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Highlights:

Revegetation on abandoned agricultural land remains poorly understood
Abandoned sugarcane fields in Hawai‘i offer a rich empirical opportunity
Grass was initially prominent, but woody vegetation increased over time
Non-native species dominated the composition of secondary vegetation

Vegetation recovered functional traits fastest, in ~53 years
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Abstract: Millions of hectares of agricultural land have been abandoned globally in recent

decades, presenting opportunities for secondary vegetation growth and restoration. While
abandoned fields have the potential to return to ecological communities with similar species
diversity to their pre-agricultural state, they alternatively may transition to novel ecosystems or
persist in degraded states that may have alternative functions that impact ecological and human
communities. Yet we lack an understanding of how vegetation naturally recovers on disturbed
lands. Using remote sensing and land survey data, we characterized the structure, composition,
and function of secondary vegetation canopies on former sugarcane fields in Hawai‘i that were
abandoned between 4 and 117 years ago. We used a species distribution model to identify
patches of uncultivated land with similar environmental conditions to abandoned sugarcane
fields to serve as reference ecosystems. Using these reference ecosystems, we evaluated how
secondary ecosystems at different ages since abandonment compare in terms of canopy structure,
composition, and function. Grasses were prevalent in the years immediately following
abandonment, but shrubs and trees dominated canopy structure on fields that had been
abandoned more than 20 years. Non-native species constituted most of the secondary vegetation,
but native vegetation cover increased on sugarcane fields that had been abandoned longer than
25 years. Secondary vegetation recovered canopy functional traits in < 53 years since
abandonment. Completely recovering the structural properties of reference ecosystems would
require over a century. Abandoned sugarcane fields are unlikely to recover the native
composition of reference ecosystems without active restoration. Our findings contribute to a
growing body of literature that characterizes whether and when the globally increasing area of

abandoned agricultural land may passively recover, which can direct restoration efforts on
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abandoned lands to enhance ecosystem services or guide alternative management to achieve

socio-cultural objectives.
1. Introduction

Agricultural land use change is a central component of global environmental change, with
implications for both human and natural systems worldwide (Isbell et al., 2013; Vitousek et al.,
1997). The expansion of agriculture drives land use change (Tilman et al., 2011), displacing natural
systems and causing systematic losses of biodiversity both locally (Dornelas et al., 2014; Vellend
et al., 2013) and globally (Murphy and Romanuk, 2014; Newbold et al., 2015). However, in many
developed countries, including the U.S., agricultural areas are contracting; upwards of 385 million
hectares have been abandoned in recent decades (Campbell et al., 2008). Here we consider a field
to be abandoned if it is no longer cultivated and has not been urbanized or converted to an
alternative land use. These abandoned fields have the potential to return to ecological communities
like their pre-agricultural state, but they alternatively may transition to novel ecosystems or persist
in degraded states that are often dominated by invasive vegetation with diminished structure and
function (Cramer et al., 2008; Yang et al., 2020). Despite common perceptions, the literature is
ambiguous as to whether, where, and when abandoned agricultural lands are beneficial to the
recovery of biodiversity (Queiroz et al., 2014; Subedi et al., 2021) and ecosystem services (Bell et
al., 2020; Lana-Renault et al., 2020).

As abandoned agricultural land becomes an increasingly common land cover type, interest
has grown in understanding revegetation patterns on these lands (Jakovac et al., 2021). While
decades of intense cultivation have led to local and global loss of biodiversity (Cardinale et al.,
2012; Zabel et al., 2019), strategic abandonment of these agricultural lands could lead to the

recovery of beneficial habitat for plants and animals (Beilin et al., 2014; Bourque et al., 2019;
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Fischer et al., 2009; Kelsey et al., 2018; Lortie et al., 2018; Navarro and Pereira, 2015; Sojnekova
and Chytry, 2015), if fields remain abandoned for a sufficient duration of time (Crawford et al.,
2022). Vegetation recovery is often crucial to the return of species at higher trophic levels, not
only providing habitat and food resources but also modifying environmental characteristics such
as temperature and temperature fluctuations in ways that support various species (Chazdon et al.,
2020; Cramer et al., 2008). Further, revegetation on retired lands can act as a buffer that insulates
more pristine lands from disturbance (Wang et al., 2020). If abandoned lands revegetate to native
vegetation, they may function as refugia from high intensity disturbances such as harvest or
pesticide use and increase connectivity between suitable habitat patches (Crouzeilles et al., 2020;
Molin et al., 2018). If instead they transition to weed patches or remain unvegetated, they may
have limited habitat value and could degrade surrounding habitat, stressing flora, fauna, and human
communities (Lasanta et al., 2017; Regos et al., 2016; van der Zanden et al., 2017; Vesk and Mac
Nally, 2006). Thus, much of the biodiversity value of abandoned lands depends on whether they
regenerate to suitable habitat, which is often tied to the type and extent of vegetation recovery
(Pérez-Cérdenas et al., 2021).

Investigations of post-abandonment succession have focused primarily on fields with lower
intensity cultivation histories such as pasture lands and experimental agricultural fields (Isbell et
al., 2019; Letcher and Chazdon, 2009; Norden et al., 2015; Pérez-Cardenas et al., 2021). As with
succession following natural disturbance (Pang et al., 2018; Turner et al., 1998; Xi et al., 2019),
the duration and intensity of cultivation influence the pace and trajectory of recovery on abandoned
agricultural land (Flinn and Marks, 2007; Fraterrigo et al., 2006; Moran et al., 2000). Landscape
context, such as proximity to forest fragments, can also influence revegetation patterns on
abandoned fields (César et al., 2021; Molin et al., 2017). Few studies have examined secondary

vegetation on intensely cultivated cropland, and most of those have focused on relatively small-
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scale field studies (Grau et al., 1997; Isbell et al., 2019; Martinez and Lugo, 2008). Yet, a
considerable amount of abandonment is likely to occur as groundwater limitations affect high
value, intensely cultivated fields such as those in California and Australia (Brown et al., 2022;
Bryant et al., 2020; Hanak et al., 2017; Millar and Roots, 2012). Additional abandonment is
expected if policies promote intensive cultivation on a smaller area in accordance with the Shared
Socioeconomic Pathway 1 (SSP1), which is geared toward a sustainable future (Leclere et al.,
2020; Popp et al., 2017).

