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Abstract
Microlending, where a bank lends to a small group of people without credit histories,
began with the Grameen Bank in Bangladesh, and is widely seen as the creation of
Muhammad Yunus, who received the Nobel Peace Prize in recognition of his largely
successful efforts. Since that time the modeling of microlending has received a fair
amount of academic attention. One of the issues not yet addressed in full detail,
however, is the issue of the size of the group. Some attention has nevertheless been paid
using an experimental and game theory approach. We, instead, take a mathematical
approach to the issue of an optimal group size, where the goal is to minimize the
probability of default of the group. To do this, one has to create amodelwith interacting
forces, and to make precise the hypotheses of the model. We show that the original
choice of Muhammad Yunus, of a group size of five people, is, under the right, and,
we believe, reasonable hypotheses, either close to optimal, or even at times exactly
optimal, i.e., the optimal group size is indeed five people.

Keywords Microcredit · Microlending · Group lending · Group size

JEL classification C02 · C60 · G21

1 Introduction

Microfinance analyzes the lending mechanisms for people without access to tradi-
tional credit systems because of their low income, lack of collateral, or credit history.
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There are many lending mechanisms studied in the literature, but we will focus on
group lending, which was introduced by Muhammad Yunus of the Grameen bank in
Bangledesh. He won the Nobel Peace Prize (2006) for his efforts. In this mechanism,
a loan is made to all members of the group for a fixed period of time (often less than
a year).

One of the crucial components of group lending is known as contingent renewal,
which is a penalty that eliminates or reduces access to future loans to all members in
a group if any of them defaults. This is to say, the default of at least one individual
provokes the default of the group. Note that by default of a member we mean that
she stops paying her share of the loan. See the articles Diener et al. (2009); Diener
and Mauk (2007) and Diener and Santos (2016), for a study of the consequences of
implementing various penalties for default.

The group lending mechanism is thought to be useful because it induces: (i) peer
selection of members in a group since they are better informed than the lender about
other potential borrowers, (ii) peer pressure to help enforce payments byothermembers
in the group, and (iii) peer monitoring between the group members, but particularly
by a leader, to ensure continued performance on the loan. The structure of having a
group leader is known in the literature as having an intermediary. From the lender’s
point of view, it involves a delegation of the task of monitoring the loan. These ideas
have, of course, been well studied in the Economics literature, and we rely on the
seminal work of Bond (2004). In his paper, Bond shows that the joint liability of
intermediary borrowers arises naturally in models of a financial intermediary as a
delegated moderator. Bond shows that intermediation with joint liability is Pareto
superior to intermediation without joint liability. As such, Bond builds on prior work
of Morduch (1999) and Krasa and Villamil (1992).

The existing academic literature primarily focuses on understanding why the group
lendingmechanism is successful in reducing defaults. Both static and dynamic models
have been analyzed (see Stiglitz 1990; Varian 1990; Conlin 1999; Morduch 1999;
Chowdhury 2005, 2007; Tedeschi 2006). A related and somewhat unexplored issue is
to determine an optimal group size. We define optimal size as the one that maximizes
the probability of no default of the group. While cultural and other non-economic
factors influence default, this paper focuses solely on group size.

The problem of an optimal group size has been analyzed by economists in the past
(see Armendáriz and Morduch 2010; Giné et al. 2010; Ahlin 2015, 2017). Most of
them take an intuitive, experimental and, often verbal approach. In contrast, ours is
more probabilistic in nature, and thereby quantifiable. A first approach to what we
present here is the article of Jarrow and Protter (2019). We also note that the problem
of group size has been tackled using tools from Game Theory (see Rezaei et al. 2017).

