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Abstract: A core problem in the development and main-

tenance of crowdsourced filter lists is that their main-

tainers cannot confidently predict whether (and where)

a new filter list rule will break websites. The enormity

of the Web prevents filter list authors from broadly un-

derstanding the compatibility impact of a new blocking

rule before shipping it to millions of users. This severely

limits the benefits of filter-list-based content blocking:

filter lists are both overly conservative (i.e. rules are tai-

lored narrowly to reduce the risk of breaking things) and

error-prone (i.e. blocking tools still break large numbers

of sites). To scale to the size and scope of the Web, fil-

ter list authors need something better than the current

status quo of user reports and manual review, to stop

breakage before it has a chance to make it to end users.

In this work, we design and implement the first auto-

mated system for predicting when a filter list rule breaks

a website. We build a classifier, trained on a dataset gen-

erated by a combination of compatibility data extracted

from the EasyList filter project and novel browser in-

strumentation, and find that our classifier is accurate

to practical levels (AUC 0.88). Our open-source system

requires no human interaction when assessing the com-

patibility risk of a proposed privacy intervention. We

also present the 40 page behaviors that most predict

breakage in observed websites.
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1 Introduction

A large and growing body of research has shown that

filter-list-based content blocking significantly improves

Web privacy[1, 2], security[3, 4], and performance[5, 6].

The proliferation of cosmetic-only rules in popular filter

lists suggests that filter lists significantly improve the

user-perceived aesthetics of Web browsing. And the ever-

expanding popularity of extensions and browsers that

include filter-list-based content blocking suggests that

filter lists are important to large swaths of Web users.

While the benefits of filter lists are well studied and

understood, systematizing and automating the creation

of these lists remains an open challenge. This is largely

because research is very good at measuring the benefits

of blocking network requests (e.g. number of trackers

blocked, data saved, CPU cycles reduced), but compar-

atively poor at measuring the costs of blocking requests

(e.g. number of websites broken or user-desirable fea-

tures impacted). In effect, Web researchers mainly count

one side of the ledger, and as a result, filter list curation

in practice remains a nearly completely manual process,

consisting of activists and community members making

best-effort predictions of the Web-scale impact of filter

list rules. The result is that filter lists are both too con-

servative (i.e. there are things that filter list authors

would like to block, but don’t to avoid breaking sites)

and too liberal (i.e. content blocking tools still break

plenty of websites).

Additional human labor will not fundamentally im-

prove the situation. Because of the size and constantly-

changing nature of the Web, any efforts by filter list

authors to manually evaluate the Web-wide impact of

a filter list rule will be incomplete, and dramatically so.

As a result, users of filter list tools end up being both

the consumers and testers of new filter rules. This means

broken sites for users, and in some cases giving up on

the privacy, security, and performance wins of content

blocking tools.

1.1 Problem Difficulty

We need an automated way to predict the Web compat-

ibility impact of a new or updated filter list rule, so that

rules can be tested, tailored, and optimized before be-
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ing shipped to users. Alas, this is a tough problem for

several reasons.

First, determining if a page is broken is difficult be-

cause “brokenness” presents itself in a variety of forms.

A page can be “broken” in an obvious way (e.g. the page

is blank), in a very subtle way (e.g. a form on a deeply-

nested page does not submit correctly), and everything

in between. Furthermore, compatibility breakage some-

times only reveals itself after a user interacts with a page

or attempts to trigger some interactivity.

Another obstacle to automated detection is the diffi-

culty of assembling a large dataset of “broken” web sites.

Both site authors and filter list maintainers have strong

incentives to fix broken sites as quickly as possible (and,

generally, with as few people noticing as possible). This

makes it harder for researchers to obtain a generalized

understanding of the problem, and so makes developing

automated detection systems tricky.

1.2 Contributions

This work improves the state of filter list content block-

ing by designing a fully automated classifier that accu-

rately predicts whether a filter list rule breaks a website,

in the subjective evaluation of a browser user. Our clas-

sifier requires no human interaction to run and takes

advantage of deep browser engine instrumentation, and

so can scale far beyond what is possible with human as-

sessments. Our classification pipeline takes as input i)

a filter list rule and ii) a Web page URL, and returns

a prediction of whether executing the given Web page

with the given filter list rule applied will break the page.

We build our classification dataset in two novel steps.

First, we use the commit history of the EasyList filter

project to build up a labeled dataset of Web page URLs

paired with filter list rules that cause either a breaking or

non-breaking change when applied to the page. Second,

we use a heavily modified version of a Chromium-based

browser to analyze the execution of these Web pages

with and without the corresponding rules. Significantly,

our modified browser records both what events occurred

during the Web page’s execution (e.g. which scripts were

executed, which DOM nodes were inserted or modified,

which event listeners were registered), and which actors

on the page were responsible for each event (e.g. which

script fetched a given resource, or inserted a DOM ele-

ment, or fetched a dependent script). Our instrumented

browser then allows us to export the recording of each

page execution as an XML-encoded directed graph.

We combine these sources of data to generate a large

dataset of Web page executions paired with filter rules

labeled as causing either a breaking or non-breaking

page behavior change. We then extract 433 features from

the execution recordings in each of these samples, and

train a classifier that performs with AUC of 0.88 to pre-

dict sample labels.

More specifically, this work offers the following con-

tributions:

1. The design of a multi-step fully automated sys-

tem for accurately predicting whether a privacy in-

tervention (i.e. a filter list rule) would break a web-

site, in the subjective evaluation of a browser user.

2. A public dataset consisting of 1,469 unique real-

world filter list rules, applied to 2,570 unique Web

pages that they affect, resulting in 2,662 recordings

of page behavior changes, each labeled with whether

the applying the rules yielded a broken or working

version of the page.

3. A detailed discussion of which page behaviors

predicted pages breaking (and which page be-

haviors did not).

4. The open source implementation1 of both our

data collection pipeline and classifier, implemented

in a Chromium-based browser and scikit-learn.

2 Motivation and Overview

2.1 A Brief Introduction to Filter Lists

Filter lists are collections of regular-expression-like rules

describing trust statements over URLs. The most com-

mon applications of filter lists are in browsers and

browser extensions to block unwanted requests when

browsing the Web (e.g. requests for trackers, unwanted

advertisements, distracting page content, etc). Usually

filter list rules describe origins and paths that should be

blocked, but most tools that apply filter lists have addi-

tional syntax to further restrict how and when each rule

should be applied. For example, rules can be restricted

to only be applied to certain kinds of requests (e.g. im-

ages, sub-documents, scripts) or only applied in certain

contexts (e.g. specifying that some rules should only be

considered when visiting certain sites).

1 https://github.com/brave-experiments/webcompat-

measurement-pipeline
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Most popular filter lists are crowd-sourced by com-

munities that add and refine rules in large shared

lists. Rules are added when a list contributor finds

out about a new tracking script (or otherwise un-

wanted Web resource) and decides to block it. For ex-

ample, assume a filter list maintainer is browsing a

site and notices the site has included a tracking script,

served from https://tracker.example/bad.js. The filter

list maintainer, wanting to protect other users, adds a

new rule to the filter list, instructing the browser to

block the tracker from loading on the current site2. The

filter list maintainer then tests out the rule by revisiting

the site with the new rule applied. The maintainer sees

that the tracking script is now blocked, and that the site

continues working correctly. Having checked that the fil-

ter list rule works (i.e. the target script was blocked)

and that the site still works, the filter list maintainer

commits the new rule to the filter list, which is soon

downloaded by millions of filter list subscribers, block-

ing the tracking script on that specific site for all users.