Extensive field measurements have enhanced our understanding of post-abandonment
vegetation recovery across the Neotropics (Poorter et al., 2021, 2016; Rozendaal et al., 2019), but
collecting field measurements across the anticipated extent of abandoned agricultural land is not
feasible. For decades, satellite remote sensing data have been used to monitor regional and global
changes in vegetation cover and land use (Beuchle et al., 2015; Cui et al., 2022; Hansen et al.,
2013; Souza et al., 2020, 2013; Zhu, 2017). A growing number of studies have used remotely
sensed data to identify agricultural land abandonment (Dara et al., 2018; de Castro et al., 2022;
Estel et al., 2015; Kolecka and Kozak, 2019; Prishchepov et al., 2012; Suziedelyte Visockiene et
al., 2019; Yin et al., 2018). However, few studies have leveraged these data to monitor vegetation
recovery after abandonment at regional scales (César et al., 2021; Janus et al., 2021; Kolecka,
2021; Kolecka et al., 2015; Sackov et al., 2020; Wuyun et al., 2022). A tradeoff of using vegetation
indices and land cover classifications derived from optical remote sensing data is that these data
are limited to characterizing the vegetation canopy (Glenn et al., 2008). Despite this limitation,
analyses leveraging these data are valuable to develop scalable methods to monitor vegetation
growth to complement field observations and improve our understanding of ecosystem recovery
across the current and increasing expanse of abandoned agricultural land (Estoque et al., 2019;

Gvein et al., 2023; Perpifia Castillo et al., 2020; Popp et al., 2017).
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Abandoned sugarcane fields in Hawai‘i present a rich empirical opportunity to enhance our
conceptual understanding of vegetation recovery following abandonment. Once widely grown
across Hawai‘i, over 46,582 hectares of sugarcane land were abandoned between 4 and 117 years
ago. Using Hawai’i as a case study, we evaluated the recovery of vegetation canopy properties on
abandoned sugarcane land leveraging a combination of land surveys, vegetation data, and remotely
sensed imagery. Specifically, we addressed the following three questions: What is the ecological
structure, composition, and function of the secondary vegetation canopy on abandoned agricultural
land? How do these properties of secondary vegetation canopies change with the time since a field
was abandoned? After how long, if ever, do the characteristics of secondary vegetation converge
to those of uncultivated ecosystems? We found that vegetation canopy structure categories
progressed from grasslands to woody vegetation over several decades. Invasive species were
prevalent in secondary vegetation canopies and exhibited similar functional traits to the canopies
of reference ecosystems. Estimated timelines to recover the canopy properties of reference
ecosystems varied from decades for functional traits to thousands of years for native vegetation
representation.

2. Methods

2.1. Sugarcane in Hawai’i

Sugarcane plantations in Hawai’i expanded from 4,000 ha in 1867 to 38,500 ha in 1905
(MacLennan, 2004), driven by a combination of favorable trade conditions with the U.S. and
aggressive agricultural intensification and extensification by American businesses (Kahane and
Mardfin, 1987). While some plantations closed within a few years and remained uncultivated
thereafter (Conde and Best, 1973), overall sugarcane cultivation expanded to more than 98,000 ha

in 1969 (HSPA, 1995). The area cultivated with sugarcane began declining in the 1980s because
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of competition with tourism for land and water resources (State of Hawaii Department of Planning
and Economic Development, 1980), cheaper sugar production internationally (HSPA, 1995), and
a shift in preference to high fructose corn syrup (Dorrance and Morgan, 2005). The last commercial
sugar operation in Hawai‘i closed in 2016 (Melrose et al., 2016). Some abandoned sugarcane land
has been converted to commercial forestry, production of genetically modified seeds, diversified
agriculture (e.g., lettuce, melons, tropical fruit), or suburban developments. However, 46,582 ha
of former sugarcane land, abandoned between 4-117 years ago, are not currently used for

agriculture and have not been converted to alternative land uses (Perroy et al., 2016).

Hawai'i

BB 30 km

‘ Years Abandoned [JJj 4 [l 11 [ 2036 [ 4540 7275 94-117|

Figure 1. Abandoned sugarcane fields in Hawai‘i total 46,582 ha across the islands Kaua‘i
(a), O‘ahu (b), Maui (c), and Hawai‘i (d). Abandoned fields are colored based on the number
of years that they have been abandoned before the year 2020. Most of the abandonment occurred
20-36 years ago. Areas that have been abandoned longer (>72 years) occur primarily on O‘ahu,
Maui, and Hawai‘i.

2.2. Identifying abandoned sugarcane land
We use a combination of historical and modern land surveys to identify abandoned

sugarcane fields (Fig. 1). Sugarcane cultivation in Hawai‘i was surveyed in 1900, 1920, 1937 and
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1980, and documented on hand-drafted maps that have since been digitized into shapefiles (State
of Hawaii Department of Agriculture Planning and Development Section and US Soil
Conservation Service, 1980; Tetra Tech EM Inc., 2006). Two additional agricultural land cover
surveys were completed in 2015 and 2020 using a combination of WorldView-2 high-resolution
satellite imagery, GIS land use layers, and field visits (Melrose et al., 2016; Perroy and Collier,
2021). These six agricultural land cover shapefiles (years 1900, 1920, 1937, 1980, 2015, 2020)
were used to determine where and when sugarcane fields were abandoned. A field was considered
abandoned if it was designated as a sugarcane field in one land cover survey but was no longer
used to grow sugarcane in any future land cover survey. We used RStudio software (RStudio Team,
2022) to calculate the difference between agricultural land use shapefiles to identify abandoned
fields. Relevant code is available in our GitHub repository with additional details in the
Supplementary Information.

