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We study a simple electron-phonon model on square and triangular versions of the Lieb lattice using an
asymptotically exact strong coupling analysis. At zero temperature and electron density n =1 (one
electron per unit cell), for various ranges of parameters in the model, we exploit a mapping to the quantum
dimer model to establish the existence of a spin-liquid phase with Z, topological order (on the triangular
lattice) and a multicritical line corresponding to a quantum critical spin liquid (on the square lattice). In the
remaining part of the phase diagram, we find a host of charge-density-wave phases (valence-bond solids), a
conventional s-wave superconducting phase, and with the addition of a small Hubbard U to tip the balance,
a phonon-induced d-wave superconducting phase. Under a special condition, we find a hidden pseudospin
SU(2) symmetry that implies an exact constraint on the superconducting order parameters.
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The electron-phonon interaction plays an essential role
in the physics of quantum materials, e.g., for Bardeen-
Cooper-Schrieffer superconductivity (SC) and typical
charge or bond-density-wave ordering [1-3]. In the past
few years, it has become increasingly clear that electron-
phonon interactions can also induce a variety of more
exotic behaviors and novel quantum phases [4-22], includ-
ing those that are typically associated with strong repulsive
interactions, e.g., antiferromagnetism (AF) [10-13] and
d-wave SC [14-22].

In this Letter, we study a simple electron-phonon model,
the “Holstein-Lieb” model (illustrated in Fig. 1), for which
it is possible to obtain well-controlled results concerning
the ground-state phase diagram (summarized in Fig. 2)
through the use of an asymptotic strong-coupling expan-
sion. Certain of the phases are interesting but not surpri-
sing—for instance, phonon-stabilized bipolarons can order
(localize) to form a variety of valence bond solid (VBS)
phases, or when the strongly coupled sites lie above the
Fermi energy, they act as “negative U centers” that mediate
SC pairing [23]. More unexpectedly, there is a range of
parameters in which the problem maps onto a quantum
dimer model [24,25] introduced by Rokshar and Kivelson
(RK), and thus exhibits a variety of exotic “resonating
valence-bond” (RVB) phases known to arise there, includ-
ing (on the triangular lattice) a Z, topologically ordered
phase and (on the square lattice) a multicritical point which
acts as the mother state for an infinite hierarchy of
incommensurate phases. With this concrete example, we
hope to suggest new avenues for the search for materials
supporting “spin-liquid” phases [26] in systems with
relatively strong electron-phonon couplings. To date, this
effort has been almost entirely focused on studies of
frustrated antiferromagnets.
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We consider a Hamiltonian in which electrons can
occupy orbitals on the vertices of the lattice, j, or on the
bond centers between pairs of nearest-neighbor sites, (ij):

I:I = _tz[leﬂ”(ém + 6']0> + HC]
(ij)o

+ (E+aR )iy + Hy, (1)
(i)

where ¢;, (]A[ (ij)c) annihilates a spin-o electron on the orbital
at site i (bond (ij)), and ; or 71; are the electron numbers
on the corresponding orbitals. X (ijy are the coordinate

operators of optical phonons on bonds described by the
Hamiltonian:
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FIG. 1. An illustration of the Lieb lattices studied in this Letter,
and the Holstein-Lieb model in Eq. (1).
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By rescaling variables it is easy to see that there are
precisely four independent energy scales in the problem:
the band-structure scale ¢, the charge transfer gap &, the
phonon frequency, w, = 1/K/M, and the phonon-induced
electronic attraction, U, = a?/K, which is the relevant
measure of the electron-phonon coupling strength. We will
perform a controllable strong-coupling analysis assuming
|#| to be a small energy scale (the precise meaning of this
assumption will be made clear below), and obtain effective
theories for the active degrees of freedom in different
parameter regimes. At the end of the Letter, we will discuss
the robustness of the results in the presence of additional
couplings that are likely to be present in candidate
materials.

