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We consider a common problem occurring after using a Statistical Process Control (SPC) method based
on 3-dimensional measurements: locate where on the surface of the part that triggered an out-of-control
alarm there is a significant shape difference with respect to either an in-control part or its nominal (CAD)
design. In the past, only registration-based solutions existed for this problem, which first orient and locate
the part and its nominal design under the same frame of reference. Recently, Spectral Laplacian methods
have been proposed for the SPC of discrete parts and their measured surface meshes. These techniques
provide an intrinsic solution to the SPC problem, that is, a solution exclusively based on data whose
coordinates lie on the surfaces without making reference to their ambient space, thus avoiding registration.
Registration-free methods avoid the computationally expensive, non-convex registration step needed to align
the parts, as required by previous methods, eliminating registration errors, and are important in industry due
to the increasing use of portable non-contact scanners. In this paper, we first present a new registration-free
solution to the post-SPC part defect localization problem. The approach uses a spectral decomposition of
the Laplace-Beltrami operator, in order to construct a functional map between the CAD and measured
manifolds to locate defects on the suspected part. A computational complexity analysis demonstrates the
approach scales better with the mesh size and is more stable than a registration-based approach. To reduce
computational expense, a new mesh partitioning algorithm is presented to find a region of interest on the
surface of the part where defects are more likely to exist. The functional map method involves a large number
of point-to-point comparisons based on noisy measurements, and a new statistical thresholding method used

to filter the false positives in the underlying massive multiple comparisons problem is also provided.
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1. Introduction

Recent advances in Statistical Process Control (Zhao and Del Castillo 2021a, Zhao and del
Castillo 2021b) permit the on-line monitoring of 3-dimensional (3D) parts scanned with
non-contact sensors while avoiding “registration”, or alignment, of the parts. By registration
we mean finding a common orientation and location in 3D space for two or more objects to
be compared, in such a way that comparisons between is easier after alignment. We assume
part data are obtained by a non-contact scanner in the form of a 2D mesh or triangulation,
embedded in 3D space, describing the surface of the part. Registering two objects or meshes
unfortunately requires solving a non-convex, combinatorial optimization problem, which uses
point coordinates in a common frame of reference in the ambient space. Methods that do not
use such ambient coordinates, and use only information (point coordinates) on the surface
of each object (i.e., they are “intrinsic” methods) are appealing in practice since potential
registration errors and their computational issues are avoided, while the objects can have
any orientation or location, an important aspect due to the increasing popularity of portable

non-contact scanners in industry.

In this paper we consider the following problem: once a part is detected to be the result of
an out-of-control production process condition, locate the specific defects on the surface of the
part that has resulted in a significant shape difference with respect to either an in-control set
of parts or with respect to the nominal computer aided design (CAD) of the part without first
registering the scanned mesh and the CAD model. A part localization diagnostic that requires
registration was suggested in Zhao and Del Castillo (2021a) based on the well-known Iterative
Closest Point (ICP), which works for meshes with different number of points, an advantage
over traditional statistical shape analysis methods based on Procrustes superposition which
require an equal number of corresponding points in each object, an untenable requirement in

non-contact sensed data.

* Data Ethics Note: No data ethics considerations are foreseen related to this paper.
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Registration-based methods using ICP are computing-intensive and based on a non-convex
objective so they cannot guarantee a global optimum registration. Commercial inspection
software use proprietary versions of the ICP algorithm or its many heuristic variants to map the
parts and highlight deviations from nominal, in a process that requires considerable computing
time that is not applicable for on-line diagnostics, and furthermore, has no optimality
guarantees. See Huang et al. (2021) for a recent, comprehensive survey on registration methods
for point clouds. These authors indicate how most current advanced registration methods
require ICP to do a final refinement to obtain high accuracy, without which their accuracy
would drop sharply. They also indicate how directly combining deep learning techniques
with ICP still requires high computational time, besides requiring many parts for learning
purposes. On the contrary, the part localization problem we address here deals with only
two objects, a single scanned mesh and its nominal CAD model, without making use of any
further data for learning purposes. For these reasons, we will compare our new functional map
defect localization method, which does not involve any traditional learning, with a method

based on ICP presented in Zhao and Del Castillo (2021a).

In the particular case of contactless inspection of AM parts using a traditional registration-
based method, Minetola (2012) has emphasized the importance of a correct alignment between
CAD model and the scanned part. He describes how the importance of correctly selecting
points on the part to register each feature increases the worse the scan data (and the scanner)
available. This selection can influence the results of non-contact quality control, leading to
incorrect evaluations. Here we point out how non-contact portable scanners typically have a
worse resolution than non-portable scanners. Hence there are several desirable advantages for

a method that avoids the registration step.

Our main goal, therefore, is to present an intrinsic solution to the defect localization
problem in free-form manufactured surfaces which totally avoids the combinatorial registration
problem while mapping the defective part and the CAD design (or an in-control part)
highlighting their statistically significant differences. The method, presented in section 2, uses
the eigenvectors of the Laplace-Beltrami (LB) operator, which captures local geometrical

properties of a surface. To further reduce computational expense, a new segmentation method
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is introduced to locate a smaller region on the surface of the scanned part likely to contain
defects. This segmentation method to obtain a region of interest can also be used as a
stand-alone algorithm to reduce computations in any inspection problem for which a CAD
model is available. A third and final contribution of the present paper is to present a statistical
thresholding method which controls false positives, given the massive underlying multiple
comparisons problem, not previously discussed as far as we know in the SPC/inspection

literature.

1.1. Prior work on part surface models used in SPC

Some prior approaches on 3-dimensional statistical process control (SPC) have used different
spatial statistical models. Colosimo et al. (2014) use spatial autoregressive models to detect
defective parts systematically measured over a mesh of locations on the surface of a cylindrical
part by a contact sensor. A general method for reconstruction of free-form surfaces measured
by non-contact scanners, not necessarily cylinders, based on a Gaussian Process (GP) was
proposed by Del Castillo et al. (2015). The reconstructed GP models could then be used
for SPC purposes. These spatial-based methods aim at detecting a defective part on-line,
among a sequence of such manufactured parts, but do not address the error localization
problem we study here, that is, if a SPC method has detected a defective part in a sequence
of parts, find the location of the defect on the surface of the part. Wang et al. (2022) address
the error location problem using GP models. GP and other spatial statistical models define
points as ambient coordinates, and therefore require registration. GP models have also been
used in methods that mix high accuracy, low volume measurements (obtained with a contact
sensor) with low accuracy, high volume measurements (obtained with a non-contact scanner,
Colosimo et al. (2015)). In the present paper, we assume only a non-contact scanner has
generated the measurements in the form of a triangulation. Rao et al. (2016) and Tootooni
et al. (2017) use the spectrum of the graph Laplacian for defect localization, but compute it
from a graph of deviations from nominal measurements, which evidently require registration
between nominal and actual parts. Instead, we make use of the fact that the spectrum of
the LB operator is a geometrical feature that is intrinsic to the surface under study, and can

therefore be computed for both CAD design and the measured part without the need for
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registration. Innovative image-based methods aimed at locating defects in lattice structures
produced by additive manufacturing processes have been developed by Colosimo et al. (2021)
(see also Colosimo et al. (2022)). The type of free-form surfaces we address in the present
paper are not as complex as such structures, where the surface is too complicated to be
scanned in its totality, and an in-situ layer by layer inspection approach makes more sense.
We aim our methods at general free-form parts that have been completed, either in AM
processes or in other more traditional manufacturing processes, and whose surface can be

reached without major occlusions by a non-contact scanner.

