PHYSICAL REVIEW RESEARCH 6, 013048 (2024)

Photogalvanic response in multi-Weyl semimetals

Arpit Raj®,"" Swati Chaudhary,”"* and Gregory A. Fiete ®!-?
'Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
2Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

® (Received 1 April 2023; revised 17 October 2023; accepted 14 November 2023; published 12 January 2024)

We investigate the dependence of the photogalvanic response of a twofold degenerate multi-Weyl semimetal
on its topological charge, tilt, and chemical potential. We derive analytical expressions for the shift and injection
conductivities for tilted charge-n Weyl points using a low-energy two-band effective Hamiltonian. We compute
the response for more realistic tight-binding models of a double-Weyl semimetal with broken time-reversal
symmetry to find significant deviations from the effective low-energy continuum model predictions. We analyze
several different limits of these models, describe the nature of these deviations, and provide estimates of their
dependence on the frequency and other model parameters. Our analysis provides a simple explanation for the
first-principle calculation based frequency dependence of the injection current in SrSi,. We also obtain analytical
results for the charge-4 Weyl semimetal using a new approach, providing all relevant information about the nature
of its second-order dc response and the precise condition for observing quantized circular photogalvanic effect.
This approach can easily be extended to a systematic study of second harmonic generation and first-order optical

conductivity in charge-4 Weyl semimetals.
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I. INTRODUCTION

The quantum geometry (QG) of Bloch wave functions can
significantly influence the electronic properties and response
functions of a material [1]. The anomalous contribution from
band topology can overcome limitations in nontopological
systems on many physical properties like superfluid weight
[2], exciton stability [3], transport coefficients [4], and optical
responses [5—7]. The bulk photovoltaic effect (BPVE) is one
such effect where contributions from QG have been shown to
be of immense importance [8,9]. The BPVE is a second-order
optical response where a dc current is produced in response
to an ac electric field. In many noncentrosymmetric materials,
the nontrivial structure of Bloch wave functions engenders a
BPVE without creating any macroscopic electric field or car-
rier concentration gradient in the sample [7,10]. This allows
one to overcome the Shockley-Queisser limit [11] present in
traditional p-n junctions.

Based on the mechanism of generation, the bulk photo-
voltaic effects can be divided into shift and injection currents
[8]. The shift current results from the real-space shift in the
electron wave packet due to interband photoexcitation [12],
and the injection current is caused by change in electron
velocity upon interband transition [8]. The properties of these
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responses are determined by the polarization of light and
the presence of time-reversal and space-inversion symmetries
[13]. The shift current response occurs for linearly polarized
light even when time-reversal symmetry is present. On the
other hand, the injection current requires circularly polarized
light and is also known as the circular photogalvanic effect
(CPGE). However, when time-reversal symmetry is broken,
both the shift current and injection current can occur for
circularly and linearly polarized light, respectively [14].

These mechanisms for a BPVE are intimately related to the
quantum geometry of the electronic wave function [15,16].
BPVE in Weyl semimetals (WSMs) have attracted enormous
research interest as they provide a mechanism to generate pho-
tocurrents in the infrared and THz regime [17,18]. Seminal
work [19] demonstrated that CPGE from Weyl nodes exhibits
quantization proportional to the node charge. Subsequent
studies measured CPGE in various WSMs like TaAs [20],
RhSi [21], and TalrTe, [22], revealing helicity-dependent be-
havior arising from the chirality of Weyl nodes. These works
emphasized the significance of realistic models, where tilt
and higher bands play critical roles in shaping the CPGE
response [23].

In recent years, various types of Weyl semimetals, includ-
ing multi-Weyl semimetals (MWSMs) with Weyl nodes of
higher charge [24-28], have been discovered in materials like
SrSi; [29,30], Cu;,Se, and RhAs3 [31] which can host Weyl
nodes with charge n = 2. Double-Weyl nodes can also be
engineered in Luttinger semimetals like o-Sn through strain,
magnetic fields, or Floquet engineering [32,33]. Additionally,
chiral multifold Weyl points with higher charge have been ex-
plored. They have been studied in regard to BPVE in [34—41].
In this work, we consider all possible twofold degenerate
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MWSMs and ignore the interactions which can sometime
remove the quantization of CPGE [42,43].

Materials that can host Weyl nodes with charge higher than
two are not known, but triple-WSM can possibly be obtained
from cubic Dirac semimetals [44] by applying a magnetic field
or by Floquet engineering [45]. Another interesting feature of
these MWSMs is that the dispersion around the Weyl node
is no longer linear in all directions but becomes quadratic
(cubic) for two directions for charge two (three). This leads
to a strong anisotropy in the velocity matrix and also
modifies the density of states, which affects the transport
coefficients [46—-60] and linear optical responses [61-66] of
MWSMs. These unusual properties are also believed to signif-
icantly influence the second-order optical responses, such as
the BPVE and second-harmonic generation. A deeper under-
standing of how different properties of these MWSMs affect
the shift current and injection current can possibly lead to a
mechanism to probe the topological charge of Weyl semimet-
als.

Most theoretical works on the BPVE employ effective two-
band low-energy Hamiltonians. These models have proven
quite useful for general predictions like the quantization of
the injection current conductivity, but the experimental sig-
natures are often complicated by the discrepancy between
effective low-energy models and real electronic band structure
where the band curvatures and higher energy bands become
important. As a result, the predictions of the continuum model
usually agree only in a small energy window. This necessitates
the need to analyze the role of different model parameters and
understand the frequency behavior of WSMs in regimes away
from this small energy window.

In our work, we first provide a complete analytical solu-
tion to the two-band charge-n low-energy Hamiltonian along
with an analysis of its important features, including CPGE
quantization. These analytical expressions elucidate the role
of tilt and nonlinear dispersion on different components of
the shift and injection current conductivities in multi-Weyl
semimetals. We also numerically evaluate the response in
tight-binding models and observe a significant deviation in
some components of second-order conductivity which high-
light the importance of band curvature.

In multi-Weyl semimetals, the validity of two-band models
becomes further restricted. Double Weyl nodes arise when
two charge-1 Weyl nodes are pinned to a high-symmetry
point, and two of the four bands are gapped by allowed per-
turbations. As a result, even if the effective two-band picture
is valid for each charge-1 Weyl node in a given energy range,
it might not be valid for the double-Weyl node if the pertur-
bation is not strong enough to push the other two bands out
of that energy window. This scenario occurs in SrSiy [29],
where spin-orbit coupling gaps the two charge-1 Weyl nodes,
creating a small gap between the double-Weyl node bands and
higher-energy bands.

Inspired by the band structure of SrSi,, we also con-
sider a four-band continuum model and find a significant
deviation from the two-band model. We find that the CPGE
quantization is destroyed and instead a very different behav-
ior is observed at low frequencies. In this particular case,
we find two opposite limits in the parameter space with
good and poor agreement. The agreement is better when the

perturbation-induced gap is large. Our analysis provides a
simple explanation for the results from first-principle calcu-
lations in Ref. [67] where quantization is observed only above
a certain cutoff frequency. We attribute this discrepancy to the
contribution from higher bands.