Methods.—The effects of strong electron-phonon cou-
pling can best be addressed following a unitary trans-
formation [27]

A .a N ~
U =exp {1}2P<U>”<U>] , (3)
(ij)

that transforms the Hamiltonian into

The resulting theory contains a unitary operator D<,- )=
e~ iPuna/K that displaces the phonon coordinate by /K. We
will perform a perturbative analysis treating the second line
in Eq. (4) as the unperturbed Hamiltonian, H,, and the first
line as perturbations, A’. Under most circumstances, H,
has an extensive ground-state degeneracy, so we use
degenerate perturbation theory to derive an effective model
acting in the degenerate subspace. We note that all the
virtual processes, including those with phonon excitations,
are included in this analysis. We keep terms in powers of ¢
to the lowest order needed to resolve the degeneracy, and
the validity of each model will be analyzed in each
scenario. Since A can be defined on any lattice in any
dimension, so can the resulting effective theories. Here, to
be explicit, we will confine ourselves to the square and
triangular lattices in two dimensions.

The first step in our analysis is to identify the degenerate
ground-state manifold of H,, which we call Hy; we will
restrict our attention to the range of electron densities per
unit cell, 0 < n < 2. For convenience, we define £, = & —
Uepn/2and &, =2E — 2U,., to represent the energies of a
singly or doubly occupied bond orbital, and £, =& —
& =3U,p;n/2—E& to represent their energy difference.
Because &, —2& = —U,,y, is always negative, singly

occupied bond orbitals are always disfavored. Therefore,
depending on the sign of &,, bond or site orbitals are
favored, so that all possible occupation configurations of
bond dimers or site electrons form a basis of H,,.

For the case where bond dimers are active degrees of
freedom (&€, < 0), there are two sorts of terms that will be
generated by the perturbative analysis: There are diagonal
terms (dimer potential energy) and off-diagonal terms
(dimer kinetic energy). Since the phonon displacements
are different for different dimer configurations, all off-
diagonal terms must vanish in the limit of nondynamical
phonons, w, = 0. Specifically, the amplitude of any proc-
ess in which a dimer relocates onto or off of a bond is
accompanied by a Frank-Condon factor F' [28] defined as

F = (0|D?|0) = e7¥, (5)

where |0) is the ground state of the phonon Hamiltonian on
the bond, and X = U, /@, is a dimensionless factor
quantifying the degree of retardation, and the displacement
operator D is squared since the occupancy of the orbital
changes by two electrons. This factor becomes arbitrarily
small in the limit of strong retardation. On the other hand,
the potential terms always only receive O(1) factors from
the virtual phonon fluctuations.

Below we derive the effective theories and obtain expres-
sions as functions of the bare energy scales for the coupling
constants that arise in low-order perturbation theory in z. The
effective Hamiltonians are given in Egs. (6), (8), and (9). The
asymptotic expressions and the limiting behaviors in
the small and large w, limits of the effective couplings are
given in Table 1. Their explicit expressions and derivations
are deferred to the Supplemental Material [29].

Ueph > E: dimer models.—In this case, the energy
necessary for breaking a dimer is £;,; thus the expansion
series in ¢ is controllable as long as r < &,. For a dimer on

bond (ij), we define the annihilation operator as l;m =
f(ij)Tf(ij) , and the dimer occupation number operator

ab = bl by =0, 1. To the fourth order in #, we obtain
(i) (i)

the following model for the dimers:

q,= Z[—Tl (z%jl.j>1;<jk> +He) + Vial, Al (6)
(ijk)

where the summation is over all pairs of nearest-neighbor
bonds with a single vertex in common, and it is implicit that
we have omitted terms of order % and higher, to which we
shall return shortly. Therefore, we obtain a hard-core boson
model on the bond lattice with repulsive interactions.

As shown in Table I, when X < 1 it follows that z7; ~ V1,
so this is an interacting problem with no small parameter to
give theoretical control. We label this region “Interacting
dimers” in Fig. 2. For n <« 1, the ground state is presum-
ably an s-wave superfluid, independent of the details of the
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TABLE L.

