull displacement 
and sparse marker-based strain in high and mid-rate cadaveric impacts, 

Fig. 2. Linear acceleration (a), rotational velocity (b), and rotational acceleration (c) profiles believed to be related to the diagnosed concussion for the subject 
(largest peak rotational velocity magnitude among recorded impacts on the day of concussion). An additional 20 ms of zero acceleration is appended at the end of 
impact to ensure peak strains are reached in simulation. Discontinuity in acceleration is automatically smoothed in simulation to avoid any numerical artefact. The 
resultant linear acceleration, rotational velocity, and rotational acceleration of the impact are 14.7 m/s2, 18.7 rad/s, and 6670.2 rad/s2, respectively. The varying 
magnitudes of kinematics across the three axes over time suggest complex head motion during impact. 
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as well as full-field strains from in vivo head rotations [89]. For 
marker-based strain validation against mid-rate impacts simulating 
those in contact sports, the model achieved a peak strain ratio of 0.94 ±
0.30 relative to those in 12 experiments (a ratio of 1.0 ± 0.0 would be 
“perfect”, albeit experimental errors, themselves, should not be ignored 
[90]). These validations are important to ensure sufficient confidence in 
downstream axonal injury model simulations because fiber strain pro
files are directly used as input [47,48]. 

2.4. Voxelwise strains via displacement field voxelization 

Both subject-specific neuroimages and FE mesh discretize the brain. 
However, their mismatch could pose some challenges in effective multi- 
modal injury analysis. Here, a displacement voxelization scheme was 
adopted to resolve the issue [62]. First, voxel corner nodes of the sub
ject’s T1-w images in the model space were used to interpolate (via 
“scatteredInterpolant.m” in Matlab) relative brain-skull displacement 
from the FE model simulation at every time frame for output (temporal 
resolution of 1 ms). This led to a high-dimensional structured image 
representation of the simulated spatiotemporal deformation (with a 
dimension of 194 × 230 × 194). Voxelwise strain tensors can then be 
determined via standard shape functions with high efficiency, as the 
Jacobian matrix involved is degenerated into an identity matrix for 
isotropic voxels [62]. Voxelwise maximum principal strain (MPS) was 
then determined as the maximum eigenvalue of the strain tensor for 
each voxel at the centroid (with a dimension of 193 × 229 × 193). 

To determine fiber strain, displacement at every white matter fiber 
sampling point (~4.47 million points from 50 k streamlines) was first 
calculated from the voxelized displacement field through standard 
hexahedral element shape functions [62]. The displacement difference 
between two adjacent fiber sampling points readily determined the 

stretch at their mid-point, which was defined as the fiber strain sampling 
point. This process was repeated at every time point, from which peak 
fiber strain was calculated. Next, embedding voxels for all fiber strain 
sampling points were identified to compute voxelwise weighted aver
ages of peak fiber strains [26], including those from “major” or crossing 
fibers (illustrated in Fig. 4). The white matter mask was finally applied 
to remove artefacts due to spurious tractography. 

2.5. Scalability of the computational pipeline 

To demonstrate the scalability of the computational pipeline to 
balance accuracy and efficiency, the T1-weighted neuroimages (of 1 mm 
isotropic resolution) were systematically downsampled to an isotropic 
resolution of 2 mm and 4 mm. This was achieved by conveniently 
skipping 1 or 3 consecutive indices along each direction of the three- 
dimensional matrix data, respectively. The same process was repeated 
to determine voxelwise MPS and fiber strain at the corresponding spatial 
resolutions. Given that the same tractography was used for fiber strain 
(εn), its accuracy was quantitatively compared against the baseline ob
tained from the 1 mm resolution (εn baseline) in terms of relative per
centage differences (Eqns. (1) and (2)): 

εi
n,error =

⃒
⃒
⃒εi

n basline − εi
n

⃒
⃒
⃒ (1)  

relative percentage difference = mean

(
∑n

i=1

εi
n,error

εi
n basline

)

× 100% (2)  

where i represents the sampling point number and n is the total number. 
In addition, the computational efficiency for each step involved was also 
compared. Comparing the accuracy of voxelwise MPS was not feasible, 
as voxel centroids did not align among the spatial resolutions 

Fig. 3. (a) The subject-specific global brain model, with the brain outer surface mesh overlaid against the brain and scalp surfaces segmented from the individual’s 
T1-weighted neuroimages. (b) Randomly selected tractography streamlines (5% of the total of 50 k) overlaid against surface renderings of the white matter, brain 
parenchyma and scalp based on neuroimage segmentation in the brain model space. 