Finally, we also investigate the charge-4 case by using
a two-band effective low-energy model and a tight-binding
model. We derive semianalytical expressions for different
components of the shift and injection current conductivities.
Most importantly, we obtain the analytical limits for the fre-
quency window where CPGE quantization can be observed.

Our paper is organized as follows. In Sec. II, we provide
a brief introduction to the shift and injection current con-
ductivities along with the symmetry requirements to observe
their effects. In Sec. III, we derive expressions for different
components of these second-order conductivity tensors by
considering an effective two-band low-energy Hamiltonian
for a Weyl node with arbitrary charge n. We also include a
finite tilt in the z direction in our analysis and systematically
study how tilt affects these different components at different
chemical potentials and frequencies. In Sec. IV, we focus on
double-Weyl semimetals and consider two different models.
First, we compare different conductivities for a two-band
tight-binding model and an effective low-energy Hamiltonian.
Next, we consider a four-band model inspired by the SrSi,
band structure around its double Weyl node and study the
second-order conductivities in different limits. In Sec. V, we
derive the joint density of states (JDOS) and the shift and in-
jection current conductivity expressions for a charge-4 model.
In Sec. VI, we discuss the implications of our results.

II. PHOTOGALVANIC RESPONSE

In materials lacking inversion symmetry, the photogalvanic
effect (PGE) refers to the generation of directed photocurrent
as a second-order response to an external time-varying elec-
tromagnetic field. For light of frequency (and wavelength
much larger than the sample size so the electric field has
uniform amplitude), the second-order dc response is given by

J4. = o VEW HE(— ), (1)

where the second-order conductivity o%c( ) can be divided

into a shift current conductivity ojﬁ% and an injection current

conductivity oiflj?c. These two quantities are given by

f 53
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where nand m label the energy bands; [, = [d’k/(27)*;

am = n— misthe energy difference between bands n and
m; fum = fu — fm, Where f is the Fermi-Dirac distribution
function; A4, = ¢ — ¢ with ¢ being the velocity matrix
elements; and 7 is the relaxation time. The interband Berry
connection is given by rﬁm = (n|i aikb|m) for n £ m and zero

otherwise, with its generalized derivative defined as [ —

nm;a
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Y — (88, — £&,)rb,. where £%, = (nliz-|n) is the intra-
band Berry connection.

Numerical calculation of these quantities by direct eval-
uation of wave-function derivatives can be difficult as it
would require fixing a smooth gauge for the wave functions

at each point. However, it is possible to circumvent this

problem completely by making use of & =—i b / ., =
—i<n|337b [m)/ nm, and the sum rule [8,13,68],
: b a a b
b ! Anm nm + Anm nm ba
Fo = —— —w
nm.a o [ o nm

b a a b
+ 2 <—"’[”i’" - —’j’")} nEm @

l#n,m

where wf,‘; = (n| a%}% |m). The condition on the summa-

tion ), , isunderstoodas ; # ,, ,[13].

The consequences of time-reversal symmetry can be seen
directly by analyzing the integrand in Egs. (2) and (3) under
a time-reversal operation. Time-reversal symmetry enforces
the real part of the integrand to be odd in k space, and hence
makes as‘l’ﬁg real and aifg" imaginary [69]. In other words,
when time-reversal symmetry is preserved, the shift current
conductivity is nonzero only for linearly polarized light and
the injection current requires circularly polarized light. How-
ever, no such restrictions are present once the time-reversal
symmetry is broken.

III. RESULTS FOR THE CHARGE-r LOW-ENERGY
WEYL HAMILTONIAN

We begin with a low-energy effective Hamiltonian for a
two-band charge-n Weyl point

uk; +uk; — p
’ €O(§xl‘€x + lé‘\lzv)n

where ¢, = £1, ¢, = %1, and u; and u, are, respectively, the
effective velocity and tilt along Z. The chirality of this Weyl
point is x = sgn(u;{.¢y). Here, I?x,y = ki y/ko, and p is the
chemical potential. The values kg, &y are material-dependent
parameters with units of momentum and energy, respectively.
We will assume gy > 0 and set kyp = 1. The energy eigenval-

ues are given by

SO(le;x - iC)'/Ey)n (5)
—uzk; +uk; — p ’

E,+ =wk, —p+ 80\/(/;)% + 1) +uk2 /et ()

It should be noted that although all our derivations will hold
for n being any positive integer, it makes physical sense to
only take n = 1, 2, 3 due to symmetry restrictions in actual
lattice systems [70,71]. Two-band charge-4 Weyl points are
allowed but have a different low-energy Hamiltonian [70,72]
and are discussed in a later section.

In order to use Egs. (2) and (3) to find the shift and
injection conductivity tensors, we note that the delta and
Fermi-Dirac distribution functions restrict the domain of in-
tegration. In our calculations, we assume temperature, 7 =
0K, which simplifies the Fermi-Dirac distribution to f(E) =
1 — ®(E), where O is the Heaviside function. The delta func-
tion forces the integration to be performed over the surface

FIG. 1. The surface defined by §( ,; — ) in the transformed
coordinates (see Appendix A). The factor f,; restricts the integral
in Egs. (2), (3), and (8) to the Pauli-unblocked region S (shown in
brown).

260V (K2 + k2)" + u2k2/e3 — =0, while the theta function
further selects out a portion of this surface. By making suitable
substitutions, this surface can be transformed into a sphere,
which makes it easier to perform the integral analytically (see
Appendix A) for arbitrary charge n.

After accounting for the finite tilt of the Weyl cone, the
Pauli blocking condition restricts the integration region on this
sphere to region S as shown in Fig. 1, with 8, and 6, given by

- /2, ifp, < —1
0, = qarcsin(py), if =1 ¢, 1 @)
4+ /2, if 1 < g,

for p=1,2, where ¢, = viv[sgn(l%)z—“ + (=1)7], and W =
|u; /u,| is an important quantity which determines whether the
WSM is type I (W < 1) or type II (W > 1). The behavior
of 01, 6, is mainly determined by the amount of tilt (W) and
doping (1), and is crucial to understanding the basic features
of the response. It is important to note that inversion, time-
reversal symmetry (TRS), or any mirror operation does not
change the sign of 9, or 6.

For zero doping, 6, = —6; = 7 /2 for type I and 6, =
—6, = arcsin(1/W) for type I WSM. It should also be noted
that the angles lose dependence on chirality in this case. It
is important to note that these results contain an implicit
dependence. In the transformed coordinates, where the inte-
gration surface is a sphere, these angles are measured from
the x axis in the xz plane and determine which part of that
surface is not Pauli-blocked (region § in Fig. 1).