2.2 Breaking Sites is Too Easy

Filter list maintainers, though, have to choose between

privacy and compatibility. Worse, they often have to try

and choose between these goals without data, relying

only on intuition and best guesses.

To see why, refer back to the example discussed in

the previous sub-section. The filter list author specified

that the tracking script should only be blocked when it

is included by one specific site; the tracking script will

continue to be loaded on every other site on the web,

continuing to harm users despite the filter list author

identifying the script as a tracker. The privacy harm

continues because the rule was written narrowly.

Alternatively, the filter list author could have writ-

ten the rule to be general, and to block the tracking

script whenever it was included on any site3. This would

prevent more privacy harm, but risks breaking sites. The

filter list author only checked that one specific site still

worked when the script was blocked; other sites might

have integrated the script in such a way that they break

if the script is not present. This is common, and happens

when pages rely on utility functions tracking scripts pro-

vide or otherwise deeply integrate the tracking script.

2 This rule might look like ||tracker.example/bad.js$domain=

site.example.

3 This general rule might look like ||tracker.example/bad.js.

In the scenario where the filter list author commits

the general rule, not only has the author broken an un-

known number of pages but, worse, the author won’t

find out about the breakage until after the rule has been

shipped to users, when users start encountering broken

sites and (hopefully) reporting issues. The underlying

problem is that filter list maintainers have no scaleable,

automated way to test rules before shipping them. Main-

tainers can browse sites with the rule enabled, but this

only works for rules tied to a small number of sites: it

does not scale to real rules that impact huge fractions

of the Web. The Web is too large, and the number of

filter list maintainers too small.

2.3 Towards Automated Detection of

Breakage

Filter list authors need tools to help them protect user

privacy, while minimizing risks to compatibility. The

ideal solution would be an oracle that allowed filter list

authors to submit a proposed filter list rule and receive

back a list of sites the rule would break. This system

would be automated so that filter list authors can repeat-

edly and quickly query it, allowing rules to be optimized

(i.e. maximizing privacy while minimising breakage) be-

fore shipping them to users.

In practice this is difficult. Determining if a site is

broken is tricky for a variety of reasons. The broken func-

tionality might not be immediately obvious, and might

only be triggered after interacting with the page. Block-

ing a script on one site might not affect its users at all,

while blocking the same script on another site might

break the site entirely. Breaking a page might not have

any visual side effect, only manifesting itself through un-

intended application flow. These are just some examples

of why “site breakage” is a difficult classification prob-

lem.

However, as a step towards building an automated

site breakage oracle, we designed a system that pre-

dicts whether a site will break, given three inputs: i)

a Web page (described by its URL), ii) a filter list

rule, and, optionally, iii) a browser profile, allowing the

browser to be arbitrarily configured before classification.

We developed our system using a ground truth dataset

constructed from the commit history of the EasyList

project, and consisting of tuples of i) a Web page URL,

ii) a filter list rule, and iii) whether the filter list rule

broke the site (Section 3.1). We visited each URL in a

crawler instrumented to record the page’s execution at

an extremely detailed level (Section 3.2). We then ex-
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EasyList commit history

Parse, filter, and transform commits (§3.1)

Tuples of {page URL, filter list diff, broken/working label}

Generate pre-/post-intervention filter lists (§3.2)

Capture page behavior with PageGraph (§3.2)

Post-process graph data (§3.3)

Tuples of {page URL, filter list diff, broken/working

label, page behavior recording graphs}

Fig. 1. Pipeline diagram of our Web compatibility dataset genera-

tion process.

tracted 433 features from the execution record for each

site, and used those features to train a classifier (Sec-

tion 4.3) that performs with mean AUC of 0.88 (Section

5.1). Finally, we used the classifier to learn 40 features

that predict whether a filter list rule will break a website

(Section 5.2).

3 Dataset

Our first contribution is a dataset of examples of filter

list changes and their effects on page behavior, labeled

with whether or not those effects represent Web compat-

ibility breakage from a user perspective, and the novel

methodology with which we assembled this dataset at

a sufficiently large scale for ML classifier training. The

dataset contains a total of 2,662 examples, each consist-

ing of a page URL, a corresponding filter list change af-

fecting the page, a broken-or-working label, and record-

ings of how the page’s behavior responds to the change.

Figure 1 summarizes our data collection pipeline.

3.1 Collecting Examples of Broken and

Working Sites

To train our classifier to detect when a filter list change

breaks a site, we first needed a set of examples for

the classifier to learn from, of sites breaking when

such a change is introduced. Manually hunting through

P: https :// www. mealty .ru/ catalog / (Fixes
https :// forums .lanik.us/ viewtopic .php?t =47335)

---

easyprivacy / easyprivacy_allowlist_international .txt:
...
@@||mc. yandex .ru/ metrika /tag.js$script ,

domain =auto. yandex | coddyschool .com
+ @@|| mealty .ru/js/ ga_events .js$~third -party

@@|| megafon .ru/ static /? files =*/ tealeaf .js
...

Fig. 2. A sample Web compatibility fix commit excerpted from

the EasyList repository4, inserting an exception rule to allow

through a script which shares its filename with a popular analytics

script. Blocking the script breaks a page on mealty.ru.

A: https :// tinyzonetv .to/
Block adserver at https :// tinyzonetv .to/
---

easylist / easylist_adservers .txt:
...
|| sftapi .com^

+ || sfzover .com^
|| sg2rgnza7k9t .com^
...

Fig. 3. A sample coverage-expanding commit excerpted from the

EasyList repository5, inserting a rule to block an ad server at

sfzover.com, found on the site tinyzonetv.to.

the Web for broken sites, and then debugging filter

lists to identify the rules responsible in each instance,

would have been too time- and labor-intensive given

the dataset size required to effectively train and test

the classifier: our final dataset contains over a thousand

such examples. Moreover, this approach would place us

as the judges of page brokenness, a subjective measure:

our judgments may differ from those of end users.

We sidestep these problems by mining labeled ex-

amples of Web page breakage from a non-traditional

source: the commit logs of the EasyList project6, a large

and widely-used community-maintained filter list distri-

bution. The EasyList authors use the Git version con-

trol system to coordinate the development of their filter

lists, so each update to the rules is logged with an asso-

ciated commit message, numbering over 169,000 across

the project’s history. The commit messages follow uni-

form conventions agreed on by the authors. In particular,

a rule update to fix Web compatibility breakage should

be tagged with the prefix “P:” and reference the URL of

4 https://github.com/easylist/easylist/commit/

a509c21b72c2d4959bff05394082821f207730fd

5 https://github.com/easylist/easylist/commit/

0c453dbe0882640ce16dc823fc72dc3aaa55ec62

6 https://easylist.to/
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at least one page on which the problem occurs. Figure 2

shows a sample compatibility-fix commit taken from Ea-

syList. These commits are often made in response to user

reports, and are further vetted by the domain-expert

maintainers that merge them into the EasyList reposi-

tory; therefore, we claim that they represent something

close to ground truth for page breakage as perceived by

end users. Each of these commits typically comprises one

or a few rule additions and/or deletions, constituting a

filter list change which repairs compatibility breakage

on the referenced page. Inverting the change—i.e., flip-

ping additions to deletions and deletions to additions—

produces a filter list change which breaks the page in-

stead of repairing it. By scanning the EasyList commit

history for Web compatibility commits, parsing out the

associated URLs, and applying this inversion to each

commit, we seeded our dataset generation with positive

examples of filter list changes that introduce breakage,

tied to specific Web pages on which that breakage oc-

curs.