Asymptotic expressions and limiting behaviors of the coefficients in the effective theories in Egs. (6),

(8), and (9). Each limiting behavior is evaluated in the region of validity of the corresponding effective Hamiltonian.

Antiadiabatic

Adiabatic

wy —> 00, X >0

@y — 0, X -

/&
2[2/51

tegr ~ (2/€1)
70~ (21°F /&)
T~ ([4F2/5?2)
Vi~ [t4/5%2]

Jee ~ (1*/€7) 41°U 0/ E1E>

{[4t4(2Ue-ph - 5)]/[5%2|52|Ue»ph]}
[4t4(5Ue—ph/2 - 8)]/[8?2 Ue—ph}

/€
(VaXi/€)e™ -0
{[4V22X1*)/[E3U o]} = 0
264 (4U epn = E)/[2U eph = €)*U o]

PU3, 28080

lattice structure and the interactions. As n approaches 1, the
balance between the interactions and the kinetic terms
becomes more subtle. Similar models have been studied on
several lattices [33—38], where various superfluid, charge,
and supersolid orders were found. We expect analogous
phases to arise in the present model.

However, when X is large, such that F < 1, the V| term
is dominant over 7;. Those ground states of V; within H,,
form an emergent low-energy (still extensively degenerate)
subspace, H;, in which, as in the RK quantum dimer

s- and d-wave SC,
AF

<— SC

Interacting dimers

g Pseudo-spin SU(2)

S L
1 &/ Ueph

FIG. 2. Schematic T = 0 phase diagram for n = 1 in the small
|#| limit as a function of the dimensionless ratios of parameters in
the model, Eq. (1); the vertical axis quantifies the degree of
retardation and the horizontal axis the strength of the electron-
phonon coupling. The blue region on the left top is described by
the quantum dimer model in Eq. (7). The yellow region on the
right is described by the weakly interacting theory in Eq. (8).
The red region in the middle is described by Eq. (9) and is
confined to a narrow window. The grey region on the left bottom
is described by the effective bosonic Hamiltonian, Eq. (6),
where controlled analysis of the ground-state phases is missing.
The RK line, which corresponds to the exactly solvable point
V, =1, in Eq. (7), occurs with moderately large retardation,
Uepn/wy = O[In(E1,/1)], as long as £/U, ., is not close to 1.
The Z, symbol represents a Z, spin-liquid phase on the triangular
lattice, and IC stands for possible incommensurate crystalline
phases on the square lattice.

models, no more than one dimer can touch a given site.
Within H,;, we further perform perturbative analysis on
square and triangular lattices and obtain the RK model as
the effective model:

e =V 3 (1£2) L2+ 1 )]

o

~n 2 WINZ N+ ]

where the ket (bra) represents a pair of annihilation
(creation) operators on the thickened bonds, and the
summation is over all possible four-sided plaquettes. To
leading order in 7;/V,, it is easy to see that
7, = (423 /V)) ~ (t*/&3,)F*. In terms of the same expan-
sion, one would conclude that V, = O(z3/V{) is always
small compared to z,. However, since we are simultane-
ously assuming both 7 and F' are small, we need to consider
terms [not shown in Eq. (6)] that are higher order in 7, but
which are not suppressed by F (potential terms). (See Fig. 3
for illustrations of the virtual processes that contribute to
the effective theory.) Since it involves such high-order
processes, it is not worth writing out explicitly the results.
What is essential is that the leading term only contributes to
V, and itis eighth order in  and positive, i.e., V, ~ (1 /£],)
[39]. From the perturbative perspective, there are two types
of leading virtual process, both of which contribute
positively to V,: If two dimers occupy two parallel sides
of a four-sided plaquette, the lowest order virtual process
that nontrivially connects them is a ring exchange of