1.2. Basic definitions and paper organization

The following basic notions are used in the sequel of this paper. The LB operator extends
the notion of the Laplacian of a real-valued function defined on flat Euclidean space to a

function instead defined on a (possibly curved) manifold M CR", f: M — R:

Amf =—divm Vuf (1)

The LB operator is therefore the negative divergence of the gradient of the function, and it
encodes not only the curvature of f, but also the curvature of the manifold M itself. For this
reason, this operator is widely used in computer graphics and in manifold learning (e.g., see
Belkin and Niyogi (2008), Hamidian et al. (2019), Reuter (2006)). The LB operator appears
in the heat diffusion partial differential equation (Evans 2010, Zhao and Del Castillo 2021a):

Ju(x,t)
——= = Apu(z,t 2

where u(x,t) models the temperature at location x € M at time . By separation of variables,
and considering only the spatial component of the equation, one finds the so-called Helmholtz

differential equation:
Amd(z) =Ao(x)

The eigenvalues 0 < A\, Mg, .... T +00 define the spectrum of the LB operator, with corre-
sponding eigenfunctions {¢;}. In practice, the manifold M is discretized and so is the LB

operator, resulting in a matrix operator acting on vectors. The LB eigenvectors can be used
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for segmentation purposes, since for a connected manifold the different nodal domains of
the eigenfunction ¢;(z) associated with \; divide M in geometrically meaningful ways, see
Chavel (1984), a fact which will be used in a segmentation method presented below. For
more on the LB operator and its spectrum see Zhao and Del Castillo (2021a) and the many
references therein. Reuter (2006) shows how to more accurately estimate the LB operator
using Finite Element Methods (FEM) based on a triangulation (or mesh) of a manifold, and
Zhao and del Castillo (2021b) utilize FEMs for implementing a non-parametric SPC control

chart based on the spectrum of the LB operator for mesh and voxel data.

In this paper, we construct a functional map to establish the correspondence between
two sets of LB eigenvectors, calculated from two meshes, corresponding to the potentially
defective part and the nominal or acceptable part taken from an in-control operation period
of the process. It is assumed, as it was done in Zhao and Del Castillo (2021a) that a
non-contact scanner has generated a triangulation mesh of the part deemed potentially
abnormal by an SPC mechanism, a mesh which can optionally be pre-processed before the
analysis to be discussed in the present paper. We also assume we have available a mesh
from a noise-free CAD model of the part or a noisy mesh resulting from a scan of a part
produced in a state of statistical control. Then, for each point on the defective part, its best
match on the CAD model or on the in-control part can be found based on the functional
map. Finally, the shape dissimilarity between each point and its best match is calculated
using intrinsic geometrical properties, and regions with high dissimilarities are highlighted
as local defects. The computational complexity of the new method is studied in section
4, and shown to scale better with the mesh size than a registration-based method. Since
the functional mapping method involves therefore a very large number of comparisons, a
thresholding method is presented in section 5 to consider not only large but statistically
significantly large deviations from nominal, and to filter the false positives in what constitutes
an underlying classical multiple comparisons problem. We finally show in section 6 how to
adapt the method to consider a user-defined region of interest (ROI) on the part, resulting in
considerable computational savings, and present an iterative intrinsic segmentation algorithm
that identifies a ROI likely to contain defects in case it can not be defined a priori by the
user. The paper concludes with a summary of findings and directions for further research,

and the Appendix contains further technical discussion.
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2. Defining a functional map between two manifolds

Given two manifolds A and B of similar but not necessarily of equal geometrical shape, we
wish to find points or regions on B corresponding to given points or regions of interest on A
while avoiding the combinatorial complexity of registration methods. A likely scenario of this
problem occurs in SPC where A represents a noisy scanned part and B represents a noise-free
mesh giving the nominal CAD design of the part. We want to map any differences between
A and B and display the differences in order to better diagnose the manufacturing process.
In industrial practice, and contrary to computer graphics where similar problems exist in
shape classification, the differences we wish to detect are small, not always perceivable to the

human eye, and buried in measurement and manufacturing noise.

Given a point-to-point mapping 7": A — B one could highlight 7'(P) C B whenever a set of
points P C A are selected. We do not attempt finding 7" directly (a combinatorial problem),
and we instead construct a functional map (Ovsjanikov et al. 2012) and use it to find the
mapping T'. Assume for a moment T is known. Then, for any scalar function on A, f: A — R,
we could obtain a scalar function on B, g: B— R via g = f oT~!, assuming T is bijective.
The correspondence between all such pairs of functions can be represented by the functional

map (or map between functions):
Tr: F(AR)— F(B,R),

where F(W,R) is the space of real-valued functions on manifold W. Since Tr(f) = fo T,
this functional map depends only on the original point mapping T, and we say T is induced
by T (see Figure 1). Importantly, 7" can be easily recovered point by point once Tr is known,
by defining

T(x)=argmax Tr(0,)(y) (3)

Y
where ¢, is the indicator function at point « € A. This equation holds because Tr(d,)(y) =
8, 0T~ Y(y) is nonzero only when T—!(y) =z, in other words, when y = T'(x). Therefore, we

can determine the point mapping 7' by finding the functional mapping TF first.
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Figure 1 The relation between A, B, R, the point-to-point map 7', 7', and Tr, the functional map

first found by our method. Here A is a measured scanned mesh and B is a noise-free CAD mesh.

Suppose now F(A,R) and F(B,R) are each equipped with orthonormal basis functions
{0{}: and {¢F};, respectively. Then for any i, Tr(¢;') € F(B,R) can be expressed as a

unique linear combination of {¢?};:
Tr(9) =) _cijdy (4)
J

where as Lemma 1 in the Appendix shows, all we need to find is therefore the coefficients
{eii}-

Now we discuss how to determine the C' matrix containing the {¢;;} coefficients. If we
available have K pairs of functions (fx,gx), k= 1,2,..., K, such that f, € F(AR),Vk =
1,2, K, go€ FIB,R),VE=1,2,.... K, and Tr(fr) = gr, ¥k =1,2,..., K, then both f; and

g can be represented by their corresponding basis, namely
Je= Z Oéik%A and gy, = ZBJ’I@¢3‘B-
i J

From expression (13) in the Appendix (Lemma 1) we have that
9 =Tr(fr) = Z (Z aikcij> ¢f
j i
Since the basis functions {(bf }; are linearly independent, we obtain 3, =", aixcij, Vj, which

can be organized in matrix form as

Bk C11 C21 " Cip - Qi
5% Ci2 Co2 * - Cijg Qog

JC7E B I R e N R e (5)
Bik C1j C2j =** Cij =+~ Qg
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Given the K pairs of function values we can define matrices B= (8, B, --- By) and A=
(a1 @y -+ o). Then we have

B=C'A (6)

Therefore, given a basis in F(A,R) and in F(B,R), and K pairs of corresponding functions
(fx, gx), matrix C' can be calculated by solving eq (6), which completely determines T and
can be used to recover the point matching 7" as desired. The whole procedure is summarized

in the following algorithm:

Algorithm 1: The functional map framework

Input: Manifolds (surface meshes) A and B
Output: Point-to-point mapping T: A — B
Find a set of orthonormal basis for F(A,R), {¢2};
Find a set of orthonormal basis for F(B,R), {¢}},
Find K pairs of known correspondences (fy,gx), k=1,2,..., K
Calculate the entries in the A matrix by ay, = (fi, o)
Calculate the entries in the B matrix by 8jx = (gx, ¢F)
Solve for matrix C' in equation B=C"A
for each point x € A do
Define §, € F(A,R) to be the indicator function of
Find the image of &, by Tr(d,) =Y, (3; afci;) ¢F, where of = (3,,¢')
Find the image of z by eq (3): T'(z) = argmax, T (.)(y)
end

© 00 N O A W N

e
= o

3. Implementation of the functional map algorithm

Specific choices are needed to implement Algorithm 1. In particular, choices are needed for
the orthonormal basis and for the functions used to find correspondences. We discuss next

these choices, as well as a modified method to recover T in the presence of noise.

