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CheckM2: a rapid, scalable and accurate tool 
for assessing microbial genome quality using 
machine learning

Alex Chklovski1, Donovan H. Parks    2, Ben J. Woodcroft    1  
& Gene W. Tyson    1 

Advances in sequencing technologies and bioinformatics tools have 
dramatically increased the recovery rate of microbial genomes from 
metagenomic data. Assessing the quality of metagenome-assembled 
genomes (MAGs) is a critical step before downstream analysis. Here, we 
present CheckM2, an improved method of predicting genome quality of 
MAGs using machine learning. Using synthetic and experimental data, we 
demonstrate that CheckM2 outperforms existing tools in both accuracy 
and computational speed. In addition, CheckM2’s database can be 
rapidly updated with new high-quality reference genomes, including taxa 
represented only by a single genome. We also show that CheckM2 accurately 
predicts genome quality for MAGs from novel lineages, even for those 
with reduced genome size (for example, Patescibacteria and the DPANN 
superphylum). CheckM2 provides accurate genome quality predictions 
across bacterial and archaeal lineages, giving increased confidence when 
inferring biological conclusions from MAGs.

Large-scale sequencing and assembly of genomes directly from envi-
ronmental samples has led to the recovery of hundreds of thousands 
of highly diverse metagenome-assembled genomes (MAGs) from 
metagenomic data1–3, making it impractical to manually assess the 
quality of these genomes. The original approach to this problem used 
by CheckM4 (hereafter CheckM1)4, and other similar tools (such as 
BUSCO5), is to identify single-copy, near-universal marker genes asso-
ciated with specific lineages to predict genome completeness and 
contamination. However, this approach has a number of limitations.

The single-copy marker gene approach used by CheckM1 relies 
on comparative genomics to identify lineage-specific marker gene 
sets to predict the completeness and contamination of a recovered 
MAG based on their presence, absence and copy number. Well-studied 
lineages with many high-quality genomes usually have more robust 
marker sets, which allows for higher accuracy and confidence in 
genome quality predictions. For novel lineages that lack high-quality 

genomic representation, only the most general marker sets (for exam-
ple, domain-level) can be used for genome quality estimates, resulting 
in reduced accuracy and sensitivity. In addition, this approach typi-
cally performs poorly on MAGs from microorganisms with reduced 
genomes, which lack some ‘universal’ marker genes6, and in many 
instances do not have many high-quality genomic representatives to 
derive robust marker sets.

An alternative approach to this problem is to use more complex 
mathematical techniques such as machine learning (ML) to link a wider 
range of genomic inputs to predict genome quality. ML algorithms can 
generate insights into complex data and have been used for important 
biological challenges such as protein folding5 and metagenomic bin-
ning7. The application of ML to estimating genome quality has several 
advantages as it allows the incorporation of additional genomic infor-
mation such as multi-copy genes, biological pathways and modules, 
and other genomic features such as amino acid counts and number 
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and modules (Methods). In addition, the NN included convolutional 
layers for feature extraction, leading to an improvement in accuracy 
(Supplementary Table 3 and Supplementary Note 1). These optimiza-
tions to both models were used in subsequent testing.

Using simulated genomes to assess ML performance
To assess the effect of taxonomic novelty on the accuracy of the 
optimized NN and GB models, an iterative leave-one-out approach 
was used on the synthetic genome set, where genomes from spe-
cific taxa were removed from the training set from phyla to species, 
models were trained on the remaining genomes, and prediction 
accuracy tested on the left-out group. The mean average error 
(MAE) of both models for predicting completeness and contami-
nation was systematically assessed from phylum to species level 
(Fig. 1c). Separate models were trained for predicting complete-
ness and contamination for all ML models. As expected, removing 
lineages from the training set with increasing taxonomic level pro-
portionally affects the genome quality estimates (that is, removing 
all genus-level representation has a substantially lower impact on 
accurately predicting genome quality than removing class level 
or phylum-level representation of query genomes). Overall bacte-
rial and archaeal genome quality estimates improve if the training 
set contains a genome that is more taxonomically related to the 
query genome (Fig. 2a). However, the two models have different 
strengths relative to genome novelty and genome completeness. 
Completeness quality estimates for query genomes represent-
ing novel phyla, classes and orders were more accurate with the 
GB model, while the NN model was on average more accurate for 
genomes representing novel families, genera and species (Fig. 2a). 
Additionally, for low-quality (less than 50% complete) genomes  
the NN model was more accurate at all taxonomic levels, while the 
GB model accuracy declined with lower MAG quality (Fig. 2a).

The most difficult completeness prediction scenario is likely to 
be genomes belonging to a new phylum (that is, a phylum without a 
complete isolate genome). For near-complete genomes from a novel 
phylum, the MAE for completeness predictions using the GB model 
is 3.1 ± 3.9% and 5.2 ± 5.7% for the NN model. For medium-quality 
genomes, the GB model had a MAE of 4.6 ± 4.4%, while the NN model 
had a MAE of 5.9 ± 5.3%. These results indicate the models have an 
ability to generalize to phylum-level novelty with relatively good accu-
racy even as genome quality declines. While it is impossible to repro-
duce this test for CheckM1, using CheckM1’s domain-level bacterial 
or archaeal marker sets consisting of roughly 120 universal marker 
genes resulted in roughly equivalent MAEs of 3.4 ± 4.4% for high-quality 
and 7.2 ± 5.8% for medium-quality genomes.

For genome contamination predictions at all taxonomic levels, 
the gradient boost model substantially outperformed the NN and was 
chosen as the model for predicting contamination (Figs. 1d and 2b). For 
genomes belonging to a novel phylum, the predicted contamination 
MAE of the GB model is 2.0 ± 2.2% (high quality), contrasting with a NN 
MAE of 7.3 ± 5.5% (high quality) and a CheckM1 domain-level marker set 
comparison of 1.9 ± 2.2% (high quality).

Because the NN model performed best for less novel genomes and 
the GB model performed best for more novel genomes, both models 
were implemented in the final version of CheckM2 for completeness 
prediction. Only the GB model was implemented to predict contami-
nation. For completeness predictions on novel and more complete 
genomes, CheckM2 uses a ‘general’ model based on gradient boost 
decision tree algorithms, while for genomes more closely related to 
those in its reference set or less complete genomes it uses a ‘specific’ 
model based on artificial NNs (Fig. 1d). A cosine similarity measure was 
found to correlate well with input genome taxonomic novelty, with a 
linear relationship between squared cosine similarity and taxonomic 
distance (Supplementary Fig. 1), enabling CheckM2 to use this meas-
ure to select between the ‘general’ and ‘specific’ model for each input 

of coding sequences. Furthermore, it allows for automatic selection 
of relevant genomic features to use for genome quality predictions 
without relying on predefined lineage-specific marker sets.

