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This article presents a Hawkes process model with Markovian baseline intensi-
ties for high-frequency order book data modeling. We classified intraday order book
trading events into a range of categories based on their order types and the price
change after their arrivals. In order to capture the stimulating effects between mul-
tiple types of order book events, we use multivariate Hawkes process to model the
self- and mutually-exciting event arrivals. We also integrate a Markovian baseline
intensities into the event arrival dynamic, by including the impacts of order book
liquidity state and time factor on the baseline intensity. A regression-based non-
parametric estimation procedure is adopted to estimate the model parameters in our
Hawkes+Markovian model. To eliminate redundant model parameters, LASSO reg-
ularization is incorporated into the estimation procedure. Besides, model selection
method based on Akaike Information Criteria is applied to evaluate the effect of
each part of the proposed model. An implementation example based on real LOB
data is provided. Through the example we studied the empirical shapes of Hawkes
excitement functions, the effects of liquidity as well as time factors, the LASSO vari-
able selection, and the explanation power of Hawkes and Markovian elements to the
dynamics of order book.

Keywords: Hawkes Process, Order book modeling, Non-parametric estimation, Model se-
lection



1 Introduction

Electronic Limit Order Book (LOB) is the list of electronic orders that a trading venue
uses to record the interest of buyers and sellers in a particular financial instrument. The
modern financial market has witnessed unprecedented increases in trading volume and
frequency during the recent decades, with the global total value of stock traded escalating
and the average stock holding period plunging significantly from 1990 to 2018 (The World
Bank 2019, Maloney & Almeida 2019). Therefore, understanding the dynamics of LOB
has become increasingly significant in the analysis of the liquidity, transaction cost, and

regulation of the modern global financial market.

1.1 literature review

Hawkes process (Hawkes 1971, Hawkes & Oakes 1974), also called “self-exciting and mutually-
exciting point process”, is a type of stochastic point process whose essential property is that
the arrival/occurrence of any event will impact the arrival probability of further events.
Hawkes process has various applications in finance. For example, Chavez-Demoulin &
McGill (2012) proposes a Hawkes process model to enhance the estimation of high-frequency
stock trading Value-at-Risk (VaR) measures; Bacry et al. (2013a,b) propose a novel Hawkes
process construction to capture the microstructure noise indicated by the jumps of asset
prices, and further discussed the limit properties of the model. Bacry et al. (2015) and
Hawkes (2018) have provided comprehensive reviews on Hawkes process applications in
finance, especially in modeling LOB data, including related works in estimation procedure
(Kirchner 2017, Bacry & Muzy 2014a), Hakwes process generalizations (Blanc et al. 2017),
and model modifications of minor details (Clements et al. 2015, Ferriani & Zoi 2020). On



the theoretical side, Jaisson & Rosenbaum (2015) provides the stability conditions and
limiting distributions of Hawkes process when applied in finance.

As electronic LOB data is typically complex, large-scale, and high-frequency, Hawkes
process has become increasingly popular in fitting LOB dynamics due to its ability to cap-
ture the complex stimulating effects between event flows. Plenty of research has utilized
the Hawkes process to estimate LOB order flows. Among them, Hawkes process with expo-
nential or power-law stimulating functions is among the most popular model specifications
in recent works (Muni Toke & Pomponio 2012, Abergel & Jedidi 2015, Morariu-Patrichi &
Pakkanen 2018, Kirchner 2017), and literature has discussed the strengths of each type (Lal-
louache & Challet 2016, Filimonov & Sornette 2015). Furthermore, in addition to using the
parametric kernels (e.g. the exponential kernel), Kirchner (2017), Bacry & Muzy (2014a,b)
introduce non-parametric estimation methods that enable the estimation of flexible kernel
shapes and enhance computational efficiency.

Besides the self and cross-exciting property, LOB data can also be viewed as a chain
of transitions from one state to another based on different price and order size levels as
different types of order arrives. Based on this perspective, Markov models can be applied
to LOB data, assuming the transition from one LOB state to another as an event arrives
depends only on the state attained in the previous event. For example, Huang et al. (2015),
Huang & Rosenbaum (2017) proposes simulation and analytical frameworks for Markov
models on LOB data and demonstrates empirical findings on various LOB event types;
Based on the “Queue-Reactive Model” proposed by Huang et al. (2015), Wu et al. (2019)
discusses that the model performance can be boosted by adding the Hawkes stimulating
components to the order arrival intensities. Besides, Omi et al. (2017) argues a Hawkes
model with background rates relating to the time state of order arrival can achieve better
model fit. Also, Morariu-Patrichi & Pakkanen (2018) estimates a state-dependent Hawkes

model for LOB modeling in which the exponential excitement kernel depends on the process



that switches state whenever an event arrives.

1.2 our work and contribution

Most of the previous works mentioned above apply Hawkes process and Markov mod-
els independently to LOB data. The effectiveness of combining the two models in LOB
modeling is not studied yet with non-parametric kernel. In this paper, we introduce a
Hawkes+Markovian model to capture the dynamics of electronic LOB data. We apply a
multi-dimensional Hawkes process to a comprehensive range of event types derived from
LOB movements. In addition, by integrating the Markovian model on the LOB data, our
model captures the intuition that the stimulating effects among events also depend on the
liquidity state and time factor of the LOB right before event arrives. We then implement
a regression-based non-parametric method (Kirchner 2017) for parameter estimation. The
main idea of our estimation procedure is to allocate the event arrival sequences into a series
of fixed-size bins of discretized short-period, and then obtain the Hawkes kernel estima-
tors as a step function. In contrast to previous works (Kirchner 2017, Morariu-Patrichi &
Pakkanen 2018) that do not consider order sizes, we take order sizes into account in the
arrival sequence construction to better capture the stimulating effects of large and small
orders. As the number of estimated parameters is large, we also incorporate LASSO reg-
ularization (Tibshirani 1996) in our model estimation. Furthermore, we propose a model
selection method based on Akaike Information Criterion (AIC) to analyze the contribution
of the Hawkes stimulation part, the Markovian part, and the LASSO part to model expla-
nation power. Finally, after validating the estimation procedure on a fully simulated LOB
dataset, we demonstrate an implementation example using real order book data.

Main contribution of this paper is summarised as follows: (1) We proposed a novel
Hawkes + Markovian model combination for order book modeling, in which the baseline

intensity of the Hawkes process depends on the liquidity state and time factor. (2) We



develop a non-parametric estimation procedure extended from Kirchner (2017), in which
the Hawkes kernels and order book states can be collectively estimated using a regression-
based method. The non-parametric method also removes any assumptions on the kernel
shapes, such as the exponential. (3) We utilize LASSO regularization to enhance model
performance and adopt an AIC-based method to evaluate model explanatory power. (4)
We document empirical findings using real LOB data. For example, we find some Hawkes

kernels do not exhibit convex monotonic decreasing shapes.

Distinction of our work from other Hawkes LOB modeling methods. We espe-
cially point out that Wu et al. (2019), Omi et al. (2017) are two very recent works that
analyze the interaction between order book state and Hawkes process. Although Wu et al.
(2019) also uses the intuition of order liquidities, its specification differs from ours since it
uses a parametric exponential Hawkes kernel. It also doesn’t include time factor estima-
tion in the baseline intensity estimation. Furthermore, we use more detailed level-3 order
book data on the U.S. market while Wu et al. (2019) uses level-1 order book data in the
EU futures market. Omi et al. (2017)’s Hawkes specification also follows the exponential
kernel. The events considered in this study are the filtered movements of the mid-price,
which differs from our classification based on the tick-level orders on each side of the order
book. Omi et al. (2017) documents the time-based baseline intensities estimated using a
Bayesian method, which is also fundamentally different from our regression-based method.

The rest of this paper is organized as follows: section 2 demonstrates a brief mathe-
matical introduction of order book data representations; section 3 introduces our proposed
model, with detailed illustrations on event classification and model structures; section 4
provides a detailed description on the non-parametric model estimation as well as model
selection; section 5 showcases the aggregated empirical results from an implementation

example based on real LOB data; section 6 discusses and concludes.



2 Order book representation

The limit order book is mainly constructed by two elements. The first element is the shape
of the order book, consisting of all the orders at which prices the market wants to buy
(bid price) and the market wants to sell (ask price). The bid/ask prices form the bid/ask
queues and must be multiples of the tick size, which is the measure of the minimum upward
or downward movement of security prices (currently the tick size for all U.S exchanges is
$0.01). The second element is the center position of the order book between the best bid
price (the highest price the market wants to buy) and the best ask price (the lowest price
the market wants to sell). The center position of LOB is often referred to as the “reference
price” and the distance between the best bid and best ask is referred to as “bid-ask spread”.
The easiest way to approximate the reference price is to define it as the midpoint of the best
bid and best ask, also known as the “mid-price”. The order book also includes information
on the size of each order, which is the quantity of shares an order attempts to execute. See

Figure 1 for an example.
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Figure 1: A simple order book representation. (Q_1, Q_2, Q_3) / (Q1, @2, Q3) represent

v

the first, second, and third price level on the bid/ask side, respectively; (¢_1, ¢_2, ¢—3) /
(¢1, @2, g3) represent the number of orders on the first, second, and third price level on the

bid/ask side, respectively.

Mathematical Representation Huang et al. (2015) and Huang & Rosenbaum (2017)
demonstrate a comprehensive overview of the mathematical representations of LOB. Recall
the reference price pef(t) must lie strictly between the best bid and best ask. Let ¢;(t)
be the size of the ask orders at price level @); that is the i-th tick strictly above pre(t).
Symmetrically, ¢_;() is the negation of size of the bid orders at price level ()_; that is the
i-th tick strictly below pyef(t).

Formally, let o be the single tick value, then @1 := min{na : na > preg,n € Z}, Q; =
Q1+ (i—1)a, Vi > 1. Similarly, Q_1 := max{na : na < prer,n € Z}, Q_; := Q_1—(i— 1),
Vi > 1. See Figure 1 and its caption for an example.

The complete order book’s shape at time ¢ is an infinite vector for the current size at
all prices q(t) = [...,q x(t), ..., q-1(t), 1 (t), ..., qx(t),...] with ¢; € Z denoting the size at

each price. Note ¢; < 0 if these orders are bid orders and ¢; > 0 if they are ask orders.



If ¢; = 0 there is no orders at price level @);. The reference price, py(t), is often the
mid-price, with some technicality detailed in Supplementary Material section A. The LOB
information at time ¢ is therefore fully represented by [q(t), pret(t)], ¢ > 0 (Huang et al.
2015, Huang & Rosenbaum 2017).

To restrict the dimensions of [q(t), pret(t)], we consider only K limits on each side, and
thus have now q(t) = [q_x (), ..., q-1(t), q1(t), ..., qx (t)], which we shall call “level-K order
book”. Since ¢; can be 0 if there’s no order at its price level, the best bid and best ask
prices are defined as the nearest price levels to the reference price with non-empty orders

sizes:

Qbest—bid - Qmam{i:i<0 and |¢;|#0} > Qbest—ask - Qmin{i:i>0 and |¢;|#0}

3 Model specifications

Following the framework we outlined above, we propose a specific event arrival dynamic
for empirical modeling of the level-K order book.

We consider the LOB event arrival process as 6 x (K + 1) dimensional, indicating
6 x (K + 1) types of events are studied in the level-K order book. They are generally
grouped into two categories: (1) order book events that do not change reference price, and
(2) order book events that change the reference price. The way we classify LOB events is
mainly extended from previous work on the “Queue-Reactive” LOB model (Huang et al.
2015, Huang & Rosenbaum 2017). Compared to the simpler LOB event classifications
used in (Kirchner 2017, Morariu-Patrichi & Pakkanen 2018), our classification not only
separates events belonging to each of the K order book levels, but also classifies events in
more detailed groups when the reference price changes, enabling our proposed model to
capture more complex dynamic of event stimulation. Table 1 illustrate order types with

K =3.