First, we evaluate the joint density of states using the ex-
pression

JDOS( ) = fk > FundCom = ), ®)

n>m

where the factor f,, accounts for Pauli-blocking effects.
In the absence of the tilt, we obtain the expected 2/n
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TABLE I. JDOS and different second-order conductivity along with the symmetry requirement for the low-energy charge-n Hamiltonian

in Eq. (5) with &g, > 0. Note that the chirality x = sgn(u;¢gy).

K2 0, _

JDOS _L87r2|u-| %(E)N" fef cos¥"1 gde

Shift conductivity Broken symmetries
- - i ek . .

G = T = VY — g " Sg:;t;ez—" (sin® @, — sin® ;)L M., TRS
2y 2 Xz xRS .

oW = N — _ gV — _ g _Sgn(l;;;[h}z—)e 0 (sin 6, cos’ 6, — sin 6 cos> H;) L M., M,, M,

Injection conductivity

: 312

oy oy iTsgn(uzixdy)e’ky .3 win3

o = —0o — (sin” ) — sin” 6,) M., My, M,
. . )e3kg

07 = oW = g = g™ —nggzth); 0 (cos* 0 — cos*6,) M., TRS
-~ _— . v iTsgn(uz {x sy 352 . . . .

0V = —0'W = g’ = —g¥" p R n(‘:;?;z % (35in 6 — sin® 6, — 3sin 6, + sin’ 6,) M., M, M,

3,2

. oy )e3I2

OFE = g DI S — 6.008(26)) + cos>(20)) + 6¢08(26,) — cos>(26,)] M., TRS
2z 2son(uy )e3 k2

o T sen(uJe Ky (cos® 9, — cos®mg)) M, TRS

22+2/"S§/"(l+n)71712 2-2/n

dependence for a charge-n Weyl node. However, at finite tilt
and finite chemical potential, this /" dependence is mod-

ulated by the angular factor of f,° cos*"~'6df. Next, we
calculate different components of shift and injection current
tensors. The resulting expressions are given in Table 1. We
notice that all conductivity tensors are directly proportional
to the charge of the Weyl point, except for afnﬁz . It should be
noted that analytical results for the n = 1 and untilted n = 2
cases have been given in Refs. [13,68,73,74] and Ref. [43],
respectively. Here, we have extended the analytical results to
arbitrary chiral charge n with finite tilt.

Let us first analyze the shift current conductivity results.
As shown in Table I, there are two kinds of nonzero com-
ponents: (i) purely imaginary, which is responsible for a
second-order dc photocurrent from circular polarization, and
(ii) purely real, which leads to a photogalvanic effect from
linearly polarized light. For the shift current, the circular
polarization components always vanish at zero doping since
01 = —0, for u = 0 from Eq. (7). Similarly, when TRS is pre-
served, the circular polarization current from a time-reversed
pair of nodes would also vanish as u, —u, under time
reversal.

On the other hand, the linear polarization component o,
shows a very interesting behavior and can even provide es-
timates of tilt and chemical potential. This component is
nonzero when the tilt is finite and the opposite chirality nodes
are at different energies, which requires breaking of all three
mirror symmetries M,, My, and M. We note that among all
the nonzero conductivity tensors, o alone changes sign
with frequency and can be used to estimate . For type I
and type II with W < 2, this sign change occurs at = 2|u|,
which can be understood from Eq. (7) which indicates that
while one of the angles is zero the other becomes + /2, lead-

ing to o = 0. The latter stays at +7 /2 for small variation

in , while the former changes sign going through = 2|u|,
causing o) to do the same (as it has a sin6 cos? 6 depen-
dence).

The W > 2 case is not so straightforward, but after some
work we find that the sign change occurs at 2|u|v %1

(see Appendix D for details). Note that % < 2|V W23_]

2| | with the equality holding at W = 2, as one would expect.

Interestingly, for u = 0, both components o)., o} show a

1/ divergence for a type-IIl WSM. Additionally, for type L, all
shift current conductivities are nonzero [shown in Figs. 2(b)
and 2(c)] only in a finite frequency window determined by the
tilt parameter W and doping.

Our results show that the tilt parameter plays an important
role for all shift current components. When the tilt vanishes,
all the shift current conductivity components also vanish. This
can be easily understood from the behavior of 6, from Eq. (7)
in the limit W 0. For < 2|ul, 6; =6, = £7 /2, which
simply means that the entire ,; = surface is Pauli-blocked.
However, when > 2|u/, the entire surface becomes Pauli-
unblocked (as captured by 6, = —0; = 7 /2), which again
leads to a vanishing shift conductivity.

Now, we turn our attention to injection current conductivity
components, some of which are known to exhibit quantization
proportional to the Berry charge of the Weyl node. Here again,
there are two kind of components: (i) purely imaginary, which
leads to CPGE, and (ii) purely real, which leads to a photogal-
vanic effect from linearly polarized light. When time-reversal
symmetry is preserved, the contribution from time-reversed
Weyl node pairs is such that the real components vanish and
only CPGE survives, as expected. Also, all the real compo-
nents of the injection current conductivity would disappear at
zero doping and also at zero tilt. As a result, in order to get
an injection current for linearly polarized light, not only must
time reversal be broken but doping and tilt should be finite
as well.

For finite doping, the conductivities become nonzero af-
ter 2|u|/(1 + W) for both type-I and type-II WSMs (note
that the 1/ divergence gets cut off in the case of type
I). For type 1, 0;2°, 0", 6.7 reach their quantized value
of —nsgn(u,¢)/12n after ilm/(l — W), whereas other
components become zero beyond this point. For the lat-
ter, the response window is proportional to |u|. For the
type-1I case, 0.2, 02", 0 approach their respective quan-

inj > Yinj * “inj
: 3W2-1 3W2—1 —nsgn(u:¢)
tized valups —n sgn.(uz;)W,'—.n sgn(u:8 ) 5577 » %
asymptotically, while the remaining components asymptoti-
cally approach zero.

The quantization condition for CPGE for the injection cur-

rent conductivity can be easily obtained as the trace of the
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FIG. 2. Plots showing (a) JDOS, (b and c) shift conductivity, (d-h) injection conductivity, and (i) CPGE quantization for a single charge-2
Weyl point (obtained using the expressions in Table I). The orange and green curves correspond to the type-I (W; = 0.334) and type-II
(W, = 2.334) case, respectively. We have chosen W, — W; = 2 just to keep the plots neat. We have taken u, = 0.287,¢) = 1, u = —0.03.
Note that except for the JDOS, remaining plots will show similar behavior for charges 1 and 3.