In order to teach our classifier to distinguish filter

list changes which break pages, we also needed to show it

examples of changes which don’t cause breakage. These

changes should still have an effect on their target pages,

but a desirable one: blocking an ad, for example, or

circumventing a privacy-invading tracker. Again we re-

turned to the EasyList commit logs, where such changes

are tagged with the prefix “A:”, and also reference page

URLs on which the intended effects can be observed. Fig-

ure 3 shows a sample from the EasyList Git repository.

We applied the same process of scanning the commit

history, minus the inversion step, to seed our dataset

generation with negative examples: non-breaking filter

list changes and specific Web pages they affect.

3.2 Capturing Page Behavior

It would be difficult if not impossible to predict page

breakage by looking just at Web page URLs and filter

rule source code. Instead, our classifier draws its predic-

tions from the way those pages behave at runtime in a

browser equipped with content blocking, and how their

behavior is altered by changes to the content blocker’s

filter lists. We recorded page behavior with PageGraph7,

our deep browser instrumentation system built into the

Brave Browser. Every page opened in a PageGraph-

enabled browser build is monitored at runtime, and its

7 https://github.com/brave/brave-browser/wiki/PageGraph

DOM node

id=197, tag=“img”,

src=“https://a.com/b.png”

parser

id=1

network resource

id=218, type=“image”,

url=“https://a.com/b.png”

node create

HTTP request

type=“Image”,

size=1880,

headers=“...”

HTTP response

status=200,

size=13191,

headers=“...”

Fig. 4. PageGraph encoding of the initialization of an image

element. The browser’s HTML parser creates a DOM node to

represent a decoded <img> tag. An HTTP request is dispatched

to retrieve the image file pointed to by the image element’s src

attribute, and a success response is received.

activity across the browser engine is recorded in a uni-

fied directed graph structure. Nodes of this graph corre-

spond to interacting entities in the mini-ecosystem of a

Web page: actors like scripts, the parser, and the content

blocker which perform actions, and those that are acted

upon, like network resources, DOM nodes, Web APIs,

and filter rules. Edges represent the actions that connect

them: node insert rules between the parser and DOM

nodes, resource block edges between filter rules and

network resources, API call edges between script actors

and Web APIs; as well as structure edges which record

parent-child relationships between DOM nodes. Figure 4

shows a sample excerpt from a PageGraph graph, illus-

trating how a Web request to load the image pointed

to by the URL of an HTML <img> tag is encoded as

a pair of HTTP request and HTTP response edges, con-

necting the DOM node for the <img> tag to the network

resource node representing the image file at the given

URL, all annotated with metadata captured from this

runtime interaction.

From the collection of positive and negative exam-

ples assembled in Section 3.1, we used our PageGraph-

enabled Brave Browser build to crawl each Web page

twice, capturing its behavior both with and without the

corresponding filter list change (the “intervention”) ap-

plied. First, we used the EasyList Git repository to gen-

erate a version of the filter list without the change. We

then injected this filter list into the browser’s content

blocker, replacing the built-in filter list. Our crawler
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launched the browser, controlling it with the Puppeteer

automation framework8, and navigated to the page

URL. The crawler waited for the DOM load event to

fire, and a further 15 seconds beyond that to give the

page time to fully settle. The page’s behavior during this

time was captured by PageGraph and exported in graph

form at the end of the browsing session, taking a base-

line for the page’s normal operation; we refer to this as a

pre-intervention graph. Next, we generated a second ver-

sion of the filter list, this time with the change applied,

and injected it into the content blocker. Repeating the

crawling process produced a second graph, representing

the page’s behavior under the influence of the filter list

change; we refer to this as a post-intervention graph. For

positive examples, this graph reflects the page in a bro-

ken state; for negative examples, it reflects a desirable,

intentional change in behavior (e.g., blocking an ad).

Because we were using historical data—the EasyList

commit log—to drive our crawling, there was a chance

that the pages we were visiting had been altered or had

even disappeared in the time since the original com-

mits were made. As an initial heuristic, we only con-

sidered commits dated 2013 or later. We rejected any

pages which produced an error response (e.g., 404 Not

Found) during crawling. We further validated that ap-

plying the corresponding filter list change still actually

had an effect on the page, by using the adblock-rust9

library to evaluate the filter rules with and without the

change against the page’s recorded network activity. If

there was no difference between the blocking decisions

made in the two cases, the page was excluded from our

dataset. At the completion of crawling and filtering, we

were left with a dataset of 2,662 examples; later analysis

(§5.3) would indicate that this is more than enough to

train a useful classifier.

Another approach to accounting for the historical

nature of the EasyList data could be to proxy crawler

Web requests through cached versions of the target

pages contemporary with the EasyList commit dates.

We tried this approach using the Internet Archive’s

Wayback Machine10 as that cache, but ultimately dis-

carded the idea. Snapshots cached by the Archive proved

to be of insufficient fidelity and completeness to accu-

rately reproduce page behavior. For example, we ob-

served that requests sent by ad-network-integration code

were often missing from the cache, introducing errors

8 https://puppeteer.github.io/puppeteer/

9 https://github.com/brave/adblock-rust

10 https://web.archive.org

that would not have occurred on live pages. Since the

filtered dataset proved to be of sufficient size for our pur-

poses, we did not explore this line of inquiry further in

our study.

3.3 Post-Processing Data

At this point, we had two recorded PageGraph graphs

for each example, one representing the page’s behav-

ior without the corresponding filter list change ap-

plied (“pre-intervention”), and one representing its be-

havior with the change in place (“post-intervention”).

We post-processed this dataset to generate a third

“intervention-only” graph per example, which approxi-

mated the delta in page behavior caused by the inter-

vention. Each intervention-only graph is a sub-graph of

the pre-intervention graph, containing graph nodes and

edges describing the behavior of the parts of the page

that would be blocked if the intervention were applied.

We hypothesized that providing these narrowed-down

sub-graphs as part of the input to our classifier would

help it find a stronger signal, tuning out some of the

noise of surrounding page behavior unaffected by the

filter list change, while helping to control for the dy-

namism of Web content.

To generate an intervention-only graph, we

first identify network resource nodes in the pre-

intervention graph that the content blocker allowed

through under the pre-intervention filter rules, but

which it would have blocked under the post-intervention

ruleset. These nodes represent the network resources

covered by the filter rule change11. Starting from these

resource nodes, we selectively walk outward in the pre-

intervention graph, marking additional nodes and edges

for inclusion in the sub-graph. We walk up from each

resource node to the node which caused the resource

to be requested over the network, e.g., from image re-

source nodes to the HTML <img> DOM nodes point-

ing to those images; we mark these nodes and the con-

necting HTTP request/response edges for inclusion. For

any HTML <script> DOM nodes we discover, we follow

script execute edges leading out from them to script

actor nodes that represent those scripts running in the

11 Note that we identify these network resource nodes by ap-

plying the post-intervention filter rules to network traffic in the

pre-intervention condition, and not by cross-referencing with the

post-intervention graph. This avoids introducing noise from unre-

lated variations in page behavior between multiple visits to the

page.



