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Abstract. This paper presents a novel predictive model, MetaMorph,
for metamorphic registration of images with appearance changes (i.e.,
caused by brain tumors). In contrast to previous learning-based regis-
tration methods that have little or no control over appearance-changes,
our model introduces a new regularization that can effectively suppress
the negative effects of appearance changing areas. In particular, we de-
velop a piecewise regularization on the tangent space of diffeomorphic
transformations (also known as initial velocity fields) via learned seg-
mentation maps of abnormal regions. The geometric transformation and
appearance changes are treated as joint tasks that are mutually benefi-
cial. Our model MetaMorph is more robust and accurate when searching
for an optimal registration solution under the guidance of segmentation,
which in turn improves the segmentation performance by providing ap-
propriately augmented training labels. We validate MetaMorph on real
3D human brain tumor magnetic resonance imaging (MRI) scans. Ex-
perimental results show that our model outperforms the state-of-the-art
learning-based registration models. The proposed MetaMorph has great
potential in various image-guided clinical interventions, e.g., real-time
image-guided navigation systems for tumor removal surgery.

1 Introduction

Deformable image registration is an important tool in a variety of medical im-
age analysis tasks, such as multi-modality image alignment [18, 12, 25], statistical
analysis for population image studies [35, 26, 32|, atlas-guided image segmenta-
tion or classification [27, 30, 33], and object tracking with anomaly detection [11,
24]. In many clinical applications, it is desirable that the estimated transfor-
mations are diffeomorphisms (i.e., bijective, smooth, and inverse smooth map-
pings) because they produce anatomically plausible images [7]. Despite recent
achievements in treating the problem of diffeomorphic image registration as a
fast learning task, current approaches oftentimes have an assumption that the
topology of objects presented in images is intact [6,31,17,10]. Existing algo-
rithms fail badly in cases where appearance changes occur (e.g., missing data
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caused by pathology, such as tumors, myocardial scars, multiple sclerosis, and
etc.) because they have little to no control over these unknown variables.

To address this issue, a few algorithms of image metamorphosis have been de-
veloped to incorporate the modeling of appearance changes in registration func-
tions [23, 16, 14, 21, 8]. Existing metamorphic image registration methods mainly
fall into two categories: (i) exclude appearance changes via manually delineated
segmentations of abnormal regions [23, 21], and (ii) treat the appearance changes
as unknown variables estimated out from images [14,8]. These approaches ei-
ther heavily depend on manually segmented labels of 3D volumetric data that
are time and labor-consuming, or struggle with balancing between the effects of
appearance vs. geometric changes. A recent work [8] has developed a metamor-
phic autoencoder that estimates the deformation and appearance variations by
decoupling the geometric and appearance representations in latent spaces. How-
ever, such a model is highly sensitive to parameter-tuning due to its difficulty in
differentiating changes caused by geometric transformations vs. appearances.

In this paper, we develop a novel learning-based model of metamorphic im-
age registration, named as MetaMorph, that provides more robust and accurate
registration results in images with appearance changes. In contrast to previous
approaches [23, 14,21, 8], we incorporate a new appearance-aware regularization
in the network loss function that enforces a piecewise constraint on geometric
transformation fields. Such a constraint will be learned simultaneously from a
jointly optimized segmentation task. In addition, we effectively augment the seg-
mentation labels by utilizing the learned transformations in the training process.
This not only substantially improves the segmentation performance, but also re-
duces the requirement for massive ground truth segmentation labels. The main
contributions of our proposed MetaMorph are summarized in three folds:

— To the best of our knowledge, MetaMorph is the first predictive registration
algorithm that utilizes jointly learned segmentation maps to model appear-
ance changes.

— MetaMorph learns a new appearance-aware regularization that piecewisely
constrains the variations of image intensities caused by geometric transfor-
mations separately from appearance changes.

— The joint learning scheme of MetaMorph maximizes the mutual benefits of
metamorphic image registration and segmentation.

To demonstrate the effectiveness of our model, we validate MetaMorph on
real 3D human brain tumor MRIs. Experimental results show that MetaMorph
outperforms the state-of-the-art learning-based registration models [6, 8] with
substantially increased accuracy. The developed MetaMorph has great poten-
tial in various image-guided clinical interventions, e.g., real-time image-guided
navigation systems for tumor removal surgery.
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2 Background: Diffeomorphic Image Registration

In this section, we briefly review the concept of the diffeomorphic image registra-
tion in the setting of large deformation diffeomorphic metric mapping (LDDMM)
with a geodesic shooting algorithm [7, 29, 20].