Due to our focus on assessing the traits of recovering vegetation on abandoned sugarcane
land, we filtered out former sugarcane fields that have been converted to other crops, tree
plantations, or alternative anthropogenic uses according to the Carbon Assessment of Hawai‘i
(CAH) GIS dataset. The CAH provides the most recent detailed map of land use and cover across
Hawai‘i and was created by integrating previous land use maps and high-resolution imagery (Price
etal., 2016). To refine estimates of when sugarcane land was abandoned between surveys, we used
a variety of historical records that documented when plantations were initially cultivated and
ultimately abandoned (Conde and Best, 1973; Meyers, 1999). Further details about the start and
end dates for plantations can be found in the Supplementary Information.

2.3. Assessing revegetation patterns
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In alignment with recent studies of vegetation recovery following agricultural land
abandonment (Chazdon, 2014; Mata et al., 2022; Poorter et al., 2021), we assessed the canopy
properties of secondary ecosystems on three axes: structure, composition, and function. Evaluating
secondary ecosystems across multiple dimensions holistically captures revegetation patterns
following intense cultivation. Canopy structure and canopy composition, hereafter, structure and
composition, respectively, were categorically defined, and canopy functional traits, hereafter,
functional traits, were quantitatively estimated with satellite-derived vegetation indices, as
described below. These remotely sensed data were validated against ground observations of tree
height and species as well as separate remotely sensed data that estimated vegetation height and
biomass (see Supplementary Information). To develop an understanding of whether secondary
ecosystems resembled uncultivated vegetation, we constructed reference plots that shared the
biophysical characteristics of abandoned sugarcane fields to the extent possible but were not
previously cultivated or grazed based on land use data dating back to 1900. We used the values of
vegetation attributes extracted from the uncultivated ecosystems to estimate the recovery time for
secondary ecosystem properties to reach reference levels.

2.3.1. Vegetation structure and composition

We first assessed trends in the structure of recovering vegetation on abandoned sugarcane
fields by intersecting the abandoned sugarcane fields with the CAH dataset and extracting the
major land cover (Maj_LC) attribute. Our analysis only considered the abandoned sugarcane fields
where Maj LC was one of four categories associated with vegetation structure: forest, shrubland,
grassland, or bare ground. We first calculated the area of each abandoned parcel and then the
percent of each parcel’s area that was in each of the four structure categories. We grouped all

parcels that have been abandoned for the same number of years and calculated the weighted
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average of the percent cover in each structure category (Eq. 1) (National Institute of Standards and
Technology, 2001a). For each structure category (e.g., forest cover), the weighted average (X,,) is
the sum of the product of percent forest cover in each parcel (X;) and the abandoned parcel’s area
(wi) divided by the sum of all the parcel areas. The subscript i represents each of the abandoned
parcels and 7 is the total number of abandoned parcels. In some cases, parcels were entirely one
structure cover type (e.g., 100% grassland), implying an observation of 0% cover for other
structure categories (e.g., shrubland, forest, and bare ground) for that abandoned parcel. We
included the implied observations to avoid artificially reducing sample sizes by calculating the
weighted average only using instances where a given vegetation structure had non-zero percent

Ccover.

n
S i wiX;

Xw = (Eq. 1)

I wi

The weighted standard deviation (SD,,) for each weighted average percent cover value was
calculated using Equation 2 (National Institute of Standards and Technology, 2001b). All variables
were the same as Equation 1 with the addition of a variable for the number of non-zero weights
(N’). The weighted standard deviation was divided by the square root of the number of
observations to yield a weighted standard error which was multiplied by 1.96 to define the 95%

confidence interval for each of the weighted average calculations from Equation 1.

I wiXi — Xw)?
SDy, = \[ (1{/'—1)2?=1wi (Eq. 2)

N

To assess the robustness of our metric for canopy structure, we extracted LANDFIRE’s
Existing Vegetation Height 30 m raster within abandoned sugarcane fields (LANDFIRE, 2020).
LANDFIRE vegetation height increased with time since abandonment (Figure S1), which is

consistent with our results using the structure metric derived from the CAH. We also determined
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that these remotely sensed structure metrics are similar to field measurements of vegetation height
(USDA Forest Service, 2021) (see Supplementary Information).

We leveraged a similar approach to measure the composition of secondary vegetation on
abandoned sugarcane fields using habitat status (Hab_Status), another attribute of the CAH dataset
that was intersected with the abandoned sugarcane fields. Habitat status differentiates the
composition of secondary ecosystems across four categories: native dominated, non-native
dominated, native/non-native mix, and bare ground. Using a more detailed land cover attribute in
the CAH dataset (Det LC), we determined that the native/non-native mix were primarily
composed of non-native vegetation types, and these mixed native/non-native vegetation patches
composed <1% of the abandoned area. Thus, we combined the native/non-native mix and non-
native dominated composition classes into one non-native composition class, resulting in three
categories to analyze vegetation composition: native dominated, non-native dominated, and bare
ground. Following the approach used with the structure categories, we calculated the percent of
each abandoned parcel’s total area in each of the composition categories, grouped all parcels
abandoned for the same number of years, and calculated the area-weighted average of the percent
cover in each composition category (Eq. 1). The weighted standard deviation was also calculated
as previously described (Eq. 2) and was used to calculate a 95% confidence interval for the
weighted average of percent cover for each composition category. When compared to observations
of tree composition in USDA Forest Service plots (USDA Forest Service, 2021), the remotely
sensed canopy composition metric we derived from CAH distinguished plots dominated by native
or non-native species with >82% accuracy (see Supplementary Information).

