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Highlights:  15 

● Revegetation on abandoned agricultural land remains poorly understood 16 

● Abandoned sugarcane fields in Hawaiʻi offer a rich empirical opportunity 17 

● Grass was initially prominent, but woody vegetation increased over time 18 

● Non-native species dominated the composition of secondary vegetation  19 

● Vegetation recovered functional traits fastest, in ~53 years 20 

  21 
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Abstract: Millions of hectares of agricultural land have been abandoned globally in recent 22 

decades, presenting opportunities for secondary vegetation growth and restoration. While 23 

abandoned fields have the potential to return to ecological communities with similar species 24 

diversity to their pre-agricultural state, they alternatively may transition to novel ecosystems or 25 

persist in degraded states that may have alternative functions that impact ecological and human 26 

communities. Yet we lack an understanding of how vegetation naturally recovers on disturbed 27 

lands. Using remote sensing and land survey data, we characterized the structure, composition, 28 

and function of secondary vegetation canopies on former sugarcane fields in Hawaiʻi that were 29 

abandoned between 4 and 117 years ago. We used a species distribution model to identify 30 

patches of uncultivated land with similar environmental conditions to abandoned sugarcane 31 

fields to serve as reference ecosystems. Using these reference ecosystems, we evaluated how 32 

secondary ecosystems at different ages since abandonment compare in terms of canopy structure, 33 

composition, and function. Grasses were prevalent in the years immediately following 34 

abandonment, but shrubs and trees dominated canopy structure on fields that had been 35 

abandoned more than 20 years. Non-native species constituted most of the secondary vegetation, 36 

but native vegetation cover increased on sugarcane fields that had been abandoned longer than 37 

25 years. Secondary vegetation recovered canopy functional traits in ≤ 53 years since 38 

abandonment. Completely recovering the structural properties of reference ecosystems would 39 

require over a century. Abandoned sugarcane fields are unlikely to recover the native 40 

composition of reference ecosystems without active restoration. Our findings contribute to a 41 

growing body of literature that characterizes whether and when the globally increasing area of 42 

abandoned agricultural land may passively recover, which can direct restoration efforts on 43 
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abandoned lands to enhance ecosystem services or guide alternative management to achieve 44 

socio-cultural objectives. 45 

1. Introduction 46 

Agricultural land use change is a central component of global environmental change, with 47 

implications for both human and natural systems worldwide (Isbell et al., 2013; Vitousek et al., 48 

1997). The expansion of agriculture drives land use change (Tilman et al., 2011), displacing natural 49 

systems and causing systematic losses of biodiversity both locally (Dornelas et al., 2014; Vellend 50 

et al., 2013) and globally (Murphy and Romanuk, 2014; Newbold et al., 2015). However, in many 51 

developed countries, including the U.S., agricultural areas are contracting; upwards of 385 million 52 

hectares have been abandoned in recent decades (Campbell et al., 2008). Here we consider a field 53 

to be abandoned if it is no longer cultivated and has not been urbanized or converted to an 54 

alternative land use. These abandoned fields have the potential to return to ecological communities 55 

like their pre-agricultural state, but they alternatively may transition to novel ecosystems or persist 56 

in degraded states that are often dominated by invasive vegetation with diminished structure and 57 

function (Cramer et al., 2008; Yang et al., 2020). Despite common perceptions, the literature is 58 

ambiguous as to whether, where, and when abandoned agricultural lands are beneficial to the 59 

recovery of biodiversity (Queiroz et al., 2014; Subedi et al., 2021) and ecosystem services (Bell et 60 

al., 2020; Lana-Renault et al., 2020). 61 

As abandoned agricultural land becomes an increasingly common land cover type, interest 62 

has grown in understanding revegetation patterns on these lands (Jakovac et al., 2021). While 63 

decades of intense cultivation have led to local and global loss of biodiversity (Cardinale et al., 64 

2012; Zabel et al., 2019), strategic abandonment of these agricultural lands could lead to the 65 

recovery of beneficial habitat for plants and animals (Beilin et al., 2014; Bourque et al., 2019; 66 
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Fischer et al., 2009; Kelsey et al., 2018; Lortie et al., 2018; Navarro and Pereira, 2015; Sojneková 67 

and Chytrý, 2015), if fields remain abandoned for a sufficient duration of time (Crawford et al., 68 

2022). Vegetation recovery is often crucial to the return of species at higher trophic levels, not 69 

only providing habitat and food resources but also modifying environmental characteristics such 70 

as temperature and temperature fluctuations in ways that support various species (Chazdon et al., 71 

2020; Cramer et al., 2008). Further, revegetation on retired lands can act as a buffer that insulates 72 

more pristine lands from disturbance (Wang et al., 2020). If abandoned lands revegetate to native 73 

vegetation, they may function as refugia from high intensity disturbances such as harvest or 74 

pesticide use and increase connectivity between suitable habitat patches (Crouzeilles et al., 2020; 75 

Molin et al., 2018). If instead they transition to weed patches or remain unvegetated, they may 76 

have limited habitat value and could degrade surrounding habitat, stressing flora, fauna, and human 77 

communities (Lasanta et al., 2017; Regos et al., 2016; van der Zanden et al., 2017; Vesk and Mac 78 

Nally, 2006). Thus, much of the biodiversity value of abandoned lands depends on whether they 79 

regenerate to suitable habitat, which is often tied to the type and extent of vegetation recovery 80 

(Pérez-Cárdenas et al., 2021). 81 

Investigations of post-abandonment succession have focused primarily on fields with lower 82 

intensity cultivation histories such as pasture lands and experimental agricultural fields (Isbell et 83 

al., 2019; Letcher and Chazdon, 2009; Norden et al., 2015; Pérez-Cárdenas et al., 2021). As with 84 

succession following natural disturbance (Pang et al., 2018; Turner et al., 1998; Xi et al., 2019), 85 

the duration and intensity of cultivation influence the pace and trajectory of recovery on abandoned 86 

agricultural land (Flinn and Marks, 2007; Fraterrigo et al., 2006; Moran et al., 2000). Landscape 87 

context, such as proximity to forest fragments, can also influence revegetation patterns on 88 

abandoned fields (César et al., 2021; Molin et al., 2017). Few studies have examined secondary 89 

vegetation on intensely cultivated cropland, and most of those have focused on relatively small-90 
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scale field studies (Grau et al., 1997; Isbell et al., 2019; Martínez and Lugo, 2008). Yet, a 91 

considerable amount of abandonment is likely to occur as groundwater limitations affect high 92 

value, intensely cultivated fields such as those in California and Australia (Brown et al., 2022; 93 