Here we introduce CheckM2, a ML-based tool for predicting iso-
late, single-cell and MAG genome quality. CheckM2 builds models 
suitable for predicting bacterial and archaeal genome completeness 
and contamination without explicitly considering taxonomic informa-
tion. CheckM2 was trained on simulated genomes with known levels 
of completeness and contamination, benchmarked against CheckM1 
as well as BUSCO, and subsequently applied to MAGs from a range of 
environments. Overall, CheckM2 outperformed CheckM1 and BUSCO, 
and performed substantially better on MAGs from unusual lineages 
characterized by small genome size, such as the Candidate Phyla Radia-
tion (Patescibacteria) and DPANN (an acronym of the names of the first 
included phyla: Diapherotrites, Parvarchaeota, Aenigmarchaeota, 
Nanoarchaeota and Nanohaloarchaeota) superphylum, as well as other 
lineages with sparse or no genomic representation.

Results
CheckM2 genome simulation, training and benchmarking
To demonstrate that ML can be applied to accurately predict genome 
quality, synthetic MAGs with known quality were constructed for ML 
training. A ‘random-protein-sampling’ method was used to build train-
ing MAG sets, where predicted proteins from a subset of 4,978 bacterial 
and 322 archaeal complete isolate genomes selected from National 
Center for Biotechnology Information RefSeq8 Release 89 were ran-
domly sampled to build roughly 700,000 synthetic MAGs at prede-
termined completeness and contamination percentages (Methods 
and Fig. 1a). The target completeness for ML training and output was 
defined as the percentage of MAG length relative to total MAG length, 
while contamination was defined as the length of the contaminating 
portion relative to the expected (complete, uncontaminated) genome 
length. To validate the performance of ML models, two separate MAG 
simulation approaches were used: (1) a ‘20 kb-nucleotide-fragmentatio
n’ method where the full-length genomes were sheared into roughly 
20 kb-long pieces, and (2) a ‘MAG-derived-fragmentation’ model 
where full-length genomes were sheared into contig distributions 
representative of MAGs in the Genome Taxonomy Database (GTDB)9 
(Fig. 1b). In both simulation models used for validation, contigs were 
randomly sampled to build MAGs with a range of simulated complete-
ness (5–100%) and contamination (0–100%) values.

To train and test different ML models for predicting genome qual-
ity, the genome properties of synthetic MAGs were calculated as feature 
vectors for the ML models, including the genome length, number of 
coding sequences and individual amino acid counts, as well as anno-
tation of predicted proteins using KEGG (the Kyoto Encyclopedia of 
Genes and Genomes)10. In total, 11 ML methods (Methods) were trained 
on randomly selected subsets of the simulated MAGs (75% of all MAGs; 
‘random-protein-sampling’) and subsequently validated on the remain-
der of the MAGs (25%; for both ‘20-kb-nucleotide-fragmentation’ and 
‘MAG-derived-fragmentation’) for an initial assessment of quality 
prediction performance across diverse bacterial and archaeal phyla. To 
assess performance of ML models, predictions on simulated genomes 
were divided into four groups based on MIMAG (minimum information 
about a metagenome-assembled genome) completeness and contami-
nation standards11 (high quality, more than 90% complete and less than 
5% contaminated; medium quality, 50–90% complete and less than 10% 
contaminated and low quality, less than 50% complete and less than 
10% contaminated), as well as a separate group for high contamination 
(more than 10% contaminated) (Supplementary Table 1).

Artificial neural networks12 (NNs) and gradient boosted (GB) deci-
sion trees13 showed the best overall performance (Supplementary 
Table 2) and were used in further optimization and testing for CheckM2 
(Fig. 1c). Both the NN and GB models exhibited higher accuracy when 
KEGG annotations were considered in the context of their pathways 
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genome based on predefined cosine similarity cutoffs derived from the 
leave-one-out approach (Methods, Fig. 1d and Supplementary Table 4).

Benchmarking CheckM2 performance on synthetic RefSeq 
genomes
The initial CheckM2 ML models were built on genomes from RefSeq release 
89, allowing new complete genomes from RefSeq release 202 to be used to 
test CheckM2’s performance, as they were not part of the original training 
and validation sets (Fig. 1e). In total, this included 2,864 new complete 
microbial isolate genomes representing six novel phyla, 13 novel classes, 
43 novel orders, 87 new families, 439 novel genera and 1,554 novel species 
according to their GTDB classifications. As these genomes represent the 
range and types of genomes added to public databases over the course 
of roughly 2 years, they provide a reasonable indication of how CheckM2 
performs when tested against new genomes of varying taxonomic novelty. 
They also provide suitable complete genomes for simulating new genomes 
of known completeness and contamination (as in Fig. 1b), allowing bench-
marking of CheckM2 against CheckM1 and BUSCO.

When predicting the completeness of 712,880 simulated RefSeq 
202-based genomes, CheckM2 was substantially more accurate than 
CheckM1 with a lower MAE across all genomes (Fig. 3a and Supple-
mentary Note 2). Overall, there was similar performance between 
CheckM2 and CheckM1 on high-quality genomes (CheckM2 MAE 
2.1 ± 2.9%, CheckM1 MAE 2.0 ± 3.2%) with BUSCO being less accu-
rate (BUSCO MAE 4.4 ± 6.8%). CheckM2 was far more accurate for 
medium, low-quality and highly contaminated genomes then both 
other tools (Fig. 3a; CheckM2 MAE 2.9 ± 2.9%, CheckM1 MAE 4.7 ± 5.4%, 
BUSCO MAE 6.4 ± 7.0%). However, as some phyla within RefSeq 202 
are highly oversampled, bulk genome MAE underestimates perfor-
mance across broad taxonomic ranks. When using a phylum-weighted 
MAE (PW-MAE), CheckM2 outperformed CheckM1 and BUSCO with 
both substantially higher accuracy and much lower error variance 
for high-quality genomes (CheckM2 PW-MAE 2.5 ± 2.2%, CheckM1 
PW-MAE 5.7 ± 2.9%, BUSCO PW-MAE 10.2 ± 4.5%) as well as medium 
and low-quality genomes (CheckM2 PW-MAE 3.7 ± 3.2%, CheckM1 
PW-MAE 7.1 ± 5.7%, BUSCO PW-MAE 10.2 ± 7.3%). CheckM2 exhibited 
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Fig. 1 | Overview of CheckM2 development, benchmarking and validation. 
a,b, Simulation of synthetic genomes for training using random protein 
fragmentation (RPF) (a) and for testing using the 20 kb fragmentation (20 kb) and 
random MAG-derived fragmentation (RMF) (b). c, Selection of NN and gradient 
boost models and further testing and refinement. d, The final algorithm used by 
CheckM2 to decide between gradient boost and NN models. e, Benchmarking 