Fig. 4. (a) Illustration of the “major fibers” within the voxel with the largest number of streamlines enclosed and crossing fibers of less streamlines (if present). 
Voxelwise fiber strain is determined through a weighted averaging process based on the number of fiber strain sampling points (dots). A 3D resampling voxel with (b) 
the most major fibers or (c) no crossing fibers are reported for the subject (the numbers of major and crossing fibers are shown in figure). 
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considered. 

2.6. Representative white matter fiber strain profiles 

The computational pipeline produced dense fiber strain profiles 
throughout the white matter. Typical locations of TAI include gray- 
white matter interface (especially in the frontotemporal regions) and 
corpus callosum [6,91]. To demonstrate the convenience of conducting 
a multimodal injury analysis using voxelized deformation and infor
mation from neuroimaging, representative fiber strain profiles in these 
areas were also reported for illustration. The corpus callosum region has 
been defined in the WHIM space, but the white matter mask was given 
by the individual’s neuroimages (isotropic resolution of 1 mm). Voxels 
near the gray-white matter interface were identified by subtracting the 
binary mask by a slightly eroded image volume (with an empirical 
structural element size of 4). These regions were used to constrain the 
identification of fiber strain sampling points. 

2.7. Diverse fiber strain profiles 

Neighboring fiber strains within the same tract are expected to be 
similar because of the continuous displacement field and similar 
streamline orientations in the neighborhood (Fig. 3; unless a sharp turn 
occurs). Intuitively, however, diverse rather than similar training sam
ples are favored when developing a deep learning axonal injury model to 
maximize generalizability. Diverse fiber strain inputs would also pro
vide the most comprehensive sampling to facilitate neural network 
training, which would lead to fewer training samples necessary to 
reduce the computational cost for their generation [61]. 

To identify diverse fiber strain profiles throughout the white matter, 
impact-induced relative brain-skull displacement from simulation was 
resampled at an empirical isotropic resolution of 6 mm. This led to N =
5698 voxels for the brain, from which N = 2432 contained white matter. 
The latter was consistent with the typical number of training samples for 
a deep learning global brain model [61]; hence, the chosen resampling 
resolution. For each voxel containing white matter, the fiber strain 
sampling point of the largest peak fiber strain magnitude was identified. 
The coarse resampling resolution helped maintain (albeit not necessarily 
ensure) distinct spatial locations among the identified fiber strain sam
pling points. However, it did not influence the “accuracy” of fiber strains 
as they were determined with a resampling resolution of 1 mm. 

Next, pairwise cross-correlation coefficients between the identified 
fiber strain profiles were calculated. The coefficients had a range from 
−1 (most diverse) to 1 (most similar). The pair with the lowest corre
lation coefficient were determined and removed from subsequent 

consideration. This process was repeated until all pairs were scrutinized. 
The resulting sequence effectively established a descending order of 
diverse pairwise fiber strain profiles. Fig. 5 illustrates the adjacency 
matrix with cross-correlation coefficients for 50 randomly selected fiber 
strain profiles (vs. N = 2938 to improve visualization). 

3. Data analysis 

The computational framework allows processing simulated biome
chanical data (displacement and strain) using a neuroimaging data 
structure at an arbitrary sampling resolution. In this study, we compared 
the computational efficiency and accuracy of dense white matter fiber 
strains across different spatial sampling resolutions based on the same 
tractography. Next, representative fiber strain profiles were reported at 
the gray-white matter interface and in the corpus callosum, regions 
known to be particularly vulnerable to TAI. Finally, the diverse fiber 
strain profiles were also analyzed using the distribution of pairwise 
cross-correlation coefficients across the entire white matter. This was 
important to identify training samples necessary to develop a deep 
learning axonal injury model in the future. 

The impact was simulated using the anisotropic WHIM V1.0 in 
SIMULIA Abaqus/Explicit (version 2022; double precision) on multicore 
Windows Terminal Servers using 20 cores (Intel Xeon Gold 6348, 2.4 
GHz, 128 GB memory). All data analyses were conducted in MATLAB 
(R2020a; Mathworks, Natick, MA) on a desktop computer (AMD 3950 ×
16 cores, 64 GB RAM). To create the subject-specific brain models, the 
most time-consuming step was brain extraction (~5.6 h; “recon-all” in 
FreeSurfer [77]). The remaining registrations and mesh warping took 
3.5 min in total. 