Bryant et al., 2020; Hanak et al., 2017; Millar and Roots, 2012). Additional abandonment is 94 

expected if policies promote intensive cultivation on a smaller area in accordance with the Shared 95 

Socioeconomic Pathway 1 (SSP1), which is geared toward a sustainable future (Leclère et al., 96 

2020; Popp et al., 2017). 97 

Extensive field measurements have enhanced our understanding of post-abandonment 98 

vegetation recovery across the Neotropics (Poorter et al., 2021, 2016; Rozendaal et al., 2019), but 99 

collecting field measurements across the anticipated extent of abandoned agricultural land is not 100 

feasible. For decades, satellite remote sensing data have been used to monitor regional and global 101 

changes in vegetation cover and land use (Beuchle et al., 2015; Cui et al., 2022; Hansen et al., 102 

2013; Souza et al., 2020, 2013; Zhu, 2017). A growing number of studies have used remotely 103 

sensed data to identify agricultural land abandonment (Dara et al., 2018; de Castro et al., 2022; 104 

Estel et al., 2015; Kolecka and Kozak, 2019; Prishchepov et al., 2012; Suziedelyte Visockiene et 105 

al., 2019; Yin et al., 2018). However, few studies have leveraged these data to monitor vegetation 106 

recovery after abandonment at regional scales (César et al., 2021; Janus et al., 2021; Kolecka, 107 

2021; Kolecka et al., 2015; Sačkov et al., 2020; Wuyun et al., 2022). A tradeoff of using vegetation 108 

indices and land cover classifications derived from optical remote sensing data is that these data 109 

are limited to characterizing the vegetation canopy (Glenn et al., 2008). Despite this limitation, 110 

analyses leveraging these data are valuable to develop scalable methods to monitor vegetation 111 

growth to complement field observations and improve our understanding of ecosystem recovery 112 

across the current and increasing expanse of abandoned agricultural land (Estoque et al., 2019; 113 

Gvein et al., 2023; Perpiña Castillo et al., 2020; Popp et al., 2017). 114 
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Abandoned sugarcane fields in Hawai‘i present a rich empirical opportunity to enhance our 115 

conceptual understanding of vegetation recovery following abandonment. Once widely grown 116 

across Hawaiʻi, over 46,582 hectares of sugarcane land were abandoned between 4 and 117 years 117 

ago. Using Hawai’i as a case study, we evaluated the recovery of vegetation canopy properties on 118 

abandoned sugarcane land leveraging a combination of land surveys, vegetation data, and remotely 119 

sensed imagery. Specifically, we addressed the following three questions: What is the ecological 120 

structure, composition, and function of the secondary vegetation canopy on abandoned agricultural 121 

land? How do these properties of secondary vegetation canopies change with the time since a field 122 

was abandoned? After how long, if ever, do the characteristics of secondary vegetation converge 123 

to those of uncultivated ecosystems? We found that vegetation canopy structure categories 124 

progressed from grasslands to woody vegetation over several decades. Invasive species were 125 

prevalent in secondary vegetation canopies and exhibited similar functional traits to the canopies 126 

of reference ecosystems. Estimated timelines to recover the canopy properties of reference 127 

ecosystems varied from decades for functional traits to thousands of years for native vegetation 128 

representation. 129 

2. Methods 130 

2.1. Sugarcane in Hawai’i 131 

Sugarcane plantations in Hawai’i expanded from 4,000 ha in 1867 to 38,500 ha in 1905 132 

(MacLennan, 2004), driven by a combination of favorable trade conditions with the U.S. and 133 

aggressive agricultural intensification and extensification by American businesses (Kahane and 134 

Mardfin, 1987). While some plantations closed within a few years and remained uncultivated 135 

thereafter (Conde and Best, 1973), overall sugarcane cultivation expanded to more than 98,000 ha 136 

in 1969 (HSPA, 1995). The area cultivated with sugarcane began declining in the 1980s because 137 
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of competition with tourism for land and water resources (State of Hawaii Department of Planning 138 

and Economic Development, 1980), cheaper sugar production internationally (HSPA, 1995), and 139 

a shift in preference to high fructose corn syrup (Dorrance and Morgan, 2005). The last commercial 140 

sugar operation in Hawai‘i closed in 2016 (Melrose et al., 2016). Some abandoned sugarcane land 141 

has been converted to commercial forestry, production of genetically modified seeds, diversified 142 

agriculture (e.g., lettuce, melons, tropical fruit), or suburban developments. However, 46,582 ha 143 

of former sugarcane land, abandoned between 4-117 years ago, are not currently used for 144 

agriculture and have not been converted to alternative land uses (Perroy et al., 2016). 145 

 146 
Figure 1. Abandoned sugarcane fields in Hawaiʻi total 46,582 ha across the islands Kauaʻi 147 
(a), Oʻahu (b), Maui (c), and Hawaiʻi (d). Abandoned fields are colored based on the number 148 
of years that they have been abandoned before the year 2020. Most of the abandonment occurred 149 
20-36 years ago. Areas that have been abandoned longer (>72 years) occur primarily on Oʻahu, 150 
Maui, and Hawaiʻi. 151 
 152 
2.2. Identifying abandoned sugarcane land 153 

We use a combination of historical and modern land surveys to identify abandoned 154 

sugarcane fields (Fig. 1). Sugarcane cultivation in Hawai‘i was surveyed in 1900, 1920, 1937 and 155 
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1980, and documented on hand-drafted maps that have since been digitized into shapefiles (State 156 

of Hawaii Department of Agriculture Planning and Development Section and US Soil 157 

Conservation Service, 1980; Tetra Tech EM Inc., 2006). Two additional agricultural land cover 158 

surveys were completed in 2015 and 2020 using a combination of WorldView-2 high-resolution 159 

satellite imagery, GIS land use layers, and field visits (Melrose et al., 2016; Perroy and Collier, 160 

2021). These six agricultural land cover shapefiles (years 1900, 1920, 1937, 1980, 2015, 2020) 161 

were used to determine where and when sugarcane fields were abandoned. A field was considered 162 

abandoned if it was designated as a sugarcane field in one land cover survey but was no longer 163 

used to grow sugarcane in any future land cover survey. We used RStudio software (RStudio Team, 164 

2022) to calculate the difference between agricultural land use shapefiles to identify abandoned 165 

fields. Relevant code is available in our GitHub repository with additional details in the 166 

Supplementary Information.   167 

Due to our focus on assessing the traits of recovering vegetation on abandoned sugarcane 168 

land, we filtered out former sugarcane fields that have been converted to other crops, tree 169 

plantations, or alternative anthropogenic uses according to the Carbon Assessment of Hawai‘i 170 