3.1. Selection of orthonormal basis functions

The eigenfunctions of the LB operator provide a natural orthonormal basis of each manifold for
steps 1 and 2 in Algorithm 1. Numerically, we work with an estimated LB operator obtained
from a mesh of connected measurements, and the resulting eigenvectors are the discretized
version of the LB eigenfunctions, both of which are intrinsic and therefore independent of

rigid transformations.
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Recall that by convention, the eigenvalue-eigenfunction pairs are ordered such that the
eigenvalues are non-decreasing. The eigenfunctions associated with the leading eigenvalues
describe the general shape of the manifold, while eigenfunctions associated with eigenvalues
that appear later include smaller shape features. Since the eigenfunctions form the basis of the
eigenspace corresponding to their eigenvalues, the eigenfunctions contain multi-scale shape
information (Sun et al. 2009). Such hierarchical relationship means that a large portion of the
function space can be represented by the first several eigenfunctions. Figure 2 shows a casted
part with around 5000 points (leftmost display) and its approximations using increasing
numbers of eigenvectors. Although the maximum number of eigenvectors one can use is the
same as the mesh size (about 5000 in this example), we are able to capture the general
shape of the part with only the first 500 eigenvectors, with smaller details appearing as more
eigenvectors are considered. This indicates that in the first two steps of Algorithm 1, we can
use the ordered eigenvectors up to a certain maximum index p, instead of the complete set of

basis, which reduces both the computational and the storage costs.

Casted Part First 500 eigs First 1000 eigs First 2000 eigs

Figure 2  Approximated meshes of a casted part using the first 500, 1000, and 2000 eigenvectors,

respectively.

Another advantage of using the LB eigenfunctions as the basis comes from their correspon-
dence across objects with similar shapes. For two manifolds with similar or almost identical
shapes, their eigenfunctions under the same index are likely to contain the same shape
information and therefore correspond to each other under the functional mapping 7. When
the parts have no symmetries in their shape, no eigenvalue is repeated, and each eigenfunction
represents an eigenspace of dimension 1. In this case, the eigenfunctions correspond exactly
with each other under the same index, so matrix C is diagonal. This greatly reduces the

number of unknowns in matrix C' from p x p to p, and equation (6) reduces to

/Bjk = Cji ik, Vi, k (7)
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When working with metrology data from actual manufactured parts, both 3;, and o, will
be calculated with errors, so for a given j, equation (7) should be seen as a simple linear
regression model where ¢;; is to be estimated based on K observations rather than accurately
calculated through a system of equations. Least squares and ridge regression can be used for

estimation as discussed in more detail in the Appendix.

In practice, the manifold is approximated by a triangulation mesh. Consequently, a discrete
LB operator is calculated in the form of a matrix and the eigenvectors are used to approximate
the eigenfunctions. Based on results by Zhao and del Castillo (2021b), we use a cubic FEM
approach to numerically obtain the LB operator in this paper. We point out that the LB
eigenvectors of the discrete LB operator approximations do not form an orthogonal basis
with the Euclidean inner product (Rustamov 2007), so the Gram-Schmidt process should

first be applied to orthonormalize the eigenvectors in Algorithm 1.

3.2. Defining known correspondences between manifolds

For the functions needed in order to find the correspondences in step 3 of Algorithm 1 it is
convenient to use functions intrinsically defined on each manifold. For this reason we propose
to use the so-called heat kernel signature (HKS) function (Sun et al. 2009) on each manifold.
The heat kernel k,(x,y) appears in the fundamental space-time solution of the heat difussion
partial differential equation and is defined for x,y € M as k.(z,y) = Y oy €' (2)di(y)
(Evans 2010, Zhao and Del Castillo 2021a). It represents the amount of heat transmitted
from point x to point y on the mesh by time ¢ if at t =0 there is a unit heat source at x.
As such, it is invariant with respect to rigid transformations. The HKS is then defined as
ki(x,x) and describes the shape information around point = within time ¢. Although ¢ stands
for time, it can also represent distance here, since a larger amount of time allows heat to

travel further.

Since {\;} is non-decreasing, as t increases, k;(z,z) is dominated by the Ay term and
approaches the limit ¢o(z)* =1/n for all x on a mesh, with n being the mesh size. Sun et al.
(2009) suggest scaling the HKS by its integral over the whole manifold .4 to make differences
at different times contribute approximately equally. They call this the scaled HKS, defined as:

s o) = e = SO ®)
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The limit of the scaled HKS as t — oo is different from that of the original HKS, yet still
proportional to 1/n. To make the scaled HKS comparable across different meshes, we further
normalize the scaled HKS by n, the mesh size. In the Appendix we illustrate how this
normalization is not only intrinsic but also independent of the mesh size, an important matter
when making comparisons between triangulations of manifolds which will most likely not be
of the same size. Therefore, given ¢, we treat the normalized and scaled HKS as a function

defined on manifold A, that is
fi(z) =scaled k;(z,z) na 9)

thus f; € F(A,R). Similarly, we define g, € F(B,R) to be the normalized and scaled HKS
on manifold B. Since time ¢ is a physical parameter, f; naturally corresponds to g; through

g: =Tr(f;) for any given ¢, providing a pair of observations for the regression model (7).

To better estimate matrix C' in step 6, we want to have a wide range of ¢ values such
that the variation in the normalized and scaled HKS is captured as completely possible,
especially for small ¢. Therefore, for all results presented in this paper, we use 100 values of
t logarithmically sampled from ¢,,;, = 41log10/\, t0 tyax = 41log10/A;. The justification for

the selection of this range is explained in the Appendix.

3.3. Recovering the point-to-point transformation 7'

In step 10 of Algorithm 1, Tr(d,)(-) is calculated, in practice, in the presence of noise,
which prevents it from being a perfect indicator function taking value 1 at point T'(z) and 0
everywhere else, as expected in the noise-free case. Instead, it is simply a real-valued function
taking different values at different points, as shown in Figure 3, where the three defective
parts shown are color-coded according to Tr(d,)(-) with J, being the indicator function of
the highlighted point on the acceptable part on the left. Note how all three defective parts
have varying colors, indicating fluctuating function values due to noise. This is why we set

T'(x) equal to the maximum of Tr(d,)(-), rather than Tx(d,)(:) = 1.

Given that noise in Tr(0,)(-) may slightly shift its maximizer around the true 7'(x), in

step 10 in our Algorithm we consider the top m points with the highest function values
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Acceptable Chipped1 Chipped2 Protrusion

s PP

Figure 3 Defective parts (rightmost three parts) color-coded by 77(d.) when z is fixed at the yellow

corner on the acceptable part (first part on the Ieft).

of Tr(0,)(-) and set the point that is the “closest” to = to be T'(z). From our experiments
with meshes of around 2000 points, m =5 to 10 was enough to ensure a high quality point

matching. In general, m needs to increase accordingly when manifold B becomes denser.

We now explain how we measure the “closeness” between two points from different manifolds,
in order to determine if the two points correspond to each other. In registration-based
methods, this is usually measured by the Euclidean distance between these two points since
the two objects have been brought to the same orientation and position in the ambient space.
However, this is not what we do, as we wish to perform this task with intrinsic information
only. Instead, we propose to use the difference between the normalized and scaled HKS,
treated as a function of ¢ given the point, to evaluate the similarity between two points x € A

and y; € B, where T%(6,)(y;) gives the ith highest value for function Tx(d,)(-), i=1,....,m

As mentioned above, the normalized and scaled HKS f;(z) codifies the local shape infor-
mation around z and is independent of mesh qualities and rigid transformations. Therefore,
for any t, g;(y) should become closer to f;(x) if and only if y € B is closer to the true 7'(x) for
x € A, so the overall “closeness” between - and y can be represented by >, (fi(x) — g:(v:))?.

We take advantage of this property and propose to use the following instead of equation (3):

T(x)= argnin ¢2 £i@) = gu(y)? (10)

yi,i=1,.
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with y; is defined above. Defining the vectors of normalized and scaled HKS at different
t, namely, f, = (fi, (%) fi,(¥) <+ fi100(2)) , and gy, = (91, (¥i) 915 (i) =+ Gr10(¥i)) , then the
new criterion simply minimizes the norm of the difference between the HKS vectors:

T(z)= argmin [|fy — gy, (11)

y;,i=1,...,m

3.4. Implementation summary

The complete implementation of Algorithm 1 is listed in Algorithm 2. Here p and K are the
hyper-parameters that should be set by the user based on the mesh qualities. Intuitively,
these parameters should increase for larger meshes to provide the algorithm with more details
about the two shapes. For all examples in this paper, p =200 and K = 100 were used. All
quantities used are related to the heat diffusion process (see Zhao and Del Castillo (2021a)
for details) and are therefore intrinsic, making the registration step unnecessary. We apply
the Gram-Schmidt process on the LB eigenvectors to obtain the orthonormal basis of the
space of real-valued functions, use the normalized and scaled HKS at a sequence of ¢ values
as known corresponding functions, and recover the point matching 7' by minimizing the

difference in this HKS.