No Price Change Price Change

Level 1 Level 2 Level 3 Price Up Price Down
Insertion +1(1), -1(1) +2(i), -2(i) +3(i), -3(i) pt(i) p- (i)
Cancellation +1(c), -1(c) +2(c), -2(c) +3(c), -3(c) p+(c) p-(c)
Trade +1(t), -1(t) +2(t), -2(t) +3(t), -3(t) p+(t) p-(t)

Table 1: An illustration of 6 x (K + 1) order types. The table shows the order types of
K = 3, meaning limit and market orders above or below three ticks of the reference price
are considered in the modeling. More details on the order types are explained in section

3.1 and 3.2.

3.1 order book events that do not change reference price

When studying the level-K order book, each order book queue can have the following

events:

e a trade, or market order, which is denoted as (t)

e an insertion of new limit order, which is denoted as (1)

e a cancellation of existing limit order, which is denoted as (c)
For level-K order book, we have in total 2K number of queues:

e K ask queues, denoted as +1,+42,...,+K, which are the 1st tick above reference

price, 2nd tick above reference price, ..., K-th tick above reference price, respectively.
e K bid queues, denoted as —1,—2,..., —K, which are the 1st tick below reference
price, 2nd tick below reference price, ..., K-th tick below reference price, respectively.

10



Therefore, we have in total 3 x 2K number of events that do not change reference price.
For example, “+1(t)” denotes the event that a trade order arrives at the first ask queue,
“-2(1)” denotes the event that a new order arrives at the second bid queue and is inserted,

and “+3(c)” denotes the event that an existing order is canceled at the third ask queue.

3.2 order book events with reference price change

This section focuses on the modeling for another 6 types of events that shift the reference

price. The reference price can increase one tick due to the following event:

e Trade at the best ask price that depletes the queue of best ask. The event of reference

price increase due to trade is denoted as p+(t)

e Cancellation of all orders at the best ask price. The event of reference price increase

due to cancellation is denoted as p+(c)

e Insertion of bid order at a higher price than the current best bid offer, which is
only possible when the bid-ask spread is strictly larger than one tick. The event of

reference price increase due to insertion is denoted as p+(i)
On the flip side, the reference price can decrease one tick due to the following event:

e Trade at the best bid price that depletes the queue of best bid. The event of reference

price decrease due to trade is denoted as p-(t)

e Cancellation of all orders at the best bid price. The event of reference price decrease

due to cancellation is denoted as p-(c)

e Insertion of ask order at a lower price than the current best ask offer, which is only
possible when the bid-ask spread is strictly larger than one tick. The event of reference

price decrease due to insertion is denoted as p-(i)

11



3.3 Hawkes+Markovian model of the order book

The order book event processes of dimension 6/ + 6 at time ¢ are represented as X;(t),i =
1,2,...,6 K + 6, with Xy, X5, ..., X¢xi6 representing the arrival process for the following

events:

(K1), -K(0), -K(v), ..., -1(1),~1(c), -1(8))T

Xl TV
3K
X _ | (#1(1),+1(e), +1(t), ..., +K(1),+K(c),+K(t))T
: 3k
Xoxt6 {p-<t>,p-<c>,p-(i>f+<t),p+<c),p+(i))z
6 (6K+6)x1

Basically, X;(t) represents the cumulative size of the corresponding event. For example,
X1 (t) corresponds to event -K(i), the insertion of limit order at the bid queue K-th tick
below reference price; Xgx.6(t) corresponds to event p+(i), price increase due to insertion

of bid above current best bid.

3.3.1 Hawkes part

Define the instantaneous rate of event 4’s arrival to be

E(X;(t + At) — X;(t)|F)

()= T
Ailt) Atm0+ At
Vi=1,2,...,6 K +6, where F,; contains all information about order book queue, mid-price,

liquidity state, and time factor up to time ¢. In particular, the complete (infinite-level) order
book characterization process [Q;(t), q(t), pre(t)] (in Figure 1) is adapted to the filtration
Fi. Then the intensities of event ¢ for a plain-vanilla multivariate Hawkes process model
for LOB data can be represented as:

6K+6

)\Z(t) =+ Z /Qb]l(t—s)dX](S), Vi = 1,2,,6K+6 (1)
j=1

12



in which n; represents the baseline intensity, ¢;;(-) represents the Hawkes kernel for event
J stimulating event 1.
3.3.2 Markovian part

To further extend the plain-vanilla multivariate Hawkes process, we integrate two factors

derived from LOB queues to the baseline intensity (intercept) n; of the Hawkes process:

e The current LOB liquidity state: The liquidity state includes the number of
existing orders on the associated price of the event, the number of orders on the best

bid/ask price, and the bid-ask spread.

e Time clustering: Figure 2 indicates that the trading frequency for real LOB data
differs between time groups throughout trading hours. The last 30 minutes have
significantly more activities, and the first 30 minutes see slightly higher activities,

while other time periods during the day seem to be tranquil.

Therefore, we model the baseline event arrival intensities n; with a Markovian structure

that depends on the current liquidity state and time clustering:
mi(t) = M;(Li(t)) + ©4(t) (2)

where M;(-) and ©;(-) denote specified functions on liquidity state [;(¢) and time ¢.

13
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Figure 2: An illustration of the order arrival rate for LOB data. The figure demonstrates
median order arrival rates per second for 20 trading days from 1/2/2019 to 1/31/2019
based on LOB data for Apple.Inc.

Next, we shall define the liquidity state [;(t). Note [;(¢) only changes if an event arrives.

For all events that do not change the reference price (i.e., -K(i), -K(c), -K(t), ...,
+K (1), +K(c), +K(t)), the liquidity state [;(t) is intuitively g, (¢), the accumulated order
size right before time ¢ on the k;-th price level where event ¢ belongs. For example, events
+1(1),+1(c),+1(t) have k; = 1 and [;(t) = ¢1(t).

Then we consider the events changing the reference price. For events p-(t) and p-(c),
l;(t) is defined as the queue size at the best bid price. For events p+(t) and p+(c), [;(t) is
defined as the queue size at best ask price; this is because the queue at the best bid/ask
must be either consumed or canceled for these event types. For events p+(i) and p-(i),
we consider order insertions within the bid-ask spread, and therefore the bid-ask spread is
considered as the liquidity state [;(t) for these two types of events. p+(i) and p-(i) are
the only two types of events whose liquidity state is based on price (bid-ask spread) while
the liquidity state of the rest of the events is based on existing order size at the associated

price.

14



Formally, we have the mathematical definition:

(

qr, (1), i € {-K(i),-K(c),...,+K(i),+K(c),+K(t) } (size of the corresponding queue)
Qest-bid (1), © € {p=(t),p-(c)} (size of the best-bid queue)

Qoest-ask (t), © € {p+(t),p+(c)} (size of the best-ask queue)

\Qbest—ask(t) - Qbest—bid(t>7 (RS {p+(1) ) p—(l)} (bid-aSk Spread)

where k; denote the queue to which event ¢ belongs to.

3.3.3 final form of Hawkes+Markovian combined model

Our final model on the instantaneous rate \;(t) is a combination of Hawkes part Eq.(1)
and Markovian part Eq.(2):

6K+6

4 Estimation procedure

Given the above hybrid Hawkes+Markovian model, we employ a non-parametric regression-
based approach to estimate the model parameters. Our approach is extended from Kirchner
(2017) as well as Bacry & Muzy (2014a).

Inspired by Kirchner (2017) and Bacry & Muzy (2014a), we approximate the whole
intensity function as a standard vector-valued linear autoregressive time series. The esti-
mation procedure discretizes a continuous point process into multiple fixed-size bins on the
time domain and thereby fits a vector autoregression model to the discretized samples.

To outline the intensity function estimation, we first define discretization bin-size A
and maximum support s. The maximum support represents the maximum duration (in

seconds) during which the arrival of one event can have stimulating effects on the arrival of

15



other events. The bin-size A defines the short period of time during which the Hawkes self-
and cross-exciting function stay unchanged. Take s = 20 seconds, A = 0.25 seconds as an
example: this setting indicates the maximum duration that an event ¢ can stimulate the
intensities of future event arrivals is 20 seconds, while event ¢’s self- and cross-stimulating
functions stay the same within each 0.25 seconds short period. That is to say, the 80 of
0.25-second windows combined define the 20-second stimulating horizon for event ¢ and its
stimulating function shrinks to 0 beyond 20 seconds after event i’s arrival.

Given an appropriate choice of bin-size A and maximum support s, a continuous Hawkes
excitement function between two events can be approximated by a piece-wise constant
function of p = [s/A| steps, with each step standing for the constant function value
over the short period A. To complete the estimation, we need to apply some smoothing
methods over the estimated point-wise function. We adopt the cubic smoothing spline in
our method. The cubic smoothing spline is a smoothing technique such that the curve
spanning each data interval is represented by a cubic polynomial. The cubic smoothing
spline is achieved by minimizing the curvature of the smoothed function and is not required
to pass all data points. The overall illustration of the estimation method is demonstrated

in 3.

16
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Figure 3: An example illustration on Hawkes excitement function estimation. The example
demonstrates the estimation for a continuous function ¢;;. Suppose s = 4A and therefore
p = 4. The estimation idea is that ¢;; can be approximated by ngi = (<Zgjz,17 ngz'g, GBji,s, @1'74).
ggjm represents the fixed function value over [0, A], qgjm represents the fixed function value
over [A,2A]....Though the main objective is to obtain the discrete estimators ngi, we
can further fit a cubic smoothing spline to the discrete estimators to derive a continuous

estimated function as shown by the red dotted line.

4.1 bin construction

To obtain our proposed discretized estimators, the data needs to be discretized under the
(s, A)-framework as the first step. The estimation requires allocating LOB event arrival
and LOB state sequences into fixed-size bins with length A over the time horizon and
counting the number of realizations in each bin. Afterward, these bin-count sequences can
be used as sufficient statistics to obtain model estimates.

Recall in section 3.3, we denote the order book event process at time ¢t as X;(t), where i

17



is index for events. For LOB data, each types of event outlined in section 3.1 and 3.2 comes
with an order size indicating the quantity of shares the LOB event attempts to execute.
For example, a +1(i) event with order size 100 indicates the event at the first ask queue
to insert 100 shares.

Since all regular order book events -K(i),-K(c),-K(t),..., +K(i), +K(c), +K(t) are
additive, big events can be considered as the sum of the same events with smaller sizes in
a short period of time. As an intuitive example, one insertion order of size 100 shares is
assumed to be equivalent to two insertion orders of size 50 shares happening at the same
time and the same price. However, the events p-(t), p-(c), p-(1), p+(t), p+(c), p+(i)
are not addictive because the reference price change caused by these event shift the LOB
queue distribution. Specifically, the queue size value g, can shift to its neighbours when
the reference price (center of LOB distribution) goes up and down. Therefore, the events
causing reference price changes cannot be thought simply as the sum of same event with
smaller size. Overall, the size of LOB event is modeled in a dichotomous approach for
X;: for all regular addictive events, X; increases by its order size at event arrival; for all
non-addictive events, X; by 1 at event arrival, treating as pure point processes.

We can then construct a series of fixed-size bins over the total time horizon (0,77, and
sum the realizations of X; during each bin to obtain the bin-count sequences, as illustrated
in Figure 4. Formally, for t € (0,7, for some bin-size A > 0, we construct the (6K + 6)-
dimensional bin-count, liquidity state, and time factor sequences as:

6K+6

BE = (BY) . BR = X (= 1)A,k4)),

i=1
=1

. (l%))
6K+6

o= (1)

=1

6K+6

;1Y =14k - 1)A),
;) = (k - 1A,

where i =1,2,...,6 K +6,k=1,2,....n, and n:= |T/A].

18



X :arrival of event -K(i), corresponding to event index i = 1.
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Figure 4: An illustration example on bin-count sequence construction for event -K(i).

Order size at the cross mark are allocated into bins 1,2, ...,n based on event arrival time.