2.3.2. Vegetation function

12
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We estimated functional characteristics of secondary vegetation using vegetation indices.
Vegetation indices capitalize on how plants reflect different wavelengths of light to distinguish
vegetation within a remotely sensed image (Roberts et al., 2018; Tucker, 1979; Verrelst et al.,
2015; Xue and Su, 2017). Previous studies have utilized vegetation indices to classify adjacent
vegetation based on their structural properties such as the differences in leaf area index between
grass and tree canopies (Huete et al., 2002; Pogas et al., 2020) or phenology such as seasonal
variations between annual and perennial vegetation (Brown et al., 2013; Gong et al., 2015;
Wardlow et al., 2007; Zeng et al., 2020). Here we calculated three vegetation indices from
Sentinel-2 Multispectral Instrument imagery (European Space Agency (ESA), 2015) to
approximate the functional traits of secondary vegetation: the soil adjusted vegetation index
(SAVI) (Huete et al., 2002), the normalized difference in red-edge index (NDRE) (Barnes et al.,
2000), and the normalized difference in water index (NDWI) (Gao, 1996). SAVI is strongly
correlated with gross primary productivity and is resistant to changes in soil brightness when
vegetation cover is low (Huete et al., 2002; Ren et al., 2018; Tunca et al., 2023; Zhou et al., 2014).
SAVI is sensitive to leaf area index (Gong et al., 2003; Zhen et al., 2021), so it also provides a
measure of canopy structure (Roberts et al., 2018). NDRE is calculated using a ratio of two bands
at red-edge wavelengths (705 and 783 nm in this study) to amplify the expression of chlorophyll
absorption (Barnes et al., 2000; Evangelides and Nobajas, 2020). NDRE has been used to monitor
crop maturity (Morlin Carneiro et al., 2020; Thompson et al., 2019), vegetative stress (Eitel et al.,
2011; Poudel et al., 2023), and foliar nitrogen content (Bandyopadhyay et al., 2017; Crema et al.,
2020). Finally, NDWI provides critical insight into canopy water content (Chai et al., 2021; Gao,
1996; Zhou et al., 2022) and live fuel moisture (Dennison et al., 2005; Lai et al., 2022; Roberts et

al., 2006; Xie et al., 2022; Zacharakis and Tsihrintzis, 2023), which can capture the seasonal
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phenology of secondary vegetation, particularly on abandoned sugarcane fields in dry climates.
All three vegetation indices are correlated with aboveground biomass (Cho and Skidmore, 2009;
Hidayatullah et al., 2023; Huang et al., 2009; Jin et al., 2014; Munyati, 2022; Na et al., 2018; Peng
and Gitelson, 2012), which holds true in this context based on the correlation between all three
vegetation indices and biomass estimates from the GEDI spaceborne-LIDAR sensor (Dubayah et
al., 2022) (see Supplementary Information).

Using Sentinel-2 Surface Reflectance imagery collected between October 1, 2018 and
October 1, 2021, we created two composite images that encompass 6-month seasons. We
generated 6-month composite images to overcome any data gaps that result from cloud cover in
individual images. The first season spanned October through March, roughly aligning with the
Hawaiian season of Ho‘oilo, the wet season. The second season extended from April through
September, matching the Hawaiian season of Kau, the dry season. For each composite image, we
only included pixels with a cloud probability less than 50 percent based on the Sentinel-2 Cloud
Probability image collection, which was generated using the sentinel2-cloud-detector algorithm
(Copernicus Service Information, 2022a, 2022b). The value of each band in each pixel in the
composite images was the median value of the cloud-free pixels at that location across all the
images in each 6-month season for that year. A minimum of four images were used to calculate
the value of a pixel in each composite image, but an average of 78 and 84 images were used to
generate each pixel in the wet and dry season composites, respectively (Table S2). The three
vegetation indices (SAVI, NDRE, and NDWI) were calculated using each of the seasonal
composite images. Within each abandoned sugarcane parcel, we extracted the average value of
each vegetation index in each season. We calculated the seasonal area-weighted mean value of

each vegetation index in each season among fields that were abandoned for the same number of
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years (Eq. 1). We also calculated the 95% confidence interval associated with each seasonal area-
weighted mean vegetation index (Eq. 2).
2.4. Constructing Reference Fields

To compare recovering vegetation on abandoned fields to ecosystems without a legacy of
obvious canopy disturbance, we built a Maximum Entropy (Maxent) environmental niche model
(Elith et al., 2011; Phillips et al., 2006) to identify locations in Hawai‘i that have similar climate,
topography, and soil traits to former sugarcane fields but no history of being cultivated or
urbanized. Maxent has been used extensively to model habitat ranges based on the environmental
conditions for aquatic (Mafuwe et al., 2022; Silva et al., 2019; Wang et al., 2018) and terrestrial
species (Molloy et al., 2014; Srivastava et al., 2021; Su et al., 2021; Zhang et al., 2021), including
plants (Ab Lah etal., 2021; Adhikari etal., 2012; Remya et al., 2015). We implemented the Maxent
model using RStudio software (RStudio Team, 2022) and the Wallace modular platform (Kass et
al., 2018). We provided Maxent with 2,000 occurrence points that were randomly distributed
across abandoned sugarcane fields. We provided 13 environmental rasters to characterize Hawai‘i
in terms of climate (air temperature, surface temperature, precipitation, humidity) (Giambelluca et
al., 2014, 2013), topography (elevation, slope percent, easting, northing) (LANDFIRE, 2022a,
2022b, 2022c), and soil (pH, cation exchange capacity, saturated hydraulic conductivity, organic
matter, soil moisture) (Deenick et al., 2014). Climate rasters were available at a resolution of 250
m (0.00225°) (Giambelluca et al., 2014, 2013). Elevation, slope percent, and aspect rasters were
downloaded from LANDFIRE (LANDFIRE, 2022a, 2022b, 2022¢) and resampled from their
native 30 m resolution to 250 m to align with the climate rasters. The aspect raster was additionally
separated into northing and easting components. We converted individual attributes from the Soil

Atlas of Hawai‘i (Deenick et al., 2014), a shapefile derived from the Natural Resources and
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Conservation Service (NRCS) database, to 250 m rasters to match the resolution of the other
environmental rasters. We randomly sampled ten thousand background points from the extent of
the eight main Hawaiian Islands. It is uncommon to have known locations where a species was
absent, so background points are used to capture the conditions that influence the geographic
distribution of the species across the study region, which is consistent with recommendations for
implementing Maxent (Phillips et al., 2009).