4. Results 

4.1. Voxelwise strains 

Fig. 6 shows voxelized relative brain-skull displacement magnitudes 
(when the corpus callosum fiber strain reached its first major peak; 
Fig. 8) on three neuroimaging planes and the corresponding voxelwise 
peak MPS and peak fiber strains. The three displacement components 
are reported in Appendix B (Figure A1), where positive and negative 
displacements are both present on the same imaging planes, demon
strating a “sloshing” motion. The planes for displacement and strains 
differed by half a voxel spacing as the former were given on voxel corner 
nodes while strains were on voxel centroids. The subject-specific neu
roimage was slightly misaligned; hence, some left-right asymmetry 
observable on the axial image plane. The displacement magnitude, MPS, 

Fig. 5. Illustration of diverse fiber strain profiles based on pairwise cross-correlation coefficient shown as an adjacency matrix. The scores have a range from −1 
(most diverse) to 1 (most similar), which are used to identify distinct fiber strain pairs. Three pairs are illustrated, with their spatial locations within the voxelized 
brain surface shown (at an isotropic voxel resolution of 6 mm). Not surprisingly, the two spatially close sampling points have rather similar fiber strain profiles (R 
of 0.99). 
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and fiber strains shown here are all invariant to the coordinate system 
used. 

Fig. 7 compares voxelwise relative brain-skull displacement, peak 
MPS and fiber strains at three voxel resampling resolutions. Their ac
curacy in peak fiber strains and computational efficiency relative to the 
baseline are compared in Table 1. The white matter region “grew” when 
increasing the sampling voxel size, for example, by 16.2% and 45.7% 
relative the white matter volume ratio of 24.6% at the 1 mm when 
instead, resampled at 2 mm and 4 mm, respectively. This was because a 
larger voxel is considered as “white matter” even if only a partial volume 
(from the smaller voxels) was designated as white matter. 

4.2. MPS of the whole brain and corpus callosum fiber strain 

Fig. 8 shows the temporal profiles of MPS of the whole brain and 
corpus callosum fiber strain overlaid on those of the normalized resul
tant rotational velocity and acceleration profiles. It can be observed that 
the former largely followed the shape of the resultant rotational velocity 
but not the latter, as indicated by their corresponding cross-correlation 
coefficient of 0.83 and −0.52, respectively (p < 0.01 for both). Their 
cross-correlation coefficients relative to the resultant rotational accel
eration profile were 0.44 (p < 0.01) and −0.20 (p = 0.089), respectively. 
The first major peak of MPS of the whole brain virtually coincided with 
the peak of the resultant rotational velocity/acceleration profiles, but 
there was a 18.5 ms delay for the first major peak of corpus callosum 
fiber strain. 

4.3. Representative fiber strain profiles 

As an illustration, representative fiber strain profiles are shown near 
the gray-white matter interface in two contralateral regions and in the 

corpus callosum (Fig. 9). They were identified based on segmentation of 
individual neuroimages, and the region defined by the WHIM model, 
respectively. It was also observed that the left and right hemispherical 
regions experienced tension and compression in opposite phases. This 
was expected given the nearly incompressible brain, that tissue in 
different regions will experience tension and compression at the same 
time to maintain a nearly constant volume. 

4.4. Diverse fiber strain profiles 

Finally, the distribution of pairwise cross-correlation coefficients is 
shown (Fig. 10). Because the fiber strain profile selection strategy 
favored the identification of more diverse profiles from the 2432 × 2432 
adjacency matrix (Fig. 4), most of the identified pairs from the 2432 
samples or 1216 pairs had a cross-correlation coefficient below zero (i. 
e., 840 out of the 1216 pairs, or 69%). From these, 96% of them clus
tered below −0.8 (e.g., 804 pairs out of the 840 pairs). For each histo
gram bin, a representative pair is shown. 