Let the surface of a scanned part be manifold A and the CAD model or an acceptable part
(from a reference set of in-control parts) be manifold B. Once the point-to-point mapping
T is recovered (without performing registration, of course), each point x € A is associated
with a value that measures how this location in A deviates from manifold B, a deviation
calculated by [/fx — gr(x)||. Points on the mesh with high deviations are labeled as belonging
to a defective region. For example, Figure 4 displays the three defective parts in Figure 3
color-coded by ||fx — gr(x)|| with lighter colors corresponding to higher values. The local
defect area in all three parts is correctly highlighted, indicating the remarkable performance

of the functional map method.
4. Properties of the functional map method: computational
complexity, repeatability, and sensitivity

The functional map method has several desirable characteristics. In the Appendix we discuss

how, compared to registration-based ICP methods, it assures a global optimal point to point
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4 Algorithm 2: The functional map implementation

Z Input: Defective part as mesh A and CAD design as mesh B

7 Output: Point-to-point mapping T : A — B

2 1 Compute the first p LB eigenvalues {\} and eigenvectors {¢2'} of A using the cubic
10 FEM method

11

12 2 Compute the first p LB eigenvalues {\?} and eigenvectors {¢P} of B using the cubic
12 FEM method

15 3 Apply the Gram-Schmidt process to obtain the orthonormalized eigenvectors {gzzf‘} and
16 7

18 4 Calculate the normalized and scaled HKS as defined in equation (9), f; and g, for A
19

20 and B, respectively, with K values of ¢ logrithmically sampled from 4log10/\, to

21 4log10/ )\

22 -

23 5 Calculate the entries in the A matrix by ay, = (fi, 02), i=1,...,p, k=1,...,. K

24 Lo g 7 .

- 6 Calculate the entries in the B matrix by £, = <gk,q§§3>, i=1,..p,k=1.. K

26 7 Calculate matrix C' using the least squares method (details discussed in the Appendix)
;é 8 for each point x € A do

29 9 Define 0, € F(A,R) to be the indicator function of x

2(1) 10 | Find the image of 0, by Tr(d,) =>; (32, ai'cij) ?, where of = (0, o) = ¢ (x)
32 11 Find the image of x by equation (11)

33 12 end

34

35

36 ! ! )

3 7 Chipped1 Chipped2 Protrusion

38

39

40

41

42

Zi Figure 4  Defective parts (as manifold .4) color-coded by ||fx — g (x)|| for all z € A. B is the CAD
45 model (leftmost part shown in Figure 3). All local defects are correctly highlighted with our functional
46 mapping method. m = 5.

47

48

49 matching. We also discuss how the HKS we use is not only an intrinsic function but also is
50
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independent of the mesh sizes used. Here we discuss the computational complexity of the

method.

4.1. Computational complexity and repeatability

The computational complexity of the main steps in our functional mapping method is
summarized in Table 1. Since we choose p =200, K =100, m = 5 for meshes of size around
n = 1700, the dominant term is O(nangp) ~ O(nang) as in the last row, resulting from
step 10 in Algorithm 2 to recover the point-to-point mapping 7" given matrix C' (this can be
further reduced when a particular region of interest is available, discussed later in Section
6). As mentioned in Ovsjanikov et al. (2012), this step can be more efficiently completed
by finding the nearest neighbors in ®F for every point or row in ®C, where &4 and &5
are matrices consisting of the orthornormalized eigenvectors {g?)f‘} and {J)f } as columns,
respectively. Ovsjanikov et al. (2012) indicate that an efficient search algorithm can reduce the
computational complexity from O(nang) to O(nalogna +nglogng). The ICP algorithm,
on the other hand, has a typical computational complexity of O(n,nang) for global matching,
where n4 and npg are the mesh sizes for A and B, respectively, and n, is the number of initial
rotation states to avoid local optima (Besl and McKay 1992). In practice, the mesh sizes
ny and np can be in the many tens of thousands, compared to which both p and n, are

negligible, so the computational complexity of both methods can be simplified to O(nang).

Main Steps Computational Complexity
Constructing the FEM LB matrices O(na)+O(ng)
Solving for the first p eigenvalues and eigenvectors O(nap) + O(npp)
Applying the Gram-Schmidt process O(nap?) + O(npp?)
Calculating the normalized and scaled HKS O(napK) + O(nppK)
Constructing the A and B matrices O(napK)+ O(nppK)
Calculating matrix C' O(pK)
Recovering the point-to-point matching T’ O(npp+nangp+namkK)
Total O(nangp)

Table 1 Computational complexity of our functional mapping method. n4 and np are the mesh sizes
for A and B, respectively, p is the number of eigenvalue-eigenvector pairs, K is the number of ¢ values

(known correspondences), and m is the number of y’s considered to find 7'(z).
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Figure 6 compares the performance, in practice, of the ICP-based registration approach
with that of our functional map method under both the linear and cubic FEM LB estimates,
respectively. Ten different mesh sizes were selected ranging from 500 to 25,000 points, and 100
replications for each combination of the algorithm and mesh size were ran. All experiments
were tested on the same computer with 4 GHz Quad-Core Intel Core i7 and 16G RAM. Both
the average and standard deviation were used to summarize the results. The left figure plots
the computing time of the three methods. As can be seen, regardless of the degree of the
FEM method used, the functional map approach scales much better with the mesh size than
the ICP-based registration approach. The right display on Figure 6 compares the accuracy of
the three methods, where we define

Accuracy = ) [[T(z:) = G(:)ll/na (12)

i=1,...,n 4

where the z;’s are the points on manifold A of size na, T'(x;) is the best matching point for z;
found on manifold B by the method being evaluated, and G(-) is the known, perfect, or ground
truth mapping. Given a noise-free mesh B, we simulate realizations of mesh A by randomly
adding noise to point coordinates, applying translation and rotation transformations, and
shuffling the order of the points. Thus, G(+) can be recorded during this process for evaluation
purposes. Note the exceptionally large variability of the ICP algorithm, caused by bad initial
orientations and local optima, as illustrated in Figure 5. This makes the application of
statistical methods to identify significant defects using this method difficult. On the other
hand, thanks to its stable, repeatable behavior, the functional map scheme can be further
equipped with multiple comparison hypothesis testing methods to account for manufacturing

and measuring noise and to control the false positives, as discussed next.

4.2. Sensitivity analysis

We use the “acceptable” part in Figure 3 to quantitatively evaluate the sensitivity of our
functional mapping method. The “acceptable” part will serve as the CAD model, or mesh B,
and the defective scenario is when the “tooth” closest to the cylindrical feature of the part
(note this is not the same tooth affected by the “protrusion” defect studied previously) is

shorter than expected. The nominal height of the CAD model, which includes the height



oNOYTULT D WN =

INFORMS Journal on Data Science

Author: Registration-free localization
18 Article submitted to INFORMS Journal on Data Science; manuscript no. 1JDS-2021-0060.R1

Functional Mapping Functional Mapping
Diagnostic - CubicFEM Diagnostic - LinearFEM

Initial Ori .
nitia Orffat\lon ICP Registration ICP Diagnostic

[
o
N
50 0
\/«/ -50
¥ -100

Figure 5 Examples of two different initial orientations of the “chippedl” part to be matched with an
acceptable part. The ICP registration succeeds in the example on the first row but fails in the example
in the second row, while the functional map method correctly highlights the local defect area for both
scenarios with both the cubic and the linear FEM. With increasing use of portable scanners in industry,
widely different orientations are possible, and hence this is a desirable advantage of the functional map

method.

of the tooth, is 100. We then vary the height of the tooth to be 100(1 —d) to parameterize

different defective parts.