CPGE tensor,
21 abe sin 6, — sin 6
—ite3kg/h2 €abcTiyj = —1 sgn(uzé')(—2 ) )
which gives the perfect quantized value equal —nsgn(u,¢)
only when 6, = —6; = /2. The contribution of the factor

%(sin 0, — sin0;) is easy to understand when interpreted as
the fraction of the solid angle available for integration,

1 1
— [ dQ = 4—{47[ — [27n(1 — sin6,) 4+ 27 (1 + sin 6;)]},
T

4 Ky
(10)

which leads to a reduced value of quantized response when
either 10y, |6»| < /2. For u =0, type-I WSM gives per-
fect quantization, whereas in type-Il WSM, the quantization
value is reduced by a factor of 1/W. When u # 0, type-I
WSMs show perfect quantization above a certain frequency
cutoff, i.e., for > 2|u|/(1 — W), whereas type-II WSMs
show a reduced quantization for > 2|u|/(W — 1), as shown
in Fig. 2(i). Note that in the case of type II, while individ-
ual terms in the CPGE trace only approach their respective

quantized values asymptotically, the trace itself is fully quan-
tized for > 2|u|/(W —1). This feature is captured in
Figs. 2(g)-2(1).

When TRS is broken, injection current can also be
generated by linearly polarized light, and the nonzero com-
ponents for this case depend on the tilt direction. For
tilt along the z axis, nonzero linear photogalvanic effect
(LPGE) injection current conductivities include oY%, 0?77,
o™ o™ 0¥ 0¥, and 0%, The last one is the only compo-
nent among all shift and injection current conductivities which
can allow for a current in the direction of linear polarization if
it coincides with the direction of the tilt. Thus, a measurement
of 0{1% can provide a simple way to determine the direction
of the tilt in charges 2 and 3, which have linearly dispersing
bands in only one direction.

IV. CHARGE-2 WEYL SEMIMETALS

For concreteness, we numerically calculate the conductiv-
ity tensors for the following two-band tight-binding model for
a charge-2 WSM with broken-inversion, time-reversal, and
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FIG. 3. Injection and shift conductivities for type-I charge-2 WSM. The orange curve represents the response for the two-band tight-binding
model Eq. (11) obtained numerically. The blue curve is the sum of contributions from the two nodes based on analytical results for the
low-energy model Eq. (12), while the green curve is obtained by including higher-order terms [%(kf + k‘z) + (%M — l)kzz]cfZ — % guzkzzao in
Eq. (12) (see Appendix B for details). The energy separation between the nodes is |2gu,| and ;t = u — gu,. We have taken t = 1, M =
2.958,¢g=0.1, u = —0.0287. (a) JDOS for each node for the low-energy model with (solid) and without (dashed) higher-order correction
terms. Pink and purple correspond to the nodes at —u — gu, and —u + gu,, respectively.

mirror symmetries,
b = t{2[cos(ky) — cos(ky)]oy + 2 sin(k,) sin(ky)oy
+[M — cos(k,) — cos(ky) — cos(k;)]o;
+ gsink,o0} — noy, (11)

which has nodes at (k,, ky, k;) = [0, 0, &zacos(M — 2)] for
1 M 3. The low-energy Hamiltonian near the nodes is
given by

P =t{(k} — k)0 + 2kckyoy + uck o
+ [uk; — (/1 — guz)]O'O}y

where u, = /(3 —M)(M — 1), and 4, = g(M — 2). Chiral-
ity of this node is given by x = sgn(u;). The bands disperse
as t(u; & u; )k, when k,, k, = 0 and :l:t(k? + kf,) when k, = 0.
Based on the possible range of band inversion strength and
k-space node separation for the SrSi, materials class given
in Ref. [30], we take ¢t = 1eV, g=0.1, M = 2.958, and

12)

= —0.0287¢. The chosen parameters fit a lightly Ca-doped
SrSi, with W = 0.33 and the lower-energy node near zero
energy.

The second-order dc conductivity results obtained for
Eq. (11) are shown in orange in Fig. 3. To compare these
results against those obtained simply by treating each node
separately based on Eq. (12), we have included the blue curve
which represents the sum total of contributions from individ-
ual nodes using expressions from Table I. This is reasonable
if the contribution from at least one of the nodes is constant
over the energy range under consideration, as is the case here.

Looking at Fig. 3, it is clear that higher-order terms
present in the tight-binding model lead to significant devia-
tions from the low-energy predictions of Table I. Surprisingly,
we find that the injection conductivities %, 0%, and 0%
[Figs. 3(d)-3(f)] develop a plateau up to an energy of about
0.07t. Additionally, a shift in the response energy window
to the left by about 0.02¢ is seen for all the conductivities
[Figs. 3(b)-3(h)] and the CPGE quantization [Fig. 3(1)]. A
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shift in the quantization window has also been seen for the
T-symmetric charge-2 Weyl system [67] and is believed to
arise from higher-order terms.

We probe the origin of these deviations by explicitly
adding higher-order terms to Eq. (12) (see Appendix B for
details). Specifically, we find that including the second-order
terms [3(k? 4+ k2) + (M — 1)kZ]o. — 3gu-kZoy in Eq. (12),
not only matches the energy shift, but also captures all other
features of the tight-binding results. Most importantly, we find
the plateaus to come from the node situated close to zero
energy (in our case, it is the node with negative u,) and their
heights to be _Sg;f”‘"), sg’;a”"), and Sg"(”’gf_M), respectively.

We should point out that the 0%, 0™ plateaus can be
obtained by just including the %(kf + kf,)crZ term, whereas the

one for 0%* can be explained with the (%M — l)kfaZ term
alone. We believe that the plateaus should be present in any
charge-2 WSM where these higher-order terms show up. Note
that despite the energy shift, o), crosses zero at 2| — gu|,
as seen from Fig. 3(b). This may not hold for arbitrarily
chosen w. In our case, we have carefully put one node close
to zero energy, which makes the other node almost entirely
dictate the behavior of the response.

Lastly, we also find perfect CPGE quantization up to an
energy of about 0.07¢ as shown in Fig. 3(i). Behavior of the
JDOS for each node with (solid) and without (dashed) higher-
order corrections is shown in Fig. 3(a). With the higher-order
terms, the JDOS for the node at energy —u + gu, becomes
nonzero after about 0.071¢ and explains why the quantization
ceases earlier than the predicted value 0.086¢.

Beyond two-band models, the CPGE quantization is no
longer guaranteed to hold. This has been explored in Ref. [19]
for a charge-1 WSM. In order to better understand the contri-
butions coming from higher bands and the extent to which
they destroy quantization in charge-2 WSM, we study the
following four-band tight-binding model (taking inspiration
from Ref. [29]) with broken time-reversal symmetry,

* = t{ sin(ky), + sin(ky)1,
+ [M — cos(k,) — cos(ky) — cos(k;)]t, (13)
+ A(r04 + 1y0y) + gsin(k,)T.0:} — w1,

where t and o are Pauli matrices acting on the orbital and spin
space, respectively.

The k,-dependent 7,0, term produces tilt while A(r.0, +
7,0y) gives rise to the quadratic band dispersion along k,, k.
The low-energy Hamiltonian near nodes at [0, 0, acos(M —
2)]is

f = tlket, + kyTy + uzk T, + A0, + Ty0y)
+ (wk, + guy)t.0.] — u, (14)
where u, = /(3 —M)(M — 1), and u, = g(M — 2).

