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ABSTRACT While wetlands are major sources of biogenic methane (CH4), our under­
standing of resident microbial metabolism is incomplete, which compromises the 
prediction of CH4 emissions under ongoing climate change. Here, we employed 
genome-resolved multi-omics to expand our understanding of methanogenesis in 
the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling 
the genomic representation of the site’s methanogens and examining their encoded 
metabolism, we revealed that nearly 20% of the metagenome-assembled genomes 
(MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of 
the transcriptionally active methanogens expressed methylotrophic genes; for Methano­
sarcinales and Methanobacteriales MAGs, these data indicated the use of methylated 
oxygen compounds (e.g., methanol), while for Methanomassiliicoccales, they primarily 
implicated methyl sulfides and methylamines. In addition to methanogenic methylotro­
phy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, 
with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse 
methylated compounds in the Mire, including some known methylotrophic substrates. 
Active methylotrophy was observed across all stages of a permafrost thaw gradient 
in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial 
methylotrophy and the partially thawed bog and fully thawed fen seen to house both 
methanogenic and bacterial methylotrophic activities. Methanogenesis across increas­
ing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic 
production and the appearance of acetoclastic at full thaw to consider the co-occurrence 
of methylotrophy throughout. Collectively, these findings indicate that methanogenic 
and bacterial methylotrophy may be an important and previously underappreciated 
component of carbon cycling and emissions in these rapidly changing wetland habitats.

IMPORTANCE Wetlands are the biggest natural source of atmospheric methane (CH4) 
emissions, yet we have an incomplete understanding of the suite of microbial metab­
olism that results in CH4 formation. Specifically, methanogenesis from methylated 
compounds is excluded from all ecosystem models used to predict wetland contribu­
tions to the global CH4 budget. Though recent studies have shown methylotrophic 
methanogenesis to be active across wetlands, the broad climatic importance of the 
metabolism remains critically understudied. Further, some methylotrophic bacteria are 
known to produce methanogenic by-products like acetate, increasing the complexity 
of the microbial methylotrophic metabolic network. Prior studies of Stordalen Mire 
have suggested that methylotrophic methanogenesis is irrelevant in situ and have not 
emphasized the bacterial capacity for metabolism, both of which we countered in 
this study. The importance of our findings lies in the significant advancement toward 
unraveling the broader impact of methylotrophs in wetland methanogenesis and, 
consequently, their contribution to the terrestrial global carbon cycle.
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W etlands are the largest natural source of atmospheric methane (CH4) emissions 
(1, 2), with those found in permafrost zones of specific concern to the global 

CH4 budget due to their sensitivity to a warming climate. Climate change-induced 
permafrost thaw is anticipated to make large quantities of previously frozen near-surface 
carbon available to soil microbiota over the next century, which could accelerate CH4 
production and release (3). Methanogenic archaea are the primary biological producers 
of CH4 in soils via three distinct pathways of methanogenesis (4). In saturated soils, there 
is wide appreciation for hydrogenotrophic and acetoclastic pathways from microorgan­
isms that utilize H2/carbon dioxide (CO2) and acetate, respectively, to form CH4 (4, 5). 
The methylotrophic pathway, which allows organisms to use and reduce methylated 
compounds for CH4 production (6, 7), is far less studied though appreciation of it is 
growing. This knowledge gap contributes to the fact that contemporary process-based 
biogeochemical models account only for hydrogenotrophic and acetoclastic microbial 
CH4 production in climate-relevant soil systems (8).

In contrast to historical paradigms, recent genomic insights have greatly expan­
ded our understanding of the distribution and activity of methylotrophic methano­
gens, especially in saturated, high-CH4-emitting soils (9–17). Similarly, biochemical 
and physiological efforts have expanded the suite of substrates known to be utilized 
by methylotrophic methanogens (18–24). These methanogens catabolize methyla­
ted compounds via oxygen-sensitive substrate-specific so-called three-component 
methyltransferase systems (also frequently referred to as corrinoid-dependent methyl­
transferase systems) (6, 7). This gene content information can be used to physiologically 
classify methylotrophic methanogens as using one or more of three major substrate 
categories: methylated amines like trimethylamine or glycine betaine (methyl-N) (20, 25–
27), methylated sulfides like dimethyl sulfide (methyl-S) (23, 28), and methylated oxygen 
compounds like methanol (methyl-O) (18, 19, 29). Moreover, methylotrophic methano­
gens can be obligate, meaning they only utilize methylated compounds to produce 
CH4, or facultative, meaning they encode and can express multiple pathways for CH4 
production (10, 24). In addition to methanogens, some anaerobic bacteria can use similar 
corrinoid-dependent methyltransferase systems in a non-methanogenic mechanism for 
both carbon assimilation and energy generation (30–38). In summary, while diverse 
efforts have increased knowledge of anaerobic methylotrophic metabolism, these types 
of metabolism remain undercharacterized in climate-relevant soil systems.

In this study, we used a genome-resolved, multi-omic approach to profile the 
potential for anaerobic, corrinoid-dependent methylotrophic metabolism across a 
rapidly thawing CH4-emitting permafrost peatland (39, 40) located in Arctic Sweden. 
This offered us a unique opportunity to study this metabolism across a discontinuous 
permafrost thaw gradient encompassing three distinct habitat types—palsa, bog, and 
fen—at multiple depths within each (Fig. S1). Prior characterization of the soil microbiota 
across this thaw gradient has included analysis of the native methanogen community, 
focusing primarily on the dominant hydrogenotrophic Methanoflorens stordalenmiren­
sis [genus “Bog-38” in the Genome Taxonomy Database (GTDB)] (41–43). Here, with 
metagenomic sequencing of more samples, we expand the catalog of methanogens 
for the site, offering new opportunities for resolved physiological characterization 
of methanogenic pathways. Using a combination of metagenome, metabolite, and 
metatranscriptome data, we demonstrate anaerobic methylotrophy to be an underap­
preciated part of the CH4 cycle in Stordalen Mire and suggest the in situ methylotrophic 
metabolic network to be of previously unrecognized complexity. These findings let us 
build a new conceptual model of how methylotrophic metabolism can directly and 
indirectly modulate CH4 fluxes across the Mire.
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RESULTS

One-fifth of Stordalen Mire’s diverse methanogens, spanning three orders, 
encode methylotrophic methanogenesis

Field sampling from 2010 to 2017 has yielded an extensive microbial metagenome-
assembled genome (MAG) database from Stordalen Mire (43). Of the MAGs with 
GTDB-assigned taxonomy of archaea, functional analyses confirmed that 367 (Table 
S1 tab Methanogen_Genome_Info) encoded the potential for methanogenesis via 
screening with the microbial genome annotation software DRAM (Distilled and Refined 
Annotation of Metabolism) (44) for the presence of a variety of methanogenesis 
genes, including those encoding the Mcr and Hdr complexes (Fig. S2A; Table S2 tab 
Gene_KO_information). This roughly quadrupled the known methanogen MAGs so far 
known from this site, with 23% of the methanogens having been previously reported in 
Woodcroft et al. (43).

We next curated the metabolic potential of these MAGs, revealing a diversity of 
substrate-specific methanogenic physiology measured here within the community (Fig. 
S2; Table S2 tab MAG_Physiology_Summary). Methanogenic MAGs were screened with 
DRAM for indicators of hydrogenotrophic, acetoclastic, and methylotrophic methano­
genesis (5, 6, 45–48) (Fig. S2B and C). The Methanoflorens and Methanomicrobiales were 
designated hydrogenotrophic, the Methanotrichales acetoclastic, and the Methanomassi­
liicoccales methylotrophic. Notably, many Methanosarcinales were found to encode all 
modes of methanogenesis, and the Methanobacteriales were found to encode both 
hydrogenotrophic and methylotrophic potential. While this DRAM-enabled analysis 
suggested greater methylotrophic potential among the Stordalen methanogenic 
community than previously known, much of the known physiological and biochemi­
cal diversity of methylotrophy is absent from databases used by genome annotation 
software (e.g., KEGG). Thus, we opted to manually curate the methylotrophic potential of 
these MAGs to better assess their substrate-specific metabolic potential.