An outline for this paper is as follows. Section 2 presents the model and our main
theorem, while Sect. 3 outlines an interpretation for it. Section 4 shows an example
and discusses its intuitiveness, and Sect. 5 concludes. For easiness of readability, the
proofs are included in the appendices.
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2 Themodel

CaveatsWe begin with a few caveats. Different scenarios of Microlending have been
considered in the academic literature. For example, there is the issue of the size of the
loan affecting the group in group lending, and in particular its size (with larger loans
leading to somewhat larger groups, see Rezaei et al. 2017). In this paper, the loan size
is fixed, and wewill not consider its influence on the group size. Some researchers take
as their point of view the maximization of the profits of the lending institution (see,
e.g., Bourjade and Schindele 2012). This runs counter to the spirit embraced in Yunus
(1998), and again, while a valid consideration, it is not our concern in this paper. We
are concerned only with minimizing the possibility of default on the loan; admittedly
this is related to maximizing the profits of the lender, along with the interest rates
charged (see Jarrow and Protter 2019). Finally, we mention that we do not discuss
the transaction costs of banks, and what the effect of group lending is on them. We
also implicitly assume that the members of a given group form a fairly homogeneous
collection of people (see Devereux and Fishe (2007), later echoed in Bourjade and
Schindele (2012).) This homogeneity assumption is reflected in our assumption of
identical distributions, within a group of a given size, allowing the distributions to
change with the group size.

We now introduce the notation for our model. Let Ni be the event of no default of
member i in a group of size k

(
k ∈ Z

+, k ≥ 2
)
,Nk be the event that the group of size

k does not default and, ϕ(k) := 1−Pk (N1), i.e., the probability of default of member
1 in a group of size k. Recall that, as explained in the introduction, the group lending
mechanism implies that if at least one member of the group defaults, then the whole
group defaults. This is what we call default of a group.

We make the following assumptions:

1. For fixed size k, the group members are independent and identically distributed.
2. The probability of no default of one person depends on the size of the group. We

make this explicit by writing: Pk (N1).
3. Pk(N1) > 0. Otherwise the problem is trivial as the members will default for sure.

We are interested in finding an optimal group size, that is, finding the number of
people k∗ that maximizes the probability of no default of the group. Using our assump-
tions, along with our definition of default of a group, this translates into maximizing:

P (Nk) = P

(
k⋂

i=1

Ni

)

= [Pk (N1)]
k = (1 − ϕ(k))k (1)

For a moment, suppose that ϕ(·) is constant in k, hence as ϕ(·) < 1, (1 − ϕ(·))k
decreases as k increases. So, in order to have a maxima in (1), it makes sense to
require that 1− ϕ(k) increases with k, which means that ϕ(k) needs to decrease with
k. The question is then, at what speed? This motivates the following theorem.

Theorem 1 Let ϕ(x) = 1
f (x) , for all x ∈ R

+ If:

1. f (x) > 1 for all x ≥ 2
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2. f (x) ∈ C2
3. f ′(x) > 0 for all x ≥ 2
4. There exist a, b ∈ R (a < b, a ≥ 2) such that either:

(a) f (a) − a f ′(a) = 1
2 and f (b) − b f ′(b) = 1

and
(b) f ′′(x) < 0 for all x ∈ (a, b)

or

(c) f (a) − a f ′(a) = 1 and f (b) − b f ′(b) = 1
2

and
(d) f ′′(x) > 0 for all x ∈ (a, b)

Then (1 − ϕ(x))x has a unique maximizer x∗ in (a, b). Moreover, if a, b are unique,
then x∗ is the unique maximizer.

Proof See A “Appendix”. ��
Remark 1 The conditions (4a) and (4c), which may seem mysterious at first glance,
are inspired by Taylor’s Theorem, from calculus.

One can argue that, in the previous theorem, we heavily used the continuity of
f (x) and the fact that x ∈ R

+ and, as we are optimizing with respect to the number
of people, we should have taken k ∈ Z, but we can always round x∗ to the closest
integer to get k∗.