FIG. 3. Illustration of the virtual processes (arrows indicate the
direction of electron hops) on a four-sided plaquette contributing
to the terms in the RK effective theory in Eq. (7). The first class
contributes to 7, while the latter two contribute to V,.
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electrons, which results in a fermion minus sign that turns
what would have been an energy gain into a cost. On the
other hand, if only one dimer occupies a side of a plaquette,
there is an allowed virtual process in which a single
electron travels around the plaquette—this energy-gaining
process is blocked when there are two dimers on the
plaquette. Both processes are eighth order in ¢ on the
lattices we are considering. (We have performed exact
diagonalization studies on small clusters in the limit wg = 0
as a check of these conclusions).

Formally, we can consider Hyx to be the effective
Hamiltonian in an asymptotic limit where F ~ ||/ o~
0 < 1, such that the couplings 7, and V, are both of order
58, with relative magnitudes that can be tuned in a wide
range—for instance by varying @,. All omitted terms are
higher order in powers of 4.

The zero-temperature phase diagrams of the quantum
dimer models Eq. (7) on the square and triangular lattices
have been solved, with results we briefly summarize here.
For both cases, the line along which 7z, =V, is special
(corresponding to the RK point [24,25]) and is labeled
“RK” in Fig. 2. Here, an exact ground state is an equal
amplitude superposition of all dimer configurations in a
given topological sector, i.e., a short-ranged RVB state
[26]. The ground states in different topological sectors are
exactly degenerate, which leads to topological degeneracy
on compact manifolds. Through exact evaluations of the
dimer correlations [40-42], it is known that this point is
gapless on the square lattice and gapped on the triangular
lattice.

Further numerical and analytical investigations have
fleshed out the full phase diagram of this model. On the
square lattice, for the model defined in Eq. (7), the RK
point is a critical point separating two different VBS
states: staggered (for V, > 7, > 0) and plaquette (for
0 <V, <1,) [43,44]. More generally, it is an unstable
multicritical point described by the quantum Lifshitz model
[42,45], near which a wide class of perturbations can
induce incommensurate crystalline phases through a
mechanism known as Cantor deconfinement [45,46]. We
label the region that may host such additional phases “IC”
in Fig. 2 [47]. On the triangular lattice, the RK point lies on
the boundary of a phase that exhibits Z, topological order
in a range of v.7, < V, < 7, with v, < 0.8 (marked Z, in
Fig. 2); two different VBSs occur for other ranges of
parameters: staggered (for V, > 7, > 0) and v/12 x /12
(for 0 <V, <v.15) [49,50], which we also refer to as
“plaquette VBS” in the schematic phase diagram Fig. 2.

The Z, spin liquid is known to have several types of
excitations: spinons, holons, and visions. In the current
case, while visions have relatively low creation energy ~7,,
the creation of spinons or holons carries a large energy cost
~&, or ~U,y, in order to break a dimer. Therefore, when
lightly doping holes into the system near the RK point such
that [n — 1| = x < 1, we will likely have dimer vacancies

as charge carriers leading to condensation with SC T,
determined by the coherence scale, T, ~ x7; ~ x(1°/£3,)
[51]. For the square lattice RK model, exactly at the RK
point, there are also gapless “resonon” excitations with
momenta near (7, z) and a quadratic dispersion. Since the
motion of the dimers is tied to that of the phonons, the
emergence of such excitations should be observable in
measurements of the phonon spectrum, e.g., through
neutron scattering.

U,.ph < E: weakly interacting model.—In this case, the
effective model is expressed in terms of site electrons. To
fourth order in ¢, the effective Hamiltonian is

i, = _teffZ(é;gEja +Hec.) - 2Jeffzﬁ[i+mﬁ[i+j]¢ (8)
(ij)o (ij)

where 7, = (el + 6;{,)(6,-,, + ¢;,)/2 is the number of
electrons in a bonding orbital between sites i and j. Since
any virtual movement of electrons necessarily costs £; in
the intermediate state, the expansion is valid as long as
|f| < &). As can be seen from Table I, 7.4 is second order in
t and J. is fourth order. Thus, we should consider this
theory in its weak coupling limit, J.g < #.4.