Let S be the source image and T be the target image defined on a d-
dimensional torus domain I' = R?/Z? (S(x),T(z) : I' — R). The problem
of diffeomorphic image registration is to find the geodesic (a.k.a. shortest path)
to generate time-varying diffeomorphisms {¢;(z)} : ¢ € [0,1] such that S o is
similar to T', where o is an interpolation operation that deforms .S by the smooth
deformation field v1. This is typically formulated as an optimization problem by
minimizing an explicit energy function over the transformation fields ¢, as

E(vt) = Dist[S o 91 (vt), T] + Reg[t¢(ve)], (1)

where the distance function Dist(-,-) measures the image dissimilarity between
the source and the deformed image. Commonly used distance functions include
a sum-of-squared difference of image intensities [7], normalized cross correla-
tion [4], and mutual information [34,36]. The regularization term Reg(:) is a
constraint that enforces the spatial smoothness of transformations, arising from
a distance metric on the tangent space V of diffeomorphisms, i.e., an integral
over the norm of time-dependent velocity fields {v:(x)} € V,

! . diy
Reg(tr) :/0 (Lvg,ve) dt, with o =Dy - vy, (2)

where L : V — V* is a symmetric, positive-definite differential operator that
maps a tangent vector v; € V into its dual space as a momentum vector m; € V*.
We typically write m; = Ly, or vy = Kmy, with K being an inverse operator of
L. The notation (-,-) denotes the pairing of a momentum vector with a tangent
vector, which is similar to an inner product. Here, the operator D denotes a
Jacobian matrix and - represents element-wise matrix multiplication.

A geodesic curve with a fixed endpoint is characterized by an extremum of
the energy function (2) that satisfies the Euler-Poincaré differential (EPDiff)
equation (2, 20],

v .
a—tt =-K [(th)T ~my + Dmy - vg +my - leUt] , (3)
where div is the divergence. This process in Eq. (3) is known as geodesic shooting,
stating that the geodesic path {i:} can be uniquely determined by integrating
a given initial velocity vy forward in time by using the rule (3).

Therefore, we rewrite the optimization of Eq. (1) equivalently as

E(vg) = Dist[S o 91 (vg), T] + (Lvg, vo), s.t. Eq. (2)&Eq. (3). (4)
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3 Our Model: MetaMorph

The objective function of diffeomorphic image registration in Eq. (4) works well
under the condition that images are ideally of good quality with preserved topol-
ogy. This assumption breaks when corruptions such as appearance changes or
occlusions occur. In this section, we first define an objective function of the meta-
morphic image registration that considers the modeling of appearance changes.
An appearance-aware regularization is developed to effectively suppress the neg-
ative influences of appearance changes in typical diffeomorphic image registra-
tion algorithms. We then develop a joint learning framework that includes i) a
segmentation network for appearance change detection, and ii) a metamorphic
registration network incorporating the newly formulated objective function as
part of the network loss.

Appearance-aware regularization. The purpose of metamorphic image reg-
istration is to find an optimal transformation ¢ (vg,d) that is composed of two
variables: the optimal initial velocity field vy, and the appearance change 6.
A recent work proposed to learn these variables via disentangled latent repre-
sentations in an encoder-decoder neural network [8]. However, it is extremely
challenging for this algorithm to differentiate the variations of image intensities
caused by geometric transformations from appearance changes since they un-
avoidably compensate for each other. The ambiguity introduced by optimizing
two compensating variables without any guidance fails to search for accurate
registration solutions. Additionally, this makes the algorithm highly sensitive
to network parameters with an increased risk of poor convergence. To alleviate
this issue, we introduce an appearance-aware regularization in the registration
framework, guided by learned segmentations of the appearance-changing areas.
Assume U is a union of the learned segmentations of appearance-changing
areas from the source image S and the target image T. Analogous to Eq. (4),
we define the appearance-aware regularization Reg*(-) in the space of initial
velocity fields. To suppress the effects of appearance variations, we piecewisely
constrain the initial velocity fields through a segmentation indicator, i.e.,

Reg"(vo) = (L(vo © (1 = U)),v0 © (1 -V)), s.t. Eq. (3), (5)

where ® represents an element-wise multiplication between a vector field and a

scalar field. For the purpose of notation simplicity, we define 0 2 v ® (1-=0)
in the following sections.

With the newly defined regularization in Eq. (5), we arrive at the objective
function of metamorphic image registration as

E*[¢)(t)] = Dist*[S 0 91 (¢0), T] + Reg" (%), (6)

where § and 7' denotes the source and target images with appearance changes
masked out, i.e., § = S©(1-U),and T' = T'® (1—U). Here, the Dist*[-, -] is the
image dissimilarity term that measures the dissimilarity between the consistent
area between the deformed image and target.
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3.1 Predictive Metamorphic Image Registration

We develop a deep learning framework to jointly learn the segmentation for
appearance change and the masked-out velocity field 9. An overview of our
proposed MetaMorph architecture is shown in Fig. 1.