3 Interpretation of the Theorem

Recall formula (1) P (Nk) = P

(⋂k
i=1 Ni

)
= [Pk (N1)]k = (1 − ϕ(k))k . As we

briefly discussed in Sect 2, because of our independence and identical distribution
assumptions, there are 2 interacting forces affectingP(Nk). On the one hand,P(Nk) =
(1 − ϕ (k))k decreases as k increases because 0 < ϕ(k) < 1. On the other hand, we
set a fortiori ϕ(k) to decrease as k increases with the hope to find a maximizer k∗.
Lending to a group has advantages over lending to an individual, but as the size of the
group increases, the advantages diminish and tend to zero. There should, therefore, be
some happy (and optimal) compromise of a group size being big, but not too big!

There are two opposing forces here. On the one hand, as the group size increases, the
responsibility for performing one’s tasks becomes dispersed, increasing the likelihood
that one or more member of the group may default. Typically, there will be a leader or
primary organizer, the force behind the loan, and she will need to ride herd on the other
members, keeping them in line, if need be. The larger the group, the more diffused
her efforts will be, and therefore the less effective. Mathematically, as there are more
people in the group, because of our assumptions, there are more independent chances
of failure as it is riskier to have k + 1 possible defaults than k. This causes P(Nk) to
decrease as k increases. Note that the effect of this force is free of the choice of ϕ(k).

On the other hand, as the group size increases, there are more collective resources
(material and non material) which decrease the likelihood of default. In our model,
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this is captured by ϕ(k) as different functions correspond to different contribution of
the resources and hence different k∗ (optimal group size). Moreover, as the group size
contracts, each person becomes more important and there are less resources available,
making it harder to recover from a mistake, or a temporary period of misfortune. In
the limit case of only one borrower, lenders in Ghana (for example) have found that,
there being no peer pressure at all, the borrower has a serious probability of simply
absconding with the money. 1

Now, the issue is to find the right speed of decay of ϕ(k). This is addressed by
our theorem. It is important to note that our theorem is useful because not all ϕ(k)
work. For example, the seemingly natural choice of ϕ(k) = 1

k does not satisfy the
assumptions of our theorem and one can check that it does not have a finite maximizer
greater or equal to 2. Other examples of functions that do not satisfy the assumptions
of our theorem are ϕ(k) = 1/kr for r ≥ 1 or, more generally, ϕ(k) = 1/erk for r ≥ 1

4 Example

In this section, we provide a function that satisfies our theorem and whose maximizer
is close to 5, i.e. x∗ ≈ 5. As explained in Banker To The Poor (1998), this is the group
size proposed by Muhammad Yunus. Let us consider the following choice f (x), note
that it is a function of the size x of the group:

f (x) = xα + (ln x)β (2)

This example captures two different forces at play to avoid default. The part of f (x)
given by xα represents the contribution of the material resources available to the
group such as the amount of land they possess or the collective financial resources.
Meanwhile, the component (ln x)β represents the contribution of the non material
resources of the group; for example, the quality of the group, the peer pressure, or
the information available to the group. As the group size increases, there are more
collective resources available and thus, the probability of default decreases. We chose
ln x , which has a distinctly slower growth rate than x , for non material resources of
the group because we think that this is less relevant than the material resources.

Let us consider α = p and, for simplicity, its reciprocal, i.e., β = 1/p, for all
p ∈ [ 1

2 , 1
]
. The exponents of x and of ln x are chosen in this way because we want

to have countervailing forces for the interaction of the material and non-material
resources of the group. That is, the less contribution of material resources, the more
contribution of non material resources we need. Of course, there is no need to consider
β = 1/p, but, as done in B “Appendix”, this is chosen for mathematical convenience.
Other choices that work are α = p, β = 1/p2 or β = 1/p3 for all p ∈ [ 1

2 , 1
]
, among

others.
In B “Appendix”, we show that the example given in (2) satisfies the conditions

of the theorem, but let us now note that the cases p = 1
2 and p = 1 are relevant as

calculations show they lead to x∗ = 5.13 and x∗ = 4.62 respectively. Therefore, in

1 Personal conversation of the first author in Accra, Ghana, August 22, 2018; with Prof. Dr. Olivier
Menouken Pamen, of AIMS, Ghana
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the extreme cases, i.e., a great contribution of either material (p = 1) or non material
collective resources (p = 1/2), the optimal group size is 5, which coincides with the
maximizer proposed by Muhammad Yunus. More generally, we can see that when
p ∈ [0.5, 0.539] or p ∈ [0.993, 1], x∗ ∈ [4.5, 5.5), giving an integer maximizer of 5.