Blocked or Broken? 12

browser’s JavaScript engine. Finally, we mark all ad-

ditional nodes which are reachable by taking one step

from any already-marked node, as well as the connect-

ing edges. This captures, e.g., the effects that scripts

blocked by the filter list change have on the page when

not blocked, like the insertion or modification of DOM

nodes, the registration and un-registration of event lis-

teners, and Web API calls. Extracting the marked nodes

and edges produces a new graph focused on the effects

of the intervention on page behavior.

4 Classifier Construction

We aim to construct a machine learning (ML) classi-

fier with sufficient accuracy to predict whether a filter

list rule will break a site. Additionally, we aim to an-

alyze each classifier’s predictions to better understand

which features predict site breakage. As a simple base-

line, we employed a classical feature-based ML model

over an end-to-end learning system such as deep neural

networks. The learning task is posed as a binary classi-

fication problem with the positive label “site did break”

and the negative label “site did not break”.

In this sections we outline the data pre-processing

and feature extraction, followed by a description of the

full classification pipeline.

4.1 Data Pre-Processing

Our dataset numbers 2,662 examples, each consist-

ing of a “pre-intervention” graph, a “post-intervention”

graph, and an “intervention-only” graph (as defined in

Section 3.3). We excluded any examples with empty

intervention-only graphs (indicating no measured effect

on the page resulting from the intervention). This left

1,966 training samples with 1,011 positive labels and 955

negative labels. As a pre-processing step, we converted

each graph into pandas12 data frames, with each graph

represented as an edge list.

4.2 Generating Candidate Features

We next describe how we generated the set of candi-

date features considered when constructing our classifier

(Section 4.3 describes how we determined which features

12 https://pandas.pydata.org/

had significant predictive value, and Section 5.2 presents

which features ended up being predictive).

To generate the candidate features, we first defined

three dimensions that might be useful for predicting

site breakage; each dimension is described below. We

then generated 433 features by selecting different op-

tions from each feature dimension.

4.2.1 Scope of Analysis

The first dimension we considered was whether to ex-

tract features from i) the behavior of the overall page,

or ii) the behavior that was blocked by the the filter list

rule.

Page scope features capture whether patterns in

a pages’ overall behavior predicts breakage. These fea-

tures would be predictive if certain aspects of the page’s

design and implementation predicted breakage, indepen-

dent of what was blocked on the page. For example,

“page scope” features might detect if site complexity in

general predicts breakage. We extracted “page scope”

features from the “pre-intervention” graph (as described

in Section 3.3).

Conversely, intervention scope features look for

patterns that predict breakage specifically in the page

behaviors blocked or modified by the filter list rule.

These features will be predictive if what is being

blocked predicts breakage (instead of the page con-

text that blocking is occurring in). “Intervention scope”

features would be predictive if, for example, blocking

certain JavaScript API calls causes pages to break.

We extracted “intervention scope” features from the

“intervention-only” graph (see Section 3.3).

4.2.2 Absolute vs. Relative Values

The second feature dimension we considered was

whether to quantify behaviors using i) absolute counts,

or ii) as relative ratios.

Features using absolute counts are based on the

number of times an event or element was observed dur-

ing a page’s execution. For example, an “absolute count”

feature would be based on the number of video elements

that were embedded in a page, or the number of network

calls that were blocked by a filter list. “Absolute count”

features could be used to detect if the size of a page, or

the number of images on a page, can predicted break-

age, independent of how many elements or images were

blocked.
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Features targeting relative counts, on the other

hand, capture what percentage of occurrences of an

event on a page were blocked by the filter list rule. For

example, a “relative count” feature would consider the

percentage of images blocked on a page, or the number

of network requests prevented because of the filter list

rule.

4.2.3 Expertly Curated vs. Automatically Generated

Target Behaviors

The third feature dimension we considered was what

strategy we used to decide what page behaviors to mea-

sure. Some of the behaviors we targeted were manually

curated, drawing from domain knowledge and “expert”

intuition; other features were automatically generated

by examining generic graph features.

The expert curated features were generated by ex-

trapolating from our domain knowledge and past expe-

rience dealing with broken websites. Our domain knowl-

edge comes form various sources, including our research

and experiences contributing to and maintaining privacy

tools13. We then generalized our observations about how

websites break, and tried to capture those generaliza-

tions as features. Some examples of “expert curated” fea-

tures we generated include i) whether a blocked script

fetches additional scripts, or ii) whether a blocked script

registered event handlers in the page.

We also automatically generated a large num-

ber of additional features that considered counts of dif-

ferent graph attributes (node types, edge types, node

attributes, edge attributes). These automatically gener-

ated features did not consider the relationship between

different graph elements, or the semantics of the values

for node and edge attributes. As a result, the “automat-

ically generated” features were generally much simpler

than the kinds of page behaviors captured in the “ex-

pert curated” features. Some examples of “automatically

generated” features include i) how many DOM nodes

of each HTML tag appeared in the page (HTML tag

names are recorded in node attributes in PageGraph),

or ii) how many Web APIs were called during a page’s

execution (Web API invocations are recorded in Page-

Graph with edges of type “call”).

We then categorized our features (whether “expert

curated” or “automatically generated”) into one of the

13 Links and references omitted for anonymization.

following five categories, depending on the kinds of page

behaviors were measured by the feature.

– HTML structure: aspects of the structure and

composition of the document (e.g. numbers of dif-

ferent tags, amount of text on the page)

– JavaScript modifications of page structure:

measures of how the page’s structure was con-

structed or modified by scripts (e.g. numbers of

DOM nodes inserted by scripts, amount of text mod-

ified by scripts)

– Other JavaScript behaviors: script operations

and calls not directly related to modifying DOM

structure (e.g. counts of API calls made by scripts,

numbers of event handlers registered by scripts)

– Network behaviors: the sub-resources and other

network calls made during page execution (e.g.

number of bytes fetched, number of sub-resources

fetched)

– Generic graph features: graph measurements

with considering the behaviors being encoded by

the graph (e.g. number of nodes and edges, number

unique node attribute values)

We note that this categorization was not used in the

training or evaluating of the classifier; this categoriza-

tion was instead to benefit the later discussion of what

kinds of page behaviors predicted breakage (Section

5.2).

4.3 Classification Pipeline

The classification pipeline consists of the model to learn

the target function based on the extracted features as

described in the previous section, as well as several steps

to transform the inputs before making predictions.