To further assess methylotrophic potential, we manually inspected MAGs for 
genes encoding three-component (or corrinoid-dependent) methyltransferase systems 
(Fig. S3A; Table S2 tabs 4–9), each composed of a substrate:corrinoid methyltransfer­
ase (MtxB), a corrinoid-binding protein (MtxC), and a methylcorrinoid:carbon-carrier 
methyltransferase (MtxA), which together bring substrate-derived methyl groups into 
methanogenesis, and a reductive activase (RamX), which reactivates the corrinoid 
(Fig. 1A). MAGs were analyzed considering both methyltransferase system component 
completeness and gene synteny, as mtxBCA/ramX genes are frequently co-encoded (30, 
38, 49). This led us to identify 85 MAGs encoding a total of 438 methyltransferase 
system genes (Fig. 1B; Table S2 tab Gene_ID_per_trees). These methyltransferase system 
genes were encoded in multiple representatives within the methanogenic archaeal 
orders, including all 5 MAGs within the Methanomassiliicoccales, all 70 MAGs within the 
Methanobacteriales, and within 10 (of 11) MAGs in the Methanosarcinales. In addition, we 
required a substrate-specific mtxB gene in all methanogenic MAGs considered meth­
ylotrophic, as we considered this to be the best single marker gene for physiology, 
due to its encoding of the enzyme that directly catalyzes substrate demethylation. 
This more conservative requirement retained all of the Methanomassiliicoccales, 62 
of the Methanobacteriales, and 5 of the Methanosarcinales. From the genome poten­
tial, we reported that the Methanosarcinales and Methanobacteriales are likely faculta­
tive methylotrophs, and the Methanomassiliicoccales are likely obligate methylotrophs 
(Table S2 tab MAG_Physiology_Summary). In summary, we conservatively identified 72 
methanogen MAGs with the potential to catalyze methylotrophy (Fig. 1B).

The Methanomassiliicoccales MAGs were found to encode genes for diverse methylo­
trophic substrates, including methylated amines, methylated sulfides, and methanol (Fig. 
1B; Table S2 tab Gene_ID_per_trees). The Methanobacteriales and Methanosarcinales 
encoded genes solely for the demethylation of methylated oxygen compounds (e.g., 
methoxylated compounds or methanol), especially homologs of the methanol 
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methyltransferase system components (Fig. 1B). Though these latter two orders were 
previously considered hydrogenotrophic and acetoclastic, respectively, within Stordalen 
Mire (41, 42), they each include methylotrophic isolates, providing support for our 
genomic inferences (24, 50–52). Our metabolic curation of the remainder of the 

FIG 1 Phylogenomic and metagenomic analyses of Stordalen Mire methanogens. (A) Overview of substrate-specific physiology of methylotrophy, involving 

three-component (or corrinoid-dependent) methyltransferase systems to shuttle substrate-derived methyl groups into central methanogenesis (shown in gray). 

This includes a substrate:corrinoid methyltransferase (MtxB), a corrinoid-binding protein (MtxC), a methylated-corrinoid:carbon carrier methyltransferase (MtxA), 

and an activating enzyme (Ram or RamX). The internal “x” in the MtxABC protein/gene name (and the terminal “X” in RamX) is a generalized placeholder; the 

actual letter at this position varies to denote substrate specificity. Methyltransferase systems for methylated amines and oxygen compounds share a conserved 

architecture, while those for methylated sulfur compounds occur in two variations involving multi-functional proteins. (B) Heatmap showing the number of 

identified methylotrophic genes encoded in putative methylotrophic methanogen metagenome-assembled genomes (MAGs) from three orders. Each row 

represents a distinct MAG (grouped by taxonomic order), each column represents a different methylotrophic gene type, and cell color intensity denotes the 

number of identified genes. Gene columns are grouped by inferred substrate categories: methyl-N, methyl-O, and methyl-S, as in panel A, and “substrate 

ambiguous” for those with annotation uncertainty or known substrate flexibility. Genes only identified in the overall substrate category retain “x” in their names, 

and in the methyl-O substrate category, methoxylated substrates are indicated by the “methoxy” prefix. For more confident identification of methylotrophic 

gene homologs, columns are named as substrate-specific methyltransferase system member genes (e.g., the methanol-specific mtaB). The furthest right column 

indicates whether each MAG meets the threshold criteria to be defined as methylotrophic (purple cell) or not (white cell). (C) Bar chart showing the number 

of Stordalen Mire-derived methanogen MAGs per order present in the data set. (D) Overlay of phylogeny and genomically inferred function for these 367 

methanogen MAGs. MAGs were placed onto the GTDB r207 tree using 53 concatenated archaeal marker genes, and the tree was rooted with a GTDB-derived 

MAG from the archaeal phylum Undinarchaeota. Methanogen orders are delineated by color shading of the tree, and adjacent to each, the genome-inferred 

methanogen pathway for the representatives at Stordalen Mire is denoted by colored squares for past metabolic designation and circles for this study’s updated 

designation.
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methanogenic orders present in the site (Fig. 1C and D) was in agreement with prior 
metabolic assignments (41, 42). In total, these data refute the notion that the Methano­
massiliicoccales are the only lineage within the Stordalen Mire methanogen community 
to encode the potential for methylotrophic methanogenesis, highlighting the underap­
preciated potential of this metabolism.

Methanogen relative abundance and diversity increased along the perma­
frost thaw gradient

The Mire contains three distinct habitat types that constitute a discontinuous, natural 
permafrost thaw gradient. In July 2016, we sampled the active layer in three habitat 
types: (i) palsa, overlaying intact permafrost, (ii) bog, with partially thawed permafrost 
and a perched water table, and (iii) fen, fully thawed and inundated (Fig. S1, methods). 
CH4 flux increased with the permafrost thaw state, from negligible from the palsa to 
highest from the fen (Fig. 2A, Table S3 tab CH4_Flux). Consistent with this flux pattern, 
we failed to recruit reads to our methanogen MAGs from palsa metagenomes (Table 
S4 tabs 2–5), while the diversity of the methanogen orders observed here (Fig. 2B) 
and the total relative abundance of methanogens (Fig. 2C) increased from bog to fen. 
Additionally, methanogen relative abundance increased significantly with depth in the 
bog, mirroring the water table depth and likely reflecting saturated anoxic soil conditions 
favorable for methanogenesis (Fig. 2B). Taken together, our findings support the idea 
that methanogens in Stordalen Mire chiefly reside in saturated soils.

The relative abundance of methanogenic taxa presented here is in agreement with 
past studies in regard to overall community composition (42). However, prior research 
from Stordalen Mire emphasized the primary importance of hydrogenotrophs—largely 
Methanoflorens—in the bog and the appearance of acetoclastic Methanotrichales in the 
fen (41, 42). In this study, our expanded sampling and extended genome-resolved 
physiological curation of these methanogen MAGs revealed a more metabolically diverse 
community in both the bog and the fen. Both obligate (Methanomassiliicoccales) and 
assigned facultative (Methanosarcinales and Methanobacteriales) methylotrophic 
methanogens were found in both bog and fen habitats. Furthermore, the summed 
abundance of the hydrogenotrophic orders did not differ significantly from that of the 
methylotrophic orders in either habitat or depth (Fig. 2D). When considering the 
presence of individual MAGs within these orders, on average, 64% of the bog (excluding 
the drained, unsaturated surface) and 30% of the fen methanogen communities 
encoded the potential for methylotrophic methanogenesis. Our genomic analyses 
support representation of methylotrophic methanogenesis in this climatically critical 
ecosystem, warranting further investigation into the chemistry and expressed physiology 
supporting this metabolism.

