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Advances in sequencing technologies and bioinformatics tools have
dramatically increased the recovery rate of microbial genomes from

metagenomic data. Assessing the quality of metagenome-assembled
genomes (MAGs) is a critical step before downstream analysis. Here, we
present CheckM2, animproved method of predicting genome quality of
MAGs using machine learning. Using synthetic and experimental data, we
demonstrate that CheckM2 outperforms existing tools in both accuracy
and computational speed. In addition, CheckM2’s database can be
rapidly updated with new high-quality reference genomes, including taxa
represented only by asingle genome. We also show that CheckM2 accurately
predicts genome quality for MAGs from novel lineages, even for those
withreduced genomessize (for example, Patescibacteria and the DPANN
superphylum). CheckM2 provides accurate genome quality predictions
across bacterial and archaeal lineages, giving increased confidence when
inferring biological conclusions from MAGs.

Large-scale sequencing and assembly of genomes directly from envi-
ronmental samples has led to the recovery of hundreds of thousands
of highly diverse metagenome-assembled genomes (MAGs) from
metagenomic data' >, making it impractical to manually assess the
quality of these genomes. The original approach to this problemused
by CheckM* (hereafter CheckM1)*, and other similar tools (such as
BUSCOQ"), is toidentify single-copy, near-universal marker genes asso-
ciated with specific lineages to predict genome completeness and
contamination. However, this approach has a number of limitations.

The single-copy marker gene approach used by CheckM1 relies
on comparative genomics to identify lineage-specific marker gene
sets to predict the completeness and contamination of a recovered
MAG based on their presence, absence and copy number. Well-studied
lineages with many high-quality genomes usually have more robust
marker sets, which allows for higher accuracy and confidence in
genome quality predictions. For novel lineages that lack high-quality

genomicrepresentation, only the most general marker sets (for exam-
ple, domain-level) can be used for genome quality estimates, resulting
in reduced accuracy and sensitivity. In addition, this approach typi-
cally performs poorly on MAGs from microorganisms with reduced
genomes, which lack some ‘universal’ marker genes®, and in many
instances do not have many high-quality genomic representatives to
derive robust marker sets.

An alternative approach to this problem is to use more complex
mathematical techniques such as machinelearning (ML) to link awider
range of genomic inputs to predict genome quality. ML algorithms can
generate insightsinto complex data and have been used forimportant
biological challenges such as protein folding® and metagenomic bin-
ning’. The application of ML to estimating genome quality has several
advantagesasitallows theincorporation of additional genomicinfor-
mation such as multi-copy genes, biological pathways and modules,
and other genomic features such as amino acid counts and number
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of coding sequences. Furthermore, it allows for automatic selection
of relevant genomic features to use for genome quality predictions
without relying on predefined lineage-specific marker sets.

Here we introduce CheckM2, a ML-based tool for predicting iso-
late, single-cell and MAG genome quality. CheckM2 builds models
suitable for predicting bacterial and archaeal genome completeness
and contamination without explicitly considering taxonomic informa-
tion. CheckM2 was trained on simulated genomes with known levels
of completeness and contamination, benchmarked against CheckM1
as well as BUSCO, and subsequently applied to MAGs from a range of
environments. Overall, CheckM2 outperformed CheckM1and BUSCO,
and performed substantially better on MAGs from unusual lineages
characterized by small genome size, such as the Candidate Phyla Radia-
tion (Patescibacteria) and DPANN (an acronym of the names of the first
included phyla: Diapherotrites, Parvarchaeota, Aenigmarchaeota,
Nanoarchaeotaand Nanohaloarchaeota) superphylum, as well as other
lineages with sparse or no genomic representation.

Results

CheckM2 genome simulation, training and benchmarking

To demonstrate that ML can be applied to accurately predict genome
quality, synthetic MAGs with known quality were constructed for ML
training. A ‘random-protein-sampling’ method was used to build train-
ing MAG sets, where predicted proteins from asubset of 4,978 bacterial
and 322 archaeal complete isolate genomes selected from National
Center for Biotechnology Information RefSeq® Release 89 were ran-
domly sampled to build roughly 700,000 synthetic MAGs at prede-
termined completeness and contamination percentages (Methods
and Fig. 1a). The target completeness for ML training and output was
defined as the percentage of MAG length relative to total MAG length,
while contamination was defined as the length of the contaminating
portionrelative to the expected (complete, uncontaminated) genome
length. To validate the performance of ML models, two separate MAG
simulation approaches were used: (1) a 20 kb-nucleotide-fragmentatio
n’ method where the full-length genomes were sheared into roughly
20 kb-long pieces, and (2) a ‘MAG-derived-fragmentation’ model
where full-length genomes were sheared into contig distributions
representative of MAGs in the Genome Taxonomy Database (GTDB)’
(Fig. 1b). In both simulation models used for validation, contigs were
randomly sampled to build MAGs with arange of simulated complete-
ness (5-100%) and contamination (0-100%) values.

To train and test different ML models for predicting genome qual-
ity, thegenome properties of synthetic MAGs were calculated as feature
vectors for the ML models, including the genome length, number of
coding sequences and individual amino acid counts, as well as anno-
tation of predicted proteins using KEGG (the Kyoto Encyclopedia of
Genes and Genomes)™. In total, 11 ML methods (Methods) were trained
onrandomly selected subsets of the simulated MAGs (75% of all MAGs;
‘random-protein-sampling’) and subsequently validated on the remain-
der of the MAGs (25%; for both 20-kb-nucleotide-fragmentation”and
‘MAG-derived-fragmentation’) for an initial assessment of quality
prediction performance across diverse bacterial and archaeal phyla. To
assess performance of ML models, predictions on simulated genomes
were divided into four groups based on MIMAG (minimum information
aboutametagenome-assembled genome) completeness and contami-
nationstandards” (high quality, more than 90% complete and less than
5% contaminated; medium quality, 50-90% complete and less than10%
contaminated and low quality, less than 50% complete and less than
10% contaminated), as well as aseparate group for high contamination
(more than10% contaminated) (Supplementary Table 1).

Artificial neural networks" (NNs) and gradient boosted (GB) deci-
sion trees” showed the best overall performance (Supplementary
Table 2) and were used in further optimization and testing for CheckM2
(Fig.1c). Both the NN and GB models exhibited higher accuracy when
KEGG annotations were considered in the context of their pathways

and modules (Methods). In addition, the NN included convolutional
layers for feature extraction, leading to an improvement in accuracy
(Supplementary Table 3 and Supplementary Note 1). These optimiza-
tions to both models were used in subsequent testing.