4.2 Dbucketize LOB state factors

As mentioned in section 3.3, we assume that the baseline intensity function of the proposed
model is controlled by functions based on LOB liquidity state [;(¢) and intraday time ¢. In
the previous section, we have discussed discretizing and transforming sequences [;(t) and
t into bin-based sequences lgﬁ) and tﬁ) for a selected bin-size A. Consequently, we have
indeed transformed M;(l;(t)) and ©;(t) into Mi(lﬁ)) and @Z-(tgﬁ)) for estimation purpose.

In order to approximate the non-parametric function M;(-) and ©;(-), we use the same
discretization idea and treat lﬁ) and tﬁ) as categorical variables to obtain the linear
parameters. Therefore, M;(-) and ©;(-) become step function that depends only on the

specified categories of the discretized liquidity state and time factor. We use the following
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method for bucketization:

e Liquidity state lgﬁ): we bucketize lz(.ﬁ) into 10 categories {Li, Lo, ..., Lo} ‘with
L, = [0,100), Ly = [100,200),..., Ly = [900,400), which represents the number
of existing orders on the corresponding price queue (except for events p+(i), p-(1))
right before event arrives. For example, lzﬁ) € Ly means that the number of orders
on the queue is between 0 and 100 shares. For the special case of events p+(i),
p-(1), the lz(ﬁ) represents the bid-ask spread in market price (section 3.3), and thus

the group lﬁ) € L, means that the bid-ask spread is between $0 and $0.01.

e Time factor tgﬁ): major U.S. electronic stock exchanges trades from 9:30 am ET to

4:00 pm ET. As illustrated in Figure 2, the LOB event arrival frequency exhibits
time clustering effects at the beginning and ending intraday 30-minutes window (9:30
- 10:00 am ET and 3:30 - 4:00 pm ET). Therefore, we construct 1-minute categories
at the beginning and ending 30-minutes to better capture the event arrival volatility.
For the rest of the period between 10:00 am ET to 3:30 pm ET, we bucketize time t,(gA)
into 5-minute categories since the event arrivals are more tranquil. Consequently, we
construct 126 time categories consisting of 60 1-minute categories and 66 5-minute

categories, denoted as {11, T5, ..., 126}

4.3 non-parametric estimation

After defining the bin-count sequence and the LOB state/time categories, we fit a vector-
valued autoregression model to the bin-count sequences to obtain the Hawkes excitement

functions, together with the Markovian liquidity state and time factor parameters. For

!These categories apply to all event types Vi = 1,...,6K +6, and therefore the i subscript is eliminated
from the {Li, Lo, ..., L10} notation.
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each event-to-event pair, the auto-regression model is implemented with lag p := |s/A] on
the bin-count sequence data B,(CA) as well as the Markovian liquidity state and time factor
sequence l,(gA) and t,(CA) across all event types.

Kirchner (2017) has provided a detailed framework for autoregressive non-parametric
estimation for Hawkes process with constant baseline intensity. Our estimation is an ex-
tension of Kirchner’s methods with modifications that the baseline intensity is varying and
controlled by [;(t) and ¢. An illustration of the estimation procedure is given in Figure 5.

The mathematical representation details on the estimation procedure is given in Sup-
plementary Material section B. As shown Eq.(4) in the Supplementary Material section B,
(A9 ¢ ROK+6)X((6K+6)p+10+126) ropresents all the parameters of our model for a choice
of bin-size A and maximum support s. To summarize, the estimation procedure for our
proposed model estimates: A total of (6K + 6) x (6K + 6) Hawkes excitement functions
¢(+), each as a step function with p = |s/A] distinct levels (See Figure 3); A total of
6K + 6 liquidity state functions M (-), each as a step function with 10 distinct levels on
the 10 liquidity state baskets; A total of 6K + 6 time factor functions ©(-), each as a step

function with 126 distinct levels on the 126 time factor baskets.
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Figure 5: An illustration on the nonparametric estimation procedure. Over a time horizon
(0,7T], given a bin-size A and a maximum support s, the parameters of our proposed
model can be estimated using an autoregressive framework with lag p = s/A. There
are totally n = |T/A| bins. The autoregression response Y ranges from the (p + 1)-
th bin to the m-th bin from the bin-count sequence. The design matrix Z consists of
two parts: the first part contains the bucketized liquidity state and time factor sequences
controlling the regression intercept; the second part contains lag-p sequences constructed
from the bin-count sequence. The estimated parameters i and 0 for liquidity state and
time factor control the baseline intensity of the estimated excitement functions; Parameters
<<i>1, ceey <i>p> are the estimates for the constant excitement function value during each short

period of bin-size A.
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4.4 LASSO regularization

Many previous works have discussed the exponential decaying shape of the LOB excitement
functions (Muni Toke & Pomponio 2012, Abergel & Jedidi 2015, Morariu-Patrichi & Pakka-
nen 2018, Kirchner 2017). Therefore, We believe some of the estimators for the excitement
function are likely to be zero, especially at the tail part when the support s is large and
the bin-size A is small. As discussed in Remark 1 from Supplementary Material section
B and section 3.3, for a single event type the OLS estimation procedure outputs a large
(6K +6) x p (recall p = |s/A]|) number of estimators for the Hawkes stimulating functions
¢(-) for a given combination of (s, A). To fit linear models with such a large design matrix
in a more robust way, we consider adding LASSO regularization to the non-parametric
estimation of excitement function to shrink the estimate to zero.

On the other hand, we don’t regularize any LOB liquidity state and time factor parame-
ters (i, é) since we believe most of the redundant parameters tend to appear in the Hawkes
excitement function part, while the liquidity state and time factor should have smooth

and non-zero effect. The mathematical representation details of the LASSO is given in

Definition 3 in Supplementary Material section C.

4.5 model selection using AIC (Akaike Information Criterion)

AIC is among the common approaches for linear model selection and diagnosis. Kirchner
(2017) uses multivariate AIC to determine the ideal model fit using both simulated and
real LOB data. In our proposed methodology, AIC can be used to evaluate the effects of
different parts of the proposed model in section 3.3.3.

Given a selected bin size A = A, the estimation lag equals p = [s/Ag]| for any
maximum support s > 0. Similarly, we denote the total number of the bins as ng :=

| T/Ap|. AIC calculation involves the total number of effective parameters (model degree-
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of-freedom) in its formula. When the estimated parameters are not effective (exactly zero,
or not estimable), they cannot be counted as degree-of-freedom. For example, a number
of redundant estimators shrink to zero under LASSO regularization. Also, when there is
no liquidity state observation in some of the bucketized categories among (L1, Lo, . .., L1g),
the parameter 1(®*) will not be estimable. Consequently, these parameters are not part of
the AIC calculation.

Denote the (6K 4 6) x 1 regression residual vector as @i 20" = (i1, ..., G 16x)  for
Vk=(p+1),...,n0. The multivariate AIC is given as:

no

SE(p) = 3 (o) (a0 (ng—p),
k=p+1

2 xd,

AIC™) (p) = log (Aet24) (p) ) + (no =)’

where d, is the number of effective parameters involved in the estimation.

5 Implementation Example

To evaluate the validity of the proposed estimation procedure mentioned in the previous
section, we first implement the estimation method in section 3 and section 4 on a fully-
simulated level-one order book dataset. We document in the Supplementary Material
section D that our proposed method can accurately recover the true Hawkes kernels and
baseline intensity state variables. The purpose of the simulation is to ensure the validity
of the method and thus we can apply it to real data with confidence.

We next apply our model to real order book data obtained from Lobster Data (http:
//lobsterdata.com). Order book data of Apple.Inc from 9:30 AM ET to 4:00 PM ET
from 01/02/2019 to 01/31/2019 was used in our implementation. The data gives order
book shapes and messages in milliseconds. We choose to model the level-3 order book, i.e.,

setting K = 3, so that there are 6K + 6 = 24 events considered. They are:
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The order book estimation for each single day can be considered as an independent
realization of event arrivals. Since the support and bin size values are fixed throughout the
days in consideration, we can obtain the unbiased estimator of the estimation parameters by
taking the mean of each element from single-day parameters. The aggregated results across
many days can smooth out single-day extreme values and therefore is a clear representation
of estimation results over a certain period.

Suppose we have N days of order book data for a public company and the estimator

TCIDSIA’S) for each day with n =1,2,..., N, the aggregated estimator can be represented as:
_ N §(As)
329 _ 2zt Pn
N N

In addition, a small LASSO regularization parameter \; = 0.0005 has been implemented for
our estimations, as a large parameter may drastically alter the estimation results. We also
apply cubic smoothing splines to the discretized points from the estimation for visualization
purpose, in which the degree of freedom of the splines is chosen by leave-one-out cross-
validation. The main findings and all the observed features demonstrated in the rest of

section 5 are based on 20-day aggregation method mentioned above.

5.1 main findings

Through our non-parametric estimation over 20-day LOB data of Apple.Inc, the main

findings include:

25



e Most of the estimated Hawkes excitement functions exhibit convex monotonic de-
creasing shapes with trailing zeros, similar to the exponential and power-law kernels.
However, there are some exceptions and most of them appear on market (trade)

orders on higher levels (the 2nd and 3rd best bid/ask price) of the LOB queue.

e The estimated Hawkes excitement functions are similar with respect to insertion/deletion

events on the 1st level of LOB queue (the 1st best bid/ask price).

e For most of the LOB events that do not change the price (reference price, which is
the center of the order book), the event arrival intensities increase with the current

order size in the order book queue.

e The arrival intensities for almost all events elevate during the beginning and ending
30-minutes window of daily trading hours. The intensity increases drastically before

market close between 15:55 to 16:00 pm ET.

e Our qualitative result is not sensitive to the discretization size in time and the han-

dling of the size of the order.

e Through model selection analysis using AIC (Akaike Information Criterion), the in-
clusion of the Hawkes excitement functions, the LOB liquidity state, and LOB time
factor to the event arrival intensity all contributes to the improved model fitting,
with the Hawkes excitement functions achieving the strongest improvement. Besides,
reducing the bin-size (short discretization period of time during which the Hawkes ex-
citement function are assumed to stay unchanged) and adding LASSO regularization

to our estimation both contribute to better model fitting.

The details of the observations listed above will be discussed in the rest of this section.
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5.2 estimated excitement functions

Figure 6 illustrates the estimated excitement functions of insertion event at 1st ask (event
+1(i)) stimulating insertion and cancellation at the 1st ask (event +1(i) and +1(c)).

We observe the excitement function to have a time-decaying shape in general: the
stimulation is highest in a very short time following the event arrival, and then gradually
decaying to zero.

We also observe similarities between Fig.6(a) and Fig.6(b): the figures both exhibit
decaying shapes with slight spikes around 5 and 13 seconds after event +1(i) arrives. This
observation suggests that the estimated excitement functions are very similar for the effect
towards the insertion and cancellation at the 1st ask (i.e., effect towards +1 (1) and +1(c)).
We have similar observation for 1st bid as well demonstrated in Supplementary Material

section E, suggesting such stimulation behavior exists at the 1st level of the LOB queue.

event of +1(i) stimulate +1(i) event of +1(i) stimulate +1(c)

insertion@1st ask price —> insertion@1st ask price insertion@1st ask price —> deletion@1st ask price
o o

0.15
1
0.3

0.10
|
0.2

0.05
1
Hawkes kernel value

Hawkes kernel value
0.00
L
0.1

0.0

0 5 10 15 20
Time in seconds Time in seconds
(a) +1(i) stimulate +1(i) (b) +1(i) stimulate +1(c)

Figure 6: Aggregated Hawkes excitement function estimations under (s = 20 seconds, A =
0.25 seconds) with LASSO regularization. The points illustrates the discrete function val-

ued estimator. The red line illustrates the cubic smoothing spline for the points.
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Further examination shows that this feature (similarity at the 1st ask/bid) becomes
less obvious for the 2nd and 3rd levels of the LOB queue. One possible explanation of this
feature is that market participants may use a sequence of insertion/deletion orders in a
short period of time to drive up/down the price for specific purposes. Insertion/deletion
on the 1st level is typically less risky than insertion/deletion on any higher levels especially

when the short-term price movement is unpredictable.