We begin with |A| large compared to |gu,| and gradually
decrease it to below |gu,|. The two bands which touch disperse

K i ok — q Ml

as t(u; + u)k,, t(u, — u;)k, when k, k, =0 an A Tan]

—t|(k24-k2

% when k, = 0. We use the same g, M, ¢ values from
guz|

before. We note that unlike the two-band case Eq. (12), the
quadratic dispersion now has a dependence on A. For A =
0.5 (recall gu, = 0.0287), the dispersion becomes almost the

same for the two cases and provides a good starting point for
comparison. Also, since the gap between the highest occupied
and the lowest unoccupied bands is ~|A|, the effect of higher
bands should be more prominent for smaller values of A,
which in fact is the case for SrSi,.

Results obtained for Eq. (13) are shown in Fig. 4. We
find large deviation from perfect quantization for small gaps
as seen in Fig. 4(f). However, for A > |gu,| we do see al-
most perfect quantization. Also, the plateaus seen earlier in
Oini s Oinj » Oy CONtiNUE to show up when A is at least a few
times larger than |gu,|, as shown in Figs. 4(a)- 4(c). Their
heights become dependent on A and are empirically found to
be about A/32, —A /32, and A(M — 2)/32, respectively.

V. CHARGE-4 WEYL SEMIMETALS

Having looked at the charge-2 case in some detail, we
move on to investigate the behavior of photogalvanic re-
sponses in charge-4 WSMs. A twofold degenerate C-4 Weyl
point, first predicted in Ref. [70] and followed by other in-
dependent works [71,75], is the last twofold degenerate point
allowed in three-dimensional crystals [71]. These Weyl points
occur only at certain time-reversal symmetric points in spin-
less systems and have a cubic dispersion along the (111)
direction and quadratic dispersion along any other direction.
The existence of CPGE quantization in such systems has been
discussed in earlier studies [72]. In our study, we want to
develop a full understanding of how model parameters and
doping affect these responses. In order to do that, we take the
following two-band Hamiltonian based on Ref. [72]:

4 = —2c1[cos(ky) + cos(ky) 4 cos(k;)]og

+ 202{«/§[cos(ky) — cos(ky)]oy
— [cos(ky) + cos(k,) — 2 cos(k;)]o,}
+ c3 sin(k,) sin(k,) sin(k, )oy, — Loy, (15)

which has nodes of opposite chirality at (0,0,0) and (i, 7, 7).
The low-energy Hamiltonian near the I" point is given by

y =kl +k +k2)oo + e[ V3(k] — ko

+ (k) + & = 2k2)0] + cskekykeoy — poo,  (16)

where u = [t + 6¢. The chirality of this Weyl point is given

by x = sgn(c3). We derive all our results using Eq. (16) with

c1 > 0 (the opposite case is an easy generalization, which we
discuss later). Its eigenvalues are given by

Ej.=c(kj+k +k)=* 2|C2|[k;‘ + kK — Kk

x Ny

2 :
R - R+ (i) kgkgkg} Cw D)
) 2C2 )
The presence of the sixth-order term k2k2k? above does not
allow us to fully evaluate Egs. (2), (3), and (8) analytically.
However, it is possible to integrate out k, (one can pick any
one out of the three k coordinates) and get rid of the delta
function in exchange for a new constraint (see Appendix E for
details).

The biggest advantage of going from a triple to a double
integral is that the new constraint now defines a closed area
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FIG. 4. (a—e) Injection conductivities and (f) trace of the CPGE tensor for charge-2 WSM obtained using the four-band model Eq. (13).
The dashed brown curve shows the corresponding result for the two-band model (green curve from Fig. 3), which is close to the A = 0.5
curve, as expected. We see significant deviations from perfect CPGE quantization for A |gu;|. The 0%, o+, 0% plateaus continue to show

A/32,and A(M — 2)/32, respectively.

compared to a closed surface before, which makes it much For u < 0, a perfect quantization is again only possible for
easier to analyze. The expressions for JDOS and injection c1/|c2] < 1. When this is the case, the trace becomes nonzero
conductivities (nonzero components) thus obtained are given after min( , . '“' ) and reaches +4 at max( , 12|u| ),

in Table II. Note that the shift conductivities are zero. Al- h th s 1 positi F( —2 7 _
though these integrals appear complicated, they are easy to W e;re p is the unique real positive root of ( |M|)
evaluate numerically. A key result of our analysis is the pre- 546—% > =0.For 1 < ¢;/|cz| < 2, the trace becomes nonzero
cise location of the energy window and condition under which after min( ,, 2 2|m ), while for 2 < ¢, /|c2|, this happens after
trace of the CPGE tensor is quantized for different amounts of T o )
doping. p- The three cases are shown in Figs. 5.(d)—5(f)., respectively.
When 1 = 0, quantization is seen only for ¢;/|cs] < 1 When p > 0, we are presented with a wider range of

possibilities for observing quantization. We find that, irre-
spective of the c¢;/|cy| value, the trace becomes nonzero
after min( , lf—"i) where ,, is now the unique real posi-

3
starting at a frequency of 52‘% as shown in Fig. 5(a). The
3
situation for 1 < ¢;/|c2| <2 and 2 < ¢1/|cy]| is also shown
in Figs. 5(b) and 5(c), respectively. While the trace is nonzero
for any finite frequency in the former case, it turns nonzero tive root of the cubic equation ( — 2u)> + 54cl = 0. For

only after S c‘ for the latter. ci/|ez] < 1, it goes on to reach a saturation Value of +4

TABLE II. Results for JDOS and injection conductivity for the Hamiltonian in Eq. (16) with ¢;, > 0 (when ¢; < 0, replace ¢, lerl,
u  —p and use the ¢; > O results). Integrals given here are to be evaluated over the region satisfying x > 0,z > 0, [4c3(x? — xz + 7%) —
A—c3x* 7 —8c3ei(x — 22)> + 8¢}] > 0. Here, we have defined Fa, (x,2) = O(—x — 2+ 1 + Z)O(x +z 4+ 1 — 2)O(1 + ).