Appearance change can be masked by a fixed foreground segmentation via
pre-running image segmentation algorithms [21, 23]. However, performing man-
ual annotations of segmentation labels is time and labor-consuming. In this work,
instead of using a fixed mask, we treat the appearance change as a variable from
the segmentation network and jointly optimize with the optimal registration
solution. We utilize an encoder-decoder based neural network to learn the seg-
mentation masks and then apply them to the associate image pairs for masking
out the appearance change. Although we adopt UNet-based architecture for seg-
mentation in this work [28], other networks such as recurrent residual neural
networks [1], transformer-based networks [9,15] can also be easily plugged into
the proposed method.

With the developed segmentation network, now we are ready to formulate
the loss function of MetaMorph,

¢ = Dist* [Sowl(vo) }—i—Reg (00) + 77 - lseg, s.t. Eq. (5). (7)

Here, v is a weighting parameter that balances the segmentation and regis-
tration loss, £s.4 is a segmentation loss that maximizes the Sgrensen-Dice coef-
ficient [13] between ground truth y and the predicted g,

Eseg =1~ DiCe(y, g)a (8)

where Dice(y,9) = 2([y| 0 [9])/(ly[ + [91)-

We adopt an approximated region-based mutual information (RMI) [36],
which is a broadly-used distance metric for images from different domains. For
simplicity, we let §¢ denote the deformed image. Let f (Sw) and f(T') denote the
probability density functions for the deformed image and target respectively, and
their joint probability density function is f (S,/J, T'). The image dissimilarity with
RMI can be formulated as

Dist*[S,, T] = RMI(S,, T') = /S / f(Sy, T)log
P

where Lee (-, +) is a cross entropy loss between two images. The I(-;-) is a batch-
wise lower bound that I;(T;Sy) = %log[det(Zflgw)], where X7 s - is the pos-

terior covariance matrix of T (a symmetric positive semi-definite matrix), given
Sy. Here B denotes the number of images in a mini-batch b. Please refer to [36]
for more derivation details.
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Fig.1: An illustration of the network architecture for MetaMorph. Top left to
right: input a pair of images into a segmentation network, and apply predicted
labels onto images to mask out the appearance change. Bottom right to left:
input a pair of images (with masked-out appearance change) to the registration
network and predict a piecewise velocity field, integrate geodesic constraints,
and produce a deformed image and transformation-propagated segmentation.
The deformed images and labels are circulated into the segmentation network
as augmented data.

We develop an alternating optimization scheme [22] to minimize the network
loss defined in Eq. (7). All network parameters are optimized jointly by alter-
nating between the training of segmentation and image registration. A summary
of our joint learning of MetaMorph is in Alg. 1.

4 Experimental Evaluation

To demonstrate the effectiveness of the proposed model, we compare both seg-
mentation and registration tasks with state-of-the-arts.

Data. For 3D brain tumor MRI scans with tumor segmentation labels, we in-
clude 100 public T1-weighted brain scans of different subjects from Brain Tumor
Segmentation (BraTS) [5,19] challenge 2021. We also include 28 landmarks (16
for brain ventricle and 12 for corpus callosum) that are annotated by clinicians to
better evaluate the image registration performance. All MRIs are 155 x 240 x 240,
1.25mm?3 isotropic voxels. As a preprocessing step, we run affine registration, in-
tensity normalization, and bias field correction on all images.
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Algorithm 1: Joint learning of MetaMorph.

Input : Source and target images, the number of iterations gq.
Output: Segmentation labels, the deformed image, and the transformation.
1 for i =1 to q do
/* Train image segmentation network */
2 Minimize the segmentation loss in Eq. (8);
3 Output the predicted segmentations and adopt both labels to mask
appearance change in images;
/* Train appearance-aware registration network */
4 Minimizing the metamorphic loss in Eq. (6) with appearance-aware
geodesic constraints;
Output the predicted velocity field and the deformed image;

end
Until convergence

N O o

Experiments. We compare our metamorphic image registration method with
two registration baselines, an unsupervised predictive diffeomorphic registration
method (VoxelMorph as VM) [6], and a metamorphic autoencoder (MAE) [8]
that learns disentangled appearance and shape representations. To better visu-
alize the deformations, we show predicted transformation grids and deformed
images with transformation-propagated landmarks for all methods. Quantita-
tively, we compute the Lo distance of landmarks as registration error between
the propagated and the target frames over 60 pairs.