5.3 shapes of excitement functions

From the aggregated estimation results we observe that a large proportion of Hawkes
excitement functions exhibit convex monotonic decreasing shapes with their function values
converging to zero as time elapses on the x-axis (similar to exponential and power-law
kernels). For example, we can see the excitement functions demonstrated in Figure 6 exhibit
this feature. This observation also agrees with the existing literature that exponential-
decaying shape features are commonly observed on LOB data and Hawkes process with
exponential kernels is among the most popular models adopted by recent works (Muni Toke
& Pomponio 2012, Abergel & Jedidi 2015, Morariu-Patrichi & Pakkanen 2018, Kirchner
2017).

However, we have also observed that some Hawkes excitement functions exhibit other
shapes. Figure 7 shows that the excitement functions for specific events can deviate from
the monotonic decreasing shape. These function shapes appear more frequently for mar-
ket(trade) order events on higher levels of the LOB queue when they are the “stimulatee”
part of the function, such as events -3(t), -2(c), and +3(t). These “high-level” trade
orders typically arrive when the bid-ask spread is large. One possible reason for this non-
decaying feature is that, for a heavily traded stock like Apple.Inc, some high-frequency
algorithmic market participants may use more complex execution and risk management

strategies to deal with the increased risk brought by the enlarged bid-ask spread. There-
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fore, our estimated Hawkes function can generate complicated shapes, possibly because of
this layer of complexity. These non-decaying shape functions indicate the advantages of
our non-parametric method since it might be problematic to adopt exponential or power
law shape assumption for excitement functions throughout all events.

In Figure 7, we also present estimations under a longer maximum support s = 25s to
illustrate the stability of the estimation. We observe the excitement functions will move to

zero as the maximum support increases.
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Figure 7: Aggregated Hawkes excitement function estimation under (A = 0.25 seconds)
with LASSO regularization. The subplots (a), (c¢), and (d) use maximum support s =
20 seconds. The subplots (b),(d), and (f) use maximum support s = 25 seconds. The
points illustrate the discrete function valued estimator. The red line illustrates the cubic

smoothing spline for the points.

30



5.4 liquidity state

For liquidity state results, we have observed that for event types that do not change the ref-
erence price, the arrival intensities increase as the liquidity state increases for trade/cancellation
events, as well as insertion events on the 1st level (i.e., -3(c), -3(t), -2(c), -2(t),-1(1),
-1(c), -1(t) +1(1), +1(c), +1(t),+2(c), +2(t), +3(c), +3(t)). An example is shown in
Figure 8(a). This is consistent with the intuition that more trade/cancellation events are
likely to happen when the number of existing orders on the corresponding queue is large,
because the trade/cancellation are actions on existing orders. It also suggests that more
insertion events at 1st level LOB are likely to happen when the number of existing orders
on the 1st level is large, which could be potentially explained by the popularity of the stock
— when the stock is popular, naturally the number of existing orders at 1st level LOB is
high, yet market participants are willing to insert more orders at 1st level LOB, and vice
versa.

On the other hand, the arrival intensities generally decrease as the liquidity state in-
creases for the insertion events at 2nd and 3rd level (i.e., +3(i), -3(1i), +2(1), -2(1)). An
example is demonstrated in Figure 8(b). The observation implies that market participants
are less likely to insert orders on the 2nd and 3rd level of LOB when the number of existing
orders is large on these levels. This behaviour is possibly due to the increased risk that the
orders on the 2nd and 3rd level may fail to be filled as orders accumulate in these queues,
and maybe the market participants focus more on the 1st level when such situation occurs.

Up to now we set the number of liquidity state to estimate as 10. Alternatively, we
perform a sensitivity analysis by setting the number of liquidity state to be 5 (presented
in Supplementary Material Figure S7 and S8). Not surprisingly, the observed pattern
discussed above maintains even though the estimation with fewer liquidity state smooths

out some across group variations among the liquidity state.
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More examples demonstrating the above patterns and the sensitivity analysis are pre-

sented in Supplementary Material section F.

Liquidity State for Event: +1(c) Liquidity State for Event: -3(i)
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(a) Liquidity state for +1(c) (b) Liquidity state for -3(i)

Figure 8: Aggregated estimation result for liquidity state for selected events under (s =
20 seconds, A = 0.25 seconds). In general, the arrival intensity increases/decreases as the

liquidity state increases for event +1(c) and -3(i), respectively.

5.5 time factor

For estimation results of time factor, the order arrival intensities tend to be larger at the
beginning and ending of the trading hours between 9:30 am and 4:00 pm (see Figure 9).
This feature matches our initial arrival rate estimation in Figure 2 and reinforces our model
assumption that more time factor categories should be constructed in the beginning and

ending 30 minutes.
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Figure 9: Aggregated estimation result for time factor between 9:30 am and 4:00 pm under

(s = 20 seconds, A = 0.25 seconds).

Figure 9 demonstrates the time factor pattern mentioned above for event +1(i) and
event +3(t). From the estimation results we have also observed a significant intensity
increase for many order types such as p-(i), p-(t), and -1(t) at 15:55 pm and 15:59 am.
These patterns possibly stem from large algorithmic trader’s execution rules or the policy

of stock exchange on last-minute order submission/cancellations.

5.6 kernel norms

This section presents the result of kernel norms [|¢; ;]| = [ ¢;:(¢)dt in Figure 10, which
can be interpreted as the average impact (number) of event i stimulated by event j. All
of the kernel norms are strictly less than one, implying the stability of the Hawkes process
component (Bacry et al. 2016, 2013b). It is essential to point out that some of the kernel
norms are negative, indicating the arrivial of the stimulator decreases the arrival intensity

of the stimulatee. These negative values imply the inhibition dynamics and are natural as
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as result of non-parametric estimation, which has been discussed by Wu et al. (2019) and
Bacry et al. (2016). Specifically, Wu et al. (2019) points out that any prior assumptions
forcing the Hawkes kernel to be positive can lead to significantly basied estimations since the
prior may distort the interacted stimulation and inhibition effects within order dynamics.
Bacry et al. (2016) also shows that negative kernels will not affect the reliability of the
estimation procedure as long as the realized intensity in Eq.(3) remains positive, which we
have verified empirically.

Several patterns could be observed from the following heat map of the kernel norms.
First, it is witnessed that events (p-(i),p-(c),p-(t)) that moves the reference price down
overall have negative impacts on the arrival of limit order insertions above the reference
price (+1(i), +2(i)). This pattern intuitively makes sense as selling limit order inser-
tions may incur extra costs when the efficient price goes down, compared to the order
book status before the reference price change. In symmetry, it is also observed that events
(p+(i),p+(c),p+(t)) driving the reference price up in general have negative impacts on
limit order insertions on the bid side (i.e. event -1(i)). Besides, we observe large positive
impacts of high-level trade orders (event +3(t) and -3(t)) on lower-level limit order in-
sertions (event +1(i) and -1(i)). This can be interpreted as that high-level orders may
serves as a signal of liquidity at a certain timestamp and therefore more market participants

insert orders at better prices in response to this signal.
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Figure 10: Kernel norms of the estimation. The heatmap illustrates the estimated kernel
norm |[¢;| = [5° ¢;:(t)dt of the estimated model with maximum support s = 20 seconds
and bin-size A = 0.25 seconds. All orders are considered to have size one and a LASSO
regularization parameter A = 0.0005 is used in the estimation. The x-axis represents the
stimulatee and the y-axis represents the stimulator. The color transition from blue to
red indicates the Hawkes norm value transition from negative to positive, which has been

similarly illustrated in Wu et al. (2019).
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5.7 sensitivity analysis

So far our results have been presented using the bin count construction method based on
order sizes, a fixed bin-size A = 0.25 seconds, maximum support s = 20s, and the LASSO
loss function. This section provides a sensitivity analysis of these model assumptions to

explore estimation robustness. The analysis consists of the following parts:

e Estimation results when the size of order is ignored in bin count construction, assum-

ing all orders to have size 1 in the estimation. (see Supplementary Material section

G)

e Estimation results when the LASSO regularization is removed. (see Supplementary

Material section H)

e Estimation results when the bin-size is increased from 0.25 seconds to 0.5 seconds.

(see Supplementary Material section I)

e Estimation results when maximum support is extended from 20 seconds to 25 seconds.

(see Supplementary Material section J)

e The number of liquidity state is reduced from 10 to 5. (see Supplementary Material

section F)

Generally speaking, our estimation is robust for the above sensitivity tests. We have
obtained qualitatively similar results as our original setting when we remove the LASSO
regularization, enlarge the bin-size, extend the maximum support, and change the number
of liquidity states. After ignoring the order size, the estimation scales tend to decrease and
the excitement function becomes smoother and less volatile. However, the observations

given from section 5.2 to section 5.5 still hold.
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5.8 model selection result

In this section, we validate the added explanation power for different model parts using the
AIC model selection method illustrated in section 4.5. We consider the following model
specifications for model selection: Model (@): liquidity state only; Model (2): time
factor only; Model (3): liquidity state + time factor; Model (4): Hawkes only; Model
(B): Hawkes + LASSO (LASSO parameter 0.0005); Model (6): liquidity state + time
factor + Hawkes; Model (7): Liquidity state + time factor + Hawkes + LASSO (LASSO
parameter 0.005). Model (7) is the model we mainly proposed and discussed in previous
sections (section 3.3.3 and section 4). The "+LASSO” notation is used to illustrate that
LASSO regularization is used in model estimations as discussed in section 4.4. Figure 11

demonstrate AICs for the 7 models mentioned above for Apple.Inc on 2019-01-03.
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Figure 11: AICs and number of effective parameters for seven model types for Apple.Inc on
2019-01-03 with maximum support s = 20 seconds and bin-size A = 0.25 seconds. Order

size is considered to construct bin count sequence.

We conclude that for Apple.Inc on 2019-01-03, Model (D) /(®2)/(@) generally have much
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higher AICs with much smaller number of effective parameters than the rest of the models.

As expected, Model (@) outperforms Model (1)/(®2)/®), indicating the Hawkes ex-
citement functions have stronger explanation power than the combination of liquidity state
and time variables. Furthermore, the LASSO models (Model (5)/()) with a small reg-
ularization parameter \; = 0.0005 generate even smaller AICs compared to Model (@)
and Model (6), respectively. Model (7) apparently dwarfs all other models by including
liquidity state, time factor, Hawkes kernels, and LASSO all together.

We have calculated the AICs for the 7 types of model across all the 20 trading days
from 2019-01-02 to 2019-01-31. The AIC comparison and difference between different model

types is demonstrated in the following Table 2.
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# of
AIC Min 1st Median | Mean 3rd Max days with
Difference Quantile Quantile decreased
AIC
@ - @' | -4.09 -1.19 -0.58 -0.89 -0.16 0.09 | 18 out of 20
® - @? |-0.31 -0.24 -0.23 -0.22 -0.18 -0.13 | 20 out of 20
®&®-@3 | -0.12 -0.09 -0.08 -0.08 -0.07 -0.03 | 20 out of 20
& -3 | 415 -1.28 -0.63 -0.97 -0.23 -0.01 | 20 out of 20
@ -®> |-0.13 -0.09 -0.08 -0.08 -0.07 -0.03 | 20 out of 20
Interpretations:

1 The Hawkes part has stronger explanation power than the liquidity state and time factor part.
2 Adding the liquidity state and time factor to the Hawkes part further improves explanation power.
3 Adding LASSO (LASSO parameter 0.0005) to the Hawkes part further improves explanation power.
4 The Hawkes part with LASSO (LASSO parameter 0.0005) generates stronger explanation power
than the liquidity state and time factor part.
> Adding LASSO (LASSO parameter 0.0005) further improves the explanation power of the model
with the liquidity state, time factor, and Hawkes.
Table 2: AIC difference summary statistics of Apple. Inc from 2019-01-02 to 2019-01-31.
Maximum Support s = 20s, bin-size A = 0.25s. AIC has been adjusted for sample size so

that it reflects the AIC per single sample.