We select XGBoost14, a popular model choice which

has been shown to achieve state-of-the-art performance

across a wide range of prediction tasks [7]. As a tree-

based method, XGBoost has several characteristics that

make it particularly suitable to serve as an off-the-shelf

baseline method. First, variable selection is performed

automatically, making it immune to the inclusion of irrel-

evant features. We empirically verify this by conducting

recursive feature selection over all 433 input features,

and found that it has no significant effect on perfor-

mance. Second, tree-based methods are robust to out-

liers due to the way they partition the input space. We

14 https://github.com/dmlc/xgboost
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verify this empirically by removing the top 1-percentile

of training samples w.r.t. their node/edge ratio, finding

no significant effect on performance. Last, tree-based

methods naturally deal with missing values (see e.g.

[8, 9]).

Despite the ability for tree-based methods to handle

missing values and correlated features, we conduct the

following transformations on the input data in order to

improve robustness of the model and reduce training

time:

1. All features which contain a percentage of empty

values above a certain threshold are dropped (em-

pirically we found a good threshold to be 0.85, see

section 5.1).

2. All features which have a Pearson correlation coef-

ficient above a certain threshold with at least one

other feature, are dropped (empirically we found a

good threshold to be 0.73, see section 5.1).

3. All remaining features are standardised by removing

the mean and scaling to unit variance.

5 Classifier Evaluation

This section outlines the analysis of the classifier de-

scribed in the previous section with respect to its predic-

tive and explanatory power, as well as its sample com-

plexity. We divide the evaluation into three parts:

1. In section 5.1 we train, tune and test the classifier

in order to optimise its predictive performance and

show whether it is possible to achieve practical util-

ity on the PageGraph data set.

2. In section 5.2 we train and test the classifier without

tuning on subsets of features to analyse the effect of

individual features on the predictions.

3. In section 5.3 we train and test the classifier without

tuning on training data samples of increasing size,

including all features. The aim is to understand how

much data is needed to achieve practical utility.

To summarize and evaluate the accuracy of the pre-

dicted class probabilities, we use the area under the re-

ceiver operating characteristic curve (ROC-AUC) as a

threshold-invariant metric.

5.1 Practical Utility

First, we evaluate the performance of the classifier with

respect to its practical utility. To that end, we con-
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Fig. 5. ROC-AUC curves averaged over 10 folds with hyper-

parameter tuning to evaluate the practical utility of the classifier.

Fold Accuracy ROC-AUC AP

1 0.781726 0.834881 0.807511

2 0.796954 0.855301 0.864379

3 0.888325 0.932653 0.953064

4 0.837563 0.911097 0.930447

5 0.847716 0.909447 0.922484

6 0.837563 0.918936 0.920909

7 0.821429 0.893486 0.910913

8 0.785714 0.857426 0.889738

9 0.780612 0.888275 0.904671

10 0.724490 0.827410 0.860115

Table 1. Practical utility of the classifier (§5.1) as measured by

Accuracy, ROC-AUC and Average-Precision (AP) scores across 10

folds with hyper-parameter tuning.

duct several hyper-parameter optimization rounds to im-

prove the predictive performance of the classifier. We

use nested cross-validation to estimate the generaliza-

tion error and prevent over-fitting. We only explore a

small range of values around the parameters’ default

values. All hyper-parameters and their tuning ranges

are given in Table 3 in the appendix. In the inner loop,

the validation fold is rotated across 3 folds to choose

the best hyper-parameter configuration (modelled as

samples from a Gaussian Process using the framework

of Bayesian Optimization with 10 parameter configura-

tions being tested per fold). Hereby, we optimize over all

pipeline steps including the thresholds for dropping null-

valued and correlated features. The outer loop with 10

folds is used to evaluate the performance of the learner.

The evaluation is conducted over all 1,966 training sam-

ples with all 433 features.

As shown in Figure 5, we find that the classifier can

achieve practical utility, with an average ROC-AUC of

0.88(±0.03) across the outer 10 folds. We list accuracy
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and average precision (AP) metrics across all folds in

Table 1. We thus show that an off-the-shelf classifier

can extract enough signal from the PageGraph data set

to separate positive examples (breaking) from negative

examples (non-breaking) well above random (i.e. a ROC-

AUC of 0.50). Depending on the modelling objective it

is possible to further optimize performance with respect

to precision and recall or type I and type II error by

tuning the classification threshold.

5.2 Feature Importance

Next, we analyze the explanatory power of the classifier

by inspecting the effect of the extracted features on pre-

dictions. First we conduct the analysis along the lines of

the feature generating dimensions by removing all fea-

tures belonging to a specific dimension and measuring

the drop in predictive performance. We then repeat the

analysis for individual features to establish a rank-order

of the most predictive features. Despite the fact that the

Leave-One-Covariate-Out[10] importance metric doesn’t

capture interaction effects if applied to single features,

it can nonetheless hint at the relative amount of signal

contained in individual features.

To estimate the importance metric for feature

groups and single features respectively, we first fit the

classifier with default parameters (no tuning) and all

433 features to serve as a baseline. We then generate a

new data set for each feature (group) by removing the

respective features from the training data before fitting

the model with the remaining features. We then esti-

mate the importance by subtracting the ROC-AUC of

the reduced feature set from the baseline for each fea-

ture respectively via 5-fold cross validation and report

the mean and standard deviation.

The results for the importance of feature groups

per feature generating dimension are shown in Figure 6.

Page features in isolation result in a slightly higher loss

than Intervention features, with a mean loss of ROC-

AUC 0.010 and 0.004 respectively. More pronounced is

the difference between expertly curated vs. automati-

cally generated features with the auto-generated fea-

tures incurring a mean loss of ROC-AUC 0.004 and 0.037

respectively. Slightly less pronounced is the difference

between absolute and relative features with a mean loss

of ROC-AUC of 0.024 and 0.009 respectively.

Results for the importance of individual features are

shown in Table 2, and are described in detail in the

following section.

5.2.1 Features with Predictive Power

This process yielded 40 features, from an initial starting

set of 433 candidate features. Table 2 gives the 40 fea-

tures that had predictive power in our model. A wide

range of features ended up being useful, representing a

wide range of page behaviors (e.g. JavaScript API calls,

structure and size of the DOM, amount and size of net-

work calls). As illustrated in Figure 6, no single kind

of page behavior dominated the predictive power of the

classifier (though, as discussed later, features capturing

pages’ network behaviors were somewhat more predic-

tive than other categories of features).

Similarly, no other “dimenson” of features domi-

nated the classifier’s predictions. Nearly as many pre-

dictive features measured overall page behaviors (20) as

measured just the activities blocked by the filter list rule

(20). Similar numbers of expert-curated features were

predictive as automatically generated features (15 and

25, respectively).

However, there were some trends we observed in

which page behaviors predicted page breakage. We here

briefly note three interesting and surprising patterns we

observed.

First, the kinds and number of JavaScript fea-

tures used on a page predicted page breakage.

JavaScript behaviors that were blocked (i.e. the scripts

that were blocked by the filter list rule) were generally

more predictive than overall page behaviors (i.e. blocked

and not blocked scripts alike). The number of scripts

fetched and executed by blocked scripts, the number of

cookies set by blocked scripts, and the number (and %)

of DOM nodes injected by blocked scripts were all pre-

dictive of breakage.

These findings support an intuition that most Web

applications are highly modular, with the privacy-

threatening portions of each application being contained

in a small portion of the overall implementation. How-

ever, this does not mean that the privacy-harming parts

of Web applications can generally be cleanly severed

from the overall application. In fact, these modules tend

to be tightly coupled, and blocking privacy-harming

scripts often breaks the overall application. This con-

clusion is supported by other related work[11] that finds

that filter-list-based content blocking tools are insuffi-

ciently granular to effectively address many kinds of pri-

vacy harms on the Web.