We wish to note that, although f (x) = x p, for all p ∈ [1/2, 1) works with our
theorem, we believe this function does not capture the complexity of the situation
we are trying to model. For this function, when p is close to 1, eg. p = 0.999, the
maximizer is x∗ = 503.45. This should not be surprising as x0.999 is close to x , which
as previously discussed does not have a finite maximizer. Moreover, when p is close
to 1/2, e.g. p = 0.501, x∗ = 1.956. A similar, but less drastic situation occurs with
f (x) = (ln x)1/p, for all p ∈ [1/2, 1]
Other examples of functions that work with our theorem are the following:

– f (x) = (x ln(x))p, p ∈ [1/2, 3/4]. By numerical calculations, the maximizer x∗
is between 5.17 and 25.52, depending on the value of p

– f (x) = (ln(ln(x)))p, p > 0 where we necessarily need to consider x ≥ ee to
satisfy f (x) ≥ 1, which is a modified version of condition 1 of our theorem.
Then, for example, if p = 0.1, x∗ = 18.23, if p = 1, x∗ = 22.28, and if p = 10,
x∗ = 309.77

– f (x) = (x ln(x))p + (ln(ln(x)))1/p, p ∈ [1/2, 3/4]. By numerical calculations,
the maximizer x∗ is between 6.56 and 18.67, depending on the value of p

5 Conclusions

In this paper we construct a theoretical model for the determination of the optimal
number of people in a group loan. As these loans are intended for low-income bor-
rowers with little or no collateral, and with no credit history, one of the starting points
to maximize the repayment rate is to determine the best possible size of the group.
We discuss a theorem that provides sufficient conditions for the optimal group size
to be finite, greater than 1, and unique. We also provide examples of functions that
satisfy our theorem and we analyze in detail the one that we believe has a more natural
interpretation and whose associated optimal group size is approximately 5, the num-
ber chosen by Muhammad Yunus. An empirical study of the proposed model awaits
subsequent research.

A Appendix: Proof of the theorem

Let S(x) := ∑∞
n=0

(
1

n+1

) (
1

n+2

) (
1

f (x)

)n

Note:

– S(x) is a decreasing function in x .
– S(x) ∈ ( 1

2 , 1
)
, for all x ∈ R because:

1

2
<

1

2
+

∞∑

n=1

(
1

n + 1

) (
1

n + 2

)(
1

f (x)

)n

= S(x) <

∞∑

n=0

(
1

n + 1

) (
1

n + 2

)
= 1
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Set h(x) := f (x) − x f ′(x) and note that in (a, b), h(x) is a monotone function
because of condition (4b) or (4d). More explicitly:

h′(x) = f ′(x) − [
f ′(x) + x f ′′(x)

] = −x f ′′(x) > 0 (or < 0) for all x ∈ (a, b)

Moreover, the monotonicity of h(x) and condition (4a) or (4c) imply 1
2 < h(x) < 1

for all x ∈ (a, b)
In this way for all x ∈ (a, b):

– Both S(x) and h(x) are continuous and monotone
– S(x) is bounded between

( 1
2 , 1

)
. This actually holds for all x ∈ R

+
– h(x) increases from 1

2 to 1 (or decreases from 1 to 1
2 )

Then there exists a unique x∗ ∈ (a, b) such that

h(x∗) = S(x∗) (3)

We shall see that this x∗ is actually the unique maximizer. Thanks to equation (3),
we have:

f (x∗) − x∗ f ′(x∗) =
∞∑

n=0

(
1

n + 1

) (
1

n + 2

) (
1

f (x∗)

)n

⇐⇒ 0 =
∞∑

n=0

(
1

n + 1

) (
1

n + 2

) (
1

f (x∗)