Using simulated genomes to assess ML performance

To assess the effect of taxonomic novelty on the accuracy of the
optimized NN and GB models, aniterative leave-one-out approach
was used on the synthetic genome set, where genomes from spe-
cifictaxawere removed from the training set from phyla to species,
models were trained on the remaining genomes, and prediction
accuracy tested on the left-out group. The mean average error
(MAE) of both models for predicting completeness and contami-
nation was systematically assessed from phylum to species level
(Fig. 1c). Separate models were trained for predicting complete-
ness and contamination for all ML models. As expected, removing
lineages from the training set with increasing taxonomic level pro-
portionally affects the genome quality estimates (that is, removing
all genus-level representation has a substantially lower impact on
accurately predicting genome quality than removing class level
or phylum-level representation of query genomes). Overall bacte-
rial and archaeal genome quality estimates improve if the training
set contains a genome that is more taxonomically related to the
query genome (Fig. 2a). However, the two models have different
strengths relative to genome novelty and genome completeness.
Completeness quality estimates for query genomes represent-
ing novel phyla, classes and orders were more accurate with the
GB model, while the NN model was on average more accurate for
genomes representing novel families, genera and species (Fig. 2a).
Additionally, for low-quality (less than 50% complete) genomes
the NN model was more accurate at all taxonomic levels, while the
GB model accuracy declined with lower MAG quality (Fig. 2a).

The most difficult completeness prediction scenario is likely to
be genomes belonging to a new phylum (that is, a phylum without a
complete isolate genome). For near-complete genomes from a novel
phylum, the MAE for completeness predictions using the GB model
is 3.1+ 3.9% and 5.2 + 5.7% for the NN model. For medium-quality
genomes, the GB model had a MAE of 4.6 + 4.4%, while the NN model
had a MAE of 5.9 + 5.3%. These results indicate the models have an
ability to generalize to phylum-level novelty with relatively good accu-
racy even as genome quality declines. While it is impossible to repro-
duce this test for CheckM1, using CheckM1’s domain-level bacterial
or archaeal marker sets consisting of roughly 120 universal marker
genesresulted inroughly equivalent MAEs of 3.4 + 4.4% for high-quality
and 7.2 + 5.8% for medium-quality genomes.

For genome contamination predictions at all taxonomic levels,
thegradient boost model substantially outperformed the NN and was
chosenas the model for predicting contamination (Figs.1d and 2b). For
genomes belonging to a novel phylum, the predicted contamination
MAE of the GB modelis 2.0 + 2.2% (high quality), contrasting withaNN
MAE of 7.3 + 5.5% (high quality) and a CheckM1 domain-level marker set
comparison of 1.9 + 2.2% (high quality).

Because the NN model performed best for less novel genomes and
the GB model performed best for more novel genomes, both models
were implemented in the final version of CheckM2 for completeness
prediction. Only the GB model was implemented to predict contami-
nation. For completeness predictions on novel and more complete
genomes, CheckM2 uses a ‘general’ model based on gradient boost
decision tree algorithms, while for genomes more closely related to
those in its reference set or less complete genomes it uses a ‘specific’
model based on artificial NNs (Fig. 1d). A cosine similarity measure was
found to correlate well with input genome taxonomic novelty, with a
linear relationship between squared cosine similarity and taxonomic
distance (Supplementary Fig. 1), enabling CheckM2 to use this meas-
ureto select between the ‘general’ and ‘specific’ model for each input
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Fig.1| Overview of CheckM2 development, benchmarking and validation.
a,b, Simulation of synthetic genomes for training using random protein
fragmentation (RPF) (a) and for testing using the 20 kb fragmentation (20 kb) and
random MAG-derived fragmentation (RMF) (b). ¢, Selection of NN and gradient
boost models and further testing and refinement. d, The final algorithm used by
CheckM2 to decide between gradient boost and NN models. e, Benchmarking

of CheckM2 on RefSeq 202 synthetic genomes. f, Benchmarking of CheckM2

on novel and unusual synthetic genomes derived from circular MAGs including
Patescibacteria. g, Benchmarking CheckM2 on synthetic genomes with nonself-
contamination derived from RefSeq r89 genomes. h, Comparing CheckM1and
CheckM2 genome quality predictions for all GTDB r202 MAGs.

genomebased on predefined cosine similarity cutoffs derived from the
leave-one-outapproach (Methods, Fig.1d and Supplementary Table 4).

Benchmarking CheckM2 performance on synthetic RefSeq
genomes

Theinitial CheckM2 ML models were built on genomes from RefSeqrelease
89, allowing new complete genomes from RefSeq release 202 to be used to
test CheckM2’s performance, asthey were not part of the original training
and validation sets (Fig. 1e). In total, this included 2,864 new complete
microbial isolate genomes representing six novel phyla, 13 novel classes,
43 novelorders, 87 new families, 439 novel generaand 1,554 novel species
accordingtotheir GTDB classifications. As these genomes represent the
range and types of genomes added to public databases over the course
ofroughly 2 years, they provide areasonable indication of how CheckM2
performs when tested against new genomes of varying taxonomic novelty.
They also provide suitable complete genomes for simulating new genomes
of known completeness and contamination (asin Fig. 1b), allowing bench-
marking of CheckM2 against CheckM1and BUSCO.

When predicting the completeness of 712,880 simulated RefSeq
202-based genomes, CheckM2 was substantially more accurate than
CheckM1 with a lower MAE across all genomes (Fig. 3a and Supple-
mentary Note 2). Overall, there was similar performance between
CheckM2 and CheckM1 on high-quality genomes (CheckM2 MAE
2.1+2.9%, CheckM1 MAE 2.0 + 3.2%) with BUSCO being less accu-
rate (BUSCO MAE 4.4 + 6.8%). CheckM2 was far more accurate for
medium, low-quality and highly contaminated genomes then both
othertools (Fig.3a; CheckM2 MAE 2.9 + 2.9%, CheckM1MAE 4.7 + 5.4%,
BUSCO MAE 6.4 + 7.0%). However, as some phyla within RefSeq 202
are highly oversampled, bulk genome MAE underestimates perfor-
mance across broad taxonomic ranks. When using a phylum-weighted
MAE (PW-MAE), CheckM2 outperformed CheckM1 and BUSCO with
both substantially higher accuracy and much lower error variance
for high-quality genomes (CheckM2 PW-MAE 2.5 + 2.2%, CheckM1
PW-MAE 5.7 £ 2.9%, BUSCO PW-MAE 10.2 + 4.5%) as well as medium
and low-quality genomes (CheckM2 PW-MAE 3.7 + 3.2%, CheckM1
PW-MAE 7.1+ 5.7%, BUSCO PW-MAE 10.2 + 7.3%). CheckM2 exhibited
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Fig.2|Benchmarking ML models on synthetic genomes of varying taxonomic
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and 0-10% contamination and low quality, less than 50% completeness and
0-10% contamination). Positive values indicate overestimation, whereas
negative values indicate underestimation of true values. The size of each error
boxintheletter-value plot shows half the remaining data, starting with 50% for
the first box, 25% for the second box and so on.

comparable performance across both the 20-kb-fragmentation’ and
the ‘MAG-derived random fragmentation’ simulations, suggesting
thatthereislittle effect of simulation method onresulting predictions
(Supplementary Note 2). The most significant increase in performance
of CheckM2 was seen in predicting completeness of genomes from
the phyla with very few high-quality genomic representatives such as
lainarchaeota, Nanohaloarchaeota, Dependentiae, Bipolaricaulota
and Patescibacteria (high-quality MAE 3.6 + 2.9%) when compared
to CheckM1 (high-quality MAE 26.3 + 10.8%) or BUSCO (high-quality
MAE 34.1+7.1%) (Fig. 3b,c). Notably, there was only a single reference
genome for Nanohaloarchaeota, Dependentiae, Bipolaricaulota and
lainarchaeotain the training set for CheckM2, indicating that a single
genomic representative of a lineage provides sufficient information
for an accurate prediction of genome quality.