(CAH) GIS dataset. The CAH provides the most recent detailed map of land use and cover across 171 

Hawaiʻi and was created by integrating previous land use maps and high-resolution imagery (Price 172 

et al., 2016). To refine estimates of when sugarcane land was abandoned between surveys, we used 173 

a variety of historical records that documented when plantations were initially cultivated and 174 

ultimately abandoned (Conde and Best, 1973; Meyers, 1999). Further details about the start and 175 

end dates for plantations can be found in the Supplementary Information.  176 

2.3. Assessing revegetation patterns 177 



 

10 

 In alignment with recent studies of vegetation recovery following agricultural land 178 

abandonment (Chazdon, 2014; Mata et al., 2022; Poorter et al., 2021), we assessed the canopy 179 

properties of secondary ecosystems on three axes: structure, composition, and function. Evaluating 180 

secondary ecosystems across multiple dimensions holistically captures revegetation patterns 181 

following intense cultivation. Canopy structure and canopy composition, hereafter, structure and 182 

composition, respectively, were categorically defined, and canopy functional traits, hereafter, 183 

functional traits, were quantitatively estimated with satellite-derived vegetation indices, as 184 

described below. These remotely sensed data were validated against ground observations of tree 185 

height and species as well as separate remotely sensed data that estimated vegetation height and 186 

biomass (see Supplementary Information). To develop an understanding of whether secondary 187 

ecosystems resembled uncultivated vegetation, we constructed reference plots that shared the 188 

biophysical characteristics of abandoned sugarcane fields to the extent possible but were not 189 

previously cultivated or grazed based on land use data dating back to 1900. We used the values of 190 

vegetation attributes extracted from the uncultivated ecosystems to estimate the recovery time for 191 

secondary ecosystem properties to reach reference levels. 192 

2.3.1. Vegetation structure and composition 193 

 We first assessed trends in the structure of recovering vegetation on abandoned sugarcane 194 

fields by intersecting the abandoned sugarcane fields with the CAH dataset and extracting the 195 

major land cover (Maj_LC) attribute. Our analysis only considered the abandoned sugarcane fields 196 

where Maj_LC was one of four categories associated with vegetation structure: forest, shrubland, 197 

grassland, or bare ground. We first calculated the area of each abandoned parcel and then the 198 

percent of each parcel’s area that was in each of the four structure categories. We grouped all 199 

parcels that have been abandoned for the same number of years and calculated the weighted 200 
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average of the percent cover in each structure category (Eq. 1) (National Institute of Standards and 201 

Technology, 2001a). For each structure category (e.g., forest cover), the weighted average (!"#) is 202 

the sum of the product of percent forest cover in each parcel (Xi) and the abandoned parcel’s area 203 

(wi) divided by the sum of all the parcel areas. The subscript i represents each of the abandoned 204 

parcels and n is the total number of abandoned parcels. In some cases, parcels were entirely one 205 

structure cover type (e.g., 100% grassland), implying an observation of 0% cover for other 206 

structure categories (e.g., shrubland, forest, and bare ground) for that abandoned parcel. We 207 

included the implied observations to avoid artificially reducing sample sizes by calculating the 208 

weighted average only using instances where a given vegetation structure had non-zero percent 209 

cover.  210 

!"# = 	 &'(1
) #'*'
&'(1
) #'

   (Eq. 1) 211 

The weighted standard deviation (+,#) for each weighted average percent cover value was 212 

calculated using Equation 2 (National Institute of Standards and Technology, 2001b). All variables 213 

were the same as Equation 1 with the addition of a variable for the number of non-zero weights 214 

(N’). The weighted standard deviation was divided by the square root of the number of 215 

observations to yield a weighted standard error which was multiplied by 1.96 to define the 95% 216 

confidence interval for each of the weighted average calculations from Equation 1. 217 

+,# 	= 	-
&'(1
) #'(*'	/	*0)2
(2′	31)	4'(1

) 0'
2ʻ

 (Eq. 2) 218 

To assess the robustness of our metric for canopy structure, we extracted LANDFIRE’s 219 

Existing Vegetation Height 30 m raster within abandoned sugarcane fields (LANDFIRE, 2020). 220 

LANDFIRE vegetation height increased with time since abandonment (Figure S1), which is 221 

consistent with our results using the structure metric derived from the CAH. We also determined 222 
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that these remotely sensed structure metrics are similar to field measurements of vegetation height 223 

(USDA Forest Service, 2021) (see Supplementary Information). 224 

 We leveraged a similar approach to measure the composition of secondary vegetation on 225 

abandoned sugarcane fields using habitat status (Hab_Status), another attribute of the CAH dataset 226 

that was intersected with the abandoned sugarcane fields. Habitat status differentiates the 227 

composition of secondary ecosystems across four categories: native dominated, non-native 228 

dominated, native/non-native mix, and bare ground. Using a more detailed land cover attribute in 229 

the CAH dataset (Det_LC), we determined that the native/non-native mix were primarily 230 

composed of non-native vegetation types, and these mixed native/non-native vegetation patches 231 

composed <1% of the abandoned area. Thus, we combined the native/non-native mix and non-232 

native dominated composition classes into one non-native composition class, resulting in three 233 

categories to analyze vegetation composition: native dominated, non-native dominated, and bare 234 

ground. Following the approach used with the structure categories, we calculated the percent of 235 

each abandoned parcel’s total area in each of the composition categories, grouped all parcels 236 

abandoned for the same number of years, and calculated the area-weighted average of the percent 237 

cover in each composition category (Eq. 1). The weighted standard deviation was also calculated 238 

as previously described (Eq. 2) and was used to calculate a 95% confidence interval for the 239 

weighted average of percent cover for each composition category. When compared to observations 240 

of tree composition in USDA Forest Service plots (USDA Forest Service, 2021), the remotely 241 

sensed canopy composition metric we derived from CAH distinguished plots dominated by native 242 

or non-native species with >82% accuracy (see Supplementary Information). 243 

2.3.2. Vegetation function 244 
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We estimated functional characteristics of secondary vegetation using vegetation indices. 245 

Vegetation indices capitalize on how plants reflect different wavelengths of light to distinguish 246 

vegetation within a remotely sensed image (Roberts et al., 2018; Tucker, 1979; Verrelst et al., 247 

2015; Xue and Su, 2017). Previous studies have utilized vegetation indices to classify adjacent 248 

vegetation based on their structural properties such as the differences in leaf area index between 249 

grass and tree canopies (Huete et al., 2002; Pôças et al., 2020) or phenology such as seasonal 250 

variations between annual and perennial vegetation (Brown et al., 2013; Gong et al., 2015; 251 