Figure 7 plots the defective parts in the top row and how our functional map method
locates the defects in the bottom row (similar to Figure 4). As ¢ increases, the “short tooth”
defect becomes more prominent and is easier to locate, as can be seen from the increasing
color contrasts from left to right. Reversely, when ¢ is sufficiently small, the height difference
is indistinguishable from noise, as shown on the left most defective part, where there are
other light colored areas due to noise. We want to point out that the four parts at the bottom
of the figure are plotted in separate color scales, so the same color can represent different
values of deviation ||fx — gr(x)|| on different parts. To allow for comparison across parts, we
have plotted the value of the deviations ||fx — gr()|| in descending order in Figure 8. Since
the deviations ||fx — gr(x)|| are reordered, the z-axis has no practical meaning (it is just the
index of the points reordered). As can be seen from the figure, when 9§ is small, the defective

part is very similar to the CAD model, so the functional map method also returns small
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Figure 6  On the left, computing time comparisons (in seconds) and on the right, accuracy

comparisons between the ICP registration method and the functional map method, as the mesh size
increases (both linear and cubic FEM were evaluated for the functional map). Each scenario was
simulated 100 times. The line plots represent the average and the length of the error bars are twice the
standard deviation. The error bars for the two functional map methods on the right figure are too small
to see compared to those for the ICP registration method. The plots representing the two functional
map methods overlap due to their similar performance and the zoom out needed to also include the ICP

algorithm.

deviations, yet it is still able to identify points with relatively larger deviations. From the
bottom left plot in Figure 7, we know these points are exactly the ones on the shorter tooth.
As 0 increases, the functional map method differentiates the defective area from the “good”

area increasingly better, as indicated by the range of ||fx — gr(x)||-

5. A thresholding method for the underlying multiple
comparisons problem

In this section we propose an additional algorithm to better deal with measurement and

manufacturing noise, in order to locate the region on the defective part whose deviation is

not only the largest but also the most statistically significant. This implies statistical tests

for all individual points, which leads to a massive multiple comparison problem. In order

to handle this problem, we introduce a single threshold method adapted from Holmes et al.

(1996) to control the family-wise false positive error rate.

In a manufacturing environment, metrology usually includes noise which is the sum of

manufacturing and measurement errors, which, if large, may cause difficulties to the functional
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Figure 7  Top row: defective parts where the “tooth" nearest to the cylindrical feature is shorter than
nominal. The height of the tooth is parameterized by J. Bottom row: the functional map method applied
to each of the corresponding parts shown in the top row. Each part is color coded by ||fx — gr(x)||- As 0

increases, the method locates the defective tooth better by giving higher color contrasts.

T
§ ——5=0.001] |
b ——$=0.005
§=0.01

——§=0.05 ||

Deviations

600 800 1000 1200 1400 1600 1800
Reordered point index

Figure 8  Plots of the deviations ||fx — g (x)|/, shown in descending order over all points z,
corresponding to the four defective parts depicted in Figure 7. As ¢ increases, the tooth defect becomes

more prominent and, naturally, our functional map method detects larger deviations increasingly better.

map as presented thus far. For example, in Figure 5, there is a small light blue area in the

cylindrical region of the part in all five graphs where the local defects are correctly identified

(the last three parts displayed on the first row and the last two parts on the second row).

This area with relatively large deviations, indicated by its lighter colors, is caused by noise
but detected by all three diagnostic algorithms. These false positives should be avoided

by a robust diagnostic algorithm. To account for such noise as well as for the variability
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Figure 9 A partial defective hex nut with an indentured crack (marked by the red arrow in the second

part from the left) is matched with its CAD design cut in the same way (first part on the left). A small

region near the boundary (marked by the red box and enlarged to allow visualization) is falsely identified
as having the highest dissimilarity against the CAD when all points on the partial mesh are considered
(third part). The crack is correctly highlighted when we focus on a specific region of interest (fourth

part), see Section 6.

resulted from the unequal mesh sizes with non-corresponding points, we consider conducting

hypothesis testing to differentiate the true local defect area from deviations caused by noise.

In the general routine, a test statistic is calculated for each point and compared against
a certain threshold, where only points with statistics exceeding the threshold are classified
as significant. Usually the threshold is chosen to be the 100(1 — a))th percentile of the null
distribution to obtain a significance level of «a for individual tests, so that the probability
of falsely detecting a non-significant point is . However, with such point-wise hypothesis
tests applied to all points on the mesh simultaneously, we expect 100a% of the points to be
falsely detected as having significant deviations when none of them is actually significant.
This is known as the multiple comparison problem, which leads to more points declared as
significant than those that are truly significant, making the testing procedure less efficient.
The most intuitive adjustment we can make to correct such problem and control the overall

type I error, the probability of false positives, is by choosing a more strict threshold.

There are various well-known methods in the literature that handle the multiple comparison
problem (see, e.g., Genovese et al. (2002), Holm (1979), Nichols and Hayasaka (2003),
Nichols (2012)). Due to its simplicity and performance, we adapted the single threshold
test proposed by Holmes et al. (1996), which was originally developed in neuroimaging. If
D(z) £ ||fx — g1(x)|| is the point-wise deviation from the CAD model for each point z on the
defective part, now we wish to evaluate the statistical significance of a test for Hy: D(z) =0

instead of arbitrarily highlighting differences of certain magnitude of D(z) disregarding noise.
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Here a measure of the natural variability of D(x) can be obtained by applying the functional
map method (Algorithm 2) to parts produced while the process was in a state of statistical

control (sometimes referred to as “Phase I" operation of a manufacturing process).

Suppose we have available mqy Phase I parts, each represented by a triangulation mesh with
varying number of non-corresponding points and each with manufacturing and measurement
noise. After applying the functional map method, each point x on the ¢th mesh M, is
associated with a deviation measure D*(z), i =1,2,...,mq. Note D*(z) and D (y) tend to be
correlated when 7 = j and are not directly comparable when 7 # j, since x € M, and y € M;
may be matched with different points on the CAD model. Such properties make it hard
to utilize the in-control deviation measures D(z) directly. On the other hand, the single
threshold method circumvents this problem by considering the maximum deviation over

i

rax fOrms an

each mesh, D= max,em, D'(7), i =1,2,...,mo. When my is large enough, D

max

empirical distribution for acceptable parts and the (|amg] 4 1)th largest D, will act as the
threshold, or the critical value. Points on the defective part whose deviation D(z) exceeds
this threshold are treated as significantly different from the corresponding points on the CAD
model and are highlighted as local defects. The single threshold method is summarized in

Algorithm 3.

Holmes et al. (1996) prove that this single threshold method with the maximum statistic
has both weak and strong control over the family-wise error rate (FWER), defined as the
probability of making at least one false discovery in multiple hypothesis tests. A test procedure
is said to have weak type I error control if FWER< «v is guaranteed when all null hypotheses
are true, and has strong type I error control if FWER< « holds for any possible combination of
true and false null hypotheses. In our diagnostic problem, weak control means the highlighted
area is false with probability at most o when no point-wise deviation is in fact significant,
while a strong control guarantees a type I error of « for the highlighted area regardless of

whether the other points are significant or not. These are desirable properties.