When predicting contamination, the MAE of CheckM2 (MAE
1.2 £1.3%) was comparable to CheckM1 (MAE 1.5 +1.8%) and BUSCO
(MAE1.0 +1.4%) on high-quality genomes, and was substantially more
accurate for medium- and low-quality genomes (CheckM2 1.7 + 1.7%,
CheckM13.0 +4.0%,BUSCO 2.9 +4.1%). It was also substantially better
at predicting contamination in highly contaminated genomes (Fig.
3d). To confirm prediction accuracy with metrics other than MAE,
we calculated the R* between predicted and actual completeness and
contamination metrics for all three tools across awide range of genome
quality values of the synthetic genomes. CheckM2 had a higher R?
between predicted and actual values for every single group of genome
quality cutoffs (Supplementary Table 11).

Benchmarking CheckM2 performance on new lineages

One of the weaknesses of CheckM1 was its poor performance on highly
novel genomes relative to the dataset its marker sets were based on,
particularly from lineages characterized by organisms with small or
highly reduced genomes, such as organisms from the DPANN and
Patescibacteria. The archaeal DPANN superphylum and the bacterial
Patescibacteria are large radiations of microorganisms comprising a
significant fraction of the tree of life'. Their high diversity, unusual
biology, absence of key genes and often small genomes make predict-
ing their genome quality particularly challenging™. To assess ability

of CheckM2 to predict the quality of genomes from these microor-
ganisms, 57 closed circular genomes were obtained from wastewater
(Singleton et al.’®), including 30 genomes from the Patescibacteria, as
well as other highly novel and often small genomes from phylasuch as
Dependentiae, lainarchaeotaand UBA10199. Additionally, 36 additional
circularized Patescibacteria genomes were obtained from Lui et al.”.
Theselineages are poorly represented in the RefSeq release 202, which
mostly cover phyla and classes with existing isolate representatives.
Together, this dataset represents 25 unique classes and 45 unique orders
of curated and circular Patescibacteria genomes along with anumber
of other circularized MAGs representing novel phyla and classes, pro-
viding an excellent opportunity to test CheckM2’s performance on
novel genomes (Fig. 1f). From these complete genomes, simulated
genomes of varying completeness and contamination were created
as above (Fig. 1b) to enable tool benchmarking across different levels
of genome quality.

Across all classes of Patescibacteria, CheckM2 was far more
accurate than CheckM1, with the performance CheckM1 only being
improved by using a custom Patescibacteria marker set based on 43
ribosomal genes® (Fig. 4c). However, the accuracy of CheckM1 using
the custom candidate phyla radiation (CPR) marker set substantially
declined on medium- and low-quality Patescibacteria genomes with
completeness error rates as high as 30-40%, making the method unreli-
able. Thesuperior performance of CheckM2 extends to all Patescibacte-
riaclasses represented in the Singletonetal.”® and Lui et al.”’, indicating
that CheckM2 canrobustly and accurately predict genome quality from
highly diverse lineages such as the Patescibacteria, despite only having
afew genomic representatives in the training set.

Across other unusual lineages, CheckM2 is more accurate for both
high-quality genomes (MAE 2.9 + 2.6%) and medium- and low-quality
genomes (MAE 4.4 +3.8%) than CheckM1 (high-quality MAE 4.7 + 6.0%;
medium- and low-quality MAE 6.1 + 5.8%) or BUSCO (high-quality
MAE 10.9 + 9.0%; medium- and low-quality MAE 10.2 + 8.3%), show-
ing an ability to generalize well across a range of phyla and classes
not represented in its reference set (Fig. 4a). For unusual lineages
with reduced genomes such as the phyla Patescibacteria, Depend-
entiae or lainarchaeota, where an in-built specific marker set is not
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available for CheckM1, CheckM2 completeness predictions are far
more accurate (MAE 5.8 + 5.3%) than CheckM1 (MAE 19.8 +10.6%) or
BUSCO (MAE30.3 +£13.2%; Fig. 4b). As with RefSeq 202 benchmarking,
CheckM2 showed similar performance ongenomes simulated by both
test simulation methods and consistently outperformed CheckM1
(Supplementary Note 3).

CheckM2 also outperformed other tools on most cases of con-
tamination (Fig. 4d). The only partial exception are some high-quality
Patescibacteria genomesin which CheckMT1’s lineage-specific marker
sets provide slightly better accuracy (Singleton et al.’®: CheckM1 MAE
1.4 +1.1%, CheckM2 MAE 1.7 + 1.3%; Supplementary Note 3). In part,
this may be due to CheckM2'’s conservative nature when approaching
contamination predictions. However, it is likely that the addition of
these new circularized Patescibacteria genomes to CheckM2’s final
reference set (Fig. 1h) willincrease its accuracy.

As with the RefSeq release 202 benchmarking, we calculated the
R*between predicted and actual completeness and contamination
values of simulated genomes and predictions by all tools. As above,
CheckM2 outperformed both other tools across every criterion (Sup-
plementary Table11).

Benchmarking CheckM2 cross-contamination performance
Contaminationin MAGs may come from the binning together of closely
related strain or species, but may potentially also contain divergent

sequences from other lineages or even domains. CheckM1 uses dupli-
cated single-copy marker gene counts to infer contamination, on the
assumption that contamination will come from closely related genomes
being binned together, and thus will contain duplicated single-copy
genes. This is likely to work better when the sources of contamina-
tion are highly related and thus likely to share the same distribution
of single-copy markers.

However, it is unclear how accurate CheckM1 is when assessing
contamination from a different source from the same strain or spe-
cies,and whether CheckM2’s weighted combination of feature vectors
is better able to identify foreign contamination compared to only
using duplicate single-copy marker genes. Here, the contamination
predictions of CheckM1, CheckM2 and BUSCO were benchmarked
on simulated genomes with contamination originating from increas-
ingly divergent sources, from species to domain (Fig. 1g). In addition,
GUNC?, was also benchmarked for contamination prediction, as it
uses an alternative approach based on the presence of taxonomically
discordant contigs.