Wardlow et al., 2007; Zeng et al., 2020). Here we calculated three vegetation indices from 252 

Sentinel-2 Multispectral Instrument imagery (European Space Agency (ESA), 2015) to 253 

approximate the functional traits of secondary vegetation: the soil adjusted vegetation index 254 

(SAVI) (Huete et al., 2002), the normalized difference in red-edge index (NDRE) (Barnes et al., 255 

2000), and the normalized difference in water index (NDWI) (Gao, 1996). SAVI is strongly 256 

correlated with gross primary productivity and is resistant to changes in soil brightness when 257 

vegetation cover is low (Huete et al., 2002; Ren et al., 2018; Tunca et al., 2023; Zhou et al., 2014). 258 

SAVI is sensitive to leaf area index (Gong et al., 2003; Zhen et al., 2021), so it also provides a 259 

measure of canopy structure (Roberts et al., 2018). NDRE is calculated using a ratio of two bands 260 

at red-edge wavelengths (705 and 783 nm in this study) to amplify the expression of chlorophyll 261 

absorption (Barnes et al., 2000; Evangelides and Nobajas, 2020). NDRE has been used to monitor 262 

crop maturity (Morlin Carneiro et al., 2020; Thompson et al., 2019), vegetative stress (Eitel et al., 263 

2011; Poudel et al., 2023), and foliar nitrogen content (Bandyopadhyay et al., 2017; Crema et al., 264 

2020). Finally, NDWI provides critical insight into canopy water content (Chai et al., 2021; Gao, 265 

1996; Zhou et al., 2022) and live fuel moisture (Dennison et al., 2005; Lai et al., 2022; Roberts et 266 

al., 2006; Xie et al., 2022; Zacharakis and Tsihrintzis, 2023), which can capture the seasonal 267 
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phenology of secondary vegetation, particularly on abandoned sugarcane fields in dry climates. 268 

All three vegetation indices are correlated with aboveground biomass (Cho and Skidmore, 2009; 269 

Hidayatullah et al., 2023; Huang et al., 2009; Jin et al., 2014; Munyati, 2022; Na et al., 2018; Peng 270 

and Gitelson, 2012), which holds true in this context based on the correlation between all three 271 

vegetation indices and biomass estimates from the GEDI spaceborne-LIDAR sensor (Dubayah et 272 

al., 2022) (see Supplementary Information). 273 

Using Sentinel-2 Surface Reflectance imagery collected between October 1, 2018 and 274 

October 1, 2021, we created two composite images that encompass 6-month seasons. We 275 

generated 6-month composite images to overcome any data gaps that result from cloud cover in 276 

individual images. The first season spanned October through March, roughly aligning with the 277 

Hawaiian season of Ho‘oilo, the wet season. The second season extended from April through 278 

September, matching the Hawaiian season of Kau, the dry season. For each composite image, we 279 

only included pixels with a cloud probability less than 50 percent based on the Sentinel-2 Cloud 280 

Probability image collection, which was generated using the sentinel2-cloud-detector algorithm 281 

(Copernicus Service Information, 2022a, 2022b). The value of each band in each pixel in the 282 

composite images was the median value of the cloud-free pixels at that location across all the 283 

images in each 6-month season for that year. A minimum of four images were used to calculate 284 

the value of a pixel in each composite image, but an average of 78 and 84 images were used to 285 

generate each pixel in the wet and dry season composites, respectively (Table S2). The three 286 

vegetation indices (SAVI, NDRE, and NDWI) were calculated using each of the seasonal 287 

composite images. Within each abandoned sugarcane parcel, we extracted the average value of 288 

each vegetation index in each season. We calculated the seasonal area-weighted mean value of 289 

each vegetation index in each season among fields that were abandoned for the same number of 290 
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years (Eq. 1). We also calculated the 95% confidence interval associated with each seasonal area-291 

weighted mean vegetation index (Eq. 2). 292 

2.4. Constructing Reference Fields 293 

To compare recovering vegetation on abandoned fields to ecosystems without a legacy of 294 

obvious canopy disturbance, we built a Maximum Entropy (Maxent) environmental niche model 295 

(Elith et al., 2011; Phillips et al., 2006) to identify locations in Hawai‘i that have similar climate, 296 

topography, and soil traits to former sugarcane fields but no history of being cultivated or 297 

urbanized. Maxent has been used extensively to model habitat ranges based on the environmental 298 

conditions for aquatic (Mafuwe et al., 2022; Silva et al., 2019; Wang et al., 2018) and terrestrial 299 

species (Molloy et al., 2014; Srivastava et al., 2021; Su et al., 2021; Zhang et al., 2021), including 300 

plants (Ab Lah et al., 2021; Adhikari et al., 2012; Remya et al., 2015). We implemented the Maxent 301 

model using RStudio software (RStudio Team, 2022) and the Wallace modular platform (Kass et 302 

al., 2018). We provided Maxent with 2,000 occurrence points that were randomly distributed 303 

across abandoned sugarcane fields. We provided 13 environmental rasters to characterize Hawaiʻi 304 

in terms of climate (air temperature, surface temperature, precipitation, humidity) (Giambelluca et 305 

al., 2014, 2013), topography (elevation, slope percent, easting, northing) (LANDFIRE, 2022a, 306 

2022b, 2022c), and soil (pH, cation exchange capacity, saturated hydraulic conductivity, organic 307 

matter, soil moisture) (Deenick et al., 2014). Climate rasters were available at a resolution of 250 308 

m (0.00225º) (Giambelluca et al., 2014, 2013). Elevation, slope percent, and aspect rasters were 309 

downloaded from LANDFIRE (LANDFIRE, 2022a, 2022b, 2022c) and resampled from their 310 

native 30 m resolution to 250 m to align with the climate rasters. The aspect raster was additionally 311 

separated into northing and easting components. We converted individual attributes from the Soil 312 

Atlas of Hawai‘i (Deenick et al., 2014), a shapefile derived from the Natural Resources and 313 



 

16 

Conservation Service (NRCS) database, to 250 m rasters to match the resolution of the other 314 

environmental rasters. We randomly sampled ten thousand background points from the extent of 315 

the eight main Hawaiian Islands. It is uncommon to have known locations where a species was 316 

absent, so background points are used to capture the conditions that influence the geographic 317 

distribution of the species across the study region, which is consistent with recommendations for 318 

implementing Maxent (Phillips et al., 2009).  319 

The occurrence points were spatially partitioned into four groups. The model was trained 320 

using 75 percent of the occurrence data and validated against the remaining 25 percent. We built 321 

environmental niche models using both linear and quadratic transformations of the 13 322 

environmental predictor variables to capture potential non-linear relationships between 323 

environmental conditions and sugarcane habitat while avoiding a model that overfit the data 324 