of CheckM2 on RefSeq 202 synthetic genomes. f, Benchmarking of CheckM2 
on novel and unusual synthetic genomes derived from circular MAGs including 
Patescibacteria. g, Benchmarking CheckM2 on synthetic genomes with nonself-
contamination derived from RefSeq r89 genomes. h, Comparing CheckM1 and 
CheckM2 genome quality predictions for all GTDB r202 MAGs.
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comparable performance across both the ‘20-kb-fragmentation’ and 
the ‘MAG-derived random fragmentation’ simulations, suggesting 
that there is little effect of simulation method on resulting predictions 
(Supplementary Note 2). The most significant increase in performance 
of CheckM2 was seen in predicting completeness of genomes from 
the phyla with very few high-quality genomic representatives such as 
Iainarchaeota, Nanohaloarchaeota, Dependentiae, Bipolaricaulota 
and Patescibacteria (high-quality MAE 3.6 ± 2.9%) when compared 
to CheckM1 (high-quality MAE 26.3 ± 10.8%) or BUSCO (high-quality 
MAE 34.1 ± 7.1%) (Fig. 3b,c). Notably, there was only a single reference 
genome for Nanohaloarchaeota, Dependentiae, Bipolaricaulota and 
Iainarchaeota in the training set for CheckM2, indicating that a single 
genomic representative of a lineage provides sufficient information 
for an accurate prediction of genome quality.

When predicting contamination, the MAE of CheckM2 (MAE 
1.2 ± 1.3%) was comparable to CheckM1 (MAE 1.5 ± 1.8%) and BUSCO 
(MAE 1.0 ± 1.4%) on high-quality genomes, and was substantially more 
accurate for medium- and low-quality genomes (CheckM2 1.7 ± 1.7%, 
CheckM1 3.0 ± 4.0%, BUSCO 2.9 ± 4.1%). It was also substantially better 
at predicting contamination in highly contaminated genomes (Fig. 
3d). To confirm prediction accuracy with metrics other than MAE, 
we calculated the R2 between predicted and actual completeness and 
contamination metrics for all three tools across a wide range of genome 
quality values of the synthetic genomes. CheckM2 had a higher R2 
between predicted and actual values for every single group of genome 
quality cutoffs (Supplementary Table 11).

Benchmarking CheckM2 performance on new lineages
One of the weaknesses of CheckM1 was its poor performance on highly 
novel genomes relative to the dataset its marker sets were based on, 
particularly from lineages characterized by organisms with small or 
highly reduced genomes, such as organisms from the DPANN and 
Patescibacteria. The archaeal DPANN superphylum and the bacterial 
Patescibacteria are large radiations of microorganisms comprising a 
significant fraction of the tree of life14. Their high diversity, unusual 
biology, absence of key genes and often small genomes make predict-
ing their genome quality particularly challenging15–17. To assess ability 

of CheckM2 to predict the quality of genomes from these microor-
ganisms, 57 closed circular genomes were obtained from wastewater 
(Singleton et al.18), including 30 genomes from the Patescibacteria, as 
well as other highly novel and often small genomes from phyla such as 
Dependentiae, Iainarchaeota and UBA10199. Additionally, 36 additional 
circularized Patescibacteria genomes were obtained from Lui et al.19. 
These lineages are poorly represented in the RefSeq release 202, which 
mostly cover phyla and classes with existing isolate representatives. 
Together, this dataset represents 25 unique classes and 45 unique orders 
of curated and circular Patescibacteria genomes along with a number 
of other circularized MAGs representing novel phyla and classes, pro-
viding an excellent opportunity to test CheckM2’s performance on 
novel genomes (Fig. 1f). From these complete genomes, simulated 
genomes of varying completeness and contamination were created 
as above (Fig. 1b) to enable tool benchmarking across different levels 
of genome quality.

Across all classes of Patescibacteria, CheckM2 was far more 
accurate than CheckM1, with the performance CheckM1 only being 
improved by using a custom Patescibacteria marker set based on 43 
ribosomal genes6 (Fig. 4c). However, the accuracy of CheckM1 using 
the custom candidate phyla radiation (CPR) marker set substantially 
declined on medium- and low-quality Patescibacteria genomes with 
completeness error rates as high as 30–40%, making the method unreli-
able. The superior performance of CheckM2 extends to all Patescibacte-
ria classes represented in the Singleton et al.18 and Lui et al.19, indicating 
that CheckM2 can robustly and accurately predict genome quality from 
highly diverse lineages such as the Patescibacteria, despite only having 
a few genomic representatives in the training set.

Across other unusual lineages, CheckM2 is more accurate for both 
high-quality genomes (MAE 2.9 ± 2.6%) and medium- and low-quality 
genomes (MAE 4.4 ± 3.8%) than CheckM1 (high-quality MAE 4.7 ± 6.0%; 
medium- and low-quality MAE 6.1 ± 5.8%) or BUSCO (high-quality 
MAE 10.9 ± 9.0%; medium- and low-quality MAE 10.2 ± 8.3%), show-
ing an ability to generalize well across a range of phyla and classes 
not represented in its reference set (Fig. 4a). For unusual lineages 
with reduced genomes such as the phyla Patescibacteria, Depend-
entiae or Iainarchaeota, where an in-built specific marker set is not 
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Fig. 2 | Benchmarking ML models on synthetic genomes of varying taxonomic 
novelty. a, Error in predicting completeness. b, Contamination at varying 
taxonomic levels of novelty. Each taxonomic novelty level is broken into separate 
error margins across different MIMAG quality cutoffs (high quality, 90–100% 
completeness and 0–5% contamination; medium quality, 50–90% completeness 

and 0–10% contamination and low quality, less than 50% completeness and 
0–10% contamination). Positive values indicate overestimation, whereas 
negative values indicate underestimation of true values. The size of each error 
box in the letter-value plot shows half the remaining data, starting with 50% for 
the first box, 25% for the second box and so on.
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available for CheckM1, CheckM2 completeness predictions are far 
more accurate (MAE 5.8 ± 5.3%) than CheckM1 (MAE 19.8 ± 10.6%) or 
BUSCO (MAE 30.3 ± 13.2%; Fig. 4b). As with RefSeq 202 benchmarking, 
CheckM2 showed similar performance on genomes simulated by both 
test simulation methods and consistently outperformed CheckM1 
(Supplementary Note 3).