2 2 1y Fay (x,2)
IDOS S g 1 -

0 0 4n3ﬁ\/[4c% (2 —xz+22)—cFll—c3x? z—8c3c) (x—22)+8c}]

Injection conductivity

—lre \/_CZC';\/_HCZC}X &2(v —”2)+c3c1x b4 —960201,&2()( 27)— 160201(x+z)2+4c JF2 (x,2)

9 7 5 X7 1+_ﬁ
OV = g = g = g S ae g iy 2
272 h clﬁ(24clc2763 z)\/[4cz(.x2~xz+12)*cl][~c3x2 z~8€2c1(x~21]2+8ci]
2 2 —ite®Bcfesy/ xP 4G} (P—x?)+96¢; ch(x—22)+ccd 1Fp, (x.2)
o = —g* fo dz 0

ﬂzfrzcl ﬁ(24clcz —03 z)JHcZ 2 —xz+22)—cl ][—c3x2 z—SCzcl (X—2Z)2+SC‘:J

abc l+3f4 d 1+Z& 8\/30%53\/_[—2034—80]c%(x+z)2—c§x ZZJFM (x,2)
1123/717 €abcO fO ﬁ)

rrclﬁ(24clc%fc§ z)\/ 4CZ(X2*T7+ 2)— C%][*C%XZ 1—80%61(x~2z)2+8£:1‘]
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FIG. 5. Trace of the CPGE tensor for a single charge-4 Weyl point Eq. (16) with ¢; > 0, obtained from the numerical evaluation of integrals
in Table II for different combinations of x and c¢;/|c;| (respective values shown in the inset). We have taken ¢; = 0.0665, ¢; = 0.4. (a—)
n =0, (d—f) u < 0. In both these cases, perfect quantization is seen only when ¢, /|c,| < 1. (g-1) u > 0, perfect quantization is guaranteed

for ¢;/|cz| < 1; however, unlike the previous two cases, it can also be seen for c¢;/|c;| > 1 as long as

shown in (h).

at max( ,, lj#)’ as shown in Fig. 5(g). Interestingly, for
o2

u > 0, quantization becomes

. 2
provided max( ,, 1+z—|?;) <

;z)ossible even for 1 < c¢;/|ca|
M . L
e When this condition is
2

met, perfect quantization is seen but only for a finite window

of energy  satisfying max( ,, Hz—“c_,) < < “—‘2_#—1’ which
2lea| lea]
is shown in Fig. 5(h). The situation when no quantization

is possible for p > 0 is shown in Fig. 5(i). It is clear that
while |ci/c»| plays a crucial role, ¢y, ¢z, ¢3, and u intricately
determine the behavior of the CPGE trace and its quantization.
Note that the plots in Fig. 5 have been obtained by numerically
evaluating the integrals in Table II. We have included the
JDOS plot at zero doping in Fig. 6(a). As shown in the figure,
the JDOS has a ./ behavior going towards zero frequency.
Note that the JDOS result from Table I also predicts a /
dependence if we take n = 4. This seems more like a coinci-
dence as that model still has a linearly dispersing band along
k., very different from the C-4 model in Eq. (16).

2
—=£— > max( ,

aleal-1 ) as

2p
14+¢1/2|ea|

We would like to point out that so far the results presented
assume c; > 0. It turns out that we can continue to use the
same results for a charge-4 node with ¢; < 0 (and a chemical
potential 1) by treating it as a |c;| node with chemical poten-
tial —p. With this small but important extension, our analysis
covers all the possible cases.

For completeness, we also compute the CPGE trace using
the full tight-binding model Eq. (15), and the results are shown
in Figs. 6(b) and 6(c). Note that in this model, when going
from I" to R, we find (cy, ¢3, ¢3) (—c1, —c, —c3). Since
¢ turns negative, when using results from Table II, we treat
the (c; < 0, ug) R node as a (|cq|, —ug) node. Also, since c;3
flips sign too, xr = — &, as expected.

In Fig. 6(b), we chose c;/|c2| < 1 and therefore expect
both nodes to show perfect quantization. Since u # 0, the two
nodes will show quantization starting at different frequencies,
which results in an overall finite quantization window. The
dashed curves represent the sum of contributions from the
two nodes based on the low-energy result from Table II (as
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FIG. 6. (a) JDOS for a single charge-4 Weyl point with u = 0, ¢; = 0.0665, ¢; = 0.4668, c; = 4 (¢1/c2 < 1). (b) The red and blue curves
capture the CPGE quantization for the two-band tight-binding model Eq. (15) with u = —0.3, 0.5, respectively. Note that ur = u + 6¢1, g =
1 — 6c;. The corresponding dashed green curve is obtained by evaluating expressions from Table II for each node separately and then adding
the results. We have used the same ¢, ¢;, ¢; from before. (c) Results with ¢;/c; > 1, u = —0.3 (same ¢y, c3 as before). The dashed curves
show contribution from the node closer to £ = 0 (obtained using results from Table II) for each case and are discontinued after contribution

from the other node becomes nonzero.

remarked earlier, this makes sense here because at no point
in the energy range under consideration do the contributions
from both nodes become nonconstant simultaneously).

In Fig. 6(c), we chose 1 < c¢;/|cz| and w = —0.3. This
gives ur = 0.1 and pug = —0.7. Since the node closer to
zero energy falls under the © > O category when using the
low-energy results, we can choose ¢y, ¢z, ¢3 such that it shows
quantization for a finite window (blue curve) or no quantiza-
tion at all (red curve). For the former, we also ensure that the
contribution from the other node starts only after the end of the
quantization window. The dashed curves show contribution
from the I' node in both cases. In both Figs. 6(b) and 6(c),
we find excellent agreement between the tight-binding and
low-energy results, showing that the higher-order terms are
not at play in this parameter range and can be neglected.

VI. CONCLUSION AND DISCUSSION

In summary, we have presented a comprehensive and uni-
fied study of the second-order dc response in tilted twofold
degenerate multi-Weyl systems with a focus on the roles
played by tilt and doping. For charges n = 1, 2, and 3, we
have derived analytical expressions for shift and injection
conductivity using a two-band low-energy continuum model
and then compared its predictions against more realistic two-
and four-band tight-binding models of time-reversal broken
systems for the charge-2 case.

Beyond the extremely important CPGE quantization, we
also report other features of the photogalvanic response aris-
ing mainly from the finite tilt and band curvatures. We
systematically investigated the role of tilt, band curvatures,
and higher bands in deciding the shift and injection current
conductivities of multi-Weyl semimetals. We find that in TRS
broken multi-Weyl semimetals, finite tilt can lead to nonzero
injection current from linearly polarized light, which not only
provides a probe for the tilt direction but can also provide
a way to engineer the injection current by using strain or
some other mechanism which controls the tilt of Weyl nodes.
These injection currents also show plateaus in a finite en-
ergy window resulting from higher-order band curvatures. We
have elucidated the effects of model parameters on CPGE

quantization and the plateau height. We expect these results to
be of significant experimental value in the study of quantized
optical responses in the SrSi, materials class [30].

We have also provided a complete analysis of the photogal-
vanic response in C-4 WSM based on a low-energy two-band
model, covering all possibilities arising from different com-
binations of model parameters and the chemical potential.
Although C-4 WSMs do not have a tilt in the usual sense (like
the other three charges, which have a linear dispersing band in
at least one direction), the ratio |c; /c;| plays a similar role, and
together with ¢} /c3 and w determines nature of the response.
Within the confines of the low-energy model, our results help
point out exactly when CPGE quantization can be seen in C-4
WSMs.