(Merow et al., 2013). The optimal model, which had the lowest corrected Akaike information 325 

criterion value, only used linear transformations and included 10 of the 13 predictors: air 326 

temperature, surface temperature, and soil organic matter predictors had coefficients of zero and 327 

were excluded from the optimal model. We used the optimal Maxent model to predict habitat 328 

suitability for sugarcane across 250 m raster cells covering the extent of Hawaiʻi based on the 329 

underlying environmental conditions. We used a complementary log-log (cloglog) transformation 330 

to convert Maxent’s raw relative occurrence rates to a probability of sugarcane having the potential 331 

to be grown at a location based on the environmental conditions (Phillips et al., 2017). We then 332 

reclassified the continuous range of habitat probability values to binary presence and absence 333 

values using the 10-percentile training presence threshold (p10). This threshold assumes that 10 334 

percent of the occurrence points with the lowest habitat suitability are not representative of the 335 

environmental conditions for sugarcane (Kramer-Schadt et al., 2013; Radosavljevic and Anderson, 336 
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2014). Our model output and occurrence points yielded a 10-percentile training presence threshold 337 

of 0.36. Pixels in the habitat suitability raster with values greater than or equal to this p10 threshold 338 

were included as potential reference ecosystems, while the remainder were omitted. The reference 339 

ecosystem raster was vectorized, intersected with the CAH dataset, (Price et al., 2016) and filtered 340 

for locations where the land cover was forest, shrubland, grassland, or bare ground. Following the 341 

approach used for the abandoned sugarcane fields as described in Section 2.3.1, we calculated the 342 

proportion of the reference ecosystem area in each of the structural (e.g., grassland, shrubland, 343 

forest, bare) and compositional (e.g., native, non-native, bare) classes. To additionally compare 344 

the functional traits of post-sugarcane secondary vegetation to those of reference vegetation, we 345 

calculated the mean of the three vegetation indices (SAVI, NDRE, NDWI) in the wet and dry 346 

seasons within the reference ecosystems following the procedure in Section 2.3.2.  347 

In order to assess whether or not the constructed reference ecosystems had similar 348 

environmental characteristics to abandoned sugarcane fields, we extracted the average value of 349 

key topographic (elevation, percent slope) (LANDFIRE, 2022c, 2022b), climatic (annual 350 

precipitation, relative humidity) (Giambelluca et al., 2014, 2013), soil (pH, CEC, soil moisture) 351 

(Deenick et al., 2014), and geological (substrate age) (Sherrod et al., 2021) variables. Other than 352 

the substrate age, all environmental variables were previously prepared as 250 m rasters, as 353 

described above. Using the Geological Map for the State of Hawaiʻi shapefile (Sherrod et al., 354 

2021), we calculated the mean age of the volcanic substrates by taking the average of the upper 355 

and lower bounds provided by the AgeRange column. We isolated this new mean age column from 356 

the shapefile and rasterized it on a 250 m grid that aligned with the other environmental variables. 357 

We extracted the average characteristics of all eight environmental variables within reference 358 

ecosystems and abandoned sugarcane fields. Fields that were abandoned for the same number of 359 
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years were grouped, and the area-weighted average and 95% confidence interval of each 360 

environmental property was calculated. We compared the area-weighted average of environmental 361 

traits on abandoned fields to the average value of each environmental variable across reference 362 

ecosystems. A subset of the environmental traits is plotted below; the remainder are included in 363 

the Supplementary Information. 364 

2.5. Visualizing Trends in Vegetation Outcomes 365 

To visualize possible temporal relationships between vegetation structure, composition, 366 

and function, we regressed each outcome variable (Y), for example the mean percent forest cover 367 

in abandoned fields at a given time point, on the logarithmic transformation of the number of years 368 

those parcels had been abandoned (Time) (Eq. 3). Using these regression models, we specified the 369 

value of each structure, composition, and function trait in reference ecosystems as a target value 370 

(Y) and calculated the number of years required for secondary vegetation to recover to those 371 

values.  372 

Y = intercept + 5*ln(Time)  (Eq. 3) 373 

 Previous studies have observed logarithmic patterns in the recovery of several vegetation 374 

traits such as biomass (Poorter et al., 2016), nitrogen fixation (Gei et al., 2018),  species richness 375 

(Rozendaal et al., 2019), and several other structural, compositional, and functional traits (Isbell 376 

et al., 2019; Poorter et al., 2021). Succession theory also generally predicts non-linear rates of 377 

ecological progression following disturbance with change initially occurring rapidly but slowing 378 

as space, nutrients, light and other resources become limited (Drury and Nisbet, 1973; Foster and 379 

Tilman, 2000).  380 

3. Results 381 

3.1. Environmental characteristics of sugarcane fields and reference ecosystems 382 
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To assess the recovery of secondary vegetation on abandoned agricultural land, we used a 383 

Maxent model to identify reference ecosystems with similar environmental conditions to historical 384 

sugarcane fields in areas that were not previously cultivated. The reference ecosystems resembled 385 

abandoned sugarcane fields across several key environmental traits (Fig. 2). Average elevation 386 

was lowest among fields that were abandoned 73 years ago (66 m); however, there was no clear 387 

relationship between elevation and time since abandonment. Reference ecosystems were at an 388 

average elevation (257 m), which was higher than the average elevation across all abandoned 389 

sugarcane fields (203 m) (Fig. 2). Generally, fields that were abandoned longer had steeper slopes: 390 

fields abandoned 32, 72, and 97 years ago had the steepest average slopes (≥ 25%). The slope of 391 

the reference ecosystems (17%) was slightly higher than the average slope across all abandoned 392 

sugarcane fields (16%). Many of the fields that have been abandoned for over 20 years received 393 

more than double the annual precipitation that occurred on recently abandoned fields, peaking at 394 

3,427 mm on fields abandoned 36 years ago. Reference ecosystems received an average rainfall 395 

of 2,674 mm, which was higher than the average rainfall across abandoned fields (2,262 mm). 396 

Fields that have been abandoned longer tended to have more acidic soils compared to recently 397 

abandoned areas. Fields that had been abandoned 45 years ago had the most acidic soils (pH = 4.7) 398 

followed by fields abandoned 97 and 75 years ago (pH = 5.1). Reference ecosystems soils were 399 

acidic (pH = 5.4), which was slightly more acidic than the average soil pH among abandoned 400 

sugarcane fields (pH = 5.5). Additional environmental conditions observed in abandoned 401 

sugarcane fields and reference ecosystems are presented in the supplementary information (Fig. 402 