Stordalen Mire peat contains methylotrophic substrates, especially methanol

To further characterize the likelihood of methylotrophy, we next analyzed peat water 
extracts to detect possible methanogenic substrates. Quantitative nuclear magnetic 
resonance (NMR) analysis identified 29 such metabolites (Table S3 tab NMR_data), 
including classical methanogenic substrates like acetate and formate, as well as the 
methylated oxygen compound methanol (Fig. 3A). The methylated amines glycine 
betaine and choline were also detected but only in the non-methanogenic palsa (Fig. 
3A). Liquid chromatography tandem mass spectrometry (LC-MS/MS) also identified 
methylated compounds as present across habitats (Table S3 tabs 7–9; Fig. S3B and C), 
including four methylated amines and four methylated oxygen compounds (Fig. 3B). Of 
these compounds, only three (glycine betaine, choline, and syringate) are recognized as 
known substrates for this metabolism. Most of the remainder are small derivatives of 
known substrates (e.g., acylated methylated amines or their stereoisomers) or chemical 
species with structural homology to known substrates (e.g., apocynin). Notably, trigonel­
line is chemically distinct and could represent an as-yet unknown aromatic methylamine 
to support this metabolism.
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FIG 2 Methanogen abundance and methane flux increased significantly across the Stordalen Mire permafrost thaw gradient in July 2016. (A) Cartoon showing 

the structure of the methanogenic habitats in Stordalen Mire. Red arrows represent the average methane flux from July 2016, with actual values shown in the 

table on the right. Flux from the fen is significantly higher than from the bog as per Tukey’s Honest Significant Difference (HSD) (P-adjusted < 0.0001). (B) Bar 

chart showing the site- and depth-stratified metagenome-based relative abundance of methanogenic orders within the methanogen community, colored by 

inferred metabolic potential. The dashed line represents the average water table depth at the time of field sampling. The overlayed red line plot shows the 

soil porewater methane concentrations from July 2016. Error bars represent one standard deviation for both plot types. The palsa habitat (not shown) showed 

near-negligible production, with values for methanogen relative abundance below detection. (C) Summed relative abundance of all methanogens within 

the archaeal fraction of the soil microbiota. Error bars represent one standard deviation (and the x-axis extends beyond 100% due to error bars). Significant 

differences were seen within the bog via Tukey’s HSD between the middle and deep (P-adjusted < 0.01) and the surface and deep (P-adjusted < 0.001). Further, a 

significant difference in the overall site abundance of methanogens between the fen and the bog was found (P-adjusted < 0.01). (D) Summed relative abundance 

of metabolic groups (methylotrophic orders, hydrogenotrophic orders, and acetoclastic orders) within the methanogen community. The relative abundance 

of acetoclastic methanogens was significantly lower than that of methylotrophs in the bog at middle depth (Tukey’s HSD, P-adjusted < 0.05); otherwise, no 

significant differences in the abundance of acetoclasts or hydrogenotrophs relative to methylotrophs were noted.
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A relevant consideration when trying to link methylotrophic substrates to ecosystem 
outputs like CH4 is that the number of potentially microbially available methyl groups on 
different compounds (Fig. 3C) may limit the stoichiometry of CH4 formation (18, 20, 21, 
38). For example, one molar equivalent of a tri-methoxylated compound may support 
the production of three times as much CH4 as one molar equivalent of methanol. 
However, the broad availability of methanol found across the Mire (e.g., its detection in 
each palsa, bog, and fen), which may be ultimately plant derived and therefore continu­
ally produced in the site (53), led us to postulate that methanol might be a primary 
substrate for methylotrophic methanogenesis in situ. In support of this, 83% of all 
methanogen MAGs classified here as methylotrophic were identified as encoding the 
gene for the methanol-specific methyltransferase MtaB (Fig. 1B).

Methanogens express methylotrophic genes across the Mire

Following investigation of the genomic and chemical potential for methylotrophic 
methanogenesis, we queried the expression of the putative methylotrophs using 

FIG 3 Diverse methylated metabolites are present across Stordalen Mire. (A) Known methanogenic precursors found in peat water extracts as detected by 

NMR. Points represent average concentrations, with error bars representing one standard deviation. Significant differences were assessed using Tukey’s HSD, with 

only acetate found to be significantly enriched in the fen compared to the palsa (P-adjusted < 0.05). (B) The summed LC-MS/MS peak area for five methylated 

amines and four methylated oxygen compounds across habitat and depth, which are implicated as potential methylotrophic substrates (Table S3; Fig. S3). 

Methylated amines were found to be significantly higher in the fen than in the bog (Tukey’s HSD, P-adjusted < 0.05), and a significant difference was observed for 

methylated oxygen compounds between each pair of sites via Tukey’s HSD (fen:bog, P-adjusted < 0.05; palsa:fen, P-adjusted < 0.05; palsa:bog, P-adjusted < 0.05). 

(C) Chemical structures of select known (solid box) and here proposed possible (dashed box) substrates identified in Stordalen Mire, with microbially available 

methyl groups circled in orange.
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genome-resolved metatranscriptomics (Tables S1 tab MetaT_Accession_Info and S2 tabs 
10–11). Here, we show that all three potentially methylotrophic orders are active in situ 
across habitats and depths (Fig. 4A). Gene-resolved expression analysis confirmed that 
almost all (70%) of the active MAGs in these orders were expressing methylotrophic 
genes (Fig. S4). Notably, these actively methylotrophic MAGs represent on average 
100% of the summed activity of the Methanomassiliicoccales, 85% of the activity of the 
Methanosarcinales, and 91% of the activity of the Methanobacteriales across the bog and 
fen (Fig. S4).

In total, methylotrophic orders accounted for between 5% and 10% of the total 
methanogen transcription in the fen and a broader 7%–54% in the bog (Fig. 4B), with the 
greatest proportion of active methylotrophic orders observed in the bog at middle 
depth. Consistent with our CH4 flux data, overall methanogen activity increased 
significantly between the bog and the fen (Fig. 4C). Unlike the acetoclastic methanogens, 
which had significantly increased activity in the fen, no such significant habitat pattern 
was seen for the methylotrophs. However, per the increased total methanogen activity in 
the fen relative to the bog, the absolute activity of methylotrophs in the fen, though a 
smaller average proportion of the methanogen community than in the bog, may not 
represent an actual decrease in activity with thaw (Fig. 4C). Our findings indicate that 
methylotrophic methanogens play an active role within the Stordalen methanogen 
community and thus contribute to the CH4 cycle in situ.

Our gene expression data were used to refine the substrate usage patterns for these 
methylotrophic lineages (Fig. 4D). For the Methanomassiliicoccales, our metatranscript 
data suggest that methylated sulfides, and possibly methylated amines, are more likely 
substrates than methylated oxygen substrates due to the limited expression of methanol 
or methoxy genes. On the other hand, the facultative methylotrophs Methanosarcinales 
and Methanobacteriales exclusively had the potential for methylated oxygen usage. Gene 
expression data supported the use of methylated oxygen compounds, especially 
methanol, across the bog and fen by these two lineages. It should be noted however that 
members of all three orders were found to express substrate ambiguous methylotrophic 
genes, which are not used here to assign functional substrate profiles.

Taken together, our combined metagenomic, metatranscriptomic, and metabolomic 
data demonstrate active methylotrophic methanogenesis across Stordalen Mire using 
field-relevant substrates by a sizeable fraction of the native methanogen community. Our 
expression data also hint at methylotrophic niche partitioning that may occur in the fen, 
with the Methanomassiliicoccales showing a preference for methylated sulfide substrates 
and the Methanosarcinales and Methanobacteriales preferentially utilizing methylated 
oxygen substrates. This simultaneously improves our understanding of the CH4 cycle in 
this climate-critical wetland and demonstrates the need for genome-resolved 
approaches to studying methanogen physiology.

Anaerobic methylotrophy is encoded and expressed by numerous bacteria in 
Stordalen Mire

Some anaerobic bacteria employ homologs to the methanogenic three-component 
methyltransferase systems, where these same methylotrophic substrates support growth 
as sources of carbon and/or energy (30, 31, 33–38). Investigation of the methylotrophic 
potential among the so-far identified bacterial component of the soil microbiota in 
Stordalen revealed that >1,700 MAGs from 19 bacterial phyla encoded thousands of 
mtxB genes (Fig. 5A; Table S5 tab BLAST_bitscore > 200). These genes were predomi­
nantly inferred to be specific for methylated amines, methanol, and methoxylated 
compounds. However, some MAGs encoded homologs of methylated sulfide-dependent 
methyltransferases (Fig. 5A), representing to our knowledge the first environmental 
identification of bacterial methylated sulfide methyltransferase systems. Overall, these 
data are in good agreement with, and expand upon, the findings of Ticak et al. (30) and 
Creighbaum et al. (20) on the broad phylogenetic diversity of methylamine-dependent 
mtxB genes extending past solely methanogenic archaea and acetogenic bacteria.