5. Discussion 

A multiscale modeling framework unifying a global and a microscale 
injury model is critical for a mechanistic investigation of TAI. The 
framework would bridge the gaps among external head impact, tissue 
strain, and microscale axonal damage at the cellular level, which cannot 
be achieved otherwise using either model, alone. However, a large-scale 
simulation is necessary to estimate axonal structural damage in specific 
anatomical regions or the entire white matter. Injury biomechanical 
findings can then be assessed by structural, functional, and physiological 
biomarkers measured at the tissue and organ level. To further enable 
population-based TBI and TAI investigations such as deriving injury risk 

Fig. 6. Voxelized magnitude of relative brain-skull displacement from impact simulation (top row) at the time when corpus callosum fiber strain reached its first 
major peak (~31 ms; see Fig. 8) in coronal (left), axial (middle column) and para-sagittal (right) planes, along with the corresponding voxelwise peak MPS (second 
row) and averaged fiber strains (bottom row). 
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functions and thresholds, it is also important to extend the multiscale 
modeling framework across head impacts and across individuals as well 
due to the cumulative effects of subconcussive impacts on the onset of 
sports-related concussion. A large-scale and multiscale mechanistic 
modeling of TAI could significantly enhance state-of-the-art approaches 
to improving the detection, mitigation, and prevention of TBI in the 

future. Large-scale impact modeling for the global brain is now possible 
through deep learning [20]; but a deep learning surrogate for an axonal 
injury model has yet to be developed. 

The computational pipeline established in this study is necessary for 
the development and application of a deep learning axonal injury model. 
The pipeline integrates individualized neuroimages to produce 

Fig. 7. Comparison of voxelwise displacement magnitude, peak MPS, and peak fiber strains at three sampling resolutions on a coronal plane (from left to right 
columns: isotropic resolution of 1 mm, 2 mm, and 4 mm, respectively). With the increase in resampling voxel size, the white matter region appears “growing”, 
because a larger voxel is considered as “white matter” even if only a partial volume is designated as white matter. 

Fig. 8. Temporal profiles of MPS of the whole brain (a) and corpus callosum fiber strain (b) overlaid against the resultant rotational velocity and acceleration profiles 
(both normalized to provide shape only). The vertical dashed line at 31ms indicates the time when the corpus callosum fiber strain reached its first major peak (of 
tension). The one at 50 ms indicates the time window of the impact recording. 
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voxelwise relative brain-skull displacement and strain from a subject- 
specific global model. The resulting high-dimensional structured 
deformation field allows convenient determination of white matter fiber 
strains along dense tractography. The temporal fiber strain profiles 
would then serve as inputs to a microscale axonal injury model to esti
mate the extent of axonal structural damage such as MT, tau, and NF 

breakage, either in specific anatomical regions such as the gray-white 
matter interface and corpus callosum (Fig. 9) or the entire white mat
ter (Fig. 10). The diverse fiber strain profiles are expected to facilitate 
the generation of training samples through direct axonal model simu
lations for a deep learning surrogate. Once developed, the deep learning 
model could dramatically improve simulation efficiency with high ac
curacy, similar to the global model as both use time series data, either 
the impact rotational kinematics profile or axonal stretch time history, 
as model inputs. 

5.1. Computational efficiency 

The computational pipeline is scalable. When subject-specific neu
roimages are available, the image volume can be transformed into FE 
model space to resample relative brain-skull displacement at the voxel 
corner nodes. This strategy ensures a one-to-one direct correspondence 
between image voxels and voxelwise strains, which would facilitate 
biomechanics-neuroimaging multimodal injury analysis. When 

Table 1 
Comparison of fiber strain error (in percentage, %) and computational efficiency 
(in sec) for three displacement resampling resolutions relative to those from the 
resampling resolution of 1 mm.  

Sampling spatial isotropic resolution 1 mm 2 mm 4 mm 

Error relative to baseline N/A 6.4% 14.2% 
Voxelwise displacement (sec) 130.8 19.7 3.3 
Voxelwise MPS (sec) 37.6 8.0 1.3 
Voxelwise fiber strain (sec) 367.2 60.8 12.2 
Total time (sec) 535.6 88.5 16.8 
Time reduction relative to baseline N/A 83.4% 96.9%  

Fig. 9. Representative fiber strain profiles near the gray-white matter interface in two contralateral regions and in the corpus callosum for a concussive head impact 
recorded for a male ice-hockey player. All the fiber strain major peaks occur about the same time, with some delay relative to the major peak in the head rotational 
velocity profile shown in Fig. 8. The two fiber strain profiles in the contralateral regions are opposite in phase, showing major peaks of compression for (a) and 
tension for (b), respectively. 