CheckM2 also outperformed other tools on most cases of con-
tamination (Fig. 4d). The only partial exception are some high-quality 
Patescibacteria genomes in which CheckM1’s lineage-specific marker 
sets provide slightly better accuracy (Singleton et al.18: CheckM1 MAE 
1.4 ± 1.1%, CheckM2 MAE 1.7 ± 1.3%; Supplementary Note 3). In part, 
this may be due to CheckM2’s conservative nature when approaching 
contamination predictions. However, it is likely that the addition of 
these new circularized Patescibacteria genomes to CheckM2’s final 
reference set (Fig. 1h) will increase its accuracy.

As with the RefSeq release 202 benchmarking, we calculated the 
R2 between predicted and actual completeness and contamination 
values of simulated genomes and predictions by all tools. As above, 
CheckM2 outperformed both other tools across every criterion (Sup-
plementary Table 11).

Benchmarking CheckM2 cross-contamination performance
Contamination in MAGs may come from the binning together of closely 
related strain or species, but may potentially also contain divergent 

sequences from other lineages or even domains. CheckM1 uses dupli-
cated single-copy marker gene counts to infer contamination, on the 
assumption that contamination will come from closely related genomes 
being binned together, and thus will contain duplicated single-copy 
genes. This is likely to work better when the sources of contamina-
tion are highly related and thus likely to share the same distribution 
of single-copy markers.

However, it is unclear how accurate CheckM1 is when assessing 
contamination from a different source from the same strain or spe-
cies, and whether CheckM2’s weighted combination of feature vectors 
is better able to identify foreign contamination compared to only 
using duplicate single-copy marker genes. Here, the contamination 
predictions of CheckM1, CheckM2 and BUSCO were benchmarked 
on simulated genomes with contamination originating from increas-
ingly divergent sources, from species to domain (Fig. 1g). In addition, 
GUNC20, was also benchmarked for contamination prediction, as it 
uses an alternative approach based on the presence of taxonomically 
discordant contigs.

Our results demonstrate that CheckM2 is accurate at identifying 
foreign contamination, particularly for high-quality genomes (Fig. 5),  
although it was less accurate on higher-taxa contamination for 
medium-quality genomes, as were CheckM1 and especially BUSCO, 
which substantially underestimated contamination (Fig. 5). CheckM2 
is far less likely to overestimate contamination compared to CheckM1, 
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likely due to the fact it does not rely as strongly on single-copy marker 
genes and does not use small marker sets (Supplementary Note 4).

CheckM2 outperformed CheckM1 and BUSCO at all lev-
els in the mean of the absolute error (AE) predictions for high- 
and medium-quality genomes, with contamination from the 
same-species-derived contamination (CheckM2 high-quality AE 
1.7 ± 1.6%, CheckM1 AE 2.6 ± 3.1%, BUSCO AE 2.4 ± 3.1%) to contamina-
tion derived from the same phylum (CheckM2 AE 2.4 ± 2.3%, CheckM1 
AE 3.6 ± 4.7%, BUSCO 3.7 ± 3.2%), a different phylum (CheckM2 AE 
2.6 ± 2.4%, CheckM1 AE 4.3 ± 6.2%, BUSCO 4.1 ± 3.1%) or different domain 
(for example archaeal contamination of bacterial MAGs) (CheckM2 AE 
3.1 ± 2.5%, CheckM1 AE 3.2 ± 2.6%, BUSCO 4.3 ± 2.9%). GUNC was sub-
stantially more accurate when contamination was derived from a dif-
ferent class or more taxonomically distant contamination but tended 

to overpredict contamination across other levels, and substantially 
underestimated same-species and same-genus contamination (Fig. 5). 
CheckM2 was more accurate than other tools in predicting contami-
nation from the same species, genus or family, which is considerably 
more difficult to detect with taxonomy-based detection tools such 
as GUNC20.

Application of CheckM2 to environmental MAGs
Comparison of CheckM1 versus CheckM2 predictions across all 
taxa. Following benchmarking on synthetic genomes, CheckM2 was 
retrained with all complete genomes in RefSeq release 202 to provide 
a comprehensive reference database for inclusion with the CheckM2 
release version. We then used CheckM2 to predict the genome qual-
ity across all bacterial and archaeal lineages. As GUNC is unable to 
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predict completeness, and BUSCO was consistently outperformed by 
both CheckM1 and CheckM2 in benchmarking tests above, CheckM2 
predictions were compared to CheckM1 predictions for completeness 
and contamination of 224,101 bacterial and 3,881 archaeal genomes 
in the GTDB release 202 (most recent GTDB release available at time 
of testing) annotated as ‘incomplete’: that is, not isolate genomes or 
closed circular MAGs (Fig. 1h).

Overall, there is good congruence among completeness predic-
tions across most phyla between CheckM2 and CheckM1, with 73% 
of all completeness predictions being within 1% of each other and 
91% being within 5% of each other (Fig. 6a). Similar congruency in 
results was observed for contamination, with 82% of all genome predic-
tions being within 1% of each other and 99% being within 5% (Fig. 6b). 
Substantially higher or lower completeness predictions (more than 
5% difference) using CheckM2 often occurred across entire lineages 
(phylum through to genera), while discrepancies in contamination 
were typically restricted to specific genomes within lineages (that is, 
were not systematic; Fig. 6, Supplementary Table 5 and Supplementary 
Figs. 2 and 3). CheckM2 was also able to identify previously undetected 
contamination in a number of MAGs and isolate genomes and may 
avoid some potential contamination overestimations by CheckM1 
(Supplementary Note 8).

In the Bacteria, the highest divergence in completeness predic-
tions is within the Patescibacteria phylum, where CheckM2 scores 

are substantially higher than those predicted by CheckM1 (Fig. 6c).  
Based on benchmarking, the CheckM2 results are likely to be sub-
stantially more accurate, enabling much better Patescibacteria MAG 
curation in the future and giving greater confidence to biological 
insights derived from these genomes. Other bacterial lineages 
predicted to be substantially more complete all appear to have 
common features such as small or reduced genome size, and/or 
hypothesized endosymbiotic or parasitic lifestyle. This includes 
the phyla Dependentiae, which are phylogenetically related to the 
Patescibacteria21, as well as the orders RF32 within the Proteobac-
teria, TANB77 within the Firmicutes_A22, and the actinobacterial 
orders Actinomarinales and Nanopelagicales23. While some families 
within the Firmicutes_A order Christensenellales have concordant 
CheckM1 and CheckM2 predictions, other families such as CAG-74 
have much higher CheckM2 completeness values. CAG-74 has been 
hypothesized to lack certain key functions (for example, amino 
acid biosynthesis pathways) and may be potential symbionts22. 
Members of the family UBA1242, where the average genome size is 
roughly 1 mega-basepairs also shows substantially higher CheckM2 
completeness predictions (on average 11% more complete), indicat-
ing that this family may also have a symbiotic or parasitic lifestyle 
that has not previously been reported (Fig. 6c).