Following the sensitivity analysis provided in section 5.7, we also present the model
selection results for the estimation results when the size of order is ignored and when the
bin-size is enlarged from 0.25s to 0.5s. The results are demonstrated in Supplementary
Material section K.

In summary, Figure 11, Table 2, and Supplementary Information section K demonstrate

39



the following conclusions:

e In event arrival intensity modeling, the inclusion of the Hawkes stimulating function
part, the liquidity state part, and the time factor part all contributes to decreased
AIC. Moreover, the Hawkes part is more powerful than the liquidity state and time

factor parts in terms of reducing AIC.

e Adding LASSO regularization with a small regularization parameter can effectively
eliminate redundant parameters for the Hawkes stimulating function and thereby

further reduce AIC.

e Under maximum support s = 20 seconds, smaller AIC is achieved when the bin-size

A decreases to a shorter period.

The model selection results are consistent whether we consider the order sizes or not.
This is intuitive since the two methods are just different ways to account for the size of
orders based on the same LOB dataset.

A very small \; = 0.0005 is chosen throughout our implementations. We have also im-
plemented the same model AIC selections under A\; = 0.001 and \; = 0.00025, and achieved
similar results, as shown in Supplementary Material Table S3 and Table S4. Therefore,
we believe a choice of \; that regularizes 10% to 20% of parameters to zeros given a small
choice of A (around 0.5 seconds) is enough to reduce estimation AIC. Any more advanced
method for selecting the appropriate A; is beyond the scope of this paper and is left for

future works.
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6 Discussion and conclusion

6.1 non-parametric estimation

Instead of assuming the Hawkes kernels to follow parametric forms such as the exponen-
tial kernel and the power-law kernel, we implemented a regression-based non-parametric
method (Kirchner 2017). As argued by (Kirchner 2017), assuming parametric form of
Hawkes excitement kernels, such as exponential distribution, gives less flexibility for esti-
mating kernels that exhibit more complex shapes other the assumed parametric form. In
addition, the non-parapmetric method can reduce numerical issues compared to the typi-
cally used maximum likelihood method to estimate parametric kernels, since the likelihood
optimization can be very complicated as the number of parameters increases. Moreover,
Wu et al. (2019) discusses that the maximum likelihood method (MLE) adopted to esti-
mate kernels under the parametric assumption can lead to biases, since in general the MLE
does not admit negative kernel at certain time points. To support these views, we illus-
trate in Figure 7 that some Hawkes kernels do not exhibit monotonic decreasing shapes.
For example, the stimulation effect of trading on best bid (-1(t)) to trading on third ask
(+3(t)) may not be monotonically diminishing, and some delayed-stimulation effect might
exist,.

There are several reasons to explain the noise in estimated Hawkes functions in Figure
7. First, as we consider order size in the estimation (an order of size 10 is equivalent to
10 individual orders with size 1), some extremely large order arrivals can generate out-
liers. Second, the estimation can be noisy if the sample size of a specific type of order
is small. Given our order classification method, the orders types that move the mid-
price {p+(1),p+(c),p+(t),p-(i),p-(c),p-(t)} overall have a smaller sample size, be-
cause these orders must deplete all the liquidity of a queue or be inserted to an extreme

price level. Specifically, for the first trading day within our estimation, the average fraction
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of order number among all the 24 types is 4.17% while the average fraction is only 1.27%
for those orders that move the reference price.

One may concern that the model might be over-parametrized due to the discretization.
The number of parameters in our model is indeed very large, with 49,314 parameters for
the model with s = 20s and A = 0.25s. We mitigate any potential over-parameterization
issue by (1) using a L; penalty on all Hawkes process parameters, and (2) fit our model
with an even larger volume of high-frequency transaction data. In fact, with such large
volume of data (the current data contains around 20 million events for all 20 trading days),
the representation power enabled by large number of parameters help to reveal patterns in
the order book data that will not be able to discover using a limited-flexibility parametric

model.

6.2 choice of bin-size

During the estimation process, we indeed use discretization under choices of bin-size A
and piece-wise constant to approximate the non-parametric Hawkes kernel, following the
approach of Kirchner (2017). For the choice of bin-size A, Kirchner (2017) has discussed
that the choice of A is a bias/variance trade-off as well as a bias/computational-issue trade-
off when A is extremely small. Our estimation demonstrates that for all else being equal,
smaller AICs are achieved when we reduce A from 0.5 seconds to 0.25 seconds for all 20
days discussed, taking the AIC difference between Figure 11 and Figure S26 as an example.
In addition, when A = 0.25 seconds, Model (5) (Hawkes+LASSO) achieves smaller AIC
than Model (@) (liquidity state+time factor) for all 20 days discussed (see Table 2) while
the number of days reduces to 19 when A = 0.5 seconds with all else equal (see Table
S2). This result implies that choosing A = 0.25s is always better than choosing A = 0.5s
throughout our estimation. We further enhance this implication by showing that the model

with a smaller A = 0.125s achieves better goodness-of-fit than the model with A = 0.5s,
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as indicated by the quantile-to-quantile (Q-Q) plot in Supplementary Material section L.
It is a limitation that our model doesn’t achieve perfect goodness-of-fit, as indicated
in the Q-Q plot of Figure S27. We anticipate better model performance will be achieved
if A is reduced to a further smaller value until the model reaches a threshold when the
increasing number of parameters brought by the decreasing A generates too much penalty.
However, the computational budget required for model estimation increases dramatically
as A decreases. Due to this limitation in computation, any experiment with A smaller

than 0.125s is left for future research.

6.3 existence and stability

Our proposed model is new to the literature since the state variables in the baseline intensity
is a function of past order arrival histories. Here we discuss three considerations about the
existence of this type of counting process and its stability properties.

First, the Hawkes kernel norm must be below 1 to ensure stability. Our empirical
estimates confirm that such criterion is met, and thus the Hawkes part of Eq.(3) is not ex-
plosive. Second, although our non-parametric kernel function ¢ is allowed to take negative
value, the final form of Eq.(3) is always positive in practice, which ensures the existence
(Bacry et al. 2016). Third, the state-dependent baseline intensities coupled with the self-
exciting Hawkes component could lead Eq.(3) to be ill-posed even if the kernel norm is
below 1. To study the identification and stationary properties, some regularity conditions
have been proposed for this “spillover” effect in generalised Hawkes models where the base-
line intensity is influenced by past events (Bowsher 2007). For example, Wu et al. (2019)
argues a simple case that the invariant distribution exists when state-dependent baseline
intensities are bounded.

Our considerations here are not comprehensive. It is a future research direction to

rigorously analyze the theoretical properties of Hawkes process coupled with Markovian
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state-dependent baseline intensity.

6.4 conclusion

Though we have demonstrated our choice of maximum support s and bin-size A is appro-
priate enough to derive expected results, research on the choice of (s, A) and their dynam-
ics is a natural direction of further study. Besides, as an extension to Kirchner (2017),
Kirchner & Bercher (2018) has introduced the comparison between the Hawkes model non-
parametric estimation and maximum likelihood estimation (MLE), and concluded that the
non-parametric method outperforms MLE under some circumstances. Whether this result
holds under our proposed framework is also worth investigating. Another possible direc-
tion for future research would be to explore more LOB state variables that could reduce
the estimation AIC. For example, it is worthwhile to test queue imbalance as proposed by
Morariu-Patrichi & Pakkanen (2018). Moreover, based on Huang & Rosenbaum (2017)’s
work on the mathematical properties for LOB Markov models, further research on the sta-
tionary and ergodicity properties for our proposed model is also a direction of investigation.

To conclude, in this work we have proposed a comprehensive method in high-frequency
limit order book data modeling, integrated Markovian state factors into plain-vanilla Hawkes
process for limit order book modeling, and applied a flexible non-parametic methods for
high-dimensional parameter estimation. Our model provides more careful classification
rules for LOB event types and doesn’t require strict parametric assumptions on event
stimulating kernels. The mathematical property of our model enables us to implement
the estimation in large scale under a parallel and distributed computing framework. We
believe our proposed model will bring valuable insights for researchers, financial institu-
tions, and policymakers who attempt to understand the distribution of the order book, the

stimulating effects between orders, and more topics related to market microstructure.
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Supplementary Material

This Supplementary Material is organized as following: section A illustrates the construc-
tion of the reference price in the order book representation mentioned in section 2; section
B illustrates the mathematical representation details of the estimation procedure following
section 4.3; section C demonstrates the mathematical representation for the LASSO regu-
larization discussed in section 4.4; section D provides estimation results on a fully simulated
level-1 order book data;section E demonstrates the estimated Hawkes excitement functions
of insertion event at the bid side following section 5.2; section F presents more examples on
the liquidity state estimation following section 5.4; section G demonstrates the estimation
results when the size of order is ignored as mentioned in section 5.7; section H demon-
strates the estimation results when the LASSO regularization is removed as mentioned in
section 5.7; section I demonstrates the estimation results when the bin-size is enlarged as
mentioned in section 5.7; section J presents results when the maximum support is enlarged
as mentioned in section 5.7; section K presents additional model selection results as men-
tioned in section 5.8; section L presents the goodness-of-fit evaluations of the model using

quantile-to-quantile plot.

A Specifications on reference price

Following section 2, the supporting section demonstrates the construction of the reference
price pyes. The construction method presented here is mainly adopted from Huang et al.
(2015).

When the bid-ask spread is odd in tick unit, it is intuitive to use the mid price p,q to
approximate the reference price p,.s. Though one can still use py,;q as a proxy of p,.y when

the spread is even in tick unit, it is no longer appropriate enough since p,,;q itself can be a
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position for order arrivals. To be more strict, when (Qpest-ask — @best-bid) = 2n + 1,n € Z,
we have Pref = Pmid = (Qbest-bid + Qbest-ask)/2; When (Qbest-ask - Qbest-bid) = 2n7n € Z7
we have p'ref - (Qbest—bid + Qbest—ask)/z + 05/2 or pref - (Qbest—bid + Qbest—ask)/2 - 04/2,

whichever is closer to the previous value of py.y.

B Mathematical details on non-parametric estimation

Followed section 4.3, this supporting section illustrates the mathematical representations
of the non-parametric estimation over the (6K + 6)-dimensional LOB data.

Precisely, based on Definition 3.3, Theorem 3.5, and Definition 3.6 from Kirchner (2017),
as well as Liitkepohl (2005)(page70-75), the mathematical details of the estimation proce-
dure is given in Definition 1 and Definition 2.

According to our model specification discussed in section 3, a total number of 6K + 6
event types is considered for a level-K order book and the number of event types serves
as the dimensions of the multivariate Hawkes process. For notation simplicity, we denote
6/ +6 as d in the following discussions (Definition 1, Definition 2, Remark 1, and Definition

3 in Supplementary Materials C).

Definition 1 Let X; (Vi = 1,2,...,d) be a d-variate Hawkes process derived from LOB

data with varying baseline intensities controlled by liquidity state sequence l;(t) and time
factor t. Let T > 0 and consider the time interval (0,T]. For some bin-size A > 0,

construct the following bin-count sequences according to section 4.1:
(BéA),l,EA),t,gA)> Wk =1,2,..,n:= |T/A]

, where B,EA), l,gA) and t,(f) are d x 1 column vectors defined on RY.