The occurrence points were spatially partitioned into four groups. The model was trained
using 75 percent of the occurrence data and validated against the remaining 25 percent. We built
environmental niche models using both linear and quadratic transformations of the 13
environmental predictor variables to capture potential non-linear relationships between
environmental conditions and sugarcane habitat while avoiding a model that overfit the data
(Merow et al., 2013). The optimal model, which had the lowest corrected Akaike information
criterion value, only used linear transformations and included 10 of the 13 predictors: air
temperature, surface temperature, and soil organic matter predictors had coefficients of zero and
were excluded from the optimal model. We used the optimal Maxent model to predict habitat
suitability for sugarcane across 250 m raster cells covering the extent of Hawai‘i based on the
underlying environmental conditions. We used a complementary log-log (cloglog) transformation
to convert Maxent’s raw relative occurrence rates to a probability of sugarcane having the potential
to be grown at a location based on the environmental conditions (Phillips et al., 2017). We then
reclassified the continuous range of habitat probability values to binary presence and absence
values using the 10-percentile training presence threshold (p10). This threshold assumes that 10
percent of the occurrence points with the lowest habitat suitability are not representative of the

environmental conditions for sugarcane (Kramer-Schadt et al., 2013; Radosavljevic and Anderson,
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2014). Our model output and occurrence points yielded a 10-percentile training presence threshold
of 0.36. Pixels in the habitat suitability raster with values greater than or equal to this p10 threshold
were included as potential reference ecosystems, while the remainder were omitted. The reference
ecosystem raster was vectorized, intersected with the CAH dataset, (Price et al., 2016) and filtered
for locations where the land cover was forest, shrubland, grassland, or bare ground. Following the
approach used for the abandoned sugarcane fields as described in Section 2.3.1, we calculated the
proportion of the reference ecosystem area in each of the structural (e.g., grassland, shrubland,
forest, bare) and compositional (e.g., native, non-native, bare) classes. To additionally compare
the functional traits of post-sugarcane secondary vegetation to those of reference vegetation, we
calculated the mean of the three vegetation indices (SAVI, NDRE, NDWI) in the wet and dry
seasons within the reference ecosystems following the procedure in Section 2.3.2.

In order to assess whether or not the constructed reference ecosystems had similar
environmental characteristics to abandoned sugarcane fields, we extracted the average value of
key topographic (elevation, percent slope) (LANDFIRE, 2022c, 2022b), climatic (annual
precipitation, relative humidity) (Giambelluca et al., 2014, 2013), soil (pH, CEC, soil moisture)
(Deenick et al., 2014), and geological (substrate age) (Sherrod et al., 2021) variables. Other than
the substrate age, all environmental variables were previously prepared as 250 m rasters, as
described above. Using the Geological Map for the State of Hawai‘i shapefile (Sherrod et al.,
2021), we calculated the mean age of the volcanic substrates by taking the average of the upper
and lower bounds provided by the AgeRange column. We isolated this new mean age column from
the shapefile and rasterized it on a 250 m grid that aligned with the other environmental variables.
We extracted the average characteristics of all eight environmental variables within reference

ecosystems and abandoned sugarcane fields. Fields that were abandoned for the same number of
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years were grouped, and the area-weighted average and 95% confidence interval of each
environmental property was calculated. We compared the area-weighted average of environmental
traits on abandoned fields to the average value of each environmental variable across reference
ecosystems. A subset of the environmental traits is plotted below; the remainder are included in
the Supplementary Information.

2.5. Visualizing Trends in Vegetation Outcomes

To visualize possible temporal relationships between vegetation structure, composition,
and function, we regressed each outcome variable (Y), for example the mean percent forest cover
in abandoned fields at a given time point, on the logarithmic transformation of the number of years
those parcels had been abandoned (Time) (Eq. 3). Using these regression models, we specified the
value of each structure, composition, and function trait in reference ecosystems as a target value
(Y) and calculated the number of years required for secondary vegetation to recover to those
values.

Y = intercept + g*In(Time) (Eq. 3)

Previous studies have observed logarithmic patterns in the recovery of several vegetation
traits such as biomass (Poorter et al., 2016), nitrogen fixation (Gei et al., 2018), species richness
(Rozendaal et al., 2019), and several other structural, compositional, and functional traits (Isbell
et al., 2019; Poorter et al., 2021). Succession theory also generally predicts non-linear rates of
ecological progression following disturbance with change initially occurring rapidly but slowing
as space, nutrients, light and other resources become limited (Drury and Nisbet, 1973; Foster and

Tilman, 2000).

3. Results

3.1. Environmental characteristics of sugarcane fields and reference ecosystems
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To assess the recovery of secondary vegetation on abandoned agricultural land, we used a
Maxent model to identify reference ecosystems with similar environmental conditions to historical
sugarcane fields in areas that were not previously cultivated. The reference ecosystems resembled
abandoned sugarcane fields across several key environmental traits (Fig. 2). Average elevation
was lowest among fields that were abandoned 73 years ago (66 m); however, there was no clear
relationship between elevation and time since abandonment. Reference ecosystems were at an
average elevation (257 m), which was higher than the average elevation across all abandoned
sugarcane fields (203 m) (Fig. 2). Generally, fields that were abandoned longer had steeper slopes:
fields abandoned 32, 72, and 97 years ago had the steepest average slopes (> 25%). The slope of
the reference ecosystems (17%) was slightly higher than the average slope across all abandoned
sugarcane fields (16%). Many of the fields that have been abandoned for over 20 years received
more than double the annual precipitation that occurred on recently abandoned fields, peaking at
3,427 mm on fields abandoned 36 years ago. Reference ecosystems received an average rainfall
of 2,674 mm, which was higher than the average rainfall across abandoned fields (2,262 mm).
Fields that have been abandoned longer tended to have more acidic soils compared to recently
abandoned areas. Fields that had been abandoned 45 years ago had the most acidic soils (pH =4.7)
followed by fields abandoned 97 and 75 years ago (pH = 5.1). Reference ecosystems soils were
acidic (pH = 5.4), which was slightly more acidic than the average soil pH among abandoned
sugarcane fields (pH = 5.5). Additional environmental conditions observed in abandoned
sugarcane fields and reference ecosystems are presented in the supplementary information (Fig.