)n
+ x∗ f ′(x∗) − f (x∗)

=
∞∑

n=0

(
1

n + 1

) (
1

f (x∗)

)n
−

∞∑

n=0

(
1

n + 2

)(
1

f (x∗)

)n
+ x∗ f ′(x∗) − f (x∗)

=
∞∑

n=1

(
1

n

)(
1

f (x∗)

)n−1
−

∞∑

n=2

(
1

n

)(
1

f (x∗)

)n−2
− f (x∗) + x∗ f ′(x∗)

=
∞∑

n=1

(
1

n

)(
1

f (x∗)

)n−1
−

∞∑

n=1

(
1

n

) (
1

f (x∗)

)n−2
+ x∗ f ′(x∗)

=
∞∑

n=1

(
1

n

)(
1

f (x∗)

)n+1
−

∞∑

n=1

(
1

n

) (
1

f (x∗)

)n
+ x∗ f ′(x∗)

( f (x∗))2
(4)

Now, recall we want to find a maxima for (1 − ϕ(x))x . This is equivalent to maxi-
mizing U(x) := x ln (1 − ϕ(x)).

Note U ′(x) = ln (1 − ϕ(x)) − x
1−ϕ(x)ϕ

′(x)
It suffices to find x∗ (the maximizer) such that U ′(x∗) = 0, which is equivalent to

g(x∗) = 0 where g(x) := [1 − ϕ(x)] ln (1 − ϕ(x)) − xϕ′(x)

123



P. Protter, A. Quintos

Recall: ln(1 − y) = −∑∞
n=1

yn

n , if |y| < 1. Then:

g(x) = [1 − ϕ(x)]

[

−
∞∑

n=1

ϕn(x)

n

]

− xϕ′(x)

=
∞∑

n=1

ϕn+1(x)

n
−

∞∑

n=1

ϕn(x)

n
− xϕ′(x)

=
∞∑

n=1

(
1

n

) (
1

f (x)

)n+1

−
∞∑

n=1

(
1

n

) (
1

f (x)

)n

+ x
f ′(x)

( f (x))2

Finally, it is easy to see that this last line and (4) imply g(x∗) = 0 and we can conclude
x∗ is the unique maximizer in (a, b). If a, b are unique, it is clear that the maximizer
is unique.

B Appendix: Analysis of the example

Now, we show that the example given in (2) satisfies the conditions of the theorem.
Conditions 1 and 2 are immediate.
Condition (3): f ′(x) > 0 for all x ≥ 2

Proof of (3): f ′(x) = px p−1 + 1
p

( 1
x

)
(ln x)

1
p −1 As x ≥ 2, it is clear f ′(x) > 0

��
Condition (4a):There exist a and b such that f (a)−a f ′(a) = 1

2 and f (b)−b f ′(b) =
1
Proof of (4a):

Set h p(x) := f (x) − x f ′(x) = x p + (ln x)
1
p − px p − 1

p (ln x)
1
p −1 = (1 − p)x p +

(ln x)
1
p −1

(
ln x − 1

p

)

Claim h p(x) is increasing in x

Proof of claim ∂
∂x h p(x) = (1 − p)px p−1 +

(
1
p − 1

)
(ln x)

1
p −2

[
ln x − 1

p

]
1
x +

1
x (ln x)

1
p −1

It is clear (1 − p) px p−1 > 0. So, it suffices to show

(
1

p
− 1

)
(ln x)

1
p −2

[
ln x − 1

p

]
1

x
+ 1

x
(ln x)

1
p −1 ≥ 0 (5)

For reasons that will become clear later, we only consider x ≥ e. As ln x + 1 ≥ 2 and
1 ≤ 1

p ≤ 2, it follows that
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ln x + 1 ≥ 1

p
1

p

(
ln x + 1 − 1

p

)
≥ 0

1

p

(
ln x − 1

p

)
−

(
ln x − 1

p

)
+ ln x ≥ 0

(
1

p
− 1

) (
ln x − 1

p

)
+ ln x ≥ 0

This shows (5) and thus that h p(x) is increasing for x ≥ e ��
Claim h p(e) = (1 − p)ep + 1 − 1

p is concave in p and hence there exists a local

maxima, namely p∗. (Recall 1
2 ≤ p ≤ 1)