Our results demonstrate that CheckM2is accurate at identifying
foreign contamination, particularly for high-quality genomes (Fig. 5),
although it was less accurate on higher-taxa contamination for
medium-quality genomes, as were CheckM1 and especially BUSCO,
which substantially underestimated contamination (Fig. 5). CheckM2
is farless likely to overestimate contamination compared to CheckM1,
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across different MIMAG quality cutoffs (high quality 90-100% completeness
and 0-5% contamination; medium quality 50-90% completeness and 0-10%
contamination; low quality, less than 50% completeness, 0-10% contamination
and high contamination, more than 10% completeness). Positive values indicate
overestimation whereas negative values indicate underestimation of true values.
Thesize of each error box in the letter-value plot shows half the remaining data,
starting with 50% for the first box, 25% for the second box and so on.

likely due tothe factit does notrely as strongly on single-copy marker
genes and does not use small marker sets (Supplementary Note 4).
CheckM2 outperformed CheckM1 and BUSCO at all lev-
els in the mean of the absolute error (AE) predictions for high-
and medium-quality genomes, with contamination from the
same-species-derived contamination (CheckM2 high-quality AE
1.7 +1.6%, CheckM1 AE 2.6 + 3.1%, BUSCO AE 2.4 + 3.1%) to contamina-
tion derived from the same phylum (CheckM2 AE 2.4 +2.3%, CheckM1
AE 3.6 +4.7%, BUSCO 3.7 + 3.2%), a different phylum (CheckM2 AE
2.6 +2.4%,CheckM1AE4.3 £ 6.2%,BUSCO 4.1 + 3.1%) or different domain
(for example archaeal contamination of bacterial MAGs) (CheckM2 AE
3.1+£2.5%, CheckM1 AE 3.2 +2.6%, BUSCO 4.3 +2.9%). GUNC was sub-
stantially more accurate when contamination was derived from a dif-
ferent class or more taxonomically distant contamination but tended

to overpredict contamination across other levels, and substantially
underestimated same-species and same-genus contamination (Fig. 5).
CheckM2 was more accurate than other tools in predicting contami-
nation from the same species, genus or family, which is considerably
more difficult to detect with taxonomy-based detection tools such
as GUNC®.

Application of CheckM2 to environmental MAGs

Comparison of CheckM1 versus CheckM2 predictions across all
taxa. Following benchmarking on synthetic genomes, CheckM2 was
retrained with all complete genomes in RefSeq release 202 to provide
a comprehensive reference database for inclusion with the CheckM2
release version. We then used CheckM2 to predict the genome qual-
ity across all bacterial and archaeal lineages. As GUNC is unable to
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Fig. 5| Comparison of tools on non-self contamination. Error in contamination
prediction is broken by the taxonomic source of the contaminant relative to
contaminated genome. Results are broken into separate error margins across
different MIMAG quality cutoffs (high quality 90-100% completeness and

0-5% contamination; medium quality, 50-90% completeness and 0-10%
contamination). Positive values indicate overestimation while negative values
indicate underestimation of true values. Each box shows half the remaining data,
starting with 50% for the first and 25% for the second and so on.

predict completeness, and BUSCO was consistently outperformed by
both CheckM1 and CheckM2 in benchmarking tests above, CheckM2
predictions were compared to CheckM1 predictions for completeness
and contamination of 224,101 bacterial and 3,881 archaeal genomes
in the GTDB release 202 (most recent GTDB release available at time
of testing) annotated as ‘incomplete’: that is, not isolate genomes or
closed circular MAGs (Fig. 1h).

Overall, there is good congruence among completeness predic-
tions across most phyla between CheckM2 and CheckM1, with 73%
of all completeness predictions being within 1% of each other and
91% being within 5% of each other (Fig. 6a). Similar congruency in
results was observed for contamination, with 82% of all genome predic-
tions being within 1% of each other and 99% being within 5% (Fig. 6b).
Substantially higher or lower completeness predictions (more than
5% difference) using CheckM2 often occurred across entire lineages
(phylum through to genera), while discrepancies in contamination
were typically restricted to specific genomes within lineages (that is,
were not systematic; Fig. 6, Supplementary Table 5 and Supplementary
Figs.2and 3). CheckM2 was also able to identify previously undetected
contamination in a number of MAGs and isolate genomes and may
avoid some potential contamination overestimations by CheckM1
(Supplementary Note 8).

In the Bacteria, the highest divergence in completeness predic-
tionsis within the Patescibacteria phylum, where CheckM2 scores

are substantially higher than those predicted by CheckM1 (Fig. 6¢).
Based on benchmarking, the CheckM2 results are likely to be sub-
stantially more accurate, enabling much better Patescibacteria MAG
curation in the future and giving greater confidence to biological
insights derived from these genomes. Other bacterial lineages
predicted to be substantially more complete all appear to have
common features such as small or reduced genome size, and/or
hypothesized endosymbiotic or parasitic lifestyle. This includes
the phyla Dependentiae, which are phylogenetically related to the
Patescibacteria®, as well as the orders RF32 within the Proteobac-
teria, TANB77 within the Firmicutes_A??, and the actinobacterial
orders Actinomarinales and Nanopelagicales®. While some families
withinthe Firmicutes_A order Christensenellales have concordant
CheckM1and CheckM2 predictions, other families such as CAG-74
have much higher CheckM2 completeness values. CAG-74 has been
hypothesized to lack certain key functions (for example, amino
acid biosynthesis pathways) and may be potential symbionts®.
Members of the family UBA1242, where the average genome size is
roughly 1 mega-basepairs also shows substantially higher CheckM2
completeness predictions (on average 11% more complete), indicat-
ing that this family may also have a symbiotic or parasitic lifestyle
that has not previously been reported (Fig. 6¢).

Analysis of manually curated complete bacterial endosymbi-
ont genomes (Supplementary Table 6) demonstrated that CheckM2
markedly outperformed CheckM1 by predicting a much higher com-
pleteness, with CheckM2 predicting an average completeness of 71%,
compared to CheckM1’s 39% average. Notably, CheckM2 was able to
achieve this accuracy with little to no endosymbiont representation
in its training database (as they are usually excluded from RefSeq)
and incorporating the test genomes into the final models will likely
substantially improve its accuracy on future endosymbiont cases. It
is likely that use of CheckM2 on assembled metagenomic data will
lead to the discovery of novel endosymbiont genomes that are highly
complete with asmall genome size.

Archaeal lineages with substantially higher CheckM2 complete-
ness scores are primarily inthe DPANN superphylum, including mem-
bers of the Nanoarchaeota, Nanohaloarchaeota and Micrarchaeota
phyla, which have high-quality genomic representatives in CheckM2,
as well as the phyla Huberarchaeota, Aenimatarchaeota and PWEAO1
(formerly part of Aenigmatarchaeota), which are not represented in the
CheckM2release reference set (Fig. 6¢). These predictions underscore
the effectiveness of CheckM2’s prediction approach, which general-
izes to novel taxa with biological similarities to genomes CheckM2
was trained on. Other lineages that are predicted to be more complete
by CheckM2 include the class Poseidoniia_A within the Thermoplas-
matota, which is missing several single-copy genes used by CheckM1
(ref. 24) and the Asgardarchaeota order CR-4. The recently isolated
and sequenced Prometheoarchaeum syntrophicum, which belongs to
theorder CR-4,wasincludedinthereleasereference set for CheckM2,
which likely contributed to a higher completeness score for this lineage.
This highlights the power of including a single genome representative
in CheckM2’s ML predictions.