Fig. 10. Histogram distribution of the cross-correlation coefficients between pairwise fiber strain profiles and sample pairs in each bin. Most of the pairs identified 
have a low value of cross-correlation coefficient, suggesting the effectiveness of the identification process for diverse profiles. 
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individual neuroimages are not otherwise available, a generic grid can 
be used for response resampling [36,53]. In both cases, the voxel spatial 
resolution can be adjusted to balance accuracy and efficiency in 
response resampling (Fig. 7). 

The computational efficiency dramatically improved with the in
crease of the deformation resampling voxel size. When the sampling 
voxel size increased from 1 mm3 to 2 mm3 (4 mm3), a reduction of 
83.4% (96.9%) in computation time was achieved, which also led to a 
relative error in fiber strain of 6.4% (14.2%) (Table 1). These results 
suggest that a sampling resolution of 2 mm3 might offer an appropriate 
tradeoff between accuracy and efficiency. 

Outside of the post-simulation processing, brain extraction was the 
most time-consuming operation (>5.6 h) when developing the subject- 
specific brain model. The FSL BET package could dramatically 
improve efficiency (4.6 s vs. >5.6 h). However, the presence of residual 
tissues such as the dura, nasal concha, and sphenoid sinus precluded 
proper registrations with the brain from the baseline WHIM when 
developing the subject-specific model. On the other hand, the recent 
‘fastsurfer’ toolbox [92,93] may mitigate these challenges and can be 
applied in the future for development of subject-specific models. 

5.2. Fiber strain profiles 

Given the near incompressibility of the brain, it is expected that some 
white matter fibers will experience tension while others will experience 
compression at a given time point (Figs. 9 and 10) so that the total brain 
volume remains nearly unchanged. Some compressibility is expected for 
the intact brain within the skull [94–96], which was enabled by using an 
elastic cap in the foramen magnum [63]. Mechanical responses of axons 
differ greatly in tension and compression [42,97]. Therefore, when 
developing a deep learning surrogate, it is important that the training 
samples include both tension- and compression-dominant profiles to 
maximize generalizability. 

For this reason, a strategy was designed to identify a diverse range of 
fiber strain profiles across white matter. The coarse sampling (of 6 mm) 
purposefully divided the brain into relatively distinct regions to mini
mize the chance of selecting similar profiles between fiber strains, as 
only one strain profile was selected from each voxel. Peak fiber strain 
magnitude was used for the identification, because higher, rather than 
lower, fiber strain magnitudes are likely more relevant to axonal dam
age; thus, they were intended to contribute to the deep learning training 
samples. Similar fiber strain profiles could still be selected for two 
neighboring voxels when peak strains occurred near the voxel boundary. 
However, they can be detected by the pair-wise cross-correlation strat
egy, which favored the selection of more diverse fiber strain profiles 
(Fig. 5). 

The strategy seemed effective, as 90% of the pairwise fiber strains 
had a cross-correlation coefficient between −1 and −0.8 (1103 out of 
1216 pairs; Fig. 10). Nevertheless, given that only one fiber strain was 
selected from each voxel when identifying the diverse fiber strain pro
files, crossing fibers were effectively excluded in the process (Fig. 4). 
However, they can be easily incorporated as necessary, e.g., if the 
resulting deep learning model does not sufficiently generalize. The 
diverse range of axonal fiber strain profiles (Fig. 10) provides rather rich 
characteristics of temporal shapes and magnitudes of fiber strains across 
the brain, both of which strongly affect axonal micromechanical be
haviors. They offer much improved insight into axonal damage than 
peak fiber strain magnitude, alone. 

In comparison, axonal injury model simulations have been largely 
limited to using a simplistic stretch profile as the loading condition for 
input to date, for example, pure tension or pure compression with a fixed 
strain peak magnitude or strain rate [42,97]. However, they are not 
realistic because they do not contain a “recovery phase” for the strain to 
return to an initial, undeformed state given that no residual strain is 
anticipated in a live human brain after mild impact. Not all fiber strain 
profiles illustrated in this study returned to a “zero strain state” within 

the impact temporal window due to limitations with the impact kine
matic data. Nonetheless, it was common that both tension and 
compression were present in fiber strain profiles, irrespective of the 
order of the two phases. This reflects a “sloshing” motion of the brain 
parenchyma inside the skull during impact, as expected. Regardless, the 
diverse fiber strain profiles may serve as a database for more realistic 
loading conditions when investigating axonal dynamic responses in the 
future, using either mathematical or computational FE models. 