Research Article mSystems

January 2024  Volume 9  Issue 1 10.1128/msystems.00698-23 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
sy

st
em

s o
n 

27
 M

ay
 2

02
4 

by
 1

84
.5

7.
11

6.
71

.

https://doi.org/10.1128/msystems.00698-23


Of the 19 bacterial phyla found here to encode mtxB genes, members of 12 phyla 
were found to express these genes (Fig. 5A), suggesting active bacterial methylotrophy 
within the Mire. The Proteobacteria, Acidobacteriota, and Actinobacteriota appeared to be 
the primary methylotrophic bacterial phyla in the site (Fig. 5A and B), with members of 
genera Bog-752, RBG-16-64-13, and Bog-1198 being their most actively methylotrophic 
representatives. The Acidobacteriota exclusively expressed genes for the demethylation 

FIG 4 Methanogens with methylotrophic potential are active and expressing genes for methylotrophy across the Mire. (A) Summed relative transcriptional 

activity of methanogen orders across the Mire within the methanogen community, calculated as averaged geTMM values for all methanogen-expressed genes 

summed at the order level and normalized to the total sum of all methanogen-expressed genes. (B) Bar chart showing the percent of the total methanogen 

activity at each depth within the bog and the fen attributable to metabolic groups of hydrogenotrophs, acetoclasts, and methylotrophs. (C) Bar chart showing 

the absolute summed mean transcription of methanogen metabolic groups across the bog and fen. Total transcription is significantly higher in the fen than in 

the bog (Tukey’s HSD, P-adjusted < 0.05), but no significant intra-habitat differences were seen between the activity of individual metabolic groups. (D) Specific 

expression of methylotrophic genes by three methanogenic orders across the Mire. geTMM values for expressed methylotrophic methyltransferase genes 

averaged and normalized to MAG relative abundance within metatranscriptomes and plotted across depth profiles within the bog and fen. Expressed genes are 

categorized by inferred substrate category. Purple boxes are used to highlight the apparent primary substrate-specific genes expressed by each order. Evidence 

for active methylotrophic methanogenesis is presented across the bog and fen at every depth except the bog surface (which is likely the most oxygenated field 

compartment of the six represented here).
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of methanol (mtaB) and methoxylated compounds across the bog and fen. Members of 
the Proteobacteria expressed mttB homologs lacking the unique pyrrolysine residue 
(non-Pyl), which are known to be specific for quaternary methylated amines such as 
choline and glycine betaine (30). Notably, members of this phylum expressed these 

FIG 5 Anaerobic methylotrophic metabolism extends to the bacterial component of the soil microbiota in Stordalen Mire. (A) Plots showing the number of 

mtxB genes encoded (left) and expressed (right) per MAG within bacterial phyla, colored by inferred substrate specificity, in Stordalen Mire. Approximately 1,700 

bacterial MAGs spanning 19 phyla encode mtxB genes, of which 88 from 12 distinct phyla were found to be actively expressing these genes. The genus (and 

family) of some active methylotrophic bacteria is shown on the right plot to demonstrate the here-observed taxonomic diversity of the metabolism in Stordalen. 

(B) Specific expression of identified mtxB genes by the three phyla found to include the greatest number of putatively methylotrophic bacteria in the Mire. 

Bacterial methylotrophic gene expression is evident across the entirety of Stordalen Mire in both the methanogenic and non-methanogenic habitats.

Research Article mSystems

January 2024  Volume 9  Issue 1 10.1128/msystems.00698-2310

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
sy

st
em

s o
n 

27
 M

ay
 2

02
4 

by
 1

84
.5

7.
11

6.
71

.

https://doi.org/10.1128/msystems.00698-23


genes in the palsa, where NMR revealed the presence of these compounds (Fig. 3A) and 
where our multi-omics failed to detect the presence or activity of methanogens. Last, the 
Actinobacteria were the most versatile, with expression of genes for the demethylation of 
both methylated amines and methylated oxygen compounds. Interestingly, some MAGs 
within the Actinobacteriota were found to express pyrrolysine-encoding mttB and mtbB 
genes, which are specific for tri- and dimethylamine, respectively (54). Our findings 
illustrate new insights into the bacterial transformation of methylated substrates, both 
phylogenetically showing the activity of diverse lineages and also indicating new 
substrates for bacterial methylotrophs.

DISCUSSION

The aim of this study was to employ a genome-resolved approach to query the potential 
for methane-relevant anaerobic methylotrophy, catalyzed by corrinoid-dependent 
methyltransferase systems, among the microbiota in a thawing permafrost peatland. 
Here, paired metagenomic and metatranscriptomic data in conjunction with metabolite 
analyses revealed substantial evidence for the metabolism of methylated compounds by 
members of the soil microbiota (Fig. 6). We classified nearly 20% of all known Stordalen-
derived methanogen MAGs as methylotrophic and further supported their activity in 
saturated soils in the bog and fen using integrated metabolite and metatranscriptomic 
evidence. Moreover, we extended the role of methylotrophy to the bacterial members 
of the community, providing a framework for how this metabolism could further 
compete with or support methanogenesis in a more indirect fashion (Fig. 6). Beyond 
Stordalen, our field data may reciprocally broaden knowledge of the metabolism itself 
with the identification of wetland-relevant potential novel substrates, plus underappreci­
ated microbial cross-feeding and competition, explored below, which warrant further 
physiological experimentation.

Methylotrophic methanogenesis is encoded by much of the native methano­
gen community

Though the historical paradigm of environmental methanogenesis has suggested 
methylotrophy to be a niche metabolism of limited relevance across terrestrial wetlands 
(55–59), recent studies have countered this idea, increasing both the taxonomic (9–13, 
60, 61) and geographic (14–17) footprints of the metabolism. However, a notable 
challenge remains in profiling environmental methylotrophy. Namely, biochemical 
discoveries of known relevant genes and substrates are not translated accurately to 
databases used to functionally annotate genomes or metagenomes (e.g., KEGG). For 
example, four functionally unique quaternary amine-dependent methyltransferases have 
been biochemically characterized and are shown to demethylate distinct substrates (30, 
33, 35, 38), but only one of these is present in the KEGG database (30). As a result, the 
accurate functional assignment of these genes often requires paired non-homology-
based methods, including gene synteny (19, 30, 33, 38, 62), unique residues (54, 62), and 
phylogeny (62) to confirm gene functional assignments.

Consequently, holistic surveys of environmental methanogenesis that lack manual 
methylotrophic curation only screen for a limited number of best-known genes and thus 
likely underestimate the overall potential for and diversity of the metabolism. Our 
annotation strategy to profile methylotrophy in Stordalen Mire did not rely solely on 
annotations from these databases. For example, via database annotations only, we would 
have missed most of the Methanomassiliicoccales-encoded methylated sulfur use 
potential, as well as the potential for methanogenesis from methoxylated substrates 
from any lineage.

Of the methanogenic orders identified here as having the potential to catalyze 
methylotrophy, only the Methanomassiliicoccales appear to be functioning as obligate 
methylotrophs, likely using these substrates dependent on hydrogen as an electron 
donor (7). Studies have demonstrated that these methanogens are cosmopolitan across 
water-inundated soils and sediments (14, 63–65). In contrast to prior metagenomic 
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FIG 6 The anaerobic methylotrophic network in Stordalen Mire. Metatranscriptome-informed conceptual model summarizing the complexity of the microbial 

anaerobic methylotrophic food web in Stordalen Mire. Vertical dashed lines separate the palsa, bog, and fen, and the blue background is intended to represent 

the water table depth within sampled soil cores across habitats relative to microbial metabolic activity. Solid arrows represent metabolic reactions that can 

lead to the production of CH4 either directly or indirectly, while dashed arrows represent reactions not expected to result in CH4 production. Red arrows 

reflect substrate competition, while yellow arrows reflect cross-feeding of different metabolic groups. All represented bacterial taxa in the figure include MAGs 

(Continued on next page)
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studies (14, 63), we did not infer that methanol was the preferential substrate for this 
lineage. Instead, our metatranscriptomic findings indicated the preferential utilization of 
methylated sulfides. While some representative Methanomassiliicoccales isolates have 
been shown to encode dimethyl sulfide-specific mtsAB methyltransferase genes (7, 66), 
no isolates to our knowledge have been shown to grow with methyl sulfides directly (7). 
Markedly, the Stordalen MAGs were found to encode not only the dimethyl sulfide-
specific mtsA but also the homologs of tri-functional mtsD/mtsF/mtsH genes (23). These 
genes may confer the ability to use a broader suite of methylated sulfide substrates than 
mtsAB alone, which would expand the physiological potential of the order, as well as the 
knowledge of its metabolic niche within wetlands.