S1). 403 
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 404 
Figure 2. Environmental traits of abandoned sugarcane fields and constructed reference 405 
fields. Each point is the area-weighted mean of each environmental trait among fields that have 406 
been abandoned for the same number of years. Error bars represent the 95% confidence interval 407 
of each area-weighted mean. Blue lines represent the average conditions for each environmental 408 
trait in reference ecosystems. Across all ecosystem traits, the range of values observed on 409 
abandoned sugarcane fields consistently include the average value of reference ecosystems. 410 
  411 
3.2. Vegetation structure  412 

We first assessed temporal changes in vegetation structure on abandoned sugarcane fields 413 

and reference ecosystems. Grasslands constituted the highest proportion of secondary vegetation 414 

on sugarcane fields in the years immediately following abandonment (< 11 years); however, 415 

vegetation structure tended toward higher proportions of shrubs and trees on fields abandoned for 416 

a longer period (Fig. 3). Percent cover of shrub vegetation was initially low, peaking in fields that 417 

had been abandoned for 20 years, followed by a decrease in fields that had been abandoned longer. 418 
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After 40 years, tree species occupied a similar or higher percentage of abandoned area compared 419 

to shrubs. The percent cover of all structural categories approached the fractional composition of 420 

reference ecosystems with more time since abandonment. While no structure class had a 421 

significant relationship with the logarithmic transformation of time since abandonment, forest 422 

cover had a positivem marginally significant relationship (p = 0.06) with the logarithmic 423 

transformation of time since abandonment (Table 1). Several sites abandoned for more than 40 424 

years have similar forest and grass cover to those of reference ecosystems. 425 

 426 

Figure 3. Vegetation structure by age of abandoned fields. While high proportions of grasses 427 
(c) were present immediately following abandonment, shrub (b) and tree (a) cover increased with 428 
time since abandonment. The proportion of abandoned fields that was not vegetated (d) decreased 429 
with more time since abandonment. Each point is the area-weighted mean of percent cover of each 430 
vegetation structure category among fields that have been abandoned for the same number of years. 431 
Error bars represent the 95% confidence interval of the area-weighted means. Blue lines represent 432 
the percent cover of each structure category across the reference ecosystem areas. Gray dashed 433 
lines reflect logarithmic models fit to the data to visualize possible temporal changes in vegetation 434 
structure. Additional model details are in Table 1.  435 
 436 
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Table 1. Effect of time since abandonment (log transformed) on various metrics of vegetation 437 
structure, composition, and function. Models take the form: outcome variable = intercept + 438 
5*ln(Time). We calculated heteroskedasticity-robust standard errors for the coefficient estimates. 439 
Significant p values (p < 0.05) are indicated with ** and marginally significant p values (p < 0.1) 440 
are indicated with *. We only estimate recovery times for outcome variables that have a marginally 441 
significant or significant relationship with time. The model results for the % Not Vegetated 442 
outcome variable related to structure and composition properties are equivalent because they 443 
consider the same abandoned parcels. 444 

Outcome Property Intercept 
Estimate 

Coefficient 
(5) 

Coefficient 
Standard 

Error 

p Adjusted 
R2 

Estimated 
Recovery 

Time 
(Years) 

% Forest Structure 3.9 11 5.6 0.064* 0.22 311 

% Shrubland Structure 32 -3.0 5.3 0.58 -0.038 – 

% Grassland Structure 46 -4.6 2.8 0.12 0.037 – 

% Not 
Vegetated 

Structure 18 -3.5 3.4 0.32 0.14 – 

% Native Composition -12 5.1 1.9 0.017** 0.18 3900 

% Invasive Composition 94 -1.6 3.5 0.66 -0.042 – 

NDRE (Wet) Function 0.12 0.092 0.017 <0.001*** 0.40 27 

NDRE (Dry) Function 0.048 0.010 0.017 <0.001** 0.40 47 

NDWI (Wet) Function -0.15 0.12 0.019 <0.001** 0.42 42 

NDWI (Dry) Function -0.18 0.12 0.021 <0.001** 0.40 53 

SAVI (Wet) Function 0.39 0.17 0.033 <0.001** 0.40 34 

SAVI (Dry) Function 0.21 0.20 0.035 <0.001** 0.41 50 

 445 
3.3. Vegetation Composition 446 
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To further understand vegetation recovery on abandoned sugarcane fields, we assessed the 447 

composition of secondary vegetation in terms of whether native or non-native species were 448 

dominant. Independent of the amount of time since a field was abandoned, non-native species 449 

dominated the composition of secondary vegetation. The proportion of native vegetation on former 450 

fields typically increased with more time since abandonment; however, native vegetation cover 451 

was variable across fields abandoned over 20 years from a high of 27% on fields abandoned for 452 

100 years to nearly 0% on fields abandoned for either 73 or 117 years (Fig. 4). While native 453 

vegetation cover had a significant positive relationship (p = 0.016) with the logarithmic 454 

transformation of time (Table 1), this model predicted that abandoned fields would require 3,900 455 

years to recover the native composition of reference ecosystems. This recovery time horizon 456 

suggests that secondary ecosystems on abandoned sugarcane fields will remain compositionally 457 

distinct from reference ecosystems without active restoration. 458 

 459 
Figure 4. Vegetation composition by age of abandoned fields. While the percent cover of native 460 
vegetation (a) increased with time since abandonment, non-native species (b) consistently 461 
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composed most of the secondary vegetation. Each point is the area-weighted mean of percent cover 462 
of each vegetation composition type among fields that have been abandoned for the same number 463 
of years. Error bars represent the 95% confidence interval of the area-weighted means. Blue lines 464 
represent the percent cover of each composition category across the reference ecosystem areas. 465 
Gray dashed lines reflect logarithmic models fit to the data to visualize possible temporal changes 466 
in vegetation composition. Additional model details are in Table 1.  467 
 468 
3.4. Vegetation Function 469 

We used vegetation indices as approximate measures of vegetation function. The mean 470 

values of all three vegetation indices in abandoned sugarcane fields generally increased on fields 471 

that had been abandoned longer. Mean values of the vegetation indices increased fastest in the first 472 