With detailed discussion in the Supplemental Material
[29], we analyze the weak-coupling instabilities in the
context of a Hartree-Fock mean-field analysis that is
reasonable in this limit. We find that, on square and
triangular lattices, s-wave SC is always the dominant
instability for n < 2. However, when n =~ 1 on the square
lattice, there is also a d-wave pairing state that is only
moderately subdominant to the dominant s-wave channel.
This competition between the s- and d-wave paired states
can be tuned by the additional weak Hubbard repulsion on
site orbitals, U.; when U, Z 2.2/, the d-wave paired
state has the lower variational energy. Exactly at n =1,
there is also an AF instability, which is also subdominant to
the s-wave SC instability, but which is favored over all
superconducting states when U, > 2J .

U,.ph ® E: monomer-dimer model.—In the narrow region
|€,] < 7o, where 7 (again given in Table I) is the matrix
element for converting a pair of site electrons to a pair of
bond electrons, both ¢ and f orbitals are active. The
effective Hamiltonian in this case is

fy = ;[Ieff(zﬁlgij) = 1275, + (&5 = 4tegp) ] ]
ij
+70) (bl (@n + )@y +¢) +Hel  (9)
(ij)

In this regime, no controllable analysis can be performed. A
mean-field analysis, treating b and ¢ as decoupled, suggests
an s-wave SC phase—presumably one that connects to the
corresponding phase in the U,., < & case.

It is interesting to note that, for arbitrary ¢, there is a
hidden pseudospin SU(2) symmetry in the original

186404-4



PHYSICAL REVIEW LETTERS 130, 186404 (2023)

problem when £ =0 and X — 0 (marked with the red
circle in Fig. 2), which is a generalization of that of the
Hubbard model on bipartite lattices [30,31]. This symmetry
implies, in the thermodynamic limit, for the ground state of
the system at any filling

1 . n A 2
N2 <’ZiciT6"¢ - Z(z’j)f(ij)Tf(ij)i‘ > =0 (10)
site

which is, as discussed in detail in the Supplemental
Material [29], difficult to satisfy in any SC state that does
not have space-dependent oscillations in sign.

Outlook.—The derivations of the effective theories can
be easily generalized to include strong (in comparison to f)
or even infinite Hubbard repulsion, U, on the site orbitals.
In that case, the model corresponding to U,.,, < Eatn <1
is a t —J model (with no double occupancy constraint on
site orbitals). The AF coupling J in this model is enhanced
by the effective attraction on the bond orbitals, and an extra
nearest-neighbor density-density repulsion interaction is
induced by phonon virtual fluctuations. On the other hand,
the dimer models for U,,, > & are not qualitatively
changed by the presence of a repulsive Hubbard interaction
on site and bond orbitals, nor weak further-ranged hopping
and electron-phonon coupling, as long as H,, is unaffected.

In considering the search for spin-liquid phases in real
materials featuring significant electron-phonon couplings,
we summarize the key ingredients that we think are crucial
for the mechanism revealed in this Letter: (1) atomic-scale
structures with electronically active atoms on both vertices
and the bridging sites between them (it is encouraging to
note that a large class of real materials have this feature
[55-57]); (2) strong coupling to phonon modes on bonds
that allow the formation of bipolarons localized on bonds;
(3) a moderately large degree of retardation that suppresses
the quantum hopping relative to interactions and thus
leads to constraints on the low-energy Hilbert space.
Furthermore, we would like to point out that these ideas
[especially (1) and (3)] can be adopted in the design of
quantum simulation experiments as a novel way of real-
izing geometrical blockade analogous to the concept in
Rydberg systems, which was crucial to a realization of
spin-liquid state in a recent experiment [58,59]. In that
context, the phonon degrees of freedom could be replaced
by various other bosonic modes.
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