Beyond the Methanomassiliicoccales, we expanded the observation of methylotrophy 
within this site to include members of the Methanosarcinales and Methanobacteriales, 
identifying these lineages as primarily methanol-utilizing facultative methylotrophs. Both 
orders have been identified as members of methanogenic communities across global 
wetlands (65, 67–69). However, the Methanobacteriales are typically classified solely as 
hydrogenotrophs (65, 68), whereas the Methanosarcinales are inconsistently labeled as 
acetoclasts (67), acetoclastic and hydrogenotrophic (65), or metabolically versatile (e.g., 
capable of all modes of methanogenesis) (14, 68). Prior, two Methanobacterium isolates 
(24, 51)—one of which is from a permafrost system (51)—have been shown to perform 
hydrogen-dependent methylotrophy using methanol and/or methylamines. Meanwhile, 
the Methanosarcinales are known via biochemical and physiological work to perform 
all modes of methanogenesis, including methylotrophy from diverse substrates such as 
methanol (23, 50, 52). Vanwonterghem et al. (9) demonstrated methylotrophic potential 
for numerous genomes within both orders, including methanol use potential among 
other wetland- (70, 71) and permafrost-relevant members (72, 73). Thus, while both 
orders are known residents of wetlands, we propose that their classical niches underre­
present their true physiological potential across wetlands, as per their observed gene 
expression in Stordalen and potential isolation from other sites.

Considering especially the here-identified role for facultative methylotrophs within 
Stordalen Mire, experimentation is needed to resolve the question of the comparative 
kinetics of—and thus overall production from—discrete pathways of methanogenesis. 
This analysis is relevant not only at the methanogen community level but also at the 
level of a single organism like members of the Methanosarcina, where we observed 
co-expression of acetoclastic and methylotrophic genes in the bog from a single 
methanogen genome (Table S2 tab Methanogen_geTMM_all_genes). Still, the data 
presented here imply a more important role for methylotrophy in Stordalen Mire than 
previously understood. Of the 36 methanogen MAGs identified as being active in this 
data set, 10 expressed genes for methylotrophy, and we confirmed the presence of 
metabolites to support some of these dominant pathways (Fig. 6). Regardless of the 
kinetics, the widespread footprint of this metabolism across the methanogen commun­
ity precludes dismissal of its consideration at the ecosystem level.

Bacterial methylotrophy is a cryptic part of the carbon cycle in wetlands

Though an important role is supported here for methylotrophic methanogens in 
Stordalen Mire, the metabolism is not limited to the archaeal community. From the 
literature, it is recognized that anaerobic bacteria, especially certain acetogens, perform 
methylotrophy via corrinoid-dependent methyltransferase systems feeding into the 
Wood-Ljungdahl pathway (30, 31, 33–38). Here, we observed the expression of mtxB 
genes by bacteria across the entirety of the Mire at nearly all depths, including the drier 
and undoubtably more oxygenated palsa. While these genes are inferred to be involved 

FIG 6 (Continued)

found to express methylotrophic methyltransferase genes (mtxB) in Stordalen Mire. Substrate categories identified within each habitat per metabolite data are 

represented by stars (LCMS-identified) and hexagons (NMR-identified). Note that the metabolic versatility of the facultatively methylotrophic Methanosarcinales 

and Methanobacteriales is represented by their dual inclusion in multiple methanogenic metabolic groups.
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exclusively in an obligately anaerobic metabolism, active anaerobes have been identified 
in oxygenated surface habitats in other locations (74, 75). NMR and metatranscriptomic 
data support active bacterial methylated amine-dependent methylotrophy in the palsa. 
While not likely supporting methanogens in this habitat, this bacterial metabolism could 
be a source of CO2 (30), an important greenhouse gas.

Overall, these data suggest that bacterial methylotrophy is active across the Mire. In 
the CH4-emitting bog and fen, we have considered the ways bacterial methylotrophy 
could impact the CH4 cycle. For instance, while bacterial methylotrophy does not directly 
produce CH4, it may produce acetate (30, 33, 35, 35) and CO2 (30), which are substrates 
for acetoclastic and hydrogenotrophic methanogens, respectively. It is also possible that 
methylotrophic bacteria could cleave quaternary methylated amines (e.g., choline) into 
smaller methylated amines (trimethylamine) to fuel methylotrophic methanogenesis (76, 
77). Methylotrophic bacteria are active in the same habitats and depths as the three 
metabolic groups of methanogens (Fig. S5A), and notably, a strong positive correlation 
was identified between the summed transcriptional activity of methylotrophic methano­
gens and methylotrophic bacteria in the fen (r2 = 0.87) (Fig. S5B). Alternatively, bacterial 
methylotrophs could also compete with methanogens for methylotrophic substrates, 
complicating this understudied component of the microbial carbon food web. For 
example, our gene expression data indicate that the Methanosarcinales and Methanobac­
teriales (Fig. 4D) compete for methanol with the Acidobacteriota (Fig. 5B). Taken in total, 
the apparent complexity of the methylotrophic metabolic network in wetlands warrants 
future experimental work to better resolve the relevance of these types of metabolism 
to wetland methanogenesis and the terrestrial global carbon cycle. While our data are 
specific to Stordalen Mire, we can envision extending this model across wetlands per the 
growing recognition of the importance of methylotrophy across habitats (14–16).

Conclusions and future needs

Our study advances the growing recognition of the complexity and ecological relevance 
of methylotrophy and highlights the power of large-scale field data sets to illuminate 
its biochemical diversity, phylogenetic extent, and ecological drivers. The methylotro­
phic metabolic network is increasingly implicated—here and in other climate-relevant 
ecosystems (14–17)—in impacting atmospheric CH4 emissions, especially in a warming 
climate (17, 78). This expanded knowledge of a widespread metabolism contributing to 
CH4 dynamics in wetlands is essential to improve model-based predictions of wetland 
contributions to the global CH4 budget (79). Process-scale biogeochemical models 
[like ecosys (8)] do not currently account for methylotrophic methanogenesis, represent­
ing only acetoclastic and hydrogenotrophic pathways (8, 80)—a likely consequential 
misrepresentation since methylotrophy dramatically increases the potential route of 
fixed carbon to CH4 production, and its enzymes have distinct kinetics and constraints. 
This work also provides the field-relevant targets for in vitro studies of methyltransferase 
systems, which are needed to determine field-relevant key kinetic parameters, especially 
since the so-far kinetically characterized methylotrophic methyltransferases do not well 
represent known wetland methanogen communities. Quantifying the methylotrophic 
contribution of methanogenesis in wetlands—the largest natural biogenic CH4 source 
(81)—likely via isotopically labeled substrate experiments (82) is an essential next step 
in constraining its addition to predictive models. Together, these integrated approaches 
will increase biological realism in models and predictions for these and other major 
CH4-emitting climate-sensitive habitats.

MATERIALS AND METHODS

Field site and sample collection

Stordalen Mire (68 22′N, 19 03′E) is a rapidly thawing Artic permafrost peatland 
near Abisko, Sweden. The mosaic of permafrost land cover includes three primary 
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biologically and chemically distinct habitats that constitute a discontinuous permafrost 
thaw gradient. The raised, well-drained palsa overlays intact permafrost with an active 
layer depth of 50–60 cm and is dominated by woody and ericaceous shrubs. The bog 
site, dominated by Sphagnum mosses, is underlain by partially thawed permafrost and 
a seasonally fluctuating perched water table. Last, the sedge-dominated fen represents 
fully thawed and saturated permafrost. In July 2016, cores were taken for meta-omic and 
geochemical analyses in triplicate using an 11-cm-diameter push corer from each palsa, 
bog, and fen in areas adjacent to the in situ gas flux measurement autochamber system. 
Cores were subsectioned in the field at three depths: surface (1–4 cm), middle (10–14 
cm), and deep (20–24 cm). Subsections were split based on end-use; for nucleic acid 
extraction, 4 mL of the field-saturated peat was added to 2.5 volumes of Lifeguard buffer 
(Qiagen, MD, USA), transferred out of the field on ice in a cooler, and frozen at −80°C until 
extraction. A second split—a portion of which was used for metabolomics—was placed 
in a 50-mL Falcon tube without buffer, flash frozen in liquid nitrogen, transferred out of 
the field on ice in a cooler, and stored at −80°C until processing.