Figure 10 displays three random realizations for each of the defective parts previously
shown in Figure 4. Using the notation in Algorithm 3, parts on the first row are color-coded by

DA (z) and parts on the second row by dg(x), which equals 1 if z € S (set of points classified as
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4 Algorithm 3: The single threshold method

Z Input: Defective part A, CAD design B, and mg Phase I (in-control) parts M,

7 1=1,2,...,mq

8

9 Output: A set S of significantly defective points on A

10 1 for each Phase I part M; do

1 2 Apply Algorithm 2 on M; and B, obtaining the point-to-point mapping

12

13 T, M;—B

1: 3 For each point x € M;, calculate its deviation from the CAD model

16 Di(x)éfo—gTi@H

17 . ; )

18 4 Record the maximum value D!, 2 max,ca, D' ()

19 5 end

20 6 Take the 100(1 — a)th percentile of the set {D? = }"9 as the threshold, denoted as

21

22 Dthres

;i 7 Apply Algorithm 2 on A and B, obtaining the point-to-point mapping T4 : A — B

25 8 For each point x € A, calculate its deviation from the CAD model

26

28 9 Return S = {x € A|D*(2) > Dipres }

29

30

31

32

33 significant defects) and 0 otherwise. Parts on the second row have highlighted the significant
34

35 points in yellow and non-significant points in dark purple. The local defects in all three parts
36

37 are correctly identified both with and without the single threshold method. However, in
22 addition to accurately highlighting real defects, both the “chippedl” and “chipped2” parts
2(1) have also small light blue areas (first row of parts), one slightly under the rightmost tooth
42 and one on the top surface near the cylindrical region. They represent false detections caused
43

44 by noise. Comparing with the corresponding parts on the second row, we can see how the
45

46 thresholding algorithm is able to filter out such false alarms due to noise and to focus only
j; on the true local defects. A second example showing the application of the threshold method
49 is included in the Appendix.

50
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Figure 10 Defective parts with significant points highlighted in yellow. Top row: without applying the
thresholding method. Bottom row: after applying the thresholding method. m(=100, o = 0.05.

6. An algorithm for finding a region of interest where defects are
likely to occur

Sometimes a region of interest (ROI) can be defined by persons familiar with the part design, to

indicate where defects are expected to occur. Such information can be easily incorporated into

the functional map framework. We can simply apply a filter on the point-wise dissimilarities

DA (z), by defining
DA () DA(z), if x € ROI
xTr) =
ROl 0, otherwise
For instance, the rightmost part on Figure 9 shows a partial hex nut with a crack, colored by
D{op(z). As can be seen, the region whose high deviation is caused purely by the perturbation
introduced by the boundary, marked by the red box on the third part, is successfully filtered

out. The crack is correctly highlighted by focusing only on the region of interest.

The ROI can not only help us better locate a defective region, it also reduces notably
the computational complexity listed in Table 1. Recall how in Algorithm 2, to perform step
10 for all points z € A we need to calculate matrix multiplication ®2C’®4, where &4 and
®P are matrices consisting of the orthornormalized eigenvectors {¢2} and {$?} as columns,

respectively. Calculating ®ZC" is an O(npp) operation assuming C' diagonal, and multiplying

the pre-calculated ®BC” by @4’ is the most computational expensive operation, O(nangp).

This is because without additional information we need to evaluate Tr(d,) for all z € A.
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However, if we perform step 10 only for points in the ROI instead of the whole mesh A, the
computational complexity is reduced to O(ngngp), where ng is the number of points in the

region of interest and thus much smaller than the original n 4.

A ROI, however can not always be defined a priori. For this reason, the following method
automatically finds a ROI likely to contain a local defect when this cannot be defined a
priori in practice. The main idea is to recursively partition the object into two connected
components and select the component that deviates more from the CAD model, in a similar
way to a binary search algorithm. Thus, the key to this method resides in finding a systematic
method to partition the object and defining a measure to evaluate the deviation between

each pairs of components. In what follows we explain these two steps.

Suppose we have identified, via SPC, a defective part A and have available its CAD design
B. To be able to accurately evaluate the shape deviation for a region of A, we need to compare
it against the corresponding region on B. This means that when we partition A, B needs to
be partitioned in the same way. One approach to ensure this is to utilize the general shape of
the two objects, which in manufacturing should be very close since we assume the defect only
occurs in a small region on the defective part. We propose to use the nodal domains (defined
next) of the LB eigenvector corresponding to the first non-zero eigenvalue, which is usually
the second eigenvector, given that meshes are typically connected. The nodal lines are the set
of points in a manifold M defined by the zeroes of the eigenfunctions of its Laplace-Beltrami
operator, i.e., the points x that satisfy ¢ (z)=0. Courant’s nodal domain theorem indicates
that the nodal lines of the k-th eigenfunction divide M in no more than k subregions called
nodal domains (see Chavel (1984)). By using the second eigenfunction we partition a manifold
in at most 2 subdomains. This notion carries over to a mesh that approximates a manifold,

its corresponding discrete LB operator, and its eigenvectors.

Let A, (or By ) and A_ (or B_) be the nodal domains defined by the positive and negative
values for the second LB eigenvector of mesh A (or B, respectively). We point out that
despite the notation, A, does not necessarily correspond to the same region as B, , since
the sign of the eigenvectors is always ambiguous. To correctly match the components of A

(namely A, and A_) with the components of B (namely B, and B_), we simply compare
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the number of points each component contains and switch the notations between B, and B_

if necessary, an idea due to Hamidian et al. (2019).

Now suppose we obtain four sub-meshes, with A4, corresponding to B, and A_ corre-
sponding to B_, respectively. The next step is to determine whether A, deviates from B,
more than what A_ deviates from B_. The answer determines which pair of components
we focus on in the next iteration. This problem goes back to the comparison of the shape
between two meshes. Based on our previous results (Zhao and Del Castillo 2021a, Zhao and
del Castillo 2021b), we use the first 15 eigenvalues of the LB operator estimated by the cubic
FEM method as a shape feature for each component. That is, we compare Y.°, ])\ii -7,
and 3,7, A2, —AZ.|, where A7 ; denotes the ith LB eigenvalue of sub-mesh A, and we use
similar notation for the other partitions. Finally, the pair of sub-meshes that results in a
larger measure of this difference is selected for partition in the next iteration. This recursive

method is summarized in Algorithm 4, where |A, | is the cardinality or mesh size of A,.

Figure 11 demonstrates how Algorithm 4 is applied to define a ROI on the “chipped2”
part (from Figure 10) and its CAD model. As the figure shows, the algorithm consistently
partitions similar shapes (indicated by the colors), matching the four sub-meshes into two
corresponding pairs (components in column 1 matched with those in 3 and components in
column 2 matched with those in column 4), and selects the pair that contains the actual
chipped corner. We point out that this recursion, however, cannot be applied indefinitely
until the sub-meshes are small enough to only contain the local defect. In other words, this
method cannot be used independently as a diagnostic scheme itself. This is because even
though the partitions are roughly consistent for similar shapes, they cannot be identical due
to small shape differences in the meshes and the different original mesh sizes. Thus, each
application of the partitioning method introduces further differences into the newly obtained
sub-meshes, which keep accumulating at each iteration. Eventually, the accumulated errors
are large enough to disturb steps 4 and 7 in Algorithm 4, and the method will fail. Due
to this reason, we propose running Algorithm 4 for at most 2-3 iterations in order to only
to define a ROI, and then use the method in sections 3-5 to localize in detail the defective

region within the ROI.
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Algorithm 4: A recursive method to define a region of interest
Input: Defective part A and CAD design B

Output: A region of interest A on A

for i=1:iter do
2 Partition A into A, and A_ based on the sign of the second LB eigenvector,

[uny

estimated using cubic FEM
3 Partition B into B, and B_ based on the sign of the second LB eigenvector,
estimated using cubic FEM

4 | if (|Ay—]A-])-(|B4| —|B-|) <0 then
5 ‘ Set B+, B_ = B_, B+

6 Calculate the first 15 LB eigenvalues for A, A_, B, B_, respectively

7 if 21121 |)\i&4-,1' - )‘f,¢| > Zzli1 ‘)‘é,i - >‘§,i| then
8 | Set A=A, and B=B,
9 else

10 ‘ Set A= A_ and B=B_

11 end

12 end

13 Return A=A

7. Conclusions and further research

We have presented a new method for the localization of defects on free-form surfaces scanned
with non-contact sensors, based on intrinsic differential properties of the manifolds under
study, which does not require registration. As far as we know, our method is the first within
the quality control literature to find a point to point map between manifolds (surfaces)
by first constructing a functional map between functions on each manifold without first
aligning or registering the CAD model and the scanned part on a common orientation and
location, a problem that involves solving a non-convex combinatorial optimization problem.
Alignment errors in registration-based localization algorithms affect their performance, a
matter of particular importance if data are acquired by non-contact sensors. By using the
Laplace-Beltrami eigenvectors and a normalized version of the heat kernel signatures, the

proposed method accurately matches points across two objects while being completely intrinsic.
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Mesh size = 6714, selected Mesh size = 6709, selected

Mesh size = 4436 Mesh size = 2278, selected
= -

Mesh size = 4428 Mesh size = 2281, selected

Figure 11 Recursive partitioning applied to the “chipped2” part to define a region of interest. Each
row corresponds to an iteration, where starting from row 2, column 1 to 4 represent sub-meshes B, B_,
Ay, and A_, respectively. The red arrows indicate how the selected pair of components are further
partitioned in the next iteration. Colors indicate the sign of the second LB eigenvector (yellow for
positive and purple for negative). The algorithm correctly matches the sub-meshes and selects the pair

that contains the true local defect, circled in blue on the top row.