We believe that the approach we have taken here to study
C-4 would find applications in studying many other optical
responses as well.. For example, it can easily be extended to
the study of second harmonic generation and first-order con-
ductivity for the low-energy two-band model considered here.
In principle, it should work with any quantity that requires
evaluating a k-space integral with a f,;6( 2; — ) term in it
atT =0K.
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APPENDIX A: ANALYTICAL EXPRESSION FOR SHIFT
AND INJECTION CONDUCTIVITY TENSORS

We work with the low-energy effective Hamiltonian,

uk, + uk, — e0(Euky — i,k )"
_ K t-Z ~,LL (¢ gy y) ’ (Al
£0(Lcky + leky)n —uk, + uk, — u
with eigenvalues
Ens = uk, — pteo (@ +82)" +2k2[ed.  (A2)
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The domain for the integrals in Egs. (2)
and (3) is determined by f; and 8( 21— )=
8(280«/(k§+ky2)"+u§k§/sg — ). Let wus focus on
the delta function first. To simplify things, we split
the integral in the k, —k, plane over the four quad-
rants: [dk, [dk, = [ dk, [ dk, + [ dk. [ dk,+
J_dk, [, dk, + [_dk, [_dk,, and combine them into a
single integral over the first quadrant by making substitutions
ky = £ko/x and k, = +ko./y depending on the sign (both

x,y > 0). We also put k; = z. By making x ’% and
x+y N

5> We rotate the x-y axis counterclockwise by /4,

and scale z by z  2"%z. Finally, we let x  x*/" to get
824 g90/x2 + 72 — ). These transformations also change

2l/2+/x/4k2€ox2/n—ld_xdzdy .
f 0 , with

16n3\uz|n\/x27y2

x>0 and —x <y <x (we do the y integral first with
these limits). The delta function defines a circle in the xz
plane which lets us use x =rcosf,z=rsinf to obtain
8lr— /21 eq)]/ (2" 4.

Since we are taking the temperature to be zero, f>; =
®O(E)) — O(E,), where © is the Heaviside step function. Be-
cause of the condition put by the delta function, we have

the integration measure fk

fr=0(uk —p—5)=O(uk—p+3). (A3
Since we have assumed > 0, the only nonzero value for f>;
is —1 when u — /2 <uk, < u+ /2. Using coordinate
transformations from before, this condition becomes

2 2
K< Mging < E 4, (A4)
u;
w\ 21 u '\ 210
sgn(;r)== —1 sgn(;t)== + 1
w w

where W = |u;/u,|. The definitions for 6, 6, given in the
main text follow from this. With this, we can easily com-
pute other ingredients of the integral from the eigenvalues
and normalized eigenfunctions of ,, and combine them to
obtain analytical expressions for the JDOS, shift, and injection
conductivities.

APPENDIX B: HIGHER-ORDER TERMS FOR
CHARGE-2 WSM

Based on the higher-order terms appearing in the expansion
of Eq. (11) near its nodes, we look at the effect of including
[5(k; +K)) + k1o — jgu-kZoo in Eq. (12), where u,, =
%M — 1. As before, we use a series of transformations to
simplify the Dirac delta constraint. Key steps are as follows

(with gg = 1):
D) ke =Sk E2HE
@ x  Ha-yy  Ha+yz  5(z-D.

3) z %z + 1, integrate out y (from —x, x).

X Z X Z
@ x Wi 2ss o a5 + 2/5-45
b) x cosb, z sin 6, integrate from 6y, 6,.
Analytical expressions for JDOS, shift, and injection con-
ductivity tensors can be obtained as before. We still have
fo1 = —1, however, the condition that determines 6, 6,

becomes
pp \/ ﬁumsi;(9+ﬁ)+l_1
U uz
2
B qul V5u,, sin(6 + B) Lo
4u? u?
<2u+ (BI)

where f=arctan(¢—1), —7 — arctan(p) 6 7 — arctan(p),

and g is the golden ratio. Allowed values of 8 can be found by
solving this inequality numerically. When solutions turn out to
be disjoint intervals, each interval defines its own 6, 6,. The
analytical expression is evaluated for each interval and then
summed.

APPENDIX C: TILT AND ZEEMAN TERMS FOR
CHARGE-2 WSM

We can also include additional terms of the form A(l;)% +
12‘2,)00 and Bo, into Eq. (5). These correspond to second-order
tilt and Zeeman terms, respectively. The B term only shifts
the origin along k,, modifying the k,  z transformation to
k, = “’%B. It not difficult to see that these terms only affect

f21’

A cos6 u; sinf o _
oY i ad _y__
fu (80 > a2 TH 2)
6 A  cosf N u; sinf n )
& 2 u, 2 H 2 )
where & = p + Bu,/u;. Since > 0, we have f;; = —1
when
21 A 21
—M—1<—cosé+ﬁsin9<—u+l. (C2)

€0 Uz

By defining W = v/AZ/e2 + u? Ju?, sing = 2L and cos ¢ =

17

Ii/,u;.l’we obtain
son(“)2E _ 1 sen(ie) % + 1
% < sin[6) + sgn(jt) ] < %

(C3)

with—m /2 0,¢ /2. Also, we define @ = sgn(;*)¢ and
op = ;Vlv[sgn(%)g + (—=1)?], with p = 1, 2. The inequality
becomes @;_< sin(d + a) < @,, which can be solved for the
minimum (#;) and maximum (6,) allowed values of 6. These
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can be obtained as the left and right end points of the intervals,

(r/2,7/2), 1<¢1,1 <@
(—7T/2,—7T/2), al<_17$2<—1
107 al <_171<’¢2
I()mlz, 0<¢1<1,1<¢2
(é" 5')2 Ioﬂ]l, —1<al<0,1<¢2
172 [00]3, al<—1,—1<$2<0
10014, a1<—1,0<’(ﬁ2<1
I()ﬂ[lﬂl4, —1<’(51<0<’(ﬁz<1
10011013, _1<’¢1<¢2<0
[00]2014, 0<a1<a2<1,
(C4)
where

ly=(-7m/2,7/2),
I = (—m —a, —m — o — arcsin @)

U (—a + arcsin @y, 1 — a),
b, = (—a + arcsin @y, 7 — a — arcsin @),
I = (—7 — a — arcsin ¢, —a + arcsin ¢,),
Iy = (—7 — a, —a + arcsin @,)

U(r —a — arcsin @y, 7 — a).

APPENDIX D: SIGN CHANGING OF ¢, FORW 2

For W < 2, we found that the sign change occurred at

= 2|u| when one angle was +m /2 and the other zero.
However, when W > 2, (6,, 0;) cannot take either (0, —7 /2)
or (7 /2, 0). Finding the point of sign change now requires us
to seek other solutions of sin 6, cos? 6, — sin 6, cos? 6, = 0.
Converting cosine into sine, we get (sin §; — sin 0;)(sin’ 6, +
sin 6, sin 6y + sin? 0, — 1) = 0. Let us look for solutions other
than 6, =6, (0, —7/2), and (r/2,0). We can solve for
(sin 6y, sin 6} ) to get

1

,x,—l<x<%

(ﬂfm

(sin 6y, sin 6, ) = LV 1 (D1)
,x),0<x < 7

)
( ’X’m) =L x<0
(_x+m>

—

,%<x<1.