20 years following abandonment, and the rate of increase slowed on fields that were abandoned 473 

longer (Fig. 5). The mean values of all three vegetation indices exceeded the respective mean 474 

values in reference ecosystems. Older forests in reference ecosystems are often more structurally 475 

complex, which increases shadows and may explain the lower average vegetation index values for 476 

reference ecosystems. While there were limited differences between mean values for the 477 

vegetation indices in the wet and dry seasons, most of the wet season values were higher than their 478 

dry season counterparts among fields abandoned for the same length of time. Seasonal differences 479 

were also minimal when calculating these vegetation indices in the reference ecosystems. The 480 

mean value of all three vegetation indices during both the wet and dry seasons had significant 481 

positive relationships with the logarithmic transformation of time (Table 1). The logarithmic 482 

models estimated that vegetation indices reached average reference values between 27 and 53 483 

years depending on the vegetation index and season.  484 
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 485 

Figure 5. Vegetation indices by age of abandoned fields and season. These vegetation indices 486 
captured foliar chlorophyll content and stress (NDRE), canopy-scale water content (NDWI), and 487 
greenness and canopy structure (SAVI). Each point is the area-weighted mean of each vegetation 488 
index in the dry (hollow) and wet (solid) seasons among fields that have been abandoned for the 489 
same number of years. Error bars represent the 95% confidence interval of the area-weighted 490 
means for each vegetation index in each season. Blue lines represent the percent cover of each 491 
vegetation index across the reference ecosystem areas during the dry (dashed) and wet (solid) 492 
seasons. Gray dashed lines reflect logarithmic models fit to the data to visualize possible temporal 493 
changes in vegetation indices during the dry (dashed) and wet (solid) seasons. Additional model 494 
details are in Table 1.  495 
  496 
4. Discussion 497 

Globally, the area of abandoned agricultural land exceeds 385 million hectares (Campbell 498 

et al., 2008) with substantial increases in abandonment expected in the future (Leclère et al., 2020; 499 

Popp et al., 2017). Understanding how these lands contribute to ecosystem functions such as native 500 

species cover and carbon sequestration can inform the future management of abandoned 501 

agricultural land. Here we characterized the structure, composition, and function of secondary 502 

vegetation canopies on abandoned sugarcane fields in Hawai‘i. We assessed how those properties 503 

varied with time since a field was abandoned between 4 and 117 years ago and estimated after how 504 
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long, if ever, these secondary vegetation properties converged to those of uncultivated reference 505 

ecosystems. We found that non-native grasses and trees dominated secondary vegetation, but these 506 

novel ecosystems still resembled reference ecosystem canopies in terms of functional traits 507 

associated with carbon and water storage. These attributes varied with the time since a field was 508 

abandoned, trending toward woody vegetation and higher levels of functional traits with time. 509 

While the secondary vegetation canopy structure and function converged across many sites that 510 

had been abandoned for less than a century, secondary ecosystems are predicted to remain 511 

compositionally distinct from reference ecosystems. 512 

Weedy forbs and grasses represented most of the vegetation immediately following 513 

abandonment likely due to the ease with which they disperse and grow (Funk, 2013; Levine et al., 514 

2003), especially in heavily disturbed environments (Cramer et al., 2008; D’Antonio and Vitousek, 515 

1992; Ellsworth et al., 2014; Xavier and D’Antonio, 2017). Non-native grasses were brought to 516 

Hawaiʻi primarily for livestock grazing (Ellsworth et al., 2014; Motooka et al., 2003; Williams 517 

and Baruch, 2000), but they have unintentionally modified ecosystem structure, composition, and 518 

function (Asner et al., 2008; Hamilton et al., 2021; Vitousek et al., 1997). Indigenous tree species 519 

in Hawaiʻi such as ‘ōhiʻa (Metrosideros polymorpha) and koa (Acacia koa) are accustomed to 520 

growing in relatively open canopy environments (Mertelmeyer et al., 2019), so they struggle to 521 

compete with invasive grasses (D’Antonio and Vitousek, 1992). Grasses have similarly dominated 522 

abandoned agricultural land elsewhere, including sites in Panama (Hooper et al., 2005), Spain 523 

(Grigulis et al., 2005), and Australia (Standish et al., 2008). We found that shrub and tree canopies 524 

successfully established on some abandoned sugarcane fields in Hawaiʻi (Fig. 3); however, non-525 

native species constituted most of the woody vegetation (Fig. 4). While both ʻōhiʻa and koa were 526 

likely present in some areas prior to sugarcane cultivation, substantial distances between 527 
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abandoned fields and intact forests limit the success of wind-dispersed ‘ōhi‘a seeds (Drake, 1992) 528 

and practically eliminate vegetative regeneration of koa (Spatz and Mueller-Dombois, 1973). Even 529 

in the absence of native vegetation, secondary vegetation on abandoned sugarcane fields exhibited 530 

functional traits related to carbon storage and canopy water content as approximated with 531 

vegetation indices (Fig. 5).  532 

We found that all the vegetation properties changed with time since abandonment, but not 533 

all properties had a significant relationship with time (Table 1). Vegetation structure trended from 534 

grasses to shrubs and trees, which generally aligned with classic succession theory in temperate 535 

forests (Clements, 1916; Egler, 1954) and succession following slash and burn agriculture in the 536 

Neotropics (Guariguata and Ostertag, 2001). However, this succession pathway is unusual for 537 

native vegetation in Hawai’i. For example, following volcanic disturbances, ‘ōhi‘a, a dominant 538 

tree species in native forests, is among the earliest colonizers on recent lava flows in Hawai’i 539 

(Drake, 1992). A variety of other trees (e.g., ʻōlapa (Cheirodendron trigynum), ʻōhelo (Vaccinium 540 

rhyncocarpa), kōlea (Myrsine lanaiiensis)) and ferns (e.g., uluhe (Dicranopteris linearis), hāpuʻu 541 

tree ferns (Cibotium spp)) form the understory of the montane rainforests in subsequent decades 542 

to centuries (Aplet and Vitousek, 1994; Clarkson, 1998). Similarly, after forest dieback, native 543 

species recover over time through recruitment into canopy gaps and multiple mechanisms of 544 

natural regeneration  (Jacobi et al., 1988; Mertelmeyer et al., 2019). However, unlike natural 545 

disturbances such as volcanic eruptions, intensive cultivation isolates land from seed sources for 546 

regeneration and dramatically changes the microhabitat to favor fast dispersing invasive species 547 

with minimal establishment requirements (Arroyo-Rodríguez et al., 2017; Cramer et al., 2008). 548 

Furthermore, invasive trees, such as the species introduced to tree plantations in Hawaiʻi, typically 549 

do not facilitate the development of native forest understory (Ostertag et al., 2008). Thus, native 550 
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trees would likely struggle to recover in the understory of non-native forest or a densely grass-551 

filled field without adequate substrates for regeneration such as native tree trunks, tree-fern trunks, 552 

and bryophytes (Rehm et al., 2021, 2019). In contrast with the slow recovery of native canopy 553 

composition on abandoned sugarcane fields, secondary vegetation quickly recovered carbon and 554 

water storing capacities. Interestingly, we found all the vegetation indices on abandoned fields 555 

frequently exceeded reference values on fields that have been abandoned more than ~50 years. 556 