Second, the number of sub-documents in a

page predicts page breakage. Many of the behav-

iors that predict breakage relate to the number of sub-

documents included on the page, both directly (e.g. “%
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Rank Scope Source AUC Loss Description

Page Structure Features

3 Intervention Auto 0.00374 % of sub-document requests blocked

6 Page Auto 0.00222 # of tags and text nodes in initial HTML

13 Intervention Auto 0.00156 ∆ in # of sub-documents after blocking

19 Page Auto 0.00078 # of <iframe> in page

33 Page Auto 0.00025 % of DOM nodes that are <html>

36 Page Auto 0.00018 % of DOM nodes that are <iframe>

40 Intervention Expert 0.00012 % of <html> elements blocked

Generic Graph Features

11 Page Auto 0.00179 # of unique node and edge types

22 Intervention Auto 0.00061 # of unique types of actions taken by blocked scripts

35 Page Auto 0.00023 # of unique types of actions in entire page

Features Regarding JavaScript Modifying Page Structure

7 Intervention Auto 0.00217 # of DOM nodes created by HTML parser prevented by blocking

12 Intervention Auto 0.00169 % of JS DOM nodes created by blocked scripts

16 Intervention Auto 0.00116 # of DOM node insertions done by blocked scripts

21 Intervention Expert 0.00062 # of <html> elements created by blocked scripts

25 Intervention Expert 0.00046 # of DOM nodes created by blocked scripts

30 Page Auto 0.00032 # of DOM nodes created by scripts in entire page

34 Intervention Auto 0.00024 % of DOM nodes deletions done by blocked scripts

Other JavaScript Features

4 Page Expert 0.00295 # of times any script accessed properties on window.navigator

5 Intervention Auto 0.00254 # of scripts fetched or eval’ed by blocked scripts

8 Page Expert 0.00216 # of times any script deleted a value from sessionStorage

9 Intervention Expert 0.00205 % of document.cookie sets occurring in blocked scripts

10 Intervention Auto 0.00190 % of localStorage operations occurring in blocked scripts

14 Page Auto 0.00126 # of scripts fetched or eval’ed in entire page

15 Intervention Expert 0.00120 # of times blocked scripts read from document.cookie

17 Page Auto 0.00113 # of document.cookie operations in entire page

18 Intervention Auto 0.00083 % of sessionStorage operations done by blocked scripts

20 Page Expert 0.00073 # of WebGL calls, over the entire page

23 Intervention Auto 0.00059 # of Web API calls made by blocked scripts

26 Intervention Auto 0.00042 % of eventListener removals done by blocked scripts

28 Page Auto 0.00034 # of eventListener registrations in entire page

29 Intervention Expert 0.00033 % of window.navigator reads made by blocked scripts

31 Page Auto 0.00027 # of <script> tags in page

37 Page Expert 0.00017 # of window.screen reads over entire page

38 Page Auto 0.00016 # of cross-document script-reads in entire page

39 Page Expert 0.00013 # of localStorage reads over entire page

Network Features

1 Intervention Expert 0.00831 ∆ in bytes sent over network after blocking

2 Intervention Expert 0.00550 size of resources directly blocked

24 Intervention Expert 0.00059 # of resources blocked (direct or indirect)

27 Page Auto 0.00034 % of page actions that were network requests

32 Intervention Expert 0.00026 % of network resources that were blocked

Table 2. This table presents the 40 features (from the 433 features considered) that predicted page breakage. The “Rank” column

gives the relative importance of each feature, with 1 being the most predictive, 40 the least. “Scope” describes whether the feature was

extracted from the pre-intervention graph, denoted “Page” or intervention-only graph, denoted “Intervention” (Section 4.2.1). “Source”

gives whether the feature was developed through expert curation or automatic generation (re Section 4.2.3. “AUC Loss” gives how

much predictive power was lost when the feature was removed (Section 4.3). “Description” provides a terse description of the page

behavior captured by the feature.
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Fig. 6. Importance of the feature generating dimensions Scope of Analysis, Absolute vs. Relative Values and Expertly Curated vs.

Automatically Generated Target Behaviors as measured by the mean loss in ROC-AUC when removing the respective features from

the training data. Error bars indicate the standard deviation across 5 folds.

of sub-document requests blocked”, rank 3, or “∆ of #

sub-documents after blocking”, rank 13) and indirectly

(“# of <html> elements created by blocked scripts”, rank

21). Similarly, whether the same <iframe> element was

used to load multiple sub-documents further predicted

page breakage. For example, “∆ in # of sub-documents

after blocking” (rank 13) was predictive of breakage, in-

dependent of the “# of <iframe> on the page” (rank

19).

Third, network behaviors were highly predic-

tive of breakage. Though only five of the 40 predictive

features in our set directly related to network requests

made by the page, this group contains both the first

and second most predictive features (“∆ in bytes sent

over network after blocking” and “size of resources di-

rectly blocked”, respectively). The number and percent

of network requests blocked were also, unsurprisingly,

predictive of breakage (rank 24 and 32, respectively).

5.2.2 Features without Predictive Power

Additionally, we briefly note some features we expected

(i.e. they were “expert curated”) to predict page break-

age, but which ended up not being predictive. We give

below a list of features we expected to be predictive, but

which were not.

For example, we expected the number of blocked

event registrations (i.e. the number of events that

blocked scripts would have registered) to predict page

breakage. We expected this on the intuition that at least

some of these event registrations would have been impor-

tant page behaviors (e.g. form handlers, interactive page

elements), behaviors that would “break” the page if they

were omitted. However, this proved not to be the case;

the number of blocked event registrations did not pre-

dict breakage. We suspect this might be because most

event registrations in blocked scripts end up not being

core to page behavior, and are instead more likely to

be related to user tracking or other undesirable (to the

user) behaviors (e.g. interaction “heat maps” and other

fine-grained behavioral tracking).

Similarly, despite our expectations, the number of

text nodes inserted by blocked scripts did not predict

page breakage. Our intuition was that if blocking a script

removes a lot of text from the page, that script is likely

important to the page. However, this turned out to not

be the case; this feature was not predictive of breakage.

One possibility is that unwanted scripts (e.g. large adver-

tisements, captions for video ads, etc.) end up also being

responsible for a large amount of text, and so “amount

of text added to the page” ends up not being useful for

distinguishing blocking that breaks a page from blocking

that leaves the page functioning well.

5.3 Sample Complexity

Last, we empirically analyze the sample complexity of

the classifier in order to understand the amount of train-

ing data needed to achieve practical utility.

Analogous to the previous section we omit the tun-

ing step and initialise the classifier with default parame-

ters. We then train the classifier on varying amounts of

data (1%, 25%, 50%, 75% and 100% of training samples)

including all features, each time reporting the mean

ROC-AUC over 10 folds to estimate classification per-

formance given the respective amount of data. Finally,

we plot the mean ROC-AUC as a function of the number

of training samples in Figure 7.
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Fig. 7. Empirical sample complexity estimated by the mean ROC-

AUC as a function of the number of training samples across 10

folds.