S1).
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Figure 2. Environmental traits of abandoned sugarcane fields and constructed reference

fields. Each point is the area-weighted mean of each environmental trait among fields that have
been abandoned for the same number of years. Error bars represent the 95% confidence interval
of each area-weighted mean. Blue lines represent the average conditions for each environmental
trait in reference ecosystems. Across all ecosystem traits, the range of values observed on
abandoned sugarcane fields consistently include the average value of reference ecosystems.
3.2. Vegetation structure

We first assessed temporal changes in vegetation structure on abandoned sugarcane fields
and reference ecosystems. Grasslands constituted the highest proportion of secondary vegetation
on sugarcane fields in the years immediately following abandonment (< 11 years); however,
vegetation structure tended toward higher proportions of shrubs and trees on fields abandoned for

a longer period (Fig. 3). Percent cover of shrub vegetation was initially low, peaking in fields that

had been abandoned for 20 years, followed by a decrease in fields that had been abandoned longer.
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After 40 years, tree species occupied a similar or higher percentage of abandoned area compared
to shrubs. The percent cover of all structural categories approached the fractional composition of
reference ecosystems with more time since abandonment. While no structure class had a
significant relationship with the logarithmic transformation of time since abandonment, forest
cover had a positivem marginally significant relationship (p = 0.06) with the logarithmic
transformation of time since abandonment (Table 1). Several sites abandoned for more than 40

years have similar forest and grass cover to those of reference ecosystems.

(a) Forest (b) Shrubland
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Figure 3. Vegetation structure by age of abandoned fields. While high proportions of grasses
(c) were present immediately following abandonment, shrub (b) and tree (a) cover increased with
time since abandonment. The proportion of abandoned fields that was not vegetated (d) decreased
with more time since abandonment. Each point is the area-weighted mean of percent cover of each
vegetation structure category among fields that have been abandoned for the same number of years.
Error bars represent the 95% confidence interval of the area-weighted means. Blue lines represent
the percent cover of each structure category across the reference ecosystem areas. Gray dashed
lines reflect logarithmic models fit to the data to visualize possible temporal changes in vegetation
structure. Additional model details are in Table 1.
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Table 1. Effect of time since abandonment (log transformed) on various metrics of vegetation
structure, composition, and function. Models take the form: outcome variable = intercept +
B*In(Time). We calculated heteroskedasticity-robust standard errors for the coefficient estimates.
Significant p values (p < 0.05) are indicated with ** and marginally significant p values (p <0.1)
are indicated with *. We only estimate recovery times for outcome variables that have a marginally
significant or significant relationship with time. The model results for the % Not Vegetated
outcome variable related to structure and composition properties are equivalent because they
consider the same abandoned parcels.

Outcome Property Intercept | Coefficient | Coefficient D Adjusted | Estimated
Estimate (1)) Standard R? Recovery
Error Time
(Years)
% Forest Structure 3.9 11 5.6 0.064* 0.22 311
% Shrubland Structure 32 -3.0 53 0.58 -0.038 -
% Grassland Structure 46 -4.6 2.8 0.12 0.037 -
% Not Structure 18 -3.5 34 0.32 0.14 -
Vegetated
% Native Composition -12 5.1 1.9 0.017** 0.18 3900
% Invasive | Composition 94 -1.6 3.5 0.66 -0.042 -
NDRE (Wet) Function 0.12 0.092 0.017 <0.001%** 0.40 27
NDRE (Dry) Function 0.048 0.010 0.017 <0.001** 0.40 47
NDWI (Wet) Function -0.15 0.12 0.019 <0.001** 0.42 42
NDWI (Dry) Function -0.18 0.12 0.021 <0.001** 0.40 53
SAVI (Wet) Function 0.39 0.17 0.033 <0.001** 0.40 34
SAVI (Dry) Function 0.21 0.20 0.035 <0.001** 0.41 50

3.3. Vegetation Composition
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To further understand vegetation recovery on abandoned sugarcane fields, we assessed the

composition of secondary vegetation in terms of whether native or non-native species were

dominant. Independent of the amount of time since a field was abandoned, non-native species

dominated the composition of secondary vegetation. The proportion of native vegetation on former

fields typically increased with more time since abandonment; however, native vegetation cover

was variable across fields abandoned over 20 years from a high of 27% on fields abandoned for

100 years to nearly 0% on fields abandoned for either 73 or 117 years (Fig. 4). While native

vegetation cover had a significant positive relationship (p = 0.016) with the logarithmic

transformation of time (Table 1), this model predicted that abandoned fields would require 3,900

years to recover the native composition of reference ecosystems. This recovery time horizon

suggests that secondary ecosystems on abandoned sugarcane fields will remain compositionally

distinct from reference ecosystems without active restoration.

(a) Native

(b) Non-Native

(c) Not Vegetated
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~
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1
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Years Since Abandonment

Figure 4. Vegetation composition by age of abandoned fields. While the percent cover of native
vegetation (a) increased with time since abandonment, non-native species (b) consistently
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composed most of the secondary vegetation. Each point is the area-weighted mean of percent cover
of each vegetation composition type among fields that have been abandoned for the same number
of years. Error bars represent the 95% confidence interval of the area-weighted means. Blue lines
represent the percent cover of each composition category across the reference ecosystem areas.
Gray dashed lines reflect logarithmic models fit to the data to visualize possible temporal changes
in vegetation composition. Additional model details are in Table 1.
3.4. Vegetation Function