Methane field measurements

To determine soil porewater CH4 concentrations, prior to coring at each site, porewater 
was collected with a perforated stainless-steel piezometer inserted into the peat and 
extracted with an airtight syringe. No porewater was obtained from sites (palsa) or 
depths (in the bog or fen) that were above the water table. Porewater samples were 
filtered and acidified and stored in evacuated vials until they were brought to atmos­
pheric pressure with helium, and the CH4 concentration in the equilibrated headspace 
was measured using a flame ionization detector gas chromatograph. An extraction 
efficiency of 0.95 was used to calculate the dissolved CH4 concentration.

CH4 fluxes were measured using a system of eight automated gas-sampling chambers 
made of transparent Lexan (n = 3 each in the palsa, bog, and fen habitats, with n = 2 in 
the fen prior to 2011). Chambers were initially installed in 2001 (83), and the chamber lids 
were replaced in 2011 with the larger current design, similar to that described by Bubier 
et al. (84). Each chamber covers an area of 0.2 m2 (45 cm × 45 cm), with a height ranging 
from 15 to 75 cm depending on habitat vegetation. At the palsa and bog sites, the 
chamber base is flushed with the ground, and the chamber lid (15 cm in height) lifts clear 
off the base between closures. At the fen site, the chamber base is raised 50–60 cm on 
Lexan skirts to accommodate large-stature vegetation. The chambers are instrumented 
with thermocouples measuring air and surface ground temperature, and water table 
depth and thaw depth are measured manually 3–5 times per week. The chambers are 
connected to the gas analysis system, located in an adjacent temperature-controlled 
cabin, by 3/8″ Dekoron tubing through which air is circulated at approximately 2.5 L 
min−1. Each chamber lid is closed once every 3 h for a period of 8 min, with a 5-min flush 
period before and after lid closure. The results for multiple years are reported by Holmes 
et al. (40).

The July 2016 CH4 flux data and porewater data are in Table S3 tabs 4–5; the data 
for field sites, including porewater CH4 and water table depth, can be found at 10.5281/
zenodo.7720573, and the July 2016 flux data used in Fig. 1 can be found at 10.5281/
zenodo.7897922.

DNA and RNA extraction

To produce sequence data for previously unpublished MAGs (Table S1 tab MetaG_Acce­
sion_Info), as well as to generate metatranscriptomes for this study (Table S1 tab 
MetaT_Accession_Info), DNA and RNA were each extracted using the Mobio PowerMax 
Soil DNA/RNA Isolation Kit (cat# 12966–10). Sample vials were removed from the −80°C 
freezer and thawed on ice. Following this, 5–10 g of peat material (preserved in Lifeguard 
soil preservation solution, Qiagen) was added to bead tubes, and nucleic acids were 
extracted per the manufacturer’s guidelines without the initial addition of beta-mercap­
toethanol. Reagents were increased proportionally to maintain the concentration of 
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solutions. An additional ethanol wash of the nucleic acid-bound column was performed 
to further remove impurities. The resulting washed nucleic acid was eluted with 5 mL 
of RNase-free DI water and further concentrated via ethanol precipitation overnight, 
followed by elution in 100 µL of TE buffer. The eluted product was further processed 
for separation and purification of each DNA and RNA; samples were aliquoted into two 
2-mL tubes at a ratio of 1:2. RNase and DNase treatment (Roche) were both performed 
following the manufacturer’s guidelines, followed by phenol:chloroform purification. 
Separated nucleic acids were then ethanol precipitated, and pellets were eluted in TE 
buffer. Purified DNA and RNA were each quantified via Quibit 3.0. All samples were stored 
at −80°C pending sequencing.

Metagenome assembly and binning

To maximize the site-specific MAGs available for this study, they were developed from 
three sources: (i) all those generated from Woodcroft et al. (43), (ii) assembly and binning 
of metagenomes from 2010 to 2017 field samples, and (iii) all fractions of a stable 
isotope probing experiment performed on the field peat added to labeled plant matter 
from locally co-occurring species. Stable isotope probing metagenomes were used here 
purely to add site MAGs, not for analyses of that experiment.

Metagenome read sets from 2010 to 2017 field samples were trimmed using 
Trimmomatic (v0.36) (85) in the paired-end mode against the TruSeq3-PE 23argaret 
adapters with a sliding window of 4–15. Trimmed reads were then assembled 
with SPAdes (v3.12, --meta option enabled) (86) with the default kmer set. Sample 
20120700_E3M was too complex to assemble the first kmer set within our computational 
limits, so the reads were randomly subsampled to 50% using bbtools (v38.51) (87) 
reformat.sh and assembled with metaSPAdes (88). The contigs from this sample were 
then dereplicated before subsequent steps with cdhit (v4.8.1) (89) with the following 
parameter sets: -c .99 -aS .80 -n 11 -d 0 -g 1. Read mapping was done from the quality-
controlled reads against all samples. Once assembly and read mapping were complete, 
the bam files and contigs were used as input for binning. An initial bin set was created 
using UniteM (v0.0.18) (90) with the following options: mb_sensitive, mb_verysensitive, 
mb_specific, mb_veryspecific, mb2, max40, max107, bs, and gm2. Next, UniteM, DAS 
Tool (v1.1.1) (91), and MetaWRAP (v1.0.6) (92) were used to create ensemble bin sets. 
Due to the limitation of the MetaWRAP bin_refinement module only accepting three 
candidate bin sets, MetaBAT2 (93), GroopM2 (94), and MaxBin2 (95) from the initial bin 
sets were used as input into MetaWRAP. The output of these ensemble tools was then 
used as input into the same tools (DAS Tool, MetaWRAP, and UniteM) for a second 
iteration of ensemble binning.

Completion and contamination statistics of the second iteration of ensemble bins 
were determined using the CheckM (v1.0.12) (96) lineage workflow. Bins with at least 
70% completion and less than 10% contamination were leveraged to determine a quality 
score of the three ensemble bin sets for each sample individually. The quality score 
was calculated as follows: score = completeness – (5 × contamination). The ensemble 
binning tool with the highest quality score was used as the bin set for that sample. For 
any samples where the number of bins generated from the first step of UniteM was too 
large for our computational limits, MetaBAT2 was used alone. Once a candidate bin set 
was chosen, RefineM (v0.0.24) (97) “outliers” was run using the following parameters: 
--td_perc 95 –gc_perc 95. All MAGs with at least 70% completion and less than 10% 
contamination were then manually examined and refined through anvi’o 25argaret (v5.2) 
(98), leveraging differential coverage and GC content with hierarchical clustering guiding 
refinements.

Read sets from the SIP experiment were trimmed identically, though they were 
assembled with both SPAdes (--meta option enabled) (v3.13) with the default kmer set 
and with MEGAHIT (v1.1.3) (99) with the default kmer set. Additionally, BFC error (100) 
correction was performed and assembled with SPAdes (v3.13) with the default kmer 
set. For all samples that had two sets of reads, the largest read set was assembled. 
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Abundance information for each contig was generated using Bowtie2 (v2.4.1) (101) by 
mapping reads from all samples (without T0), within the same habitat, to all contigs, for 
each assembly. T0 reads were only used on assemblies generated from T0 samples. Each 
assembly was binned separately into MAGs using MetaBAT2 (v2.12.1).

Additional sources

Genomes and assemblies for the stable isotope probing samples were downloaded from 
JGI on 7 December 2020 and 4 December 2020, respectively. These data sets were 
generated through the DOE-JGI metagenome annotation pipeline (102).