Then assume l,(fA) can be bucketized into 10 categories [Ly, Lo, . .., L1o] and t,(CA) can be buck-
etized into 126 categories [11,Ts, ..., Tisg] according to section 4.2. Given some mazimum
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support s such that A < s < T, The d-variate estimator for the proposed model is defined

as:
2(A)s) £(As - s) ~(A,s ~(A,s) H(As A(As 2 s
(q)g )7(I)g )7'-'7<I)1(7A’)7,u§ )7'--7:u§0 )705 )7-"79§26 )> = (I)(Aj) eRdX(dp+lo+126)7
with p := |s/A] (4)
Specifically,

[~ A,s 7(A,s 7(A,s T
¢§1,r) ¢§2,7") ¢gd,r)

2(A5)  2(As) 2(As)
&)(A,s) - ¢21,r ¢22,r ¢2d,r c Rdxd’ withVr =1,2,...,p

2(As) (D) 2(As)
_¢d1,r ¢d2,r ¢dd,r |
, where the matriz element

S i i =1,2,... d;Vr=1,2,....p

i
are weakly consistent estimators for the Multivaraite Hawkes excitement function for event
J stimulating event i at the r-th function discretizated short period. Substitute r with |t/A]
yields that ¢Z§§§}AJ are weakly consistent estimator (for T — 0o, A — 0 and s = Ap — 00)
for ¢i(t) as shown in Eq.(3).

Also, <ﬂ§A’S), o ,ﬂ%’”) € R0 gnd <9A§A’S), e ,é%ﬁ) € R126 qre weakly consistent

estimators for function M(-) and ©(-) (for T'— 0o, A — 0 and s = Ap — o).

Definition 1 gives the detailed description on the structure of the estimator. Then we

elucidate the estimation formulas for estimator ®+) in Definition 2:

Definition 2 Followed from Definition 1, OB can be obtained by applying the following
multivariate conditional least-squares (CLS) estimator:

S (As 1 ~oom A) J(A) (A
600 = Lot (519 49)

k=1,....m
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The CLS estimator is defined as

ég),LnS) . RAX(n—p) _y Rdx(dp+10+126)

n ’ n n

(B, BOIS, 16,8 5 ) (B, B, ..

,where

n
[ p®) () (a) |
By B, B,
(A) (A) A)
Bp—l Bp Bn—2
(A) (A) (A)

B, B; B~
ﬂzﬁem ﬂz;i}gem Loer,
Ler, L@er, 0 Lo,

c R(dp+10+126) x (n—p)
ﬂl;ﬁ)leldo ﬂl;ﬁ)zeLm EZSLA)ELH)

[O]dxl [O]dxl CIE [O]dxl
lt;ﬁ)leTz ﬂtﬁ_)QETz R ﬂt%A)eTz
Ler,  Liden - Liven

_Ht;ﬁ)l €T126 ﬂt;ﬁEETlm tglA>ET126_

15 the design matrix and

Y (Bfﬁ), . "qu,A)> — (Bﬁr)hB(A) “‘7B1(1A)) c RAX(n-p)

p+2)
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1s the response.

Within the design matrix Z, <]1ll(€A)EL1, cee ﬂl,(f)eLlo) and (ﬂt]gA)ELl, cee ]ll,iA)elees) with
Vk =p+1,...,n are d X 1 column indicator functions that returns 1 (returns 0 other-
wise) when the i-th dimension element falling into the corresponding category; [0]ax1 is

d-dimensional column vector consisting of zeros.

The design matrix Z in Definition 2 contains a (n — p) dimensional row consisting of
zeros. This row references the part of design matrix such that the time factor sequence
tl(CA) belongs to the T} category. The T} category is treated as the “reference group” in the
present of the two categorical variables [l,(CA), t;A)} and the regular (non-categorical) variables
derived from B,(f). The R programming language we use is built with its default “contrast
coding” system that requires the existence of at least one “reference group” when imple-
menting linear regression models with more than one categorical variables. The CLS esti-
mators for the "reference group” are automatically set to zeros according to the “contrast
coding” rule. Therefore, the CLS estimator in Definition 2 returns a zero vector of dimen-
sional d as the estimator for category 7). The “contrast coding” system may be different
for other programming languages and their statistical packages. The choice of categorical
variable coding rules and the reference group can be considered as adding/subtracting a
constant on the estimators for one categorical variable and subtracting/adding it back on
another, leading to no changes on model goodness-of-fit.

Followed Definition 2, the following definition gives an equivalent but easier way for

model implementation:

Remark 1 Given Definition 1 and 2, Liitkepohl (2005)(page72) illustrates that the multi-
variate CLS-estimation is equivalent to d individual Ordinary-Least-Squared(OLS) estima-
tions, in which d is the dimension of the CLS-estimation. Using design matriz Z, response

(As9)

Y, and estimator P giwen in Definition 1 and 2, and let y; be the transpose of the i-th
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row vector of response Y:

]
b= (BB BLY) € ROPULYi= 12, d

~ (A5 ) ~
; Let qﬁi( ) be the transpose of the i-th row vector of &™) :

< (As) “(As 2(As 2(As 1(Ass
oF :[ (Cbz(m . -agbz(d,l )> ARRR (gbl(lvp)’ T ’gbgd’p)) ’

. . T ,
(ﬂgﬁ,s)’ . ,/1,(-,?()5)) 7 (eﬁ,s)’ . ﬁﬁé?) } € RU@PH10+126)x1

~ (A,s — . .
We have that d)i( ) = (ZZT) ! Zy; 1is the OLS estimator for the model:
yi =276\ oy Vi=1,2,....d
, where u; is (n—p) x 1 white-noise column vector (U; py1, Wi pt2, - - - ,um)T withi=1,....,d.

In model implementation, we prefer conducting the OLS estimations based on y; =
Z TngA’s) + u; over all dimensions 1,2,...,d, over the one single CLS-estimation shown in
Definition 2, since the OLS estimations involve less dimensions and thereby more compu-

tationally efficient under a parallel computing setting.

C Non-parametric estimation with LASSO

The following definition illustrates LASSO regularization for our proposed model discussed
in section 4.4. Consistent with Supplementary Materials B, we denote the dimension of
our estimation (the number of event types considered) 6 x (K +1) as d for simplicity. Note

K represents the level of the order book we consider.

Definition 3 Consider the design matrix Z, the response Y, and the OLS-estimators pro-

posed in Definition 2 and Remark 1. The OLS-estimators minimize the loss function:

(5= Z7027) " (- 2761)
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Then consider adding a LASSO regularization term that only applies to the Hawkes
. . N N . T
excitement function ¢§A’S)’excmmems = [ (¢Z('1A,is), e ¢§dA,is)> g (Gﬁ(A’S) ce ¢£(1A,;’,S)> ] S

il,p
R®P*1 to the loss function, the LASSO loss function becomes:

—l— .
(yz . ZTd)EA,S)) <yz . ZT¢EA,S)) + /\i||¢§A,s),e$czt6mentS||1

where \; denotes the reqularization penalty and ||-||1 denotes the £1-norm for estimators.
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D Simulation

In this section, we evaluate the proposed estimation method on a fully simulated order
book dataset. For computational simplicity in the simulation, we set the order book level
K = 1, and there are no events changing the reference price. Therefore, we consider 6
types of events {—1(¢), —1(c), —1(¢), +1(4), +1(c), +1(¢)} in the simulation environment.
To obtain a clear demonstration of the varying baseline intensity estimation, we specify

the Hawkes intensity as:

)\z(t) = @Z(t) + Z/¢J’Z(t — S)de(S), VZ,] = 1,2, e ,6 (5)

, in which ¢, 7 are indexes for the 6 events described above. Specifically, the Hawkes kernel
is set as step functions in the following form:
0.05- Ly<oy,j =1,2,3
Gji =
0.05- 1<y, j = 4,5,6
The Hawkes intensity also depends on the state-dependent baseline intensity ©;(t), which

is defined as:

fori=1,2,3:

0.1, if [¢] = 3n,n € N*
Oi(t) =

0.05, else
for i = 4,5,6:

0.1, if [t =2n,n € NT
O;(t) =

0.05, else
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The varying baseline intensity depends on the event arrival time t. i.e. for the first
three types of events, when the timestamp (in seconds) of event arrival falls into [0s - 1s),
[3s - 4s), or [6s - Ts) ..., the baseline intensity becomes 0.1 but otherwise 0.05. Similarly,
for the last three types of events, the baseline intensity elevates by 0.05 whenever the
timestamp of arrival falls into [0s - 1s), [2s - 3s), or [4s - 5s), etc. This baseline intensity
setup is analogous to the “liquidity state” and “time factor” effects in estimating real
order book data, in which the baseline intensity depends on both the event arrival time
and the current state of the order book. The difference is that the baseline intensity in
the simulation is a simpler version, which can provide a more intuitive demonstration and
reduces the computational cost.

We simulate the specified 6-dimensional Hawkes process over a period of [0, 7 = 20000s)
for 100 times and then estimate the model parameters under the proposed non-parametric
procedure. The estimated Hawkes kernels are demonstrated in Figure S1, in which we can
observe very accurate and stable Hawkes kernel estimations for each type of event, with the
red line (estimated value) matching very closely to the blue line (true value). Furthermore,
we also observe in Figure S2 that the estimation method can recover the values of the state
parameters ©;(t) very closely, as the true values fall into the 95% confidence intervals of
the estimated values for all 6 events. The Q-Q plots demonstrated in Figure S3 enhance
the validity of the estimation procedure by showing decent goodness-of-fit. It is observed
that the empirical distribution of the rescaled time based on our estimation ensembles very
closely to the standard exponential distribution. Overall, the estimation result based on
the simulated order book data demonstrates the validity of the non-parametric estimation
procedure, and therefore we are confident enough to implement this method to the more

complex real order book data on higher levels.
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Mean estimation
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Figure S2: Simulation and estimation results of Hawkes process baseline intensity state
based on simulated level-1 order book with 6 events. The blue bar indicates the average
estimated value of the state parameters. The orange bar indicates the 95% confidence inter-
val of the estimated values. The black dot indicates the true value of the state parameters.

The reported values are the average of 100 independent simulation and estimation runs.
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QQ Plot for +1(i), T = 20000s QQ Plot for +1(c), T = 20000s
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Figure S3: Q-Q (quantile-quantile) plot of the estimation results based on simulated level-1
order book with 6 events. The points indicate the empirical distribution quantiles of the
rescaled time derived from the estimated model parameters. The black line indicates the
quantiles of the standard exponential distribution. The reported values are the average of

100 independent simulation and estimation runs.

E Estimated excitement functions: bid orders

Following section 5.2, this section illustrates excitement functions of insertion event at 1st

bid (event -1(i)) stimulating insertion and cancellation at the 1st bid (event -1(i) and
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-1(c)). The shape of the estimated excitement functions exhibit similar time-decaying
patterns as shown in section 5.2 for ask orders.

Additionally, we observed similarities between Fig.S4(a) and Fig.S4(b), which show the
stimulation of -1(i) to -1(i) and -1(c). Both excitement functions spike at around 8
seconds and 20 seconds. This observation suggests that the estimated Hawkes excitement
functions are similar for the effect towards the insertion and cancellation at the 1st bid

(effect towards -1(i) and -1(c)).

event of —1(i) stimulate -1(i) event of -1(i) stimulate -1(c)

insertion@1st bid price —> insertion@1st bid price insertion@1st bid price —> deletion@1st bid price
o o

0.15
1
0.3
1

Hawkes kernel value
0.00 0.05 0.10
1 1 1
Hawkes kernel value
0.1 0.2

0.0

0 5 10 15 20
Time in seconds Time in seconds
(a) =1(i) stimulate -1(3i) (b) -1(i) stimulate -1(c)

Figure S4: Aggregated Hawkes excitement function estimation result under (s =
20 seconds, A = 0.25 seconds) with LASSO regularization. The points illustrate the dis-
crete function valued estimator. The red line illustrates the cubic smoothing spline for the

points.