Analysis of manually curated complete bacterial endosymbi-
ont genomes (Supplementary Table 6) demonstrated that CheckM2 
markedly outperformed CheckM1 by predicting a much higher com-
pleteness, with CheckM2 predicting an average completeness of 71%, 
compared to CheckM1’s 39% average. Notably, CheckM2 was able to 
achieve this accuracy with little to no endosymbiont representation 
in its training database (as they are usually excluded from RefSeq) 
and incorporating the test genomes into the final models will likely 
substantially improve its accuracy on future endosymbiont cases. It 
is likely that use of CheckM2 on assembled metagenomic data will 
lead to the discovery of novel endosymbiont genomes that are highly 
complete with a small genome size.

Archaeal lineages with substantially higher CheckM2 complete-
ness scores are primarily in the DPANN superphylum, including mem-
bers of the Nanoarchaeota, Nanohaloarchaeota and Micrarchaeota 
phyla, which have high-quality genomic representatives in CheckM2, 
as well as the phyla Huberarchaeota, Aenimatarchaeota and PWEA01 
(formerly part of Aenigmatarchaeota), which are not represented in the 
CheckM2 release reference set (Fig. 6c). These predictions underscore 
the effectiveness of CheckM2’s prediction approach, which general-
izes to novel taxa with biological similarities to genomes CheckM2 
was trained on. Other lineages that are predicted to be more complete 
by CheckM2 include the class Poseidoniia_A within the Thermoplas-
matota, which is missing several single-copy genes used by CheckM1  
(ref. 24) and the Asgardarchaeota order CR-4. The recently isolated 
and sequenced Prometheoarchaeum syntrophicum, which belongs to 
the order CR-4, was included in the release reference set for CheckM2, 
which likely contributed to a higher completeness score for this lineage. 
This highlights the power of including a single genome representative 
in CheckM2’s ML predictions.

In a small number of instances, CheckM2 completeness values 
were substantially lower than CheckM1 (5.4% of all genomes were more 
than or equal to 5% lower, 1.6% of genomes were more than or equal to 
10% lower or more). The underlying cause for this difference is unclear 
but is likely due to multiple factors, such as the novelty of genomes, 
CheckM2’s choice of ML model or CheckM1’s use of a kingdom-level 
marker set to assess the completeness of some unusual lineages (Sup-
plementary Note 5). Indel-dominated genomes were also found to have 
a particularly low CheckM2 score relative to CheckM1 (Supplementary 
Note 6). Furthermore, as CheckM1 is often used to select MAGs for 
submission and publication, this can produce an imbalanced selec-
tion effect where genomes with overprediction error are retained in 
databases at higher rates than genomes with underprediction errors 
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(Supplementary Note 7). Given the benchmarking results and careful 
investigation of example cases it is likely that CheckM2 is more accurate 
than CheckM1 in most of these instances. However, for some lineages 
with only a few MAGs and no complete genomes, it is difficult to assess 
whether CheckM1 or CheckM2 scores are more accurate. The addition 
of any single complete representative genome will improve and/or 
validate the accuracy of CheckM2’s predictions for these lineages.

Finally, some binning algorithms may yield MAGs where some 
contigs (such as those containing single-copy marker genes) are more 
preferentially recovered than others (for example repeats or plas-
mid genes)25. Our investigation of the effect of binning algorithms on 
genome prediction accuracy using a predefined CAMI2 dataset shows 
that any bias is likely slight, and that overall CheckM2 is more accurate 
than CheckM1 or BUSCO on MAGs derived from a variety of binning 
algorithms (Supplementary Note 10).

Overall, we see good congruence between CheckM2 and CheckM1, 
and increased CheckM2 completeness scores in lineages where 
CheckM1 is known to have poor predictive capacity16,26. This gives 
confidence in the robustness and reliability of both estimates, given 
the different underlying algorithms behind both tools. Based on these 
results, the benchmarking data sets and investigation of individual 
cases (Supplementary Notes 3–8) we believe that in most cases of incon-
gruent predictions, CheckM2 values are likely to be more accurate.

Biological insights into the ML models. It is difficult to identify the 
contribution of specific genomic features to the predictions of ML 
models used by CheckM2. Some interpretable ML approaches, such 
as SHAP27, use robust mathematical techniques to approximate fea-
ture importance. While imperfect, when applied in the context of 
CheckM2’s models, these approaches can highlight the importance 
of specific genes and pathways that can be further investigated and 
assessed independently.

According to their SHAP values, key pathways contributing to 
completeness predictions across most lineages are ribosomal proteins, 
as well as genes in the DNA processing and tRNA biosynthesis pathways. 
There are also individual pathways with substantially higher predictive 
values for only certain lineages. For example, the membrane transport-
ers pathway in the Patescibacteria have much higher importance values 
compared to most other lineages that are not characterized by genome 
reduction or streamlining (Supplementary Table 7). Transporters are 
particularly noteworthy as they are likely to be key to an auxotrophic 
lifestyle, while also presenting an example of a set of genes that would 
be missed using only a conserved single-copy marker approach. The 
high importance placed on these pathways are in line with our biologi-
cal understanding of microorganisms and give confidence that the ML 
models are capturing details of underlying biological reality. Average 
SHAP value contributions across all phyla also show that genomic 
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features contribute a high degree of predictive power, with eight 
genomic features being placed in the top 500 features for predicting 
completeness by the general gradient boost model (Supplementary 
Table 12), the highest being the number of amino acids in the genome 
(ranked 76th out of 21,241 input feature vectors) and number of coding 
sequences in the genome (ranked 143rd).

CheckM2 updates, computational benchmarking and resources. 
CheckM2 will be updated in line with GTDB releases. Unlike the very 
computationally heavy simulation method of CheckM1 (ref. 4), the 
simulation and training with new complete genomes taking less than 
1 min per genome (per thread), with KEGG annotation of simulated 
genomes using DIAMOND forming the only computational bottleneck. 
This means that a new GTDB release can be updated into CheckM2 
within 24–48 h.

During runtime, CheckM2 was consistently faster than CheckM1, 
processing an average of 1.56 ± 0.83 genomes per minute per thread on 
an AMD EPYC 7702 64-Core Processor, relative to CheckM1’s 0.57 ± 0.19 
genomes per minute per thread. As CheckM2 has no taxonomic deter-
mination step, its speed is more variable than CheckM1, being substan-
tially faster when predicting the quality of small or low-completeness 
genomes. CheckM2 is capable of processing hundreds of thousands 
of genomes at a time with reasonable (less than 90 GB for a batch run 
of 224,000 genomes) RAM usage.