In a small number of instances, CheckM2 completeness values
were substantially lower than CheckM1(5.4% of allgenomes were more
thanorequal to 5% lower, 1.6% of genomes were more than or equal to
10% lower or more). The underlying cause for this differenceis unclear
but is likely due to multiple factors, such as the novelty of genomes,
CheckM2’s choice of ML model or CheckM1’s use of a kingdom-level
marker set to assess the completeness of some unusual lineages (Sup-
plementary Note 5). Indel-dominated genomes were also found to have
aparticularly low CheckM2 score relative to CheckM1 (Supplementary
Note 6). Furthermore, as CheckM1 is often used to select MAGs for
submission and publication, this can produce an imbalanced selec-
tion effect where genomes with overprediction error are retained in
databases at higher rates than genomes with underprediction errors
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inthe class shown. d, Completeness predictions for each genome in the orders
shown. e, Mean contamination prediction from phylum to species. For both, the
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(Supplementary Note 7). Given the benchmarking results and careful
investigation of example casesit s likely that CheckM2is more accurate
than CheckM1in most of these instances. However, for some lineages
with only afew MAGs and no complete genomes, it is difficult to assess
whether CheckM1or CheckM2 scores are more accurate. The addition
of any single complete representative genome will improve and/or
validate the accuracy of CheckM2’s predictions for these lineages.

Finally, some binning algorithms may yield MAGs where some
contigs (such as those containing single-copy marker genes) are more
preferentially recovered than others (for example repeats or plas-
mid genes)®. Our investigation of the effect of binning algorithms on
genome predictionaccuracy using a predefined CAMI2 dataset shows
thatany biasis likely slight, and that overall CheckM2is more accurate
than CheckM1 or BUSCO on MAGs derived from a variety of binning
algorithms (Supplementary Note 10).

Overall, we see good congruence between CheckM2 and CheckM1,
and increased CheckM2 completeness scores in lineages where
CheckML1 is known to have poor predictive capacity'®?. This gives
confidence in the robustness and reliability of both estimates, given
the different underlying algorithms behind both tools. Based on these
results, the benchmarking data sets and investigation of individual
cases (Supplementary Notes 3-8) we believe that in most cases of incon-
gruent predictions, CheckM2 values are likely to be more accurate.

Biological insights into the ML models. It is difficult to identify the
contribution of specific genomic features to the predictions of ML
models used by CheckM2. Some interpretable ML approaches, such
as SHAP?, use robust mathematical techniques to approximate fea-
ture importance. While imperfect, when applied in the context of
CheckM2’s models, these approaches can highlight the importance
of specific genes and pathways that can be further investigated and
assessed independently.

According to their SHAP values, key pathways contributing to
completeness predictions across most lineages are ribosomal proteins,
aswellasgenesinthe DNA processing and tRNA biosynthesis pathways.
Therearealsoindividual pathways with substantially higher predictive
values for only certainlineages. For example, the membrane transport-
ers pathway inthe Patescibacteria have much higherimportance values
compared to most other lineages that are not characterized by genome
reduction or streamlining (Supplementary Table 7). Transporters are
particularly noteworthy as they are likely to be key to an auxotrophic
lifestyle, while also presenting an example of aset of genes that would
be missed using only a conserved single-copy marker approach. The
highimportance placed on these pathways areinline with our biologi-
calunderstanding of microorganisms and give confidence that the ML
models are capturing details of underlying biological reality. Average
SHAP value contributions across all phyla also show that genomic

Nature Methods | Volume 20 | August 2023 | 1203-1212

1210


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-023-01940-w

features contribute a high degree of predictive power, with eight
genomic features being placed in the top 500 features for predicting
completeness by the general gradient boost model (Supplementary
Table12), the highest being the number of amino acids in the genome
(ranked 76th out of 21,241 input feature vectors) and number of coding
sequences in the genome (ranked 143rd).

CheckM2 updates, computational benchmarking and resources.
CheckM2 will be updated in line with GTDB releases. Unlike the very
computationally heavy simulation method of CheckMI1 (ref. 4), the
simulation and training with new complete genomes taking less than
1 min per genome (per thread), with KEGG annotation of simulated
genomes using DIAMOND forming the only computational bottleneck.
This means that a new GTDB release can be updated into CheckM2
within24-48 h.

During runtime, CheckM2 was consistently faster than CheckML1,
processing an average of 1.56 + 0.83 genomes per minute per thread on
anAMD EPYC 7702 64-Core Processor, relative to CheckM1’s 0.57 + 0.19
genomes per minute per thread. As CheckM2 has no taxonomic deter-
minationstep, its speed is more variable than CheckM1, being substan-
tially faster when predicting the quality of small or low-completeness
genomes. CheckM2 is capable of processing hundreds of thousands
of genomes at a time with reasonable (less than 90 GB for abatch run
0f 224,000 genomes) RAM usage.

Future versions of CheckM2 will be iteratively updated and may
also include additional annotation databases (for example, STRING*
and EggNOG?) if this leads to significant improvements in genome
quality predictions. We may also explore alternative groupings of indi-
vidual genes into pathways outside of KEGG pathways, such as those
provided by for example DRAM* or its future versions. Finally, we are
exploring alternatives to the UniRef database, such as a dereplicated
database of GTDB proteins annotated with the most current KEGG
Orthology hidden Markov models.

Discussion

Here we present CheckM2, a ML approach for predicting completeness
and contamination of microbial genomes derived from metagenomic,
single-cell and isolate sequence data. When benchmarked against
CheckM1, we show congruency in genome quality prediction for line-
ageswith good genomic representation but demonstrate that CheckM2
has substantially better accuracy on medium- and low-quality genomes
and genomes from lineages with poor genomic representation. We
also demonstrate that in most cases it can generate highly accurate
predictions for genomesin phylawith only asingle genomic representa-
tive. Additionally, CheckM2is substantially more accurate onlineages
with small or reduced genomes such as the DPANN, Patescibacteria
and Dependentiae, where CheckM1 often produces highly inaccurate
predictions. Finally, CheckM2 typically performsbetter than or equal
to CheckM1 on lineages with no genomic representation in the refer-
ence database.

The use of genome quality predictions from CheckM2 are likely
to have important implications for existing databases and biological
interpretations of new or unusual lineages. For example, CheckM2 com-
pleteness predictions will allow the inclusion of additional genomes
currently excluded from GTDB due to the inaccurate CheckM1-based
minimum cutoff (50% completeness), as demonstrated for the Patesci-
bacteria phylum and DPANN.