F More examples on liquidity state

Following section 5.4 and Figure 8, this section presents more examples of the estimated

result for liquidity state. The examples are presented in Figure S5 and Figure S6. In
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general, the arrival intensities increase as the liquidity state increases for trade/cancellation
events and insertion events on the 1st level (i.e., =3(c), -3(t), -2(c), -2(t),-1(1), -1(c),
-1(t),+1(1), +1(c), +1(t),+2(c), +2(t), +3(c), +3(t)); the liquidity state increases for
the insertion events on the 2nd and 3rd level (i.e., +3(i), -3(1), +2(i), -2(1i)). Moreover,
we also perform a sensitivity analysis on the number of liquidity state in the estimation.
Specifically, compared to our baseline estimation demonstrated in Figure S5 and S6 that
uses 10 liquidity states, we alternatively estimate the full model under 5 liquidity states,

with the results demonstrated in Figure S7 and S8.
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Figure S5: Aggregated estimation results for liquidity state for selected events under (s

20 seconds, A = 0.25 seconds).

100-200

200-300

Liquidty State

anlll

300-400
400-500
500-600
600-700
700-800

Liquidity State Category

63

N

0

Liquidity State for Event: —1(c)

800-900

DDDDDDDDH

0-100

(b) Liquidity state for +1(t)

900+

Liquidity State for Event: +1(t)

o

100-201

200-300
300-400
400-500
500-600
600-700
700-800

Liquidity State Category

800-900

900+



Liquidity State for Event: +3(i) Liquidity State for Event: +2(i)
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Figure S6: Aggregated estimation results for liquidity state for selected events under (s =

20 seconds, A = 0.25 seconds).
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Liquidity State for Event: +1(c) Liquidity State for Event: +1(i)
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Figure S7: Aggregated estimation results for liquidity state for selected events under (s =
20 seconds, A = 0.25 seconds). Compared to Figure S5, the number of liquidity state is set

to be 5 for this estimation.
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Figure S8: Aggregated estimation results for liquidity state for selected events under (s =

20 seconds, A = 0.25 seconds). Compared to Figure S6, the number of liquidity state is set

to be 5 for this estimation.

G Empirical results when order size is ignored

This supporting section demonstrates the empirical estimation results when the order size
is ignored, as mentioned in section 5.7. The demonstrations will be presented in a similar

format as the demonstrations from section 5.2 to section 5.5. In general, the results on
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excitement function, liquidity state, and time factor still hold qualitatively in the sense
that most estimated function have similar shapes.

However, different order size considerations tend to give the estimated functions in
different scale, where the estimations in general have lower intensity levels for many events
when the order size is ignored. Also, the estimated Hawkes excitement functions tend to
be less volatile if we ignore the order size. This behavior is expected since we aggregate
order sizes in the original model setting while all orders are considered to have size 1 if we
ignore order size. Therefore, when order size is ignored, it is natural for the estimates to

have relatively lower intensity and volatility, especially during peak trading hours.

G.1 estimated excitement functions

Based on Figure 6 and Figure S4, the following Figure S9 and Figure S10 demonstrate the

estimated Hawkes excitement functions when the order size is ignored.
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event of +1(i) stimulate +1(i) event of +1(i) stimulate +1(c)

insertion@1st ask price —> insertion@1st ask price insertion@1st ask price —> deletion@1st ask price
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Figure S9: Aggregated Hawkes excitement function estimation under (s = 20 seconds, A =
0.25 seconds) with LASSO regularization. All orders are considered to have size 1. The
points illustrate the discrete function valued estimator. The red line illustrates the cubic

smoothing spline for the points.
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event of -1(i) stimulate -1(i) event of —1(i) stimulate -1(c)

insertion@1st bid price —> insertion@1st bid price insertion@1st bid price —> deletion@1st bid price
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Figure S10:  Aggregated Hawkes excitement function estimation under (s =
20 seconds, A = 0.25 seconds) with LASSO regularization. All orders are considered to
have size 1. The points illustrate the discrete function valued estimator. The red line

illustrates the cubic smoothing spline for the points.

As we can observe, the above estimated functions are consistent with the 1st-ask and

1st-bid similarity patterns discussed in section 5.2 and section E.

G.2 liquidity state

Based on Figure S5 and Figure S6 in section 5.4, the following Figure S11 and Figure S12

demonstrate the liquidity state estimations of the model with LASSO regularization.
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Liquidity State for Event: +1(i) Liquidity State for Event: +1(c)
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Figure S11: Aggregated estimation result for liquidity state for event +1(i), +1(c), +1(t),
-1(c) under (s = 20 seconds, A = 0.25 seconds). All orders are considered to have size 1.

For these events the event arrival intensity increases as liquidity state increases.
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Liquidity State for Event: +3(i) Liquidity State for Event: -3(i)
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Figure S12: Aggregated estimation result for liquidity state for event +3(i), -3(i), +2(1),
-2(1) under (s = 20 seconds, A = 0.25 seconds). All orders are considered to have size 1.

For these events the event arrival intensity decreases as liquidity state increases.

The demonstrated liquidity state estimation results of the model with LASSO regular-

ization is consistent with the results discussed in section 5.4.
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G.3 time factor

Based on Figure 9 in section 5.5, the following Figure S13 demonstrates the time factor

estimations of the model with LASSO regularization.

Time Factor for Event: +1(i) Time Factor for Event: +3(t)
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(a) Time factor for event +1 (i) (b) Time factor for event +3(t)

Figure S13: Aggregated estimation result for time factor between 9:30 am and 4:00 pm

under (s = 20 seconds, A = 0.25 seconds). All orders are considered to have size 1.

The demonstrated time factor estimation results of the model with LASSO regulariza-

tion is consistent with the results discussed in section 5.5.

H Empirical results without LASSO

This supporting section demonstrates the empirical estimation results when the LASSO
regularization is removed, as mentioned in section 5.7. The demonstrations will be pre-
sented in a similar format as the demonstrations from section 5.2 to section 5.5. As a whole,
the results on excitement function, liquidity state, and time factor still hold qualitatively.

The estimation result with or without LASSO (small regularization A\; = 0.0005) are very

72



similar visually. Furthermore, the cubic smoothing spline for the LASSO model is smoother

than the model without LASSO since the estimator distribution is more concentrated to

zero after adding LASSO.

H.1 estimated excitement functions

Based on Figure 6 and Figure S4, the following Figure S14 and Figure S15 demonstrate

the estimated Hawkes excitement functions when the LASSO regularization is removed.

event of +1(i) stimulate +1(i) event of +1(i) stimulate +1(c)

insertion@1st ask price —> insertion@1st ask price insertion@1st ask price —> deletion@1st ask price
o
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(a) +1(i) stimulate +1(1) (b) +1(i) stimulate +1(c)

Figure S14:  Aggregated Hawkes excitement function estimation under (s =
20 seconds, A = 0.25 seconds) when LASSO regularization is removed. the discrete func-

tion valued estimator. The red line illustrates the cubic smoothing spline for the points.
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Figure S15:  Aggregated Hawkes excitement function estimation under (s =

20 seconds, A = 0.25 seconds) when LASSO regularization is removed. The points illus-
trate the discrete function valued estimator. The red line illustrates the cubic smoothing

spline for the points.

As we can observe, the above estimated functions are consistent with the 1st-ask and
1st-bid similarity patterns discussed in section 5.2 and section E, when the LASSO regu-

larization is removed.

H.2 liquidity state

Based on Figure S5 and Figure S6 in section 5.4, the following Figure S16 and Figure S17
demonstrate the liquidity state estimations of the model when the LASSO regularization

is removed.
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Figure S16: Aggregated estimation result for liquidity state for event +1(i), +1(c), +1(t),
-1(c) under (s = 20 seconds, A = 0.25 seconds) when LASSO regularization is removed.

For these events the event arrival intensity increases as liquidity state increases.
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Liquidity State for Event: +3(i) Liquidity State for Event: -3(i)
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Figure S17: Aggregated estimation result for liquidity state for event +3(i), -3(i), +2(1),
-2(1) under (s = 20 seconds, A = 0.25 seconds) when LASSO regularization is removed.

For these events the event arrival intensity decreases as liquidity state increases.

The demonstrated liquidity state estimation results of the model without LASSO reg-

ularization is consistent with the results discussed in section 5.4.

76



H.3 time factor

Based on Figure 9 in section 5.5, the following Figure S18 demonstrates the time factor

estimations of the model when the LASSO regularization is removed.
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Figure S18: Aggregated estimation result for time factor between 9:30 am and 4:00 pm
under (s = 20 seconds, A = 0.25 seconds) when LASSO regularization is removed. All

orders are considered to have size 1.

The demonstrated time factor estimation results of the model without LASSO regular-

ization is consistent with the results discussed in section 5.5.

I Empirical results with enlarged bin-size

This supporting section demonstrates the empirical estimation results when the bin-size A
is enlarged from 0.25 seconds to 0.5 seconds, as mentioned in section 5.7. The demonstra-
tions will be presented in a similar format as the demonstrations from section 5.2 to section

5.5. As a whole, the results on excitement function, liquidity state, and time factor still
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hold qualitatively. This meets our expectation that enlarging the bin-size won’t change the
estimated result significantly as estimations are obtained from the same dataset and the

A = 0.5s estimation result is just a coarse version of the A = 0.25s result.

I.1 estimated excitement functions

Based on Figure 6 and Figure S4, the following Figure S19 and Figure S20 demonstrate the

estimated Hawkes excitement functions when the bin-size A is enlarged from 0.25 seconds

to 0.5 seconds.

event of +1(i) stimulate +1(i) event of +1(i) stimulate +1(c)
insertion@1st ask price —> insertion@1st ask price insertion@1st ask price —> deletion@1st ask price
o

o

1
0.10
1

0.05
1

0.02 0.04 0.06 0.08 0.10
1
Hawkes kernel value

Hawkes kernel value

0.00
1

Time in seconds Time in seconds

(a) +1(i) stimulate +1(1) (b) +1(i) stimulate +1(c)

Figure S19:  Aggregated Hawkes excitement function estimation under (s =
20 seconds, A = 0.5 seconds) with LASSO regularization. The points illustrate the dis-

crete function valued estimator. The red line illustrates the cubic smoothing spline for the

points.
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event of -1(i) stimulate -1(i) event of —1(i) stimulate -1(c)
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Figure S20: Aggregated Hawkes excitement function estimation under (s =
20 seconds, A = 0.5 seconds) with LASSO regularization. The points illustrate the dis-
crete function valued estimator. The red line illustrates the cubic smoothing spline for the

points.

As we can observe, the above estimated functions are consistent with the 1st-ask and
1st-bid similarity patterns discussed in section 5.2 and section E, when the bin-size is

enlarged.

I.2 liquidity state

Based on Figure S5 and Figure S6 in section 5.4, the following Figure S21 and Figure S22
demonstrate the liquidity state estimations of the model when the bin-size A is enlarged

from 0.25 seconds to 0.5 seconds.
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Figure S21: Aggregated estimation result for liquidity state for event +1(i), +1(c), +1(t),
-1(c) under (s = 20 seconds, A = 0.5 seconds). For these events the event arrival intensity

increases as liquidity state increases.
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Liquidity State for Event: +3(i) Liquidity State for Event: -3(i)
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Figure S22: Aggregated estimation result for liquidity state for event +3(i), -3(i), -
+2(1), -2(1) under (s = 20 seconds, A = 0.25 seconds). For these events the event arrival

intensity decreases as liquidity state increases.

The demonstrated liquidity state estimation results of the model with LASSO regular-

ization is consistent with the results discussed in section 5.4 when the bin-size is enlarged.
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1.3 time factor

Based on Figure 9 in section 5.5, the following Figure S23 demonstrates the time factor

estimations of the model with LASSO regularization.

Time Factor for Event: +1(i) Time Factor for Event: +3(t)

Time Factor
1 1 1

|

Time Factor
00 02 04 06 08
1

(a) Time factor for event +1 (i) (b) Time factor for event +3(t)

Figure S23: Aggregated estimation result for time factor between 9:30 am and 4:00 pm

under (s = 20 seconds, A = 0.5 seconds).