( —x++/4-3x2 )
X, 5

Using definitions of 6, 92, we solve for by eliminating x

to obtain = 2|u|V W2 ;- Note that for W =2, this gives
= 2|u| as expected.

APPENDIX E: ANALYTICAL RESULTS FOR CHARGE-4
WSM

The delta function constraint §( — ;) translates to

4l [kj+k;‘ + k= kiky — gk — kK]

+ (2c> kfkfkf} = . (E1)

To simplify this, we use the following transformations:

() ke EVxky,  E£ /v, k. £z (reduce the inte-
gral to x, y, z > 0 octant).
@ x  Ha-yy  Hety.

(3) Integrate out y (from —x,x). To do this, we need
to find roots of the equation = {26§z(x2 — y2) + 8c§[(x —
V22)* + 3y*1}2. The condition for existence of real roots
satisfying —x y  x is given by (post step 4 substitution)

[4c§ (x2 —xz+ zz) - cﬂ[—ch2 Z
— 8c§c1(x —22)% + SCf] > 0. (E2)

4) x m% Z EZ'

Using these transformations along with the eigenvalues and
normalized eigenfunctions of Eq. (16), we simply Egs. (2),
(3), and (8) to obtain the expressions shown in Table II (the
shift conductivities aIe Zero)

The behavior of 3 7o 7 CabcO o?¢ is determined by the inter-

play between condltlons setby O(—x —z+ 1+ 2y O +
z4+1— 2—“), and Eq. (E2). Since ¢; > 0 by choice and ¢;, ¢3
appear only as their squares, the analysis of the region de-
fined by Eq. (E2) becomes quite general. To understand this,
let us focus on the curves 4c3(x* —xz+z%) —cf =0 and
—c%x2 z— SC%cl(x — 27+ 80% =0 for x,z > 0. They in-
tersect the x axis at x = ¢;/2|c;| and x = ¢ /]3|, respectively,
but cross the z axis together at z = ¢;/2|c;| (intercepts are
independent of ). Tangents to these curves with slope —1 are
important. For the ellipse this happens at (z = c¢1/2|cz|, x =
c1/2|cz|), and the tangent has equation x + z = c1/|cz| For

the second curve we have several cases. For < 48 "’J , there

. 1/3 /

is only one such tangent at (z = lez/—3“l/3, X = ‘573/3 f}3) de-
. 1/3 .

scribed by x +z = ‘Ci’?z/—;‘{/; For larger , there is another

tangent with slope —1, but its presence is of no conse-

quence to our analysis. The important thing to note is that

1/3 . .
x+z= wsfé/—*c}ﬁ is completely sandwiched between x 4z =

ci/lca] and x +z = ¢1/2|ca| for 54‘“2‘ <8 x 54'62‘

These features are illustrated in Fig. 7 With these key ob-
servations in mind, we now analyze the u =0, u < 0, and
w > 0 cases separately.

For ;© = 0, the theta function constraints reduce to x + z <

1. When ¢ /|c2| < 1, the CPGE trace is nonzero for any finite
54 c]

. When c¢;/|cz| > 1, some portion
of Eq. (E2) is always left out and we do not get perfect

quantization. For 1 < £ < 2 the trace is nonzero for any

leal
4(‘1

finite , whereas for C' > 2 this happens only after

For u < 0O the condltlon set by O(x +z+1—

ways satisfied, whereas O(—x —z+ 1 + 2y requires x +
ZIMI

term 1 — 2"“ € (—o0o, 1). We are only interested when it
lies in (0,1), which happens for > 2|u|. Since it can ever
only reach 1, full overlap with region Eq. (E2) is possi-
ble if c¢;/|c2| < 1, the condition to get perfect quantization.
When this condition is met, the amount of overlap between
x4+z<1—24 apd Eq. (E2) is determined by solutions

2l _ oen 2wl e apgp - 2l
] = Zer

) is al-

z<1-— An important thing to note here is that the

to equations 1 —
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T
54 |co|?
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Leo|? 8 x 54 co|?
c c
C1
E— vt z=—
. |2
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FIG. 7. The green area is the region defined by Eq. (E2) (we
have used ¢; = 0.0665, c; = 0.4668, c; =4, = 0.4, but the fea-
tures shown here are quite general). The blue, orange, and magenta
curves correspond to —cix* z — 8cici(x —2z)* + 8¢} =0for =
0.1, 0.4, and 4.0, respectively The green curve represents the

ellipse 4c3(x* —xz+z*) — ¢ = 0. The blue dots are placed at
21/3¢, 2x2'/‘c,
( 3| / /39 "l / )

13,
|c5\42/—31/3 The last equation can be rewritten as ( — 2|u|)? —
54cl = 0. This cubic equation never has three real roots.

Slnce the product of its roots is 8|u|* > 0, the only real

root, p, is always positive. Note that , > 2|u|. The CPGE
trace becomes nonzero after min( , 1_““ ), and saturates to
2/cq|

2l ) When 1 < ¢;/|ca| < 2 the trace is
\Czl

+4 after max( ,, =

nonzero after min( ,, ), whereas for c;/|cz| > 2 this

1 (l
prey)

happens after , (it never reaches 14 in either case).

For i > 0, the 2possibilities becornze even more interesting.
O(—x—z+14+ 0 +z + 1 — “%) sets bounds on the
integration region, requlrlng M _J<x+z<241 The
term 1+ 2 ¢ (1, 00), which means that if c¢;/|c;] > 1, a

portion of Eq. (E2) will necessarily be left out for > _12—"“_]
lea

(perfect quantization still possible for smaller energies). Now,

the solutions to equations 1= Ml, W= %, and
13 . -
L 1= \55?2/—%1/3 become crucial in determining the amount

of region Eq. (E2) available for integration. The last equa-
tion can be rewritten as the cubic equation ( —2u)’ +

546‘ = 0. The product of its roots is 84> > 0, which means

that when two roots are complex (conjugate pair), the real
root must be positive. However, when all roots are real, there
are two possibilities: one positive and two negative roots, or
three positive roots. It turns out the latter case is not possible

3
because the condition for all roots being real is u < 4E—;,
3

whereas for all roots to be positive, u > 9— Thus, we always

get exactly one positive root, ,. Note that p <21 in this

case. The CPGE trace becomes nonzero after min( ,, ; + Ll ).
leo

For ¢;/|c2| < 1, it goes on to reach a saturation value of :|:4
after max( ,, lf—i). When ¢, / |ca| > 1, we see quantization
2[en|

2
for max( ,, H—‘f,) < < . Perfect quantization is not

\62\

o
possible when oy < max( ,, 1+ )
€2
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