Improved genome quality predictions by CheckM2 are the result
of considering a wide variety of annotation genesin its ML models, as
opposed to CheckM1’s requirement for single-copy marker gene sets
in eachlineage. An additional advantage of the CheckM2 approach is
thatits models can be easily and rapidly updated to incorporate addi-
tional high-quality genomicrepresentation for novel lineages, further
increasing the accuracy of its genome quality predictions. Additionally,
detection of contamination from divergent taxonomic sources may be

improved through more complex training data simulation. CheckM2
isamajor step forward in our ability to rapidly and accurately predict
genome quality across bacterial and archaeal genomes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/5s41592-023-01940-w.
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Methods

Simulating genome completeness and contamination

To construct a training and validation set of genomes with known
ranges of completeness and contamination, all genomes from RefSeq
release 89 annotated as ‘complete’ or ‘chromosome’ were downloaded
and dereplicated at 99% ANl using the software package Galahv.0.2.0
(ref. 31). Genes were predicted using Prodigal v.2.6.3 (ref. 32), and
resulting predicted proteins were randomly sampled using the BBMap™®
suite v.38.18 (‘reformat.sh’ with the ‘samplerate’ option) to create a
range of completeness between 5 and 100% at 5% intervals using a
custom script written in bash (v.4.3.48(1)-release (x86_64-suse-
linux-gnu)) and python (v3.7). To simulate self-contamination, the
same proteins were sampled multiple times to generate a range of 0%
to 35% contamination. True completeness was calculated as

amino acids in simulated genome [ & -0 ntamination percentage was calculated
amino acids in complete genome

amino acids in proteins sampled>1 time

as

amino acids in complete genome

For testing, two different simulation methods were used. These
were purposefully distinct from the training set to minimize any overfit-
ting to the simulation method. In the ‘20-kb-fragmentation’ method,
theinput genome was fragmented into approximately 20-kb fragments
using the ‘shred.sh’ option of the BBMap suite with median length
20,000 and variance of 2,000. These were sampled using the BBMap
suite (‘reformat.sh’ with the ‘samplereadstarget’ option) to create a
range of completeness and contamination values as described above.
The fragments were not stitched back together to replicate the state
of a MAG with multiple contigs. In the ‘MAG-derived-length-
fragmentation’, a database of contig size distributions was created
using GTDBrelease 95 as its base, where the contig size distribution of
all MAGs with less than 350 and more than ten contigs was used as a
pooltochoose from. Each genome had tobe atleast 65% complete and
nomore than 5% contaminated as determined using CheckML. For each
test genome, a MAG contig distribution was randomly selected and the
fullgenomic sequence of the genome being simulated was cutinto the
same length fragments relative to genome size, where the order of
contig sizes was randomized. These were then sampled in the same
way asin the 20-kb-fragmentation”’ method. For both, true complete-

ness was calculated as 22 it simulated genome 1.0 ¢ ntamination percent-

bases in complete genome
bases in contigs sampled>1 time

age was calculated as

bases in complete genome

Annotation of genomes
Forall simulated genomes, genes were predicted using Prodigal v.2.6.3
and annotated with KEGG** ids using diamond v.2.0.4 ‘blastp’ com-
mand against uniref100 (downloaded on3June 2018) containing KEGG
Orthology (KO) annotations. To filter annotations, a query_cover of
80, a subject_cover of 80, a value of 1 x 107 and a percent_id of 30
was used, taking only the top hit for each gene. Annotations were
converted toafrequency matrix containing all existing KEGG IDs with
rows representing a simulated genome and columns representing
counts of annotation detected. KOs found in the same pathway were
grouped next to each other to allow sliding convolutional windows of
the NN to extract useful information from this grouping. KOs present
inmultiple pathways were assigned only to the first pathway based on
pathway alphabetical order. KEGG definitions of modules, pathways
and categories were downloaded from KEGG on 26 November 2018.
After annotation, KEGG pathway, module and category complete-
ness was calculated based on the definitions for each downloaded
from KEGG on 26 November 2018 where completeness was defined
asthefraction of genes presentin agenome out of allgenes definedin
amodule, pathway or category. Each module, pathway and category
completeness feature vector was encoded as an additional column
with fractional value between zero and one. Nested modules (modules
containing other modules) were not used. Only the ‘general’ gradient
boost model used these additional completeness feature vectors.

Additionally, the frequency counts of each amino acid, number of
coding sequences and the total amino acid length of eachgenome was
calculated and added to the protein annotations.

For testing, all genes were predicted and annotated de novo for
each simulated genome.

Selection of additional genomes

Towidenthe scope of the trained model and reduce the uniformity of
the training dataset, a small number of potentially complete
non-RefSeq* genomes were identified using a ‘repeated-
quality-metrics’ strategy: CheckM1 and CheckM2 (trained only on
RefSeq release 89) were used to assess all GenBank genomes part of
release 89. Those that had at least five or more members of a species,
and had the same completeness and contamination scores from
CheckM1 for more thanthree-quarters of them as well asagenome size
within 5% of each other were selected as potentially complete. A
genome of the same length assembled repeatedly to yield the same
completeness and contamination statistics was used as potential evi-
dence for completeness. As these genomes were often in multiple
contigs, the contigs were sampled randomly and completeness calcu-
lated based as 2esincontigssampled £r.0 g these generated synthetic

bases in complete genome

genomes, only those with less than 85% or less completeness were used
for training to avoid incorrect bias for highly complete genomes in
CheckM2. These new genomes were added to the training pool with a
50% lower sample weight relative to known complete RefSeq genomes.
Evenifsome of these genomes are not complete, the addition of poten-
tial noise was also a desirable part of this process as a potential regu-
larization constraint on the NN model. Moreover, these genomes also
introduce a more accurate example of low-completeness genomes
compared to genomes generated using the ‘random-protein-sampling’
method used for the bulk of the training set, further increasing the NN
model’s accuracy in these cases. These genomes (Supplementary
Table 9) were added to the training pool used to train NN models but
not to the gradient boost models (completeness or contamination).
NN models trained with these additional genomesincluded those used
tobenchmark RefSeqrelease 202, benchmark the novel circular MAGs
fromSingletonetal.”® and Luiet al.”’, as well as used in the final release
of CheckM2 (v.0.1.2).

Training ML models

To train the ‘general’ gradient boost models, annotations of genomes
in the training set were used as feature vectors, with contamination
and completeness values being the predictor targets for the ‘general’
completeness and contamination models. The lightgbm® package
(v3.2.1) was used to trainaregression model with the following param-
eters: ‘boosting type’: ‘gbdt’, ‘objective’”: regression, ‘num_leaves’: 11,
‘min_data_in_leaf”:150, ‘learning_rate’: 0.2, feature_fraction”: 0.5, ‘bag-
ging_fraction: 0.5, ‘baging_freq’:3, reg_sqrt’: True, ‘min_child_weight’:
180 for completeness and ‘boosting type’: ‘gbdt’, ‘objective’: regres-
sion, ‘num_leaves’: 211, ‘learning_rate’: 0.2, ‘feature_fraction”: 0.9, ‘bag-
ging_fraction’: 0.8, ‘baging_freq’: 5, ‘reg_sqrt’: True for contamination.
Both models were boosted for 450 iterations.

To train the ‘specific’ NN model, tensorflow'v.2.2.0 was used. The
model architecture was encoded using the keras APl and consists of a
sequential model with three one-dimensional convolutional layers
(kernel_size =10, strides =10, activation = ‘relu’) with size 180, followed
by another with size 100. These are flattened and followed by a dense
layer (size =100, activation=‘relu’) connected to an output layer (acti-
vation =‘sigmoid’). A BatchNormalisation layer was added after each
convolutionallayer to standardize and normalize network weights and
feature vector input. The keras-specific loss_weight parameter was
used with values of the completeness labels multiplied by 500. This was
done to penalize the model errors harsher for more complete genomes
(thus aiming for higher accuracy on higher-quality genomes). The loss
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function was ‘mse’ (mean squared error), the optimizer was ‘adam’
and the learning rate was not changed from the default. The addition
of the batch normalization layers added substantial improvement in
accuracy, but also caused validation loss to fluctuate substantially
duringtraining. Therefore, the model was trained with checkpoints on
complete RefSeq genomes simulated using ‘random-protein-sampling’
as well as non-RefSeq genomes identified using the ‘repeated-quality
metrics’ strategy outlined below, for 5-15 iterations, while using vali-
dation accuracy on a subset of the training set (high-, medium- and
low-quality simulated MAGs, Supplementary Table 1) to identify and
select the model iteration with best validation loss across all quality
levels. This process was repeated for both the validation and final
CheckM2 NN models. For more details, see Supplementary Note 1.