We used vegetation indices as approximate measures of vegetation function. The mean
values of all three vegetation indices in abandoned sugarcane fields generally increased on fields
that had been abandoned longer. Mean values of the vegetation indices increased fastest in the first
20 years following abandonment, and the rate of increase slowed on fields that were abandoned
longer (Fig. 5). The mean values of all three vegetation indices exceeded the respective mean
values in reference ecosystems. Older forests in reference ecosystems are often more structurally
complex, which increases shadows and may explain the lower average vegetation index values for
reference ecosystems. While there were limited differences between mean values for the
vegetation indices in the wet and dry seasons, most of the wet season values were higher than their
dry season counterparts among fields abandoned for the same length of time. Seasonal differences
were also minimal when calculating these vegetation indices in the reference ecosystems. The
mean value of all three vegetation indices during both the wet and dry seasons had significant
positive relationships with the logarithmic transformation of time (Table 1). The logarithmic

models estimated that vegetation indices reached average reference values between 27 and 53

years depending on the vegetation index and season.
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Figure 5. Vegetation indices by age of abandoned fields and season. These vegetation indices
captured foliar chlorophyll content and stress (NDRE), canopy-scale water content (NDWI), and
greenness and canopy structure (SAVI). Each point is the area-weighted mean of each vegetation
index in the dry (hollow) and wet (solid) seasons among fields that have been abandoned for the
same number of years. Error bars represent the 95% confidence interval of the area-weighted
means for each vegetation index in each season. Blue lines represent the percent cover of each
vegetation index across the reference ecosystem areas during the dry (dashed) and wet (solid)
seasons. Gray dashed lines reflect logarithmic models fit to the data to visualize possible temporal
changes in vegetation indices during the dry (dashed) and wet (solid) seasons. Additional model
details are in Table 1.

4. Discussion

Globally, the area of abandoned agricultural land exceeds 385 million hectares (Campbell
et al., 2008) with substantial increases in abandonment expected in the future (Leclére et al., 2020;
Popp et al., 2017). Understanding how these lands contribute to ecosystem functions such as native
species cover and carbon sequestration can inform the future management of abandoned
agricultural land. Here we characterized the structure, composition, and function of secondary
vegetation canopies on abandoned sugarcane fields in Hawai‘i. We assessed how those properties

varied with time since a field was abandoned between 4 and 117 years ago and estimated after how

25



505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

long, if ever, these secondary vegetation properties converged to those of uncultivated reference
ecosystems. We found that non-native grasses and trees dominated secondary vegetation, but these
novel ecosystems still resembled reference ecosystem canopies in terms of functional traits
associated with carbon and water storage. These attributes varied with the time since a field was
abandoned, trending toward woody vegetation and higher levels of functional traits with time.
While the secondary vegetation canopy structure and function converged across many sites that
had been abandoned for less than a century, secondary ecosystems are predicted to remain
compositionally distinct from reference ecosystems.

Weedy forbs and grasses represented most of the vegetation immediately following
abandonment likely due to the ease with which they disperse and grow (Funk, 2013; Levine et al.,
2003), especially in heavily disturbed environments (Cramer et al., 2008; D’ Antonio and Vitousek,
1992; Ellsworth et al., 2014; Xavier and D’Antonio, 2017). Non-native grasses were brought to
Hawai‘i primarily for livestock grazing (Ellsworth et al., 2014; Motooka et al., 2003; Williams
and Baruch, 2000), but they have unintentionally modified ecosystem structure, composition, and
function (Asner et al., 2008; Hamilton et al., 2021; Vitousek et al., 1997). Indigenous tree species
in Hawai‘i such as ‘Ohi‘a (Metrosideros polymorpha) and koa (Acacia koa) are accustomed to
growing in relatively open canopy environments (Mertelmeyer et al., 2019), so they struggle to
compete with invasive grasses (D’ Antonio and Vitousek, 1992). Grasses have similarly dominated
abandoned agricultural land elsewhere, including sites in Panama (Hooper et al., 2005), Spain
(Grigulis et al., 2005), and Australia (Standish et al., 2008). We found that shrub and tree canopies
successfully established on some abandoned sugarcane fields in Hawai‘i (Fig. 3); however, non-
native species constituted most of the woody vegetation (Fig. 4). While both ‘Ohi‘a and koa were

likely present in some areas prior to sugarcane cultivation, substantial distances between
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abandoned fields and intact forests limit the success of wind-dispersed ‘Ohi‘a seeds (Drake, 1992)
and practically eliminate vegetative regeneration of koa (Spatz and Mueller-Dombois, 1973). Even
in the absence of native vegetation, secondary vegetation on abandoned sugarcane fields exhibited
functional traits related to carbon storage and canopy water content as approximated with
vegetation indices (Fig. 5).

We found that all the vegetation properties changed with time since abandonment, but not
all properties had a significant relationship with time (Table 1). Vegetation structure trended from
grasses to shrubs and trees, which generally aligned with classic succession theory in temperate
forests (Clements, 1916; Egler, 1954) and succession following slash and burn agriculture in the
Neotropics (Guariguata and Ostertag, 2001). However, this succession pathway is unusual for
native vegetation in Hawai’i. For example, following volcanic disturbances, ‘0hi‘a, a dominant
tree species in native forests, is among the earliest colonizers on recent lava flows in Hawai’i
(Drake, 1992). A variety of other trees (e.g., ‘Olapa (Cheirodendron trigynum), ‘dhelo (Vaccinium
rhyncocarpa), kolea (Myrsine lanaiiensis)) and ferns (e.g., uluhe (Dicranopteris linearis), hapu‘u
tree ferns (Cibotium spp)) form the understory of the montane rainforests in subsequent decades
to centuries (Aplet and Vitousek, 1994; Clarkson, 1998). Similarly, after forest dieback, native
species recover over time through recruitment into canopy gaps and multiple mechanisms of
natural regeneration (Jacobi et al., 1988; Mertelmeyer et al., 2019). However, unlike natural
disturbances such as volcanic eruptions, intensive cultivation isolates land from seed sources for
regeneration and dramatically changes the microhabitat to favor fast dispersing invasive species
with minimal establishment requirements (Arroyo-Rodriguez et al., 2017; Cramer et al., 2008).
Furthermore, invasive trees, such as the species introduced to tree plantations in Hawai‘i, typically

do not facilitate the development of native forest understory (Ostertag et al., 2008). Thus, native
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trees would likely struggle to recover in the understory of non-native forest or a densely grass-
filled field without adequate substrates for regeneration such as native tree trunks, tree-fern trunks,
and bryophytes (Rehm et al., 2021, 2019). In contrast with the slow recovery of native canopy
composition on abandoned sugarcane fields, secondary vegetation quickly recovered carbon and
water storing capacities. Interestingly, we found all the vegetation indices on abandoned fields
frequently exceeded reference values on fields that have been abandoned more than ~50 years.
Reference ecosystems are likely to have more complex canopy structures that generate shadows
and may reduce vegetation index values compared to those measured in less structurally complex
secondary vegetation (Jiang et al., 2006; Zhang et al., 2015). The novel ecosystems that form on
fragmented post-agricultural land in Hawai‘i (Barton et al., 2021) may indeed store more carbon
and water than reference ecosystems, but further research would be necessary to test that
hypothesis.