We can see that performance converges after train-

ing the classifier on roughly 50% of the training data

(983 samples), i.e. collecting and training on additional

training samples yields diminishing returns. Given the

cost of acquiring new samples, this is a desirable result.

6 Discussion

We next provide some discussion of how our system

could be deployed, extended and improved by future

work. We first discuss practical deployment scenarios for

our compatibility classifier, and how our system could

be used by filter list authors to improve the compatibil-

ity and coverage of crowd sourced filter lists. Next, we

discuss how our approach could be extended to other,

non-filter list privacy interventions, and the potential

difficulties in doing so. We then examine the potential

effects of the dynamism of Web content on our mea-

surements, and describe the strategies we employed to

mitigate this. Last, we discuss some of the limitations

and weaknesses in our approach, and how they could be

addressed by future work.

6.1 Deployment Strategies

We here briefly discuss several ways our classifier could

be used by privacy developers to improve the usability of

content blocking filter lists, and by site authors to detect

and repair when their sites break for users of content

blocking tools.

6.1.1 Aid Existing Filter List Auditors

One possible deployment strategy for a Web compatibil-

ity classifier is to use the classifier as an aid to existing

human evaluators, crawling the Web and flagging any

potentially-broken websites it encounters. In this case,

the classifier could be tuned to favor recall over preci-

sion, and reduce the number of broken sites a human

evaluator would need to consider and label as working

or broken, from “the universe of all possible websites” to

“any false positives generated by the classifier”. The clas-

sifier would be, effectively, a force-multiplier for existing

filter list developers.

6.1.2 Protecting Must-Work Sites

Similarly, the classifier could be deployed to warn when

a new rule might break “high-priority” sites, as part a

continuous-integration-style system for filter list devel-

opment. Different communities of filter list users (or de-

velopers) may have sites that are of extra-importance

to them (e.g. high popularity sites, either globally or by

linguistic community, or sites vital to communication

or safety with threatened groups, etc). In such cases,

filter list authors might wish to be extremely confident

that these priority sites continue to work when new filter

list rules are added. Manually checking such sites every

time a new filter list rule is added would be prohibitive:

popular filter lists are updated several times a day. An

automated classifier could bring the amount of manual

verification needed down to manageable levels.

6.1.3 Assisting Site Authors

Finally, the classifier could also be used by site authors

who wish to be warned when a new filter list rule might

break their site for users of content blocking tools. While

we expect that most site authors would prefer visitors

not use content blocking tools at all, the popularity of

“please disable your content blocker” notifications with

a “dismiss” option suggests that a non-trivial number of

site authors would prefer their sites work in the presence

of a content blocking tool over their sites breaking alto-

gether. In these cases, concerned site authors could use

the classifier to receive an “early warning” when their

pages might break for filter list users. Web hosting ser-

vices or reverse-proxy services like Cloudflare or Fastly

could offer such “breakage” warnings as a service to their

clients.
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6.2 Applicability to Other Privacy

Interventions

Though we chose to build our classifier to predict when

filter list rules could break a page, we expect our ap-

proach could be extended to other privacy interventions

which risk breaking websites, because they fail to dis-

tinguish between benign and malicious behavior, or be-

cause the malicious behavior they prevent is deeply en-

twined with desirable page behaviors. We expect that a

classifier that could detect when these other privacy in-

terventions break sites would be beneficial to their devel-

opers and users, for many of the same reasons discussed

in Section 2. Developers of these tools could use an auto-

mated classifier to detect when, and what kinds of, sites

break, and use that information to either refine their

tools or create application-exceptions when needed.

While we expect the general approach of construct-

ing and training our classifier would work for other pri-

vacy interventions, extending our classifier to other sys-

tems would require some non-trivial changes. For exam-

ple, our work leverages the EasyList commit history to

create a “naturally occuring” ground truth dataset; find-

ing a comparable set of pre-labeled data may be diffi-

cult for other projects. Similarly, many of the features

we selected for predicting page breakage are likely more

applicable to filter-list blocking than other privacy in-

terventions (e.g. changes in number of scripts requested,

sub-documents loaded, or event handlers registered). De-

tecting when other kinds of privacy interventions break

pages likely will require other (or at least additional)

features.

6.3 Dynamic and Changing Page Behavior

The Web is not deterministic. Visiting the same URL

multiple times can return different content, sometimes

entirely different pages as time passes and Web sites

naturally change and evolve. Moreover, the same con-

tent can potentially behave very differently from visit to

visit, even if the visual appearance of the page looks un-

changed. Recordings of multiple visits to a URL are thus

not necessarily comparable: the same browser events will

not necessarily occur in both instances, let alone in the

same order, introducing noise beyond whatever variable

was intentionally altered between the visits (e.g. filter-

rule changes). We account for the inherent dynamism of

the Web with a multi-pronged approach.

First, we employed multiple levels of validation

and pruning when collecting examples for our training

dataset to ensure that the historical filter-rule changes

we examined still meaningfully applied to the current

versions of the Web pages our crawler visited. Filter-

rule changes from before 2013 were excluded altogether;

extracted URLs which resolved to HTTP error codes

were similarly cut from crawling. We then evaluated

both the pre-intervention and post-intervention filter

rules against each page’s recorded network activity, and

dropped pages which showed no resulting difference in

blocking decisions between the two rulesets (§3.2). A fi-

nal layer of validation ensured that the pre-intervention

PageGraph recorded for each page contained elements

connected to network resources blocked by the inter-

vention, implying that the intervention would actually

change page behavior (§4.1). This process pruned our

dataset down to the 1,966 examples used to train our

classifier.

Second, we avoided computing any single classi-

fier feature from recordings of more than one visit to

a page. To compute the difference in the number of

bytes sent over the network with and without the in-

tervention, we could have totaled up the transferred

bytes tracked in each of the pre- and post-intervention

PageGraph recordings, then subtracted the one from

the other. But because these recordings represent sep-

arate page loads, other factors beyond the interven-

tion could change page behavior between visits by our

crawler and influence any difference in these numbers.

Instead of comparing numbers between the pre- and

post-intervention graphs, we computed features like this

from the intervention-only graph detailed in Section 3.3.

Briefly, the intervention-only graph for a page is the

subgraph of the pre-intervention PageGraph containing

recorded page behavior which can be attributed to re-

sources that would be blocked by the post-intervention

filter rule set but are not blocked by the pre-intervention

rules. Then the number of bytes transferred as recorded

by the intervention-only graph gives us a measure of the

network activity impacted by the blocking behavior of

the intervention. In this way, we measure the effects of

the intervention without allowing avenues for the Web’s

dynamism to enter into our calculations. These features

ranked highly in predictivity in our analysis presented

in Table 2.

6.4 Limitations and Future Work

Finally, we note some weaknesses and limitations in

our approach, and suggest how they could be improved

through future work. First, our crawler does not interact
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with pages when recording (through PageGraph) page

behaviors. As a result, there are likely cases where our

crawler does not trigger some “broken” behaviors on the

page, causing those broken behaviors to not be recorded

in our dataset. This means that our classifier is not con-

sidering some (possibly) predictive information, and so

is not performing optimally.