We evaluate the brain tumor segmentation via computing Dice score [13]
by comparing MetaMorph with three segmentation backbones, U-Net archi-
tecture [28|, U-Net based on recurrent residual convolutional neural network
(R2-Unet) [1], and transformer-based Unet (UnetR) [15]. We also show the per-
formance of MetaMorph by replacing the segmentation module in our model
with all backbones (named MetaMorph:Unet, MetaMorph:R2-Unet, and Meta-
Morph:UnetR). We visualize the predicted segmentations overlaid with testing
images across all methods.

Parameter Settings. We set parameter a = 3 for the operator L, the number
of time steps for Euler integration in EPDiff (Eq. (3)) as 10. We set the weight
parameter v = 0.5 and the batch size as 4. We use an adaptive cosine annealing
learning rate scheduler that starts from an initial value at n = 5e —4 for network
training. We run all models for 100 epochs with Adam optimizer and save the
networks with the best validation performance. The training and prediction pro-
cedure of all learning-based methods are performed on two Nvidia GTX 2070Ti
GPUs. We run five-fold cross validation and split the images by using 70% as
training images, 20% as validation images, and 10% as testing images.

Results. Fig. 2 visualizes the image registration prediction of two 3D brain
MRIs of study across all methods. It shows MetaMorph significantly outper-
forms both VM and MAE. General diffeomorphic registration models (e.g., VM)
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without an appearance-control mechanism may fail and produce less satisfied
deformed images without sufficient deformations. MAE offers accurate deforma-
tions to a certain level while it produces artifacts. By excluding the appearance
change, MetaMorph more accurately deforms all regions (e.g., ventricles and cor-
pus callosum). It also shows that our propagated landmarks align best with the
target.

Fig. 3 shows two examples of image segmentation performance comparison for
all methods. It indicates that MetaMorph-based models predict better segmenta-
tion labels (closer to ground truth) than original backbones. The predicted labels
by MetaMorph have slightly better segmentations of the brain tumor boundary.
This is because we use deformed images and labels that are produced by a
joint registration framework as augmented data for each subject; thus learning
a broader spectrum for appearance variation in data and offering more accurate
prediction when new testing data arrives.

Fig. 4 (left panel) statistical reports the Dice coefficient comparison. It shows
that MetaMorph consistently achieves a higher segmentation accuracy than
backbones. Transformer-based methods (UnetR-based) produce the highest Dice
for all methods. Fig. 4 (right panel) reports the landmark-based registration er-
ror between the target image and the deformed image. MetaMorph outperforms
other methods with the lowest error, indicating our proposed method finishes
the metamorphic image registration task with higher accuracy.

5 Conclusion

We present a predictive metamorphic image registration model, MetaMorph, via
deep neural networks in this paper. Different from existing models that have lim-
ited control over appearance change, we develop a joint learning framework that
adopts a segmentation module to accurately guide the registration network to
learn diffeomorphic transformation fields. The developed segmentation module
maximally excludes the disadvantageous effect caused by appearance change for
learned deformations; thus enabling more precise correspondence alignment be-
tween deformed and target frames. Experimental results on 3D brain MRIs with
real tumors show that our proposed framework yields a better registration as
well as a segmentation model. While our algorithm is presented in the setting of
LDDMM with geodesic shooting, the theoretical development is generic to other
deformation models, e.g., stationary velocity fields [3]. Our model has great clin-
ical potential on solving one of the most challenging registration problems, e.g.,
real-time brain shift estimation between preoperative and intraoperative MRI
scans with missing data values. Interesting future works of MetaMorph will be
i) building a probabilistic model to quantify the registration uncertainty along
the boundary of tumor areas and ii) extending the proposed method to more
advanced clinical scenarios that appearance changes are difficult to detect, e.g.,
real-time automated image registration for ultrasound images.

Acknowledgments This work was supported by NSF CAREER Grant 2239977.
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MAE MetaMorph

Fig. 2: Image registration performance comparison for all methods. From left
to right, source, target, deformed images by VoxelMorph (VM), metamorphic
autoencoder (MAE), and our method. All images are overlaid with annotated
landmarks (red circle for ventricle and blue cross for corpus callosum).
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MetaMorph: MetaMorph: MetaMorph:
Unet Unet R2-Unet R2-Unet UnetR UnetR

Fig. 3: Image segmentation visualization for all methods. Left to right: overlaid
segmentation map comparison between the predicted label (red) and the ground
truth (blue) for Unet, MetaMorph: Unet, R2-Unet, MetaMorph: R2-Unet, UnetR
and MetaMorph: UnetR.
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Fig. 4: Left: Dice comparison on brain tumor segmentation across all meth-
ods over images. The means of baseline vs. our method are 0.815/0.834,
0.835/0.856, 0.861,/0.874; Right: registration error (computed on Lo distance)
of two anatomical landmarks for 60 brain pairs. The means of errors for VM vs.
MAE vs. our method are 15.02/10.53/4.64, 16.48/13.59/4.10.
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