Future versions of CheckM2 will be iteratively updated and may 
also include additional annotation databases (for example, STRING28 
and EggNOG29) if this leads to significant improvements in genome 
quality predictions. We may also explore alternative groupings of indi-
vidual genes into pathways outside of KEGG pathways, such as those 
provided by for example DRAM30 or its future versions. Finally, we are 
exploring alternatives to the UniRef database, such as a dereplicated 
database of GTDB proteins annotated with the most current KEGG 
Orthology hidden Markov models.

Discussion
Here we present CheckM2, a ML approach for predicting completeness 
and contamination of microbial genomes derived from metagenomic, 
single-cell and isolate sequence data. When benchmarked against 
CheckM1, we show congruency in genome quality prediction for line-
ages with good genomic representation but demonstrate that CheckM2 
has substantially better accuracy on medium- and low-quality genomes 
and genomes from lineages with poor genomic representation. We 
also demonstrate that in most cases it can generate highly accurate 
predictions for genomes in phyla with only a single genomic representa-
tive. Additionally, CheckM2 is substantially more accurate on lineages 
with small or reduced genomes such as the DPANN, Patescibacteria 
and Dependentiae, where CheckM1 often produces highly inaccurate 
predictions. Finally, CheckM2 typically performs better than or equal 
to CheckM1 on lineages with no genomic representation in the refer-
ence database.

The use of genome quality predictions from CheckM2 are likely 
to have important implications for existing databases and biological 
interpretations of new or unusual lineages. For example, CheckM2 com-
pleteness predictions will allow the inclusion of additional genomes 
currently excluded from GTDB due to the inaccurate CheckM1-based 
minimum cutoff (50% completeness), as demonstrated for the Patesci-
bacteria phylum and DPANN.

Improved genome quality predictions by CheckM2 are the result 
of considering a wide variety of annotation genes in its ML models, as 
opposed to CheckM1’s requirement for single-copy marker gene sets 
in each lineage. An additional advantage of the CheckM2 approach is 
that its models can be easily and rapidly updated to incorporate addi-
tional high-quality genomic representation for novel lineages, further 
increasing the accuracy of its genome quality predictions. Additionally, 
detection of contamination from divergent taxonomic sources may be 

improved through more complex training data simulation. CheckM2 
is a major step forward in our ability to rapidly and accurately predict 
genome quality across bacterial and archaeal genomes.
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Methods
Simulating genome completeness and contamination
To construct a training and validation set of genomes with known 
ranges of completeness and contamination, all genomes from RefSeq 
release 89 annotated as ‘complete’ or ‘chromosome’ were downloaded 
and dereplicated at 99% ANI using the software package Galah v.0.2.0 
(ref. 31). Genes were predicted using Prodigal v.2.6.3 (ref. 32), and 
resulting predicted proteins were randomly sampled using the BBMap33 
suite v.38.18 (‘reformat.sh’ with the ‘samplerate’ option) to create a 
range of completeness between 5 and 100% at 5% intervals using a 
custom script written in bash (v.4.3.48(1)-release (x86_64-suse- 
linux-gnu)) and python (v3.7). To simulate self-contamination, the 
same proteins were sampled multiple times to generate a range of 0% 
to 35% contamination. True completeness was calculated as 
amino acids in simulated genome
amino acids in complete genome

. True contamination percentage was calculated 

as amino acids in proteins sampled>1 time
amino acids in complete genome

.

For testing, two different simulation methods were used. These 
were purposefully distinct from the training set to minimize any overfit-
ting to the simulation method. In the ‘20-kb-fragmentation’ method, 
the input genome was fragmented into approximately 20-kb fragments 
using the ‘shred.sh’ option of the BBMap suite with median length 
20,000 and variance of 2,000. These were sampled using the BBMap 
suite (‘reformat.sh’ with the ‘samplereadstarget’ option) to create a 
range of completeness and contamination values as described above. 
The fragments were not stitched back together to replicate the state 
of a MAG with multiple contigs. In the ‘MAG-derived-length- 
fragmentation’, a database of contig size distributions was created 
using GTDB release 95 as its base, where the contig size distribution of 
all MAGs with less than 350 and more than ten contigs was used as a 
pool to choose from. Each genome had to be at least 65% complete and 
no more than 5% contaminated as determined using CheckM1. For each 
test genome, a MAG contig distribution was randomly selected and the 
full genomic sequence of the genome being simulated was cut into the 
same length fragments relative to genome size, where the order of 
contig sizes was randomized. These were then sampled in the same 
way as in the ‘20-kb-fragmentation’ method. For both, true complete-

ness was calculated as bases in simulated genome
bases in complete genome

. True contamination percent-

age was calculated as bases in contigs sampled>1 time
bases in complete genome

.

Annotation of genomes
For all simulated genomes, genes were predicted using Prodigal v.2.6.3 
and annotated with KEGG34 ids using diamond v.2.0.4 ‘blastp’ com-
mand against uniref100 (downloaded on 3 June 2018) containing KEGG 
Orthology (KO) annotations. To filter annotations, a query_cover of 
80, a subject_cover of 80, a value of 1 × 10−5 and a percent_id of 30 
was used, taking only the top hit for each gene. Annotations were 
converted to a frequency matrix containing all existing KEGG IDs with 
rows representing a simulated genome and columns representing 
counts of annotation detected. KOs found in the same pathway were 
grouped next to each other to allow sliding convolutional windows of 
the NN to extract useful information from this grouping. KOs present 
in multiple pathways were assigned only to the first pathway based on 
pathway alphabetical order. KEGG definitions of modules, pathways 
and categories were downloaded from KEGG on 26 November 2018.

After annotation, KEGG pathway, module and category complete-
ness was calculated based on the definitions for each downloaded 
from KEGG on 26 November 2018 where completeness was defined 
as the fraction of genes present in a genome out of all genes defined in 
a module, pathway or category. Each module, pathway and category 
completeness feature vector was encoded as an additional column 
with fractional value between zero and one. Nested modules (modules 
containing other modules) were not used. Only the ‘general’ gradient 
boost model used these additional completeness feature vectors.

Additionally, the frequency counts of each amino acid, number of 
coding sequences and the total amino acid length of each genome was 
calculated and added to the protein annotations.

For testing, all genes were predicted and annotated de novo for 
each simulated genome.