Therefore, our functional map method has consistently good performance regardless of the
initial location and orientation of the scanned defective part, an important practical matter
due to increasing popularity of hand-held non-contact sensors used in industrial settings. The
stability of the functional map method makes it possible to infer the natural variability of
the shape dissimilarities, allowing for statistical tests to find statistically significant shape
deviations. A single threshold method was introduced to handle the multiple comparison

problem that arises from the massive number of simultaneous tests of hypothesis.

Another advantage of our method over previous methods that require ICP-registration
pre-processing is the computational benefits. Although both methods have an overall compu-
tational complexity of O(nang) (with nx denoting the number of points in mesh X), our
numerical experiments show that the functional map method scales much better, in practice,

with increasing mesh sizes. When a region of interest is defined, the functional mapping
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method naturally has a reduced complexity and for this reason we presented a new intrinsic

recursive partitioning method to define a ROI where defects are likely to concentrate.

There are presently two potential limitations of our functional map method, one theoretical
and one more practical, which we leave for further research. First, in common to all spectral
Laplacian approaches, the method may not perform well for parts with many simple sym-
metries. Symmetries create repeated eigenvalues and eigenspaces of dimensions higher than
one, and this runs counter to the assumption of a diagonal C' transformation matrix in our
method. Fortunately, advanced manufactured parts, especially of a free-form nature for which
the methods developed in this paper are best suited, do not have such simple symmetries
so this is not a problem in practice. Still, it is a matter of further theoretical research to
find a modification of the method that overcomes the eigenvalue multiplicity problem. A
possible solution is to make instead C' block diagonal. One would need to first determine
the dimension of each block and then estimate all elements in the block, both diagonal and
off-diagonal. Another more general possibility is using intrinsic information other than the
LB spectrum. Secondly, since the heat kernel signatures we utilize are affected by boundaries
of an open surface, matrix C' may not be accurately estimated when matching two open
meshes. One possible way to overcome this problem is by defining functions other than the

HSK on each manifold, but this is also left for further research.

Supplementary materials.- Matlab code that implements all algorithms and data files

containing the meshes used in the examples are provided.
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Appendix. Technical and computational details.

LEMMA 1. The coefficients {c;;} fully determine the functional map Tp.
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Proof. We show this by considering an arbitrary real-valued function f defined on A. This function
can be uniquely represented as a linear combination of the basis functions f =3, a;¢. The image

of fin F(B,R) is

9ETr(f)=Tr (Z 042‘(%524) = Z%‘TF(%‘) = Zai Zcz’jd)f = Z (Z 0%%‘) o7 (13)

J

where we used the property that T is linear:
Tr(arfi+asfo)=(arfi+asfo)oT ' =anfioT ' +asfoo T = arTr(f1) + axTr(f2).

When f is known, a; = (f, ') is determined for all i, and therefore g can be obtained provided the
ci;’s are known. Hence, Tr is completely defined by the coefficients {c;;} in matrix C' £ (c;;), and

we can recover the point-to-point mapping 7" by finding matrix C. B

Intrinsic nature and independence from the mesh size of the normalized, scaled Heat

Kernel Signature

To demonstrate that the normalized, scaled HKS is intrinsic and independent of the mesh size being
utilized, Figure 12 plots the unnormalized and normalized scaled HKS versus time ¢ for four selected
points, where a point and its corresponding HKS curve is drawn with the same color. The two
prototype parts on the left have the same shape but considerably different mesh sizes. On the upper
right, all four (unnormalized) scaled HKS curves have different shapes. However, on the bottom
right, where the scaled HKS is normalized by the mesh size, points at the same location have nearly
identical HKS regardless of the different mesh sizes, yet the normalized and scaled HKS is still
able to distinguish points with different local shape information, hence there are only two functions
visible corresponding to the different locations. We point out that the two parts in the figure are
plotted with the same orientation for display purposes, but the scaled HKS remains the same even
when the parts are differently oriented, since both the LB eigenvalues and LB eigenvectors that we
use to calculate the scaled HKS are intrinsic, i.e., independent of the ambient space. In conclusion,
the normalized and scaled HKS contains local shape information and is independent of mesh quality

and rotation, providing correspondences across different scanned objects.

Estimation of the C' matrix.
The functional map framework is based on solving the equation:

B=C'A (14)
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Figure 12 Scaled HKS and normalized, scaled HKS functions of four selected points on meshes of

different sizes. The normalized, scaled HKS is independent of the mesh size.

where
511 512 511( Qqp Q12 - 0K
521 522 521{ Qg1 Qi -+ Q2
= . T, A= T (15)
ﬂpl ﬁp? e ﬂpK apl ap2 e apK

with B, = (g, q&f) and ;i = (fr, ¢). By using the orthonormalized LB eigenvectors, matrix C' can
be assumed to be diagonal, whose elements can be estimated using the least squares method. We
minimize the squared Frobenius norm of B — C’ A:
p K
Li=[|B=C'A|?=>" (cjjan = Bjx)? (16)
j=1 k=1

Setting the partial derivative of L; to zero, we have
0 _ i By _ ol B

K
=2 (e —Bip)ag =0, ;= _ap
7 K 2 Jod!
k=1 Dokt O ala

aij (17)

where o/ and 87 are the jth rows in A and B, respectively. In summary, the diagonal matrix C' can

be estimated by C = diag(AB’)(diag(AA’))~!, where diag(M) denotes a diagonal matrix consisting
of only the diagonal elements of M.

According to Theorem 5.1 in Ovsjanikov et al. (2012), matrix C' should be orthonormal when the
original point mapping 7" is volume preserving, indicating that the elements should be either 1 or —1

when C is diagonal. In practice, the volume preserving property of T will be violated due to mesh
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discretization, manufacturing and measurement noise, and the small shape difference between the A

and B objects. Among all these factors, the effect of mesh discretization can be accurately quantified.

We approach this by looking at the magnitude of the coefficients 5, and oyy,. Take B = (gx, (;5]/,3 ) as
an example, when the manifold B is discretized, 8 is numerically calculated as
Bik=>_ gr(x)¢} (z)
zeB
Here gi(x) is independent of the mesh size after the scaled HKS is normalized, (bf (z) is proportional

to 1/,/ng since the eigenvectors are orthonormal, and there are ng terms to sum up. Hence, the

magnitude of §;; is proportional to \/np. Similarly, the magnitude of oy, is proportional to \/n4.

There are two options to discount this effect, either we can normalize §;, by 1/\/ng and ay; by

1/,/na, respectively, or we adjust the theoretical value for the elements of C' from +1 to +v/ng/na.

These two options are essentially equivalent, and we choose option 1 to have a more uniform

expression to estimate matrix C.