The demonstrated time factor estimation results of the model with LASSO regulariza-

tion is consistent with the results discussed in section 5.5 when the bin-size is enlarged.

J Empirical results with extended maximum support

This supporting section demonstrates the empirical estimation results when the maximum
support s is extended from 20 seconds to 25 seconds, as mentioned in section 5.7. Here
we present some Hawkes kernels that do not exhibit monotonic decreasing shapes in the
following Figure S24. The figure demonstrates that the estimated Hawkes kernel generally

moves to zero as time elapses on the x-axis, indicating that the kernel is not explosive as we
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increase the maximum support. Intuitively, the figures imply that the stimulating effects

gradually disappear as time goes by.
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Figure S24: Aggregated Hawkes excitement function estimation under (A = 0.25 seconds)
with LASSO regularization. The subplots (a), (c¢), and (d) use maximum support s =
20 seconds. The subplots (b),(d), and (f) use maximum support s = 25 seconds. The

points illustrate the discrete function valued estimator. The red line illustrates the cubic

smoothing spline for the points.
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K Additional model selection results

This section presents additional model selection results based on AIC for the models when
the size of order is ignored and when the bin-size is enlarged from 0.25 seconds to 0.5
seconds. These selection results are presented in the same format in Figure 11 and Table 2.
Furthermore, this section also presents the model fit with different LASSO regularization
parameters (A = 0.001 and A = 0.00025) in Table S3 and Table S4, which serves as
additional sensitivity analysis of the model.

The following Figure S25 and Table S1 demonstrate the model selection result when

the size of order is ignored. Model (1)-(7) are explained in section 5.8.
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Figure S25: AICs and number of effective parameters for seven model types for Apple.Inc
on 2019-01-03 with maximum support s = 20 seconds and bin-size A = 0.25 seconds. All

orders are considered to have size 1. The LASSO regularization parameter is chosen as

A = 0.0005.
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# of
AIC . 1st . 3rd days with
Min Median | Mean Max
Difference Quantile Quantile decreased
AIC
@-@"' | -143 -0.30 -0.15 -0.23 -0.005 0.13 | 15 out of 20
®-@? |-0.23 -0.19 -0.18 -0.18 -0.16 -0.12 | 20 out of 20
& -@? |-0.15 -0.12 -0.11 -0.10 -0.08 -0.02 | 20 out of 20
G -3 |-1.46 -0.38 -0.26 -0.33 -0.12 -0.016 | 20 out of 20
@ -®° |-0.16 -0.12 -0.11 -0.10 -0.09 -0.02 | 20 out of 20
Interpretations:

I The Hawkes part has stronger explanation power than the liquidity state and time factor part.
2 Adding the liquidity state and time factor to the Hawkes part further improves explanation power.
3 Adding LASSO (LASSO parameter 0.0005) to the Hawkes part further improves explanation power.
4 The Hawkes part with LASSO (LASSO parameter 0.0005) generates stronger explanation power
than the liquidity state and time factor part.
5 Adding LASSO (LASSO parameter 0.0005) further improves the explanation power of the model
with the liquidity state, time factor, and Hawkes.
Table S1: AIC difference summary statistics of Apple. Inc from 2019-01-02 to 2019-01-31
with maximum support s = 20 seconds and bin-size A = 0.25 seconds. All orders are

considered to have size 1. AIC has been adjusted for sample size so that it reflects the AIC
per single sample. The LASSO regularization parameter is chosen as A = 0.0005.

The following Figure S26 and Table S2 demonstrate the model selection result when
the bin size is enlarged from 0.25 seconds to 0.5 seconds. Model (1)-(7) are explained in

section 5.8.
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AICs for AAPL on 2019-01-03 # of Effective Parameters for AAPL on 2019-01-03
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Figure S26: AICs and number of effective parameters for seven model types for Apple.Inc
on 2019-01-03 with maximum support s = 20 seconds and bin-size A = 0.5 seconds.
Order sizes are considered in bin count sequence construction. The LASSO regularization

parameter is chosen as A = 0.0005.

87



# of
AIC Min 1st Median | Mean 3rd Max days with
Difference Quantile Quantile decreased
AIC
@ - @' | -425 -1.19 -0.61 -0.88 -0.18 0.06 | 18 out of 20
®-@?2 | -04 -0.31 -0.29 -0.28 -0.24 -0.18 | 20 out of 20
®&-@? |-0.09 -0.06 -0.06 -0.05 -0.04 -0.03 | 20 out of 20
®&-@* | -4.29 -1.26 -0.65 -0.94 -0.23 0.001 | 19 out of 20
@ - ®° |-0.09 -0.07 -0.06 -0.06 -0.05 -0.03 | 20 out of 20
Interpretations:

1 The Hawkes part has stronger explanation power than the liquidity state and time factor part.

2 Adding the liquidity state and time factor to the Hawkes part further improves explanation power.

3 Adding LASSO (LASSO parameter 0.0005) to the Hawkes part further improves explanation power.

4 The Hawkes part with LASSO (LASSO parameter 0.0005) generates stronger explanation power
than the liquidity state and time factor part.

5 Adding LASSO (LASSO parameter 0.0005) further improves the explanation power of the model
with the liquidity state, time factor, and Hawkes.

Table S2: AIC difference summary statistics of Apple. Inc from 2019-01-02 to 2019-01-31
with maximum support s = 20 seconds and bin-size A = 0.5 seconds. Order sizes are
considered in bin count sequence construction. AIC has been adjusted for sample size so

that it reflects the AIC per single sample. The LASSO regularization parameter is chosen
as A = 0.0005.

Besides, the following Table S3 and Table S4 demonstrate the AIC difference summary

statistics for the estimated model with larger LASSO regularization parameters (A = 0.001
and A = 0.00025). All other parameters are the same as the ones presented in Figure 11
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(support = 20s, bin size A = 0.25s).

# of
AIC Min st Median | Mean 3rd Max days with
Difference Quantile Quantile decreased
AIC
@ -3 | -4.09 -1.19 -0.58 -0.89 -0.16 0.09 | 18 out of 20
® - @?* |-0.31 -0.24 -0.23 -0.22 -0.18 -0.13 | 20 out of 20
®-@? |-0.14 -0.09 -0.08 -0.07 -0.07 -0.06 | 19 out of 20
& -3 | 416 -1.28 -0.60 -0.97 -0.24 -0.02 | 20 out of 20
@ -®° | -0.15 -0.09 -0.08 -0.07 -0.06 0.04 | 19 out of 20
Interpretations:

I The Hawkes part has stronger explanation power than the liquidity state and time factor part.

2 Adding the liquidity state and time factor to the Hawkes part further improves explanation power.

3 Adding LASSO (LASSO parameter 0.001) to the Hawkes part further improves explanation power.

4 The Hawkes part with LASSO (LASSO parameter 0.001) generates stronger explanation power
than the liquidity state and time factor part.

5 Adding LASSO (LASSO parameter 0.001) further improves the explanation power of the model
with the liquidity state, time factor, and Hawkes.

Table S3: AIC difference summary statistics of Apple. Inc from 2019-01-02 to 2019-01-31.
Maximum Support s = 20s, bin-size A = 0.25s. Order sizes are considered in bin count
sequence construction. AIC has been adjusted for sample size so that it reflects the AIC

per single sample. The LASSO regularization parameter is chosen as A = 0.001.

89



# of
AIC Min 1st Median | Mean 3rd Max days with
Difference Quantile Quantile decreased
AIC
@ - @' | -4.09 -1.19 -0.58 -0.89 -0.16 0.09 | 18 out of 20
® - @? |-0.31 -0.24 -0.23 -0.22 -0.18 -0.13 | 20 out of 20
& - @3 | -0.09 -0.07 -0.06 -0.06 -0.05 -0.04 | 19 out of 20
G -3 | 414 -1.26 -0.64 -0.96 -0.21 0.02 | 19 out of 20
@ -®> |-0.10 -0.07 -0.07 -0.07 -0.06 0.05 | 20 out of 20
Interpretations:

1 The Hawkes part has stronger explanation power than the liquidity state and time factor part.

2 Adding the liquidity state and time factor to the Hawkes part further improves explanation power.

3 Adding LASSO (LASSO parameter 0.00025) to the Hawkes part further improves explanation
power.

4 The Hawkes part with LASSO (LASSO parameter 0.00025) generates stronger explanation power
than the liquidity state and time factor part.

® Adding LASSO (LASSO parameter 0.00025) further improves the explanation power of the model

with the liquidity state, time factor, and Hawkes.

Table S4: AIC difference summary statistics of Apple. Inc from 2019-01-02 to 2019-01-31.
Maximum Support s = 20s, bin-size A = 0.25s. Order sizes are considered in bin count
sequence construction. AIC has been adjusted for sample size so that it reflects the AIC

per single sample. The LASSO regularization parameter is chosen as A = 0.00025.
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L Goodness-of-fit evaluation

The following Figure S27 shows the Q-Q (quantile-quantile) plot for the estimation to

evaluate goodness-of-fit.
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Figure S27: The figure demonstrates the Q-Q (quantile-quantile) plot of the LOB estimated
based on maximum support s = 20s for selected events. All order sizes are considered to
be one. The x-axis plots the log quantiles of the standard exponential distribution. The
y-axis plots the log quantiles of the rescaled interval time based on the estimation using
real LOB data. The blue dots show the distribution of the standard exponential random
variables. The red dots show the distribution with bin-size A = 0.5s. The green dots show
the distribution with bin-size A = 0.125s. The purple dots show the distribution with bin-
size A = 0.5s with fixed and state-independent baseline intensity (liquidity state and time
factor estimation are dropped). The black dots show the distribution in which the order
arrival follows a homogeneous Poisson model with the arrival rate equal to the average
arrival rate of orders. There is no liquidity state, time factor, or Hawkes stimulating effect

in the Poisson model.
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According to the random time change theorem (Daley et al. 2003), the transformed
time A(t1),...,A(tx) should follow a Poisson process with intensity 1, given a point pro-
cess tq,...,t, with varying intensity A(-). The change time is given by A; = fg Ai(s)ds,
in which the index i represents the event types. This implies that the scaled interval
time A(te) — A(t2),..., A(ty) — A(tx—1) should follow a standard exponential distribution.
Therefore, the goodness-of-fit of our model can be tested by comparing the distribution of
the rescaled interval time and that of a standard exponential distribution using the Q-Q
plot.

The above Q-Q plot implies several facts. First, our proposed model (high-dimensional
Hawkes process with state-dependent baseline intensity) overall outperforms the simple
Poisson model, as we can observe the red, purple, and green dots lie closer to the standard
exponential distribution. Second, we observe that our proposed model achieves better
performance compared to the specification when the estimation of liquidity state and time
factor is dropped since the red dots lie closer to the standard exponential distribution
compared to the purple dots. This observation indicates the explanatory power of the state-
dependent baseline intensity estimated using the order book state and event arrival time.
Third, we observe that our proposed model achieves better goodness-of-fit with a relatively
smaller bin-size A, since the same model with A = 0.125s significantly outperforms the
model with A = 0.5s. A smaller bin-size A tends to increase the precision of the estimation
and can better capture more grandeur-level fluctuations of the order book dynamics. Hence,
we expect our model to achieve better goodness-of-fit with an even smaller bin-size A, which
hasn’t been tested yet since the limitation on computational budget.

Overall, the goodness-of-fit evaluations using the Q-Q plot meet the model-selection
result using AIC presented in section 4.5. It is a limitation that our model doesn’t achieve
perfect goodness-of-fit, and this could be due to the unobserved features in the complex

dynamics of the order book. For example, we only include the first three LOB levels
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(K = 3) in our estimation due to the constraints in computational power, and thus the
effects of LOB events (insertion/cancellation/trade) higher than level-3 are not considered
in the estimation. We anticipate the model fitness can be improved by reducing the bin-size
A relative to the current model specification, and further increasing the LOB level included

in the estimation.
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