5.3. Biomechanics of brain strain 

The temporal profile of the MPS of the whole brain largely followed 
that of the resultant rotational velocity (cross-correlation coefficient of 
0.83). However, this was not the case for the fiber strain profile in the 
corpus callosum (cross-correlation coefficient of −0.52; Fig. 8). Appar
ently, the MPS of the whole brain was much more influenced by impact 
kinematics than strain deep in the brain. For the impact simulation in 
this study using WHIM, MPS of the whole brain usually occurred near 
the brain surface, due to tissue tethering through the boundary condi
tion at the brain-skull interface (sharing nodes via the cerebrospinal 
fluid layer [63]). Therefore, any change in head rotational velocity 
would be immediately translated into strains in this area. For the corpus 
callosum, however, it takes time for the shear wave to travel from the 
brain-skull surface to deep regions. The peak-to-peak time of 18.5 ms 
was slightly larger than that of 14 ms reported before [72], which was 
likely, in part, a result of the larger brain studied here. 

The time-delay in corpus callosum strain relative to impact kine
matics suggests that strain in deep brain regions may not reach peak 
during the given time window, even if the kinematic peak has been 
captured. For the simulated head impact, the peak kinematics occurred 
early in the time window. Therefore, the second peak of corpus callosum 
fiber strain (in compression) was captured even without the additional 
20 ms duration (Fig. 8b). Nevertheless, the additional simulation time 
allowed the fiber strain to attempt to return to a “zero strain”, which 
would be more realistic for subsequent axonal injury modeling [47]. 

6. Limitations and future work 

While this study is a critical step towards large-scale and multiscale 
brain injury modeling, additional development is necessary. In partic
ular, a deep learning-based microscale axonal injury model is required 
to dramatically reduce FE model simulation runtime. The technique is 
effective for a global model, e.g., reducing hours of impact simulation on 
a high-end computing platform to under a second on a regular laptop, 
and with high accuracy [36,51–53]. A similar result is anticipated for 
the microscale axonal injury model because both models use time series 
data, either impact kinematic profiles or axonal stretch history [47,48], 
as input. Nevertheless, a large training sample is expected to train a 
neural network for a desired accuracy. A diverse set of fiber strain 
profiles would facilitate its development. 

The diverse fiber strain profiles identified in this study from a single 
head impact simulation may still not be sufficient to represent those 
from diverse head impacts and individuals. To generalize the training 
data across impacts and subjects, the same computational pipeline can 
be applied to a range of global model simulations, for which a deep 
learning surrogate is already available to instantly generate spatiotem
poral responses for a generic brain model [53], and in a convenient 
voxelized data structure [62]. 

7. Conclusion 

Using a unique subject-specific multimodality dataset from a male 
concussed ice-hockey player, this study develops an efficient and scal
able computational pipeline to generate voxelized deformation field 
over time. The structured, voxelized data format allows accurate and 
efficient determination of voxelwise maximum principal strains at voxel 
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centroids as well as white matter fiber strains for embedded tractog
raphy. The spatial resolution of the voxelized deformation field 
(displacement and strain) can be adjusted, and an isotropic resolution of 
2 mm was found to provide a reasonable balance between accuracy and 
efficiency. The voxelized deformation also facilitates seamless multi
modal biomechanical analysis in key anatomical regions, such as gray- 
white matter interface and corpus callosum as examples in this study. 

The computational pipeline is critical for producing diverse fiber 
strain profiles necessary for the development and application of a deep 
learning axonal injury model in the future. In turn, these efforts would 
allow large-scale (i.e., across the entire white matter region, head im
pacts, and individuals) and multiscale (i.e., from organ to cell length 
scales) modeling to investigate the mechanisms of traumatic axonal 
injury (TAI). By bridging gaps between global and microscale modeling 
of TAI, this study contributes to improved strategies for concussion 
detection, mitigation, and prevention. 
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[43] J.P. Dollé, A. Jaye, S.A. Anderson, H. Ahmadzadeh, V.B. Shenoy, D.H. Smith, 
Newfound sex differences in axonal structure underlie differential outcomes from 
in vitro traumatic axonal injury, Exp. Neurol. 300 (2018) 121–134, https://doi. 
org/10.1016/j.expneurol.2017.11.001. 