Selection of additional genomes
To widen the scope of the trained model and reduce the uniformity of 
the training dataset, a small number of potentially complete 
non-RefSeq35 genomes were identified using a ‘repeated- 
quality-metrics’ strategy: CheckM1 and CheckM2 (trained only on 
RefSeq release 89) were used to assess all GenBank genomes part of 
release 89. Those that had at least five or more members of a species, 
and had the same completeness and contamination scores from 
CheckM1 for more than three-quarters of them as well as a genome size 
within 5% of each other were selected as potentially complete. A 
genome of the same length assembled repeatedly to yield the same 
completeness and contamination statistics was used as potential evi-
dence for completeness. As these genomes were often in multiple 
contigs, the contigs were sampled randomly and completeness calcu-
lated based as bases in contigs sampled

bases in complete genome
. From these generated synthetic 

genomes, only those with less than 85% or less completeness were used 
for training to avoid incorrect bias for highly complete genomes in 
CheckM2. These new genomes were added to the training pool with a 
50% lower sample weight relative to known complete RefSeq genomes. 
Even if some of these genomes are not complete, the addition of poten-
tial noise was also a desirable part of this process as a potential regu-
larization constraint on the NN model. Moreover, these genomes also 
introduce a more accurate example of low-completeness genomes 
compared to genomes generated using the ‘random-protein-sampling’ 
method used for the bulk of the training set, further increasing the NN 
model’s accuracy in these cases. These genomes (Supplementary  
Table 9) were added to the training pool used to train NN models but 
not to the gradient boost models (completeness or contamination). 
NN models trained with these additional genomes included those used 
to benchmark RefSeq release 202, benchmark the novel circular MAGs 
from Singleton et al.18 and Lui et al.19, as well as used in the final release 
of CheckM2 (v.0.1.2).

Training ML models
To train the ‘general’ gradient boost models, annotations of genomes 
in the training set were used as feature vectors, with contamination 
and completeness values being the predictor targets for the ‘general’ 
completeness and contamination models. The lightgbm13 package 
(v3.2.1) was used to train a regression model with the following param-
eters: ‘boosting type’: ‘gbdt’, ‘objective’: regression, ‘num_leaves’: 11, 
‘min_data_in_leaf’: 150, ‘learning_rate’: 0.2, ‘feature_fraction’: 0.5, ‘bag-
ging_fraction’: 0.5, ‘baging_freq’: 3, ‘reg_sqrt’: True, ‘min_child_weight’: 
180 for completeness and ‘boosting type’: ‘gbdt’, ‘objective’: regres-
sion, ‘num_leaves’: 211, ‘learning_rate’: 0.2, ‘feature_fraction’: 0.9, ‘bag-
ging_fraction’: 0.8, ‘baging_freq’: 5, ‘reg_sqrt’: True for contamination. 
Both models were boosted for 450 iterations.

To train the ‘specific’ NN model, tensorflow12 v.2.2.0 was used. The 
model architecture was encoded using the keras API and consists of a 
sequential model with three one-dimensional convolutional layers 
(kernel_size = 10, strides = 10, activation = ‘relu’) with size 180, followed 
by another with size 100. These are flattened and followed by a dense 
layer (size = 100, activation = ‘relu’) connected to an output layer (acti-
vation = ‘sigmoid’). A BatchNormalisation layer was added after each 
convolutional layer to standardize and normalize network weights and 
feature vector input. The keras-specific loss_weight parameter was 
used with values of the completeness labels multiplied by 500. This was 
done to penalize the model errors harsher for more complete genomes 
(thus aiming for higher accuracy on higher-quality genomes). The loss 
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function was ‘mse’ (mean squared error), the optimizer was ‘adam’ 
and the learning rate was not changed from the default. The addition 
of the batch normalization layers added substantial improvement in 
accuracy, but also caused validation loss to fluctuate substantially 
during training. Therefore, the model was trained with checkpoints on 
complete RefSeq genomes simulated using ‘random-protein-sampling’ 
as well as non-RefSeq genomes identified using the ‘repeated-quality 
metrics’ strategy outlined below, for 5–15 iterations, while using vali-
dation accuracy on a subset of the training set (high-, medium- and 
low-quality simulated MAGs, Supplementary Table 1) to identify and 
select the model iteration with best validation loss across all quality 
levels. This process was repeated for both the validation and final 
CheckM2 NN models. For more details, see Supplementary Note 1.

Filtering out low-quality genomes
While most genomes in RefSeq are likely to be complete if annotated 
as such, there will always be exceptions. To remove potentially incom-
plete genomes, an intermediate NN model was trained for two epochs 
on all training genomes, then used to predict their completeness and 
contamination. Those with high deviations (more than 10% difference) 
between predicted and assumed completeness or contamination were 
removed from the training set. Notably, most of these genomes also 
had inferior CheckM1 metrics. Generally, they were found to belong to 
species that had at least one other complete genomic representative 
in RefSeq that did not show high deviation, indicating an issue with the 
genomes and not with the biology of particular lineages. A complete 
list is included in Supplementary Table 10.

Benchmarking performance
To benchmark CheckM2, CheckM1 and BUSCO were used as key 
software tools of comparison. CheckM1 v.1.0.12 was run with the flag 
‘lineage_wf’ for automatic lineage selection. Error in prediction of 
completeness or contamination was defined predicted value − true 
value, with negative errors representing underprediction and posi-
tive errors representing overestimation of the true value. MIMAG 
completeness and contamination standards11 were used to divide all 
benchmarking results (Supplementary Table 1). MIMAG standards are 
often used to report the quality of MAGs and make for a useful way to 
visualize CheckM2 performance across varying genome quality. As 
CheckM2 does not detect nor rely on other MIMAG factors such as 
full-length 16S RNA or the presence of tRNAs, only the completeness 
and contamination information was used. BUSCO36 v.5.0.0 was run 
offline with reference database downloaded on 21 February 2021 with 
the option ‘–auto-lineage-prok –mode genome’. Results from BUSCO 
were parsed to select the specific output if it was generated, otherwise 
the generic output file was used. In BUSCO’s output ‘C’ was used as 
completeness, while ‘D’ was used as contamination for benchmarking 
against CheckM1 and CheckM2. Fragmented genes reported by BUSCO 
were not included as part of the completeness percent calculation, as 
these represent ambiguous results. As a result, some BUSCO results 
may show less completeness if single-copy genes were fragmented 
as a result of the simulations. For the section entitled Benchmark-
ing CheckM2 cross-contamination performance, GUNC20 v.1.0.5 was 
run using the ‘run’ command with default settings and the database 
downloaded on 12 November 2022. For all tools, input consisted of 
nucleotide FASTA files of generated synthetic genomes.