For the following derivations, we still expect the magnitude of the diagonal elements of C' to be
approximately 1, but notice this will not be exactly true due to noise and small shape differences. This
constraint can be incorporated in the above optimization process via Ridge Regression, penalizing
deviations in the diagonals of C' away from magnitude 1. For this purpose, we introduce the Lagrange
multipliers {6,} in the ridge-like objective function (16):

4 p K 4
Ly=|[B=C'A|IP+> 0;(lej;l = 1) =D (ejjam = Bi)* + Y _ 05(lejs] — 1) (18)
j=1 j=1 k=1 j=1

Taking the partial derivative with respect to c;;:

oL,
aij

M=

=23 (cjjon — Bjr)ajr +205(|cj;| — 1)sign(c;;)
' (19)

(¢jjae = Bir)an +20;¢5; — 20;sign(c;;)

k

I
B

=
Il
—-

OLo ‘ .
9cjj 4

and setting =0, we obtain:

. Z,{;l o Bk + stign(c;fj) _ ol + stign(c;fj)

cr. ——
a S % 46, ol +0;
k=1 %k T UVj (20)
0 jjr . 0 0 _ (0 _1y__ % 0
_ dyodad +0;sign(cl;) | ¢ — (¢ = Dgratag; ¢ >0
= T ‘ Y0 _ (0 % 0.
ool + 9] c]] (c]] + 1) alad’4+6; CJJ <0
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Here it is reasonable to assume the regularization term will not change the sign of the elements in

the C' matrix, so sign(c};) =sign(c);). Let q; = “7ar e then ¢j; can be simplified to be:
J
0 0
¢, = (1*%)05? +4;, ng >0 (21)
(l_qj)cjj_qja Cjj <0

It is clear that the ridge solution is simply a convex combination of the unconstrained solution (17)
and the theoretical solution (1 for positive elements and -1 for negative elements). For simplicity,
we set g1 =¢2 =+ =@, = ¢ so that all elements in the C' matrix receive the same weight in this
convex combination. The values of 6; can be chosen accordingly to achieve the desired weight g. It
is obvious ¢ € [0,1). When ¢ =0, §; =0, and there is no regularization, the resulting c;; is the same

0
as Cj]-

in equation (17). As ¢ increases, more weight is given to the theoretical diagonal values of +1,
so the c;;’s tend to have absolute values of 1, the result of large penalization. Figure 13 plots the
first 100 elements in an example C' matrix with increasing values of ¢. It is evident that larger ¢
values “push” positive ¢;;’s closer to 1 and negative c;;’s closer to -1. Note the regularization effect
will not change the sign of the C' elements, justifying our assumption that sign(cj;) = sign(c);) in
eq (20). In our tests, we used ¢ =4/5=0.8 as a compromise to incorporate the variability in the

observations without violating the theoretical diagonal values of 1 too much.

q=0 q=0.67 !
q=0.5 ——qg=0.9

~o 10 20 30 40 50 60 70 80 0 100
j

Figure 13 Values of the first 100 diagonal elements in the C' matrix with increasing values of ¢. As it

can be seen, the larger the ¢, the closer the C diagonal elements are to +1 or -1.

Determining the ¢t parameter in the heat kernel signature

As discussed in Section 3.2 in the paper, we recommend using the normalized and scaled heat

kernel signatures (9) as the known corresponding functions. As shown in Figure 12, the scaled HKS
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changes as t increases, and its shape can be seen as a “profile" or curve feature associated with the
corresponding point x. To capture such pattern as much as possible, we want a wide range of ¢

values, but evidently this range needs to be finite.

In practice, the summation in the HKS is truncated up to p, the number of LB eigenvectors we

use, and so are the heat kernel signatures:
e} P
ki(z, @) :Zeﬂ\it@(ﬁf xzeﬂ\it@(ﬂ?)? (22)
=0 =0

Such approximation is valid if e=*i*¢;(x)? — 0 for i > p+ 1 since )\; is large for large i. Nonetheless,
this does not hold when ¢ is too small, making ZZPH e *itg;(x)? not negligible any more and
the calculated HKS inaccurate. As ¢ decreases, the omitted term that increases the fastest is
e *r+1tg o (x)?, bounded by e **'¢,.;(z)? from above. Therefore, to prevent such approximation

errors from being too large, we need to ensure
—Apt 2
e Popi(z)° <e, Vo

where ¢ is a pre-specified precision threshold. This leads to

log(¢p41(2)?) —loge

t2 x , Vx or
tlnin = max 10g(¢p+1($)2) _ 10g5 = maXg 10g(¢?+1 ($)2) - IOgE
T >\p )\p
Since ¢,41(-) is an eigenvector with expected norm of one, ¢,+1(z)? is at most one, so tyi, = —loge /A,

is the smallest value that provides a faithful HKS. In our numerical computations, we chose € = 1074,

which results in i, =41log10/X,.

When ¢ is infinitely large, all terms in eq (22) are almost zero except when ¢ =0, so all heat kernel

signatures have the following limit:

lim ky (2, 2) = e~ 6o ()2 = o (2)? = — (23)

t—o00 n
where n is the number of points on the manifold under study. The last equal sign holds because
¢o(-) is the constant eigenvector corresponding to an eigenvalue of zero. Since all points have the
same limit, the scaled HKS has almost no discrimination power when ¢ is large. Thus, we can safely

stop increasing ¢ when the HKS is close enough to this limit for all points:

P
1
—1mi —Ait b 2 < =
timax min {t ‘ E,O e () < - +¢, Vﬂc}

p
— mi “Aitg ()2 <
mtln{t‘zle oi(x)? <e, Vx}
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A1t

Again, as t increases, e *t¢; (z)? < e ™! is the term that decreases the slowest, S0 tya. can be

approximated by:
loge

tmax &2 min {t ‘ €_>\1t < E} =
t

A1
Again by choosing € =107*, we have t,i, = 4log10/);.

Due to the analysis above, we recommend using ¢ values in the range from ¢y, = 41log 10/, to
tmax = 41og 10/ ;. For all results presented in this paper, we use 100 values of ¢ uniformly sampled
within this range in the log scale so that heavier sampling occurs for smaller values of {. We point
out the same range is used by Sun et al. (2009) as well, yet how they derived these bounds is unclear

from their paper, so our analysis presented here provides a principled justification.

Global optimality of the functional map method compared to ICP-based solutions

A clear advantage of our functional map method compared with registration methods based on the
ICP algorithm or any of its many variants, is that, being intrinsic and invariant with respect to rigid
transformations, the functional map is independent of the initial orientation and position of the part
we want to match with the CAD model. The registration diagnostic based on the well-known ICP
algorithm (Besl and McKay 1992), on the other hand, relies heavily on the initial location/orientation
of the part. This is not only a theoretical advantage: with the increasing use of portable non-contact
scanners in industry, widely different orientations are possible. For example, Figure 5 in the paper
shows two scenarios for matching the “chippedl” part with an “acceptable” part (see Figure 3). The
left most column plots the initial orientation of the “chippedl” part. Next to it is the acceptable
(or CAD model) part in grey together with the “chippedl” part, transformed according to the ICP
solution, in blue. The last three columns on the right color-code the “chipped1” part by the different
point-wise deviations, calculated using ICP, functional mapping with cubic FEM, and functional
mapping with linear FEM, respectively. Lighter colors indicate larger deviations and possible local
defects. Each row corresponds to an initial orientation plotted in the first column. The second row
shows that, starting with a “bad” initial orientation, ICP is trapped in a local optimum and fails to
correctly align the two objects, which results in the inaccurate point-wise deviations as shown in the
third column, where non-defective areas are falsely highlighted due to inflated error. There are a
wide variety of heuristics to correct this issue in ICP, but it is difficult to analyze their stability
as they have no guarantees. On the other hand, our functional mapping method works uniformly
well for all initial orientations, using either the cubic FEM or the linear FEM to approximate the

Laplace-Beltrami eigenpairs, as evidenced in the last two columns.
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CAD Defective Part Diagnostic Before the Test Diagnostic After the Test

Figure 14 From left to right: the CAD design of a casted part, a defective part with a notch on the
top of the cylindrical edge (see the red arrow), the defective part color-coded by D“(z), and the
defective region identified by the single threshold method (in yellow).

An additional example on the thresholding approach to multiple point to point

comparisons

Figure 14 shows an example of a casted part which has a defect in the form of a notch on the
top of the cylindrical edge. The two plots on the right are the diagnostic before and after the
single threshold method is applied, respectively, where the lighter (yellow and green) regions are
identified to be local defects. As we can see from the figure, although the functional map method
can successfully locate the error by itself, the application of the single threshold method is able to

further narrow down the particular defective region.
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