From these total efforts, a database of 13,290 medium- and high-quality (103) MAGs 
was generated using data from 882 Stordalen Mire field and microcosm metagenomes 
spanning sampling from 2011 to 2017. MAGs were annotated using DRAM (v1.3.2) (44). 
Taxonomy was assigned using GTDB-Tk (v2.1.1 r207) (104). These 13,290 MAGs were 
dereplicated at 97% identity using dRep (105) into 1,864 representative MAGs with galah 
(v0.3.0) (106) using the following parameter set: --precluster-ani 90 –ani 97 –precluster-
method finch. Accession information for metagenomic reads is provided in Table S1 tab 
MetaG_Accesion_Info, and the full database of 13,290 MAGs can be downloaded from 
https://doi.org/10.5281/zenodo.7596016.

Metatranscriptome analysis

Metatranscriptome libraries were prepared for 27 field samples at the University of 
Colorado Anschutz Medical Campus. Using 10 ng RNA for each, rRNA was first deple­
ted using the QIAseq FastSelect −5S/16S/23S (Qiagen) kit per the protocol with some 
modifications to follow the library protocol used by the Joint Genome Institute: probes 
for both plants and yeast were added, and only one-third of the probe volumes were 
used. Next, the TruSeq Stranded Library Preparation Kit (Illumina) was used to prepare 
the sequencing library. Libraries were sequenced on an Illumina NovaSeq 6000 system at 
the Genomics Core at the University of Colorado Anschutz Medical Campus.

Raw metatranscriptome reads were quality trimmed, and adapters were removed 
using bbduk (87) with the following flags: k=23 mink=11 hdist=1 qtrim=rl trmiq=20 
minlength=75. Reads were filtered with rqcfilter2 using the following flags: jni=t 
rna=t trimfragadapter=t qtrim=r trimq=0 maxns=1 maq=10 minlen=51 mlf=0.33 
phix=t removeribo=t removehuman=t removedog=t removecat=t removemouse=t 
khist=t removemicrobes=t mtst=t sketch kapa=t clumpify=t tmpdir=null barcodefilter=f 
trimpolyg=5. Trimmed filtered reads were mapped using Bowtie2 (101) against the 
dereplicated MAG database (n = 1,864 MAGs) with the following settings: -D 10 -R 2 -N 
1 -L 22 -I S,0,2.50. The resulting SAM file was converted to a BAM with samtools (107) and 
then filtered using the reformat.sh script from bbtools (87) with the following settings: 
idfilter=0.95 pairedonly=t primaryonly=t. Mapped reads were counted with htseq-count 
(108) with the flags: -a 0 -t CDS -I ID –stranded=reverse. Last, read counts were filtered 
to remove counts of <5 and were converted to geTMM values (109) in R. Metatranscrip­
tomic reads are available on NCBI, with accession numbers reported in Table S1 tab 
MetaT_Accesion_Info.

Further profiling of methylotrophy across Stordalen Mire MAGs

To better resolve the DRAM-suggested potential of the Stordalen methanogens for 
methylotrophy, the MAGs were searched via BLAST-P using a FASTA reference file (Fig. 
S2C; Table S2 tab FASTA_reference_for_genes_trees) of 53 well-characterized methyl­
otrophic gene types (20 mtxB genes, 16 mtxC genes, 10 mtxA genes, and 7 ram 
genes). The BLAST-P output (Table S2 tab BLASTP_results) was limited to include 
only hits with a bitscore of >60 from MAGs found to encode homologs of mtxB 
genes. Genes passing this threshold were phylogenetically analyzed using ProtPi­
peliner to build RaxML trees (https://github.com/TheWrightonLab/Protpipeliner/blob/
master/protpipeliner.py) relative to reference genes, including those used in the 
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BLAST-P search, plus other homologous sequences derived from UniProt from phys­
iologically characterized methylotrophic methanogens and acetogens (Table S2 tab 
FASTA_reference_for_genes_trees). Newick trees are available at https://doi.org/10.5281/
zenodo.7864933. Gene trees were built for mtxB (127 genes), mtxA (168 genes), mtxC 
(190 genes), ramX (100 genes), and methylated sulfur genes (36 genes). Trees were 
visually inspected in iTOL (110), and tree placement was used to confirm or refine the 
specific identification of genes (Table S2 tab Gene_ID_per_trees). In some cases, genes 
were only ambiguously identified as methylotrophy-relevant but substrate-nonspecific 
mtxA or mtxC. RamX proteins are known to be promiscuous activating enzymes across 
corrinoid proteins (111), and so activase-encoding genes were identified as evidence 
for methylotrophy in conjunction with mtxBCA genes but not used to infer substrate 
specificity for MAGs.

Eighty-five of the 86 MAGs belonging to the Methanobacteriales, Methanosarcinales, 
and Methanomassiliicoccales were found to encode genes for methylotrophy and were 
used throughout the remaining analyses of methylotrophic methanogenesis. However, 
MAGs were conservatively defined as methylotrophic only if they were found to encode 
genes for at least two types of the three core members of a methyltransferase system 
directly involved in substrate demethylation (MtxB, MtxC, and MtxA), one of which had 
to be the substrate demethylating mtxB. In the case of methyl sulfide metabolism, 
MAGs were screened for having single genes encoding any of the tri-functional MtsDFH 
proteins or at least one of the mtsAB (see Fig. 1C; Fig. S2). To determine if methylotrophy 
was being expressed within the MAGs, identified methylotrophic genes were mined from 
paired metatranscriptomic data (Table S2 tab Methanogen_Methylotrophic_geTMM). 
Analogous rules were used to label MAGs as active methylotrophs only if they were 
found to be expressing the majority of an identified methyltransferase system, including 
an mtxB gene. To determine overall order-level methanogen field activity, average (n = 3) 
geTMM values for all methanogen-expressed genes were mined from the data (Table S2 
tab Methanogen_geTMM_all_genes). Here, the Methanomassiliicoccales were identified 
as obligate likely hydrogen-dependent methylotrophs, while the Methanobacteriales and 
Methanosarcinales were classified as facultative methylotrophs.

Next, to query the bacterial community for methylotrophy genes, a similar BLAST-P 
approach was used to query the 12,868 bacterial MAGs just for mtxB genes—consid­
ered here the best single marker gene for methylotrophy—with a minimum bitscore 
of >200 (Table S5 tab BLAST_bitscore>200). A subset of the same (Table S2 tab 
FASTA_reference_for_genes_trees) FASTA reference file was used, limited to include only 
the mtxB genes. Bacterial MAGs were only screened for the highly substrate-specific 
mtxB as the best marker gene of methylotrophy to reduce potential nonspecific hits to 
other methylotrophy genes (e.g., other bacterial cobalamin-binding proteins). Identified 
genes were parsed from metatranscriptomes to determine active bacterial methylotro­
phy. Phylogenetic analysis using ProtPipeliner (Newick trees available at https://doi.org/
10.5281/zenodo.7864933) to confirm the substrate-resolved identity of mtxB genes 
was performed only for those encoded and expressed by the Acidobacteriota, Actino­
bacteriota, and Proteobacteria represented in Fig. 5B. To distinguish between bacterial 
mttB genes encoding and lacking the unique pyrrolysine (Pyl) residue, sequences were 
analyzed using Geneious 2023.0.1 (www.geneious.com) to look for gene truncation due 
to the amber codon encoding Pyl. Those found to be truncated were identified as 
“Pyl-MttB” [known to be specific to tri/di/monomethylamine (54)], and those found to 
lack said truncation were identified as “Non-Pyl MttB/MtxB” [known to be specific for 
quaternary amines (30)] (Fig. 5B).

MAG metagenome relative abundance determination

To determine metagenome abundances of the 97% dereplicated MAG set, we first 
mapped trimmed metagenome reads to the MAG set using Bowtie2 (v2.4.5) (101) using 
the following settings: -D 10 -R 2 -N 1 -L 22 -I S,0,2.50. The output SAM file was con­
verted to a sorted BAM using samtools (v1.9) (112) and filtered using the reformat.sh 
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script in the bbtools (87) package using idfilter=0.95 pairedonly=t primaryonly=t. MAG 
abundance was inferred from this using coverM (v0.6.0). The coverM (v0.6.0) genome 
(https://github.com/wwood/CoverM) was then run using the produced BAM files as 
input to calculate the coverage of the dereplicated MAGs within the field to permit 
the calculation of methanogen relative abundance. coverM was run with the following 
flags: coverm genome–-proper-pairs-only -x fna –min-read-percent-identity-pair 0.95 –
min-read-alignment-percent-pair 0.75 -m trimmed-means –trim-min 0.1 –trim-max 0.9. 
MAG relative abundances were calculated using the output in R. A final table containing 
the relative abundance of all MAGs within the 97% dereplicated set, plus the abundances 
of methanogen MAGs normalized to both the total summed abundance of all archaea 
and all methanogens, is shown in Table S4.