Lastly, we analyzed whether and when the properties of secondary vegetation on
abandoned sugarcane land converged to those of reference ecosystems. Secondary vegetation
canopies recovered the approximated functional traits fastest (<53 years) after abandonment
(Figure 5). Neotropical secondary forests recovered functional traits such as wood density and
specific leaf area over similar timelines (Poorter et al., 2020). When considering vegetation
structure, we found that tree cover in secondary vegetation converged to that of reference
ecosystems despite decades of intensive cultivation (Figure 3). While several sites had similar
forest and grassland cover to reference ecosystems less than a century after abandonment,
complete recovery of canopy vegetation structure seems to take slightly longer than the 60-100
years required to recover the structural heterogeneity of old growth stands on abandoned

agricultural land in the Neotropics (Poorter et al., 2021). Forests have also been found to recover
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structure in a matter of decades following less severe disturbances (Moran et al., 2000; Rappaport
et al., 2018). The abandoned sugarcane fields in this study have a more intense disturbance history
than many abandoned fields that have been previously studied, which may account for this
prolonged recovery of canopy structural traits observed here. While native vegetation cover
increased over time, abandoned fields were projected to never recover the native composition of
reference ecosystems on a relevant time horizon (>3,900 years) (Figure 4; Table 1). Neotropical
secondary forests have previously recovered species richness in the canopy and subcanopy within
a few decades, but recovering species composition required between many decades and a few
centuries depending on the intensity of previous disturbances (Isbell et al., 2019; Letcher and
Chazdon, 2009; Martin et al., 2013; Pérez-Cardenas et al., 2021; Poorter et al., 2021; Rozendaal
et al., 2019). Abandoned fields in Hawai‘i may never recover their composition due to the lower
diversity of native tree species in Hawai‘i compared to many other tropical settings (Inman-
Narahari et al., 2013). Low diversity of native tree species in American Samoa has contributed to
secondary forests on abandoned agricultural land remaining compositionally distinct from mature
forests (Webb et al., 2021). Thus, agricultural disturbance has the potential to play an outsized role
in changing the composition of Hawai’i’s landscapes despite secondary vegetation recovering the
basic structure and function of a tropical forest. Recovering native-dominated ecosystems on
Hawai‘i’s abandoned sugarcane fields would likely require active restoration (Friday et al., 2015).
Alternatively, non-native vegetative stands may be restored to agroforestry systems composed of
a mixture of native and non-native species to yield social and cultural benefits as has been explored
on former pastures in Hawai‘i (Hastings et al., 2023).

While this study provides insight into patterns of secondary succession in terms of canopy

structure, composition, and function following intensive cultivation, it has some limitations. First,
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we relied on categorical variables that are inherently limited in their ability to capture the dynamic,
mixed states that are common in semi-natural secondary ecosystems. Future studies could
spectrally unmix satellite imagery to calculate the fractional cover of fine and woody vegetation
in each pixel, providing a continuous metric for structural succession. However, publicly available
remote sensing data lacks the spectral or spatial resolution to discern vegetation composition with
the detail of the categorical composition variable we used. Future field observations of species
composition would provide more nuanced insight into compositional succession but would require
time and resources that may not be feasible when assessing revegetation across large swaths of
abandoned land. Second, the vegetation indices used here serve as a proxy rather than direct
measure of ecosystem functional traits and were unable to evaluate the recovery of functional traits
in the understory of closed-canopy forest. While our current approach provides useful insight into
top of canopy vegetation, future studies could leverage increasingly available LIDAR data that
penetrates vegetated canopies to better characterize understory structure, composition, and
function (Almeida et al., 2021; Caughlin et al., 2016; de Almeida et al., 2020). Lastly, our approach
uses a chronosequence to analyze the recovery of secondary vegetation canopy properties in
relation to the time fields have been abandoned rather than measuring secondary vegetation
properties in each field over time. As with other studies that have applied chronosequences to study
vegetation recovery following abandonment, our study sites cover a range of precipitation,
elevation, and soil conditions. While we determined that the average recovery of vegetation traits
is consistent across the sources of environmental heterogeneity in our study sites, chronosequences

necessarily have limitations relative to following individual fields over time.

5. Conclusion
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Despite recent increases in agricultural land abandonment globally, we still have a limited
understanding of whether and when secondary vegetation can recover the biodiversity and
ecosystem services of uncultivated ecosystems. We explored the canopy structure, composition,
and function of secondary vegetation on sugarcane fields in Hawai‘i that were abandoned between
4 and 117 years ago. Our results suggest that even after prolonged, intense cultivation, secondary
vegetation on abandoned sugarcane land recovered the structure and functional traits of reference
ecosystems across sites that were abandoned less than a century but remained compositionally
distinct from reference ecosystems in perpetuity. Given that abandonment is expected to increase
on high-value, intensively cultivated land, further research is necessary to consider how cultivation
intensity and the diversity of species pools affect secondary vegetation development on abandoned
agricultural land. This study highlights the variable time required for secondary vegetation to
passively recover several attributes, which can guide decisions to restore or otherwise manage

abandoned agricultural land to promote biodiversity or a variety of ecosystem services.
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Appendix A. Supplementary Information

The GitHub repository for this project can be found at:

https://github.com/nakoafarrant/what follows fallow.
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