Reference ecosystems are likely to have more complex canopy structures that generate shadows 557 

and may reduce vegetation index values compared to those measured in less structurally complex 558 

secondary vegetation (Jiang et al., 2006; Zhang et al., 2015). The novel ecosystems that form on 559 

fragmented post-agricultural land in Hawaiʻi (Barton et al., 2021) may indeed store more carbon 560 

and water than reference ecosystems, but further research would be necessary to test that 561 

hypothesis.  562 

Lastly, we analyzed whether and when the properties of secondary vegetation on 563 

abandoned sugarcane land converged to those of reference ecosystems. Secondary vegetation 564 

canopies recovered the approximated functional traits fastest (≤53 years) after abandonment 565 

(Figure 5). Neotropical secondary forests recovered functional traits such as wood density and 566 

specific leaf area over similar timelines (Poorter et al., 2020). When considering vegetation 567 

structure, we found that tree cover in secondary vegetation converged to that of reference 568 

ecosystems despite decades of intensive cultivation (Figure 3). While several sites had similar 569 

forest and grassland cover to reference ecosystems less than a century after abandonment, 570 

complete recovery of canopy vegetation structure seems to take slightly longer than the 60-100 571 

years required to recover the structural heterogeneity of old growth stands on abandoned 572 

agricultural land in the Neotropics (Poorter et al., 2021). Forests have also been found to recover 573 
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structure in a matter of decades following less severe disturbances (Moran et al., 2000; Rappaport 574 

et al., 2018). The abandoned sugarcane fields in this study have a more intense disturbance history 575 

than many abandoned fields that have been previously studied, which may account for this 576 

prolonged recovery of canopy structural traits observed here. While native vegetation cover 577 

increased over time, abandoned fields were projected to never recover the native composition of 578 

reference ecosystems on a relevant time horizon (>3,900 years) (Figure 4; Table 1). Neotropical 579 

secondary forests have previously recovered species richness in the canopy and subcanopy within 580 

a few decades, but recovering species composition required between many decades and a few 581 

centuries depending on the intensity of previous disturbances (Isbell et al., 2019; Letcher and 582 

Chazdon, 2009; Martin et al., 2013; Pérez-Cárdenas et al., 2021; Poorter et al., 2021; Rozendaal 583 

et al., 2019). Abandoned fields in Hawaiʻi may never recover their composition due to the lower 584 

diversity of native tree species in Hawaiʻi compared to many other tropical settings (Inman-585 

Narahari et al., 2013). Low diversity of native tree species in American Samoa has contributed to 586 

secondary forests on abandoned agricultural land remaining compositionally distinct from mature 587 

forests (Webb et al., 2021). Thus, agricultural disturbance has the potential to play an outsized role 588 

in changing the composition of Hawai’i’s landscapes despite secondary vegetation recovering the 589 

basic structure and function of a tropical forest. Recovering native-dominated ecosystems on 590 

Hawaiʻi’s abandoned sugarcane fields would likely require active restoration (Friday et al., 2015). 591 

Alternatively, non-native vegetative stands may be restored to agroforestry systems composed of 592 

a mixture of native and non-native species to yield social and cultural benefits as has been explored 593 

on former pastures in Hawaiʻi (Hastings et al., 2023).  594 

While this study provides insight into patterns of secondary succession in terms of canopy 595 

structure, composition, and function following intensive cultivation, it has some limitations. First, 596 
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we relied on categorical variables that are inherently limited in their ability to capture the dynamic, 597 

mixed states that are common in semi-natural secondary ecosystems. Future studies could 598 

spectrally unmix satellite imagery to calculate the fractional cover of fine and woody vegetation 599 

in each pixel, providing a continuous metric for structural succession. However, publicly available 600 

remote sensing data lacks the spectral or spatial resolution to discern vegetation composition with 601 

the detail of the categorical composition variable we used. Future field observations of species 602 

composition would provide more nuanced insight into compositional succession but would require 603 

time and resources that may not be feasible when assessing revegetation across large swaths of 604 

abandoned land. Second, the vegetation indices used here serve as a proxy rather than direct 605 

measure of ecosystem functional traits and were unable to evaluate the recovery of functional traits 606 

in the understory of closed-canopy forest. While our current approach provides useful insight into 607 

top of canopy vegetation, future studies could leverage increasingly available LIDAR data that 608 

penetrates vegetated canopies to better characterize understory structure, composition, and 609 

function (Almeida et al., 2021; Caughlin et al., 2016; de Almeida et al., 2020). Lastly, our approach 610 

uses a chronosequence to analyze the recovery of secondary vegetation canopy properties in 611 

relation to the time fields have been abandoned rather than measuring secondary vegetation 612 

properties in each field over time. As with other studies that have applied chronosequences to study 613 

vegetation recovery following abandonment, our study sites cover a range of precipitation, 614 

elevation, and soil conditions. While we determined that the average recovery of vegetation traits 615 

is consistent across the sources of environmental heterogeneity in our study sites, chronosequences 616 

necessarily have limitations relative to following individual fields over time. 617 

5. Conclusion 618 
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Despite recent increases in agricultural land abandonment globally, we still have a limited 619 

understanding of whether and when secondary vegetation can recover the biodiversity and 620 

ecosystem services of uncultivated ecosystems. We explored the canopy structure, composition, 621 

and function of secondary vegetation on sugarcane fields in Hawaiʻi that were abandoned between 622 

4 and 117 years ago. Our results suggest that even after prolonged, intense cultivation, secondary 623 

vegetation on abandoned sugarcane land recovered the structure and functional traits of reference 624 

ecosystems across sites that were abandoned less than a century but remained compositionally 625 

distinct from reference ecosystems in perpetuity. Given that abandonment is expected to increase 626 

on high-value, intensively cultivated land, further research is necessary to consider how cultivation 627 

intensity and the diversity of species pools affect secondary vegetation development on abandoned 628 

agricultural land. This study highlights the variable time required for secondary vegetation to 629 

passively recover several attributes, which can guide decisions to restore or otherwise manage 630 

abandoned agricultural land to promote biodiversity or a variety of ecosystem services.   631 
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Appendix A. Supplementary Information 642 

The GitHub repository for this project can be found at: 643 

https://github.com/nakoafarrant/what_follows_fallow. 644 
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