Filtering out low-quality genomes

While most genomes in RefSeq are likely to be complete if annotated
assuch, there will always be exceptions. To remove potentiallyincom-
plete genomes, anintermediate NN model was trained for two epochs
on all training genomes, then used to predict their completeness and
contamination. Those with high deviations (more than 10% difference)
between predicted and assumed completeness or contamination were
removed from the training set. Notably, most of these genomes also
hadinferior CheckM1 metrics. Generally, they were found to belong to
species that had at least one other complete genomic representative
inRefSeq that did not show high deviation, indicating anissue with the
genomes and not with the biology of particular lineages. A complete
listisincluded in Supplementary Table 10.

Benchmarking performance

To benchmark CheckM2, CheckM1 and BUSCO were used as key
software tools of comparison. CheckM1 v.1.0.12 was run with the flag
‘lineage_wf’ for automatic lineage selection. Error in prediction of
completeness or contamination was defined predicted value - true
value, with negative errors representing underprediction and posi-
tive errors representing overestimation of the true value. MIMAG
completeness and contamination standards" were used to divide all
benchmarking results (Supplementary Table1). MIMAG standards are
often used to report the quality of MAGs and make for a useful way to
visualize CheckM2 performance across varying genome quality. As
CheckM2 does not detect nor rely on other MIMAG factors such as
full-length 16S RNA or the presence of tRNAs, only the completeness
and contamination information was used. BUSCO?** v.5.0.0 was run
offline with reference database downloaded on 21 February 2021 with
the option ‘-auto-lineage-prok -mode genome’. Results from BUSCO
were parsed to select the specific output ifit was generated, otherwise
the generic output file was used. In BUSCO’s output ‘C’ was used as
completeness, while ‘D’ was used as contamination for benchmarking
against CheckM1and CheckM2. Fragmented genes reported by BUSCO
were notincluded as part of the completeness percent calculation, as
these represent ambiguous results. As a result, some BUSCO results
may show less completeness if single-copy genes were fragmented
as a result of the simulations. For the section entitled Benchmark-
ing CheckM2 cross-contamination performance, GUNC* v.1.0.5 was
run using the ‘run” command with default settings and the database
downloaded on 12 November 2022. For all tools, input consisted of
nucleotide FASTA files of generated synthetic genomes.

Benchmarking calculations and visualization

For all benchmarking on synthetic genomes, completeness error
(defined as predicted completeness % — actual completeness %) and
contamination error (defined as predicted contamination % — actual
contamination %) was calculated for each genome, and the results
graphed using a letter-value plot in the Seaborn® package. For error
calculations and reporting, only synthetic genomes with an actual
contamination of less than 25% and actual completeness more than 5%

were used. MAE values were calculated as Tzl where yis the pre-
dicted value and x the true value. Phylum-wide MAE value was calcu-
lated as x across 2=~ for each phylum where y is the predicted
completeness value and x the true completeness value. The pandas
package (v.1.1.3) was used to analyze the prediction results and seaborn
(v.0.11.0) was used to visualize results and generate figures.

Evaluation of taxonomic novelty effects on accuracy

To test the accuracy of both models on taxonomically novel groups,
separate models were trained where one phylum was left out, the mod-
elsweretrained on allremaining phylaand the models were then tested
on the omitted group to determine error when predicting complete-
ness and contamination. This was repeated for all phyla, then repeated
for all subsequent taxonomic levels of relatedness (class, order, family,
genus, species) with the left-out group doubling in scope every level
(onegroup left out per phylum, two per class, four per order and so on)
toaccount forincreasing diversity and number of iterations necessary
tocoveralllevels. Lineages representing multiple taxonomic levels of
novelty (for example, one class only containing one family) were tested
only at the level of highest taxonomic difference (for example, in this
case at the class level). In all cases, GTDB r89 taxonomy was used to
determine leave-out groups, and only genomes in the RefSeq release
89 dataset were used for simulation and benchmarking.

Cosine similarity measure and model selection
To determine the appropriate model to use, CheckM2 uses the cosine
A-B

similarity calculation (m) (where AandB are vector arrays) as cosine

similarity correlates well with taxonomic novelty of query genome
relative to the closest genome in the reference dataset. Rough taxo-
nomic similarity enables selection between the general and specific
completeness prediction models without the need to compute tax-
onomy, which would require substantially more computational time
andresources.

As cosine similarity declined with completeness (Supplementary
Fig. 1), a stable ‘novelty ratio’ was calculated by dividing complete-
ness predicted by the general model by the squared cosine similarity,
and subsequently used for selection between the NN and gradient
boost models.

Input for cosine similarity calculationsisidentical to theinputinto
the NN model. Based on the results from novelty testing, the median
cosine similarity for novel phyla, classes, orders and some families were
assigned to be predicted with the ‘general’ model and all other with
‘specific’ model, including all genomes with mean completeness pre-
dictionbelow 50% (Supplementary Fig.1). As completeness declined,
aslightly higher share novel genomes was assigned to the NN model
to take advantage of its superior performance at lower completeness
levels (see Supplementary Table 4 for the exact calculations).

Evaluation of nonredundant contamination effects on
accuracy

To simulate nonredundant contamination, simulated genomes were
created from RefSeq release 89. Different levels of completeness were
generated by removing arandom subsection of the genome to generate
completenessbetween 50 and 100%. A contaminant fragment was then
added to each of these simulated genomes, which was chosen from a
taxonomicsource defined by GTDB release 89 taxonomic assignment
as follows: a randomly chosen isolate genome was chosen from the
same species, same genus and so on, up to different domain, which
included prokaryotic as well as viral and eukaryotic genomes. Arandom
subsection of that genome was used as the contaminating contig. The
contaminating fraction did not exceed amaximum of 10% contamina-

bases in contaminant fragment

tion, where contamination was calculated as

bases in complete base genome‘
each synthetic cross-contaminated species, only one other species was

used, after which the same species could not be used as a source for
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contamination at that taxonomic level. For eukaryotic genomes, a
random section of either human or fungal DNA was randomly chosen,
using allhuman or fungal sequences available in RefSeq release 89. For
viral contamination, all viral sequences in RefSeq release 89 was used
for the pool of candidates. If a virus was too small to make up the
required 1-10% contamination relative to the genome being contami-
nated, a different virus was randomly chosen from the entire pool
without replacement until the criteria were met.