Proof of claim ∂
∂ p h p(e) = −ep + (1 − p)ep + 1

p2
= −pep + 1

p2

∂2

∂ p2
h p(e) = −ep − pep − 2

p3
< 0 
⇒ h p(e) is concave

Now, to find the maxima, we set the derivative equal to 0, i.e. ∂
∂ p h p(e) = 0

0 = −pep + 1

p2

1 = p3ep

1 = pe
1
3 p

Set u = 1
3 p, we need to solve ue

u = 1
3 , which we do by using the product logarithm.

Hence u = W
( 1
3

)
and thus p∗ = 3W

( 1
3

) ≈ 0.772883 
⇒ h p(e)|p=0.773 ≈
0.1981 < 1

2 ��
Claim h p(e) < 1

2 for all p ∈ [ 1
2 , 1

]

Proof of claim As we have shown that h p(e) is concave in p and that h p∗(e) ≈
0.1981 < 1

2 , it follows that h p(e) < 1
2 for all p ∈ ( 1

2 , 1
)

We only need to check the endpoints, h p(e)|p= 1
2

≈ −0.1756 and h p(e)|p=1 = 0
��

Hence h p(e) < 1
2 for all p ∈ [ 1

2 , 1
]
. This, along with h p(x) being continuous,

increasing in x ≥ e and limx→∞ h p(x) = ∞, imply that there exists a such that
h p(a) = 1

2 and that a ≥ e ≈ 2.7 ⇒ a ≥ 3 ��

Claim h p(e2) = (1 − p)e2p + 2
1
p −1

(
1 − 1

p

)
is concave in p
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Proof of claim

∂

∂ p
h p(e

2) = −e2p + 2(1 − p)e2p +
(

1

p3
− 2

p2

)
(ln 2)2

1
p−1 +

(
1

p2

)
2

1
p −1

∂2

∂ p2
h p(e

2) = −4e2p + 4(1 − p)e2p − 2
1
p
1

p3
+ 2

1
p

(
2 − 1

p

)
ln 2

p3
− 2

1
p
ln 2

p4

+2
1
p −1

(
2 − 1

p

)
(ln 2)2

p4

Now we show that ∂2

∂ p2
h p(e2) < 0

1. It is clear that −4e2p + 4(1 − p)e2p < 0
2. As ln 2 < 1 and 2 − 1

p ≤ 1

(
2 − 1

p

)
ln 2 < 1

−1 +
(
2 − 1

p

)
ln 2 < 0

−2
1
p
1

p3
+ 2

1
p

(
2 − 1

p

)
ln 2

p3
< 0

3. Similarly

(
2 − 1

p

)
ln 2

2
< 1

−1 +
(
2 − 1

p

)
ln 2

2
< 0

2
1
p
ln 2

p4
+ 2

1
p −1

(
2 − 1

p

)
(ln 2)2

p4
< 0

��

Claim h p(e2) ≥ 1 for all p ∈ [ 1
2 , 1

]

Proof of claim As we have shown that h p(e2) is concave in p, it suffices to show
h p(e2)|p= 1

2
≥ 1 and h p(e2)|p=1 ≥ 1

1. h p(e2)|p= 1
2

= 1
2e > 1 as e > 2

2. h p(e2)|p=1 = 1 ��
Hence h p(e2) ≥ 1 for all p ∈ [ 1

2 , 1
]
. This, along with h p(x) being continuous and

increasing in x implies that there exists b such that h p(b) = 1 and that b ≤ e2 ≈
7.4 ⇒ b ≤ 7 ��
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Condition (4b): f ′′(x) < 0 for all x ∈ (a, b) for some a, b > 0 such that e ≤ a < b
Proof of (4b):

f ′′(x) = p(p − 1)x p−2 + 1

p

[(
1 − p

p

) (
1

x

)2

(ln x)
1
p −2 −

(
1

x

)2

(ln x)
1
p−1

]