Phylogenomic analysis of the native methanogen community

Phylogenomic analysis of the 367 Stordalen Mire methanogen MAGs (Table S1 tab 
Methanogen_Genome_Info) was performed using the GTDB-Tk v2.1.1 r207 (104) run 
using the de novo workflow. The alignment was based on 53 concatenated arch­
aeal marker genes, and a GTDB-derived genome from the phylum Undinarchaeota 
(GCA_002495465.1) was used as an outgroup to root the tree. The generated tree was 
read and visually modified in R using the ggtree package (113). The Newick tree is 
available at https://doi.org/10.5281/zenodo.7864933.

Metabolite extraction and LC-MS/MS

Water-soluble metabolites were extracted from peat by adding 7 mL of autoclaved 
Milli-Q water to 1 g of wet peat in a sterile 15-mL centrifuge tube. Tubes were vortexed 
for 30 s two times, sonicated for 2 h at 22°C, and then centrifuged; the resulting 
6-mL supernatant served as the water extract. Two milliliters of this was aliquoted for 
LC-MS/MS and stored at −80°C until use.

Water-soluble extracted metabolites were thawed at room temperature and 
centrifuged to remove any resultant particulates. Each sample was divided into two 1-mL 
aliquots in 2-mL glass tube vials for hydrophilic interaction liquid chromatography (HILIC) 
and reverse-phase (RP) liquid chromatography, respectively. Both vials were dried down 
completely on a Vacufuge plus (Eppendorf, USA). Samples for HILIC were resuspended in 
a 50:50 solution of acetonitrile and water. Samples for RP were resuspended in a 20:80 
solution of HPLC grade methanol in water.

A Thermo Scientific Vanquish Duo ultra-high-performance liquid chromatography 
(UHPLC) system was used here for liquid chromatography. Extracts were separated with a 
Waters ACQUITY HSS T3 C18 column for RP separation and a Waters ACQUITY BEH amide 
column for HILIC separation.

Samples were injected in a 1-µL volume onto the column and eluted as follows: for 
RP, the gradient went from 99% mobile phase A (0.1% formic acid in H2O) to 95% mobile 
phase B (0.1% formic acid in methanol) over 16 min. For HILIC, the gradient went from 
99% mobile phase A (0.1% formic acid, 10 mM ammonium acetate, 90% acetonitrile, 
and 10% H2O) to 95% mobile phase B (0.1% formic acid, 10 mM ammonium acetate, 
50% acetonitrile, and 50% H2O). Both columns were run at 45°C with a flow rate of 
300 µL/min.

A Thermo Scientific Orbitrap Exploris 480 was used for spectral data collection with 
a spray voltage of 3,500 V for positive mode (for RP) and 2,500 V for negative mode (for 
HILIC) using the H-ESI source. The ion transfer tube and vaporizer temperature were both 
350°C. Compounds were fragmented using data-dependent MS/MS with higher energy 
collisional dissociation (HCD) collision energies of 20, 40, and 80.

The commercially available Compound Discoverer 3.2 software (Thermo Fisher 
Scientific) was used to analyze the data using the untargeted metabolomic workflow. 
Briefly, the spectra were first aligned, followed by a peak picking step. Putative ele­
mental compositions of unknown compounds were predicted using the exact mass, 
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isotopic pattern, fine isotopic pattern, and MS/MS data using the built-in HighChem 
Fragmentation Library of reference fragmentation mechanisms. Metabolite annotation 
was performed first by matching fragmentation scans, retention time, and ion mass to 
an in-house database built using 1,200 reference standards. Second, fragmentation scan 
(MS2) searches in mzCloud were performed, which is a curated database of MSn spectra 
containing more than 9 million spectra and 20,000 compounds.

Third, predicted compositions were obtained based on the mass error, matched 
isotopes, missing number of matched fragments, spectral similarity score (calculated by 
matching theoretical and measured isotope patterns), matched intensity percentage of 
the theoretical pattern, relevant portion of MS, and MS/MS scan. The mass tolerance 
used for estimating the predicted composition was 5 ppm. Finally, annotation was 
complemented by searching MS1 scans on different online databases with ChemSpider 
(using either the exact mass or the predicted formula). Based on the annotation results, 
metabolites were divided into four categories and were assigned as either Level 1, 
Level 2, or Level 3 following the Metabolomics Standards Initiative (114) : (i) full match 
to in-house databases, (ii) full match based on mzCloud, predicted composition, and 
ChemSpider, (iii) full match based on predicted composition and ChemSpider, and (iv) 
annotated by only one method (ChemSpider) with potential annotation being based on 
mass alone.

The structures of all chemical compounds identified via LC-MS/MS (Table S3 tabs 
7–9) in Stordalen Mire were examined only for any rank 1 species, including a methyla­
ted nitrogen, oxygen, or sulfur atom. Methylated compounds that met this criterion 
were then compared to known methylotrophic substrates (Fig. S3A and B) to look 
for structural homology. Note that compounds of interest for this study were only 
identified in the RP and not the HILIC data, and thus, only the former is of focus in 
this manuscript. Peak areas for identified compounds were normalized to the sum of 
all compounds within each individual sample prior to further analysis in R. Boxplots 
made in R v4.1.1(115) (Fig. S3C) show the individual averaged (n = 3) LC-MS/MS peak 
area for each species over thaw and depth gradients; these averaged peak areas were 
categorically summed by “methyl-N”/methylated amines and “methyl-O”/methylated 
oxygen compounds, which is shown in Fig. 3B. LC-MS/MS data can be found at https://
doi.org/10.5281/zenodo.7519815.

1H NMR

To identify field-present metabolites in Stordalen, including methanogenic and 
methylotrophic precursors, we performed 1H NMR on aliquots of the same peat 
extractions prepared for LC-MS/MS analyses. Samples (180  µL) were combined with 
2,2-dimethyl-2-silapentane-5-sulfonate-d6 (DSS-d6) in D2O (20  µL, 5  mM) and thor­
oughly mixed prior to transfer to 3-mm NMR tubes. NMR spectra were acquired on a 
Varian 600 MHz VNMRS spectrometer equipped with a 5-mm triple-resonance (HCN) cold 
probe at a regulated temperature of 298K. The 90° 1H pulse was calibrated prior to the 
measurement of each sample. The one-dimensional (1D) 1H spectra were acquired using 
a nuclear Overhauser effect spectroscopy (NOESY) pulse sequence with a spectral width 
of 12 ppm and 512 transients. The NOESY mixing time was 100  ms, and the acquisition 
time was 4  s, followed by a relaxation delay of 1.5  s during which presaturation of 
the water signal was applied. Time-domain free induction decays (57,472 total points) 
were zero filled to 131,072 total points prior to Fourier transform. Chemical shifts were 
referenced to the 1H methyl signal in DSS-d6 at 0 ppm. The 1D 1H spectra were manually 
processed, assigned metabolite identification, and quantified using Chenomx NMR Suite 
8.3. Metabolite identification was based on matching the chemical shift, J-coupling, and 
the intensity of experimental signals to compound signals in the Chenomx and custom 
in-house databases. Quantification was based on fitted metabolite signals relative to the 
internal standard (DSS-d6). Signal-to-noise ratios (S/N) were measured using MestReNova 
14 with the limit of quantification equal to an S/N of 10 and the limit of detection equal 
to an S/N of 3. Known methanogenic substrates were manually identified from the list 
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of quantitated metabolites, and average (n = 3) concentrations were plotted using R 
v4.1.1(115), as shown in Fig. 3. Summarized data are available in Table S3, and raw data 
can be found at https://doi.org/10.5281/zenodo.7519683.

Data visualization and statistics

Data were analyzed and visualized in R v4.1.1 (115, 116) using ggplot2 (117) unless 
otherwise specified. The superheat package was used to generate the heatmap in 
Fig. 1D. All reported statistical analyses, including ANOVA, Tukey’s HSD, and Pearson’s 
correlation, were performed in R using the ggpubr package (118).
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