[44] L.M. Wang, M.B. Goodman, E. Kuhl, Image-based axon model highlights 
heterogeneity in initiation of damage, Biophys. J. 122 (2023), https://doi.org/ 
10.1016/j.bpj.2022.11.2946, 9–19. (Accessed 28 August 2023). 

[45] F. Zhu, D.L. Gatti, K.H. Yang, Nodal versus total axonal strain and the role of 
cholesterol in traumatic brain injury, J. Neurotrauma 33 (2016) 859–870, https:// 
doi.org/10.1089/neu.2015.4007. 

[46] A. Montanino, S. Kleiven, Utilizing a structural mechanics approach to assess the 
primary effects of injury loads onto the axon and its components, Front. Neurol. 9 
(2018) 643, https://doi.org/10.3389/fneur.2018.00643. 

[47] C. Zhang, S. Ji, Sex differences in axonal dynamic responses under realistic tension 
using finite element models, J. Neurotrauma 40 (2023) 2217–2232, https://doi. 
org/10.1089/NEU.2022.0512. 

[48] A. Montanino, X. Li, Z. Zhou, M. Zeineh, D.B. Camarillo, S. Kleiven, Subject-specific 
multiscale analysis of concussion: from macroscopic loads to molecular-level 
damage, Brain Multiphysics 2 (2021) 100027, https://doi.org/10.1016/j. 
brain.2021.100027. 

[49] M. Fahlstedt, F. Abayazid, M.B. Panzer, A. Trotta, W. Zhao, M. Ghajari, M. 
D. Gilchrist, S. Ji, S. Kleiven, X. Li, A.N. Annaidh, P. Halldin, Ranking and rating 
bicycle helmet safety performance in oblique impacts using eight different brain 
injury models, Ann. Biomed. Eng. 49 (2021) 1097–1109, https://doi.org/10.1007/ 
s10439-020-02703-w. 

[50] R. de Rooij, K.E. Miller, E. Kuhl, Modeling molecular mechanisms in the axon, 
Comput. Mech. 59 (2017) 523–537, https://doi.org/10.1007/s00466-016-1359-y. 

[51] S. Wu, W. Zhao, K. Ghazi, S. Ji, Convolutional neural network for efficient 
estimation of regional brain strains, Sci. Rep. 9 (2019) 17326, https://doi.org/ 
10.1038/s41598-019-53551-1. 

[52] K. Ghazi, S. Wu, W. Zhao, S. Ji, Instantaneous whole-brain strain estimation in 
dynamic head impact, J. Neurotrauma 38 (2021) 1023–1035, https://doi.org/ 
10.1089/neu.2020.7281. 

[53] S. Wu, W. Zhao, S. Ji, Real-time dynamic simulation for highly accurate 
spatiotemporal brain deformation from impact, Comput. Methods Appl. Mech. 
Eng. 394 (2022) 114913, https://doi.org/10.1016/J.CMA.2022.114913. 

[54] X. Zhan, Y. Liu, S.J. Raymond, H.V. Alizadeh, A.G. Domel, O. Gevaert, M. 
M. Zeineh, G.A. Grant, D.B. Camarillo, Rapid estimation of entire brain strain using 
deep learning models, IEEE Trans. Biomed. Eng. 9294 (2021) 1–11, https://doi. 
org/10.1109/TBME.2021.3073380. 

[55] C. Deck, N. Bourdet, A. Trog, F. Meyer, V. Noblet, R. Willinger, Deep learning 
method to assess brain injury risk, Int. J. Crashworthiness (2022) 1–10, https:// 
doi.org/10.1080/13588265.2022.2130600. 

[56] G.A. Truskey, The potential of deep learning to advance clinical applications of 
computational biomechanics, Bioengineering 10 (2023), https://doi.org/10.3390/ 
BIOENGINEERING10091066. 

[57] A. Ad, V. SS, C. P, C. T, E. AA, N. M, K. A, A Systematic Review on Machine 
Learning and Deep Learning Techniques in the Effective Diagnosis of Alzheimer’s 
Disease, 2022, https://doi.org/10.21203/RS.3.RS-2028945/V1. 

[58] E. Courville, S.F. Kazim, J. Vellek, O. Tarawneh, J. Stack, K. Roster, J. Roy, 
M. Schmidt, C. Bowers, Machine learning algorithms for predicting outcomes of 
traumatic brain injury: a systematic review and meta-analysis, Surg. Neurol. Int. 14 
(2023), https://doi.org/10.25259/SNI_312_2023. 