Benchmarking calculations and visualization
For all benchmarking on synthetic genomes, completeness error 
(defined as predicted completeness % − actual completeness %) and 
contamination error (defined as predicted contamination % − actual 
contamination %) was calculated for each genome, and the results 
graphed using a letter-value plot in the Seaborn37 package. For error 
calculations and reporting, only synthetic genomes with an actual 
contamination of less than 25% and actual completeness more than 5% 

were used. MAE values were calculated as ∑
n
i=1 |yi−xi |

n
 where y is the pre-

dicted value and x the true value. Phylum-wide MAE value was calcu-
lated as x̄ across ∑

n
i=1 |yi−xi |

n
 for each phylum where y is the predicted 

completeness value and x the true completeness value. The pandas 
package (v.1.1.3) was used to analyze the prediction results and seaborn 
(v.0.11.0) was used to visualize results and generate figures.

Evaluation of taxonomic novelty effects on accuracy
To test the accuracy of both models on taxonomically novel groups, 
separate models were trained where one phylum was left out, the mod-
els were trained on all remaining phyla and the models were then tested 
on the omitted group to determine error when predicting complete-
ness and contamination. This was repeated for all phyla, then repeated 
for all subsequent taxonomic levels of relatedness (class, order, family, 
genus, species) with the left-out group doubling in scope every level 
(one group left out per phylum, two per class, four per order and so on) 
to account for increasing diversity and number of iterations necessary 
to cover all levels. Lineages representing multiple taxonomic levels of 
novelty (for example, one class only containing one family) were tested 
only at the level of highest taxonomic difference (for example, in this 
case at the class level). In all cases, GTDB r89 taxonomy was used to 
determine leave-out groups, and only genomes in the RefSeq release 
89 dataset were used for simulation and benchmarking.

Cosine similarity measure and model selection
To determine the appropriate model to use, CheckM2 uses the cosine 
similarity calculation ( A•B

||A||||B||
) (where A and B are vector arrays) as cosine 

similarity correlates well with taxonomic novelty of query genome 
relative to the closest genome in the reference dataset. Rough taxo-
nomic similarity enables selection between the general and specific 
completeness prediction models without the need to compute tax-
onomy, which would require substantially more computational time 
and resources.

As cosine similarity declined with completeness (Supplementary 
Fig. 1), a stable ‘novelty ratio’ was calculated by dividing complete-
ness predicted by the general model by the squared cosine similarity, 
and subsequently used for selection between the NN and gradient  
boost models.

Input for cosine similarity calculations is identical to the input into 
the NN model. Based on the results from novelty testing, the median 
cosine similarity for novel phyla, classes, orders and some families were 
assigned to be predicted with the ‘general’ model and all other with 
‘specific’ model, including all genomes with mean completeness pre-
diction below 50% (Supplementary Fig. 1). As completeness declined, 
a slightly higher share novel genomes was assigned to the NN model 
to take advantage of its superior performance at lower completeness 
levels (see Supplementary Table 4 for the exact calculations).

Evaluation of nonredundant contamination effects on 
accuracy
To simulate nonredundant contamination, simulated genomes were 
created from RefSeq release 89. Different levels of completeness were 
generated by removing a random subsection of the genome to generate 
completeness between 50 and 100%. A contaminant fragment was then 
added to each of these simulated genomes, which was chosen from a 
taxonomic source defined by GTDB release 89 taxonomic assignment 
as follows: a randomly chosen isolate genome was chosen from the 
same species, same genus and so on, up to different domain, which 
included prokaryotic as well as viral and eukaryotic genomes. A random 
subsection of that genome was used as the contaminating contig. The 
contaminating fraction did not exceed a maximum of 10% contamina-

tion, where contamination was calculated as bases in contaminant fragment
bases in complete base genome

. For 

each synthetic cross-contaminated species, only one other species was 
used, after which the same species could not be used as a source for 
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contamination at that taxonomic level. For eukaryotic genomes, a 
random section of either human or fungal DNA was randomly chosen, 
using all human or fungal sequences available in RefSeq release 89. For 
viral contamination, all viral sequences in RefSeq release 89 was used 
for the pool of candidates. If a virus was too small to make up the 
required 1–10% contamination relative to the genome being contami-
nated, a different virus was randomly chosen from the entire pool 
without replacement until the criteria were met.

Benchmarking speed of CheckM1 and CheckM2
Five replicate metagenomic sets were used to benchmark the speed of 
CheckM1 and CheckM2, consisting of an average of 450 genomes 
per set. Three sets consisted of MAGs randomly sampled from publicly 
available metagenomes, one set comprised a random selection of 
RefSeq r89 genomes and one set comprised a random sample of syn-
thetic MAGs belonging to the DPANN superphylum or Patescibacteria 
phylum derived from MAGs in RefSeq r202. CheckM1 was run in the 
‘lineage_wf’ mode with 45 threads and 45 pplacer_threads, while 
CheckM2 was run in the ‘predict’ mode with 45 threads. All benchmark-
ing was done on an AMD EPYC 7702 64-Core Processor and time was 
determined using the ‘time’ bash command, where the ‘real’ time was 
for comparison. During runtime, threads were not shared with any 
other processes. Time taken per minute per thread was calculated as 

real runtime
number of genomes

45 threads
. Peak RAM usage for a large batch job (225,000 GTDB release 

202 genomes in a single folder) was determined from ‘maximum resi-
dent set size’ using the command /usr/bin/time -v and visual verifica-
tion using the htop command.

SHAP value calculations
SHAP values for the gradient boost models were calculated using the 
SHAP27 package (v.0.39.0). To calculate the ten feature vectors contrib-
uting most toward completeness predictions by phylum (Supplemen-
tary Table 7), a TreeExplainer was used to generate SHAP values for the 
gradient boost completeness model in the CheckM2 release version. 
Aggregate sums across all 21,241 feature vectors were calculated, and 
the top ten were included in the Supplementary Table 7 with a mean 
per phylum.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Additional analyses supporting the conclusions of this study have 
been supplied as Supplementary Information. Supplementary 
scripts required to generate all synthetic genomes used in training 
and testing can be accessed from Zenodo (https://doi.org/10.5281/
zenodo.6861629). Benchmarking data can be accessed from Zenodo 
(https://doi.org/10.5281/zenodo.8024307). A full list of feature vectors 
used by CheckM2 and their order can be accessed on GitHub (https://
github.com/chklovski/checkm2_supplementary). The annotation 
vectors of all synthetic genomes used to train CheckM2, as well as com-
pleteness/contamination labels, are available as part of this repository 
in sparse vector format, formatted for both the NN and gradient boost 
models. Source data are provided with this paper.

Code availability
CheckM2 is available on GitHub (https://github.com/chklovski/
CheckM2) and is released under the GNU General Public License 
v.3. The script required to update CheckM2 with new high-quality 
genomes is also available on GitHub (https://github.com/chklovski/

checkm2_supplementary), although this will be carried out centrally 
by the CheckM2 team.
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