= p(p − 1)x p−2 + 1

p

(
1

x

)2

(ln x)
1
p −2

[
1 − p

p
− ln x

]

1. p(p − 1)x p−2 ≤ 0 because, by assumption p ≤ 1.
2. By assumption 1 ≤ 1

p ≤ 2 and as ln x + 1 ≥ 2 for x ≥ e, we get 1
p ≤ ln x + 1 .

Hence, 1−p
p − ln x ≤ 0, which implies the 2nd term is non-positive for all x ≥ e

��
Hence for f (x) = x p+[ln x] 1

p , using our theorem,we can claim that themaximizer
x∗ ∈ [e, e2] for all p ∈ [ 1

2 , 1
]
. It is worth noticing that for this particular f (x), we

can obtain a narrower interval in the following way:
To find the maximizer x∗ of (1 − ϕ(x))x , we need to set the derivative equal

to 0, which, as noted in the proof of the theorem, is equivalent to solving
[1 − ϕ(x)] ln (1 − ϕ(x)) − xϕ′(x) = 0. Using ϕ(x) = 1

f (x) = 1
x p+[ln x]1/p , let us

define:

H(x, p) : = [1 − ϕ(x)] ln (1 − ϕ(x)) − xϕ′(x)

=
(

1 − 1

x p + [ln x] 1
p

)

ln

(

1 − 1

x p + [ln x] 1
p

)

+ p2x p ln x + (ln x)
1
p

p ln x
[
x p + (ln x)

1
p

]2

Then, after fixing p, we need to find x such that H(x, p) = 0. As our theorem
allows us to conclude that the maximizer x∗ ∈ [e, e2], we only need to analyze the
behaviour of H(x, p) when x is in such interval.

NoteH(x, p) is decreasing in x on the interval x ∈ [e, e2] for all fixed p ∈ [ 1
2 , 1

]
.

Now, we want to find a value of x ∈ [e, e2] for whichH(x, p) ≥ 0 for all p ∈ [ 1
2 , 1

]
.

Since this is not the case for x = 3.5, we choose x = 3.4 as such bound gives us
uniform positivity for all p ∈ [ 1

2 , 1
]

More precisely, for fixed p ∈ [ 1
2 , 1

]
and for all x ≤ 3.4, we have H(x, p) ≥

H(3.4, p), which implies

H(x, p) ≥ min
p

H(x, p) ≥ min
p

H(3.4, p) > 0

Hence H(x, p) = 0 does not have a solution when x ≤ 3.4 and p ∈ [ 1
2 , 1

]
. So, x∗

must be in the interval (3.4,∞).
Similarly, we want to find a value of x ∈ [3.4, e2] for which H(x, p) ≤ 0 for all

p ∈ [ 1
2 , 1

]
. We can check that x = 5.2 gives us uniform negativity for all p ∈ [ 1

2 , 1
]
.
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In this way we get for all x ≥ 5.2 and for all p ∈ [ 1
2 , 1

]
:

H(x, p) ≤ max
p

H(x, p) ≤ max
p

H(5.2, p) < 0

This implies thatH(x, p) = 0 does not have a solution when x ≥ 5.2 and p ∈ [ 1
2 , 1

]
.

Hence, we finally get a narrower interval x∗ ∈ (3.4, 5.2) for all p ∈ [ 1
2 , 1

]

Note that the choice of x = 3.4 and x = 5.2 as a comparison points was arbitrary
as all we require isH(x, p) to be positive or negative (respectively) for all p ∈ [ 1

2 , 1
]
.

Another options that work are any e ≤ x ≤ 3.486 and 5.135 ≤ x ≤ e2 respectively,
but as we will round up or down to the nearest integer, we believe that using one
decimal place is enough.
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