[59] A. Kaur, A.P.S. Chauhan, A.K. Aggarwal, Machine learning based comparative 
analysis of methods for enhancer prediction in genomic data, Int. Conf. Speech 

Technol. Human-Computer Dialogue (2019) 142–145, https://doi.org/10.1109/ 
ICCT46177.2019.8969054. 

[60] R. Thukral, A.K. Aggarwal, A.S. Arora, T. Dora, S. Sancheti, Artificial intelligence- 
based prediction of oral mucositis in patients with head-and-neck cancer: a 
prospective observational study utilizing a thermographic approach, Cancer Res. 
Stat. Treat. 6 (2023) 181–190, https://doi.org/10.4103/CRST.CRST_332_22. 

[61] N. Lin, S. Wu, Z. Wu, S. Ji, Efficient generation of pretraining samples for 
developing a deep learning brain injury model via transfer learning, Ann. Biomed. 
Eng. (2023), https://doi.org/10.1007/S10439-023-03354-3 (in press). 

[62] S. Ji, W. Zhao, Displacement voxelization to resolve mesh-image mismatch: 
application in deriving dense white matter fiber strains, Comput. Methods Progr. 
Biomed. 213 (2022) 106528, https://doi.org/10.1016/j.cmpb.2021.106528. 

[63] S. Ji, W. Zhao, J.C. Ford, J.G. Beckwith, R.P. Bolander, R.M. Greenwald, L. 
A. Flashman, K.D. Paulsen, T.W. McAllister, Group-wise evaluation and 
comparison of white matter fiber strain and maximum principal strain in sports- 
related concussion, J. Neurotrauma 32 (2015) 441–454, https://doi.org/10.1089/ 
neu.2013.3268. 

[64] D. Sahoo, C. Deck, R. Willinger, Brain injury tolerance limit based on computation 
of axonal strain, Accid. Anal. Prev. 92 (2016) 53–70, https://doi.org/10.1016/j. 
aap.2016.03.013. 

[65] A.K. Knutsen, A.D. Gomez, M. Gangolli, W.-T. Wang, D. Chan, Y.-C. Lu, 
E. Christoforou, J.L. Prince, P.V. Bayly, J.A. Butman, D.L. Pham, In vivo estimates 
of axonal stretch and 3D brain deformation during mild head impact, Brain 
Multiphysics (2020) 100015, https://doi.org/10.1016/j.brain.2020.100015. 

[66] L.F. Gabler, S.H. Huddleston, N.Z. Dau, D.J. Lessley, K.B. Arbogast, X. Thompson, 
J.E. Resch, J.R. Crandall, On-field performance of an instrumented mouthguard for 
detecting head impacts in American football, Ann. Biomed. Eng. 1–14 (2020), 
https://doi.org/10.1007/s10439-020-02654-2. 

[67] J. Tooby, D. Weaving, M. Al-Dawoud, G. Tierney, Quantification of head 
acceleration events in rugby league: an instrumented mouthguard and video 
analysis pilot study, Sensors 22 (2022) 584, https://doi.org/10.3390/S22020584. 

[68] E.M.P. Williams, F.J. Petrie, T.N. Pennington, D.R.L. Powell, H. Arora, K. 
A. Mackintosh, D.G. Greybe, Sex differences in neck strength and head impact 
kinematics in university rugby union players, Eur. J. Sport Sci. 22 (2022) 
1649–1658, https://doi.org/10.1080/17461391.2021.1973573. 

[69] T.J. Fetchko, G.J. Hart, M.J. Aderman, J.D. Ross, S.R. Malvasi, M.H. Roach, K. 
L. Cameron, T.F. Rooks, Measurement of head kinematics using instrumented 
mouthguards during introductory boxing courses in U.S. Military academy cadets, 
Mil. Med. 188 (2023) 584–589, https://doi.org/10.1093/MILMED/USAD249. 

[70] E.E. Kieffer, M.T. Begonia, A.M. Tyson, S. Rowson, A two-phased approach to 
quantifying head impact sensor accuracy: in-laboratory and on-field assessments, 
Ann. Biomed. Eng. 48 (2020), https://doi.org/10.1007/s10439-020-02647-1. 

[71] B. Jones, J. Tooby, D. Weaving, K. Till, C. Owen, M. Begonia, K.A. Stokes, 
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