Benchmarking speed of CheckM1 and CheckM2

Five replicate metagenomic sets were used to benchmark the speed of
CheckM1 and CheckM2, consisting of an average of 450 genomes
per set. Three sets consisted of MAGs randomly sampled from publicly
available metagenomes, one set comprised a random selection of
RefSeq r89 genomes and one set comprised a random sample of syn-
thetic MAGs belonging to the DPANN superphylum or Patescibacteria
phylum derived from MAGs in RefSeq r202. CheckM1 was run in the
‘lineage_wf’ mode with 45 threads and 45 pplacer_threads, while
CheckM2was runinthe ‘predict’mode with 45 threads. Allbenchmark-
ing was done on an AMD EPYC 7702 64-Core Processor and time was
determined using the ‘time’ bash command, where the ‘real’ time was
for comparison. During runtime, threads were not shared with any
other processes. Time taken per minute per thread was calculated as

real runtime

sumberofgenomes Pagk RAM usage for alarge batch job (225,000 GTDB release

45 threads
202 genomes in asingle folder) was determined from ‘maximum resi-

dent set size’ using the command /usr/bin/time -v and visual verifica-
tion using the htop command.

SHAP value calculations

SHAP values for the gradient boost models were calculated using the
SHAP? package (v.0.39.0). To calculate the ten feature vectors contrib-
uting most toward completeness predictions by phylum (Supplemen-
tary Table7),a TreeExplainer was used to generate SHAP values for the
gradient boost completeness model in the CheckM2 release version.
Aggregate sums across all 21,241 feature vectors were calculated, and
the top ten were included in the Supplementary Table 7 with a mean
per phylum.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Additional analyses supporting the conclusions of this study have
been supplied as Supplementary Information. Supplementary
scripts required to generate all synthetic genomes used in training
and testing can be accessed from Zenodo (https://doi.org/10.5281/
zenodo.6861629). Benchmarking data can be accessed from Zenodo
(https://doi.org/10.5281/zenodo.8024307). A full list of feature vectors
used by CheckM2 and their order can be accessed on GitHub (https://
github.com/chklovski/checkm2_supplementary). The annotation
vectors of all synthetic genomes used to train CheckM2, as well as com-
pleteness/contamination labels, are available as part of this repository
insparse vector format, formatted for both the NN and gradient boost
models. Source data are provided with this paper.

Code availability

CheckM2 is available on GitHub (https://github.com/chklovski/
CheckM2) and is released under the GNU General Public License
v.3. The script required to update CheckM2 with new high-quality
genomes is also available on GitHub (https://github.com/chklovski/

checkm?2_supplementary), although this will be carried out centrally
by the CheckM2 team.
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Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection - publicly available RefSeq and GenBank genomes were downloaded from public repositories.

Data analysis To dereplicate downloaded genomes, Galah v0.2.0 was used. To generate synthetic genomes for the 'random-protein-sampling' and '20-kb-
fragmentation' methods referenced in the manuscript, the BBMap suite v.38.18 was used in combination with custom bash (v4.3.48(1)-
release (x86_64-suse-linux-gnu) ) and python (v 3.7) scripts available from Zenodo with the DOI identifier 10.5281/zenodo.6861629. For
visualisation of CheckM1 and CheckM2 performance, the data was processed with the pandas package (1.1.3), and visualised using the
Seaborn package (0.11.0). CheckM?2 software used for benchmarking is available from https://github.com/chklovski/CheckM?2 (v 0.1.3).
CheckM1 software used for benchmarking was v 1.0.12 and is available from https://github.com/Ecogenomics/CheckM/. The BUSCO software
used for benchmarking was v5.0.0, run offline with reference database downloaded on 21-02-21. For all simulated genomes, genes were
predicted using Prodigal v.2.6.3 and annotated with KEGG ids using diamond v2.0.4 ‘blastp’ command against uniref100 (released
26/11/2018) containing KO annotations. To train the neural network model, tensorflow v2.2.0 was used. To train the gradient boost model,
lightgbm 3.2.1 was used. SHAP values for the gradient boost models were calculated using the SHAP package (0.39.0). The GUNC software
used for benchmarking was v 1.0.5.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The benchmarking data that support the findings of this study are available from the corresponding author upon reasonable request. (?)
The uniref100 fasta files used to annotate with KO annotations were downloaded from the UniRef website on 03-06-2018.

KEGG definitions of modules, pathways and categories were downloaded from KEGG on 26-11-2018.

All genomes used in benchmarking, testing and training were downloaded from NCBI RefSeq and Genbank releases 89 and 202.

All genome metadata and taxonomic information used for analysis was downloaded from GTDB release 202.
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Sample size

Data exclusions

Replication

Randomization

Blinding

Number of complete bacterial and archaeal genomes in RefSeq releases 89, 202, as well as those publications referenced in the manuscript
determined the sample size for all training and testing. Fragmentation of each complete genome to synthetic genomes with completeness
ranges from 5%-100% and 0%-35% contaminated at 5% completeness intervals on average determined final sample sizes. Contamination
above 35% was not simulated as these are far outside MIMAG (1) standards and accuracy in contamination prediction above 35% was unlikely
to provide useful biological insights relative to the processing power required to generate such samples. Using 5% intervals in completeness
were a middle ground between covering the entire range of possible levels of completeness (0-100%) and having small enough sample sizes
to prototype and retrain machine learning models in a computationally tractable timeframe.

1) Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of
bacteria and archaea. Nature Biotechnology vol. 35 725-731 (2017).

Some genomes were excluded due to suspected poor quality despite being annotated as complete (accession codes available in the
Supplementary Tables).

For initial testing using 11 machine learning methods, 6 rounds of randomised cross-validation were performed, where the data was split into
a 75%/25% train/validation sets using k-fold cross-validation by selecting GTDB-taxonomy-derived species and re-sampling if necessary
ensuring at least 5 phyla/classes/orders were unique to the validation set. For novelty testing, a leave-one-out approach was used for Archaea
and a leave-one/two/four/eight/sixteen/thirty-two-out approach for Bacteria from phylum-level to species-level (see Methods). For cross-
contamination, for each genome in RefSeq release 89 a foreign contaminant contig was added at taxonomic levels from same species to
different domain, where a genome used to supply the contig was not used again at that taxonomic level. For all benchmarking, two different
methods of creating synthetic genomes (20-kb-fragmentation and random-MAG-derived fragmentation) were used on all complete genomes
to produce two separate benchmarking datasets, for which results were averaged. Individual results are available in the Supplementary Data.

Randomisation for cross-validation were picked using random numbers generated the python (v 3.6) 'random' package. Randomisation for
novelty testing was determined using the same package. Benchmarking for RefSeq was determined by availability of complete genomes
between software development (RefSeq release 89) and software benchmarking (RefSeq release 202 as well as additional genomes from
studies cited in the manuscript).

Blinding during cross-validation consisted of random selection of genomes, with re-sampling if necessary (see Replication). Blinding during
benchmarking consisted of data released between RefSeq release 89 and RefSeq release 202 representing data not available during training,
as well as genomes representing novel lineages from additional studies, many of which were not represented or sparsely represented in
RefSeq release 89. Benchmarking genomes were not selected before completing the training on base models, ensuring that no bias towards
these lineages was encoded.
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Animals and other organisms
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