For example, consider the case when a filter list rule

blocks a form validation script, but that form valida-

tion script is only applied to the page after some user

interaction (such as clicking on a “contact us” button

on the page). Our crawler would record the script being

blocked, but not how the page behaves when the user

tries to submit the now-broken contact form. As a result,

certain categories of broken behaviors are missed by our

crawler and classifier. Future work in this area might

address this weakness (and so likely improve the perfor-

mance of the classifier) by having the crawler interact

with pages, either by having the instrumented browser

be driven by a human user, or through software that

attempts to simulate human interactions15.

Second, and more broadly, while our system can tell

filter list authors when a site might be breaking, our sys-

tem does not provide the filter list author with an easy

way of fixing the site. Filter list authors could choose to

remove the relevant rule, or modify the rule so that the

rule is not applied to the breaking site. This would main-

tain compatibility, but only by undermining the initial

goal of the filter list! Figuring out how to modify fil-

ter list rules so they protect privacy without sacrificing

compatibility is beyond the scope of work, but is an im-

portant area for future work.

Third, we note that there are other kinds of features

that could be used to possibly further improve classifier

performance. Our implementation only considered page

behaviors when trying to predict breakage, but our ap-

proach could be extended to consider other available

data. For example, features could be designed to con-

sider visual differences in a page before and after block-

ing, on the (possible) intuition that if applying a filter

list rule causes a large visual difference, its more likely

the filter list rule has broken the page. Future work could

try boosting the classifier’s performance with many such

other sources of information.

Finally, because we screened out filter-rule changes

which had no observable effect on network content-

blocking decisions (§3.2), our study ignores changes

15 For example, stress-testing scripts like https://github.com/

marmelab/gremlins.js.

which touch only so-called “cosmetic” filter rules. These

rules inject small snippets of CSS styling into pages

to touch up their appearance, predominantly to hide

loaded elements and fix up blank spaces left by blocked

page components like banner ads. We feel comfortable

omitting such rules because, in our experience, they

break pages far less often than network rules. The im-

pact of blocking a network resource can cascade out-

ward, preventing scripts from running or causing errors

in loaded scripts, leading in turn to failures in page con-

struction and interactive functionality; style changes, on

the other hand, don’t have the same knock-on effect

on page behavior. Moreover, our focus is on improv-

ing Web privacy, and style rules do not (generally) pro-

vide users with privacy protections: instead of stopping

unwanted content from loading or preventing privacy-

invading code from executing, they simply cover up the

visible effects.

7 Related Work

In this section we discuss how our automated compati-

bility classifier compares and relates to other work in the

area, and specifically to existing research exploring how

the compatibility risks of privacy interventions, and the

challenges and history of maintaining content blocking

filter lists.

7.1 Compatibility of Privacy Protections

Our work most directly relates to a focused but impor-

tant area of research and practice around the compati-

bility costs of privacy enhancing techniques.

Much of the existing work in this area starts with

proposed method of improving privacy for users, and

then evaluating the compatibility costs of the proposed

intervention. For example, Yu et al.[12] proposed an au-

tomated system for detecting trackers on the Web, based

on how often third-parties reoccurred across first-party

sites. They then built an extension that would block de-

tected trackers, and then estimated how many websites

their extension broke based on how often users reloaded

pages. Snyder et al.[13] similarly suggested that Web pri-

vacy and security could be improved by removing infre-

quently used Web APIs, and had human labelers eval-

uate how many websites broke when each feature was

blocked. Smith et al. proposed improving Web privacy

with an automated system that would rewrite scripts
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to remove privacy harming behaviors without disrupt-

ing benign, user serving code paths. They too evaluated

their system with human labelers. Iqbal et al. 2020[14]

and 2021[15] used similar human evaluation systems for

determining the compatibility impact of machine learn-

ing based approaches for blocking tracking scripts and

detecting fingerprinting scripts, respectively.

Other research has focused on evaluating the com-

patibility trade-offs in existing Web systems, instead of

evaluating the compatibility of a newly proposed sys-

tem. Jueckstock et al.[16] used a human labeling system

to evaluate how often different systems for managing

third-party storage in Web browsers broke sites. Mes-

bah et al.[17], Choudhary et al.[18] and Van Deursen et

al.[19] proposed systems for measuring when differences

in browser implementations of Web standards broke

websites.

Finally, recent work by Mandalari et al.[20] de-

scribes a system that determines when privacy inter-

ventions break user desirable systems, but for internet-

of-things devices instead of websites. Their system au-

tomatically distinguishes necessary traffic flows from

non-core flows, and only applies privacy protections (i.e.

blocking) to traffic flows not necessary for a devices user-

serving functionalities.

7.2 Filter List Maintenance

Our work also builds on a large body of work identi-

fying and/or addressing difficulties in maintaining con-

tent blocking filter lists. Snyder et al.[21] measured how

much “dead weight” (i.e. non-useful rules) had accumu-

lated in popular filter lists, and proposed a system for

optimizing filter lists by removing rules that were not

ever applied during automated crawls of the Web. Chen

et al.[22] proposed a system for detecting when track-

ers evade filter lists by moving, combining, or renam-

ing tracking scripts by identifying scripts by their be-

haviors (instead of their URLs). They proposed using

their approach to automatically add “evading” scripts

to existing filter lists. Sjösten et al.[23] found that many

region-specific filter lists were not as well maintained as

filter lists targeting languages with more global speak-

ers (e.g. English, Spanish, Chinese, etc), and proposed a

machine-learning approach for augmenting regional fil-

ter lists based on what is blocked by global lists. Bha-

gavatula et al.[24] proposed a system for assisting filter

list authors by using machine learning to detect textual

patterns in blocked URLs, and to use that classifier to

generate new filter list rules.

Alrizah et al.[25] measured how often, and how long

it took for blocked scripts to try and evade being blocked

by filter lists, and found that it often takes filter list

authors over a month to respond to evasion efforts.

Wang et al.[26] similarly found filter lists have difficulty

keeping up when websites attempt to evade detection,

though their work focused on websites modifying page

structure to avoid cosmetic filtering rules.

Finally, a body of work has studied the difficulties

filter list authors face when sites attempt to block filter

list users (e.g. “anti-ad-block”, or “ad-block-blockers”).

Iqbal et al.[27] and Nithyanand et al.[28], for example,

both find that many sites attempt to detect when a visi-

tor is applying a filter list (either by checking for blocked

requests or for hidden page elements) and apply a range

of countermeasures to try and coerce the visitor to dis-

able their content blocking tool.

8 Conclusion

In this work we have presented the first accurate and

fully automated system for classifying whether apply-

ing a filter list rule to a website would break the user-

desirable features on that website. Past work has doc-

umented the significant privacy, performance, and secu-

rity benefits of filter-list-based blocking, but such work

only counts the “benefits” side of the ledger. Absent a

way of systematically predicting the “costs” of adding

more privacy protections, privacy research risks becom-

ing detached from reality. Without a scalable way of

estimating compatibility risk, more blocking, more fil-

tering, and more interventions will always look better.

If the usability costs are ignored, a broken system will

always appear more private than a functioning one.

We hope our work is a useful step towards finding

practical, scalable ways of detecting when privacy inter-

ventions break the systems they aim to improve. Our

work focuses on filter lists rules (because filter lists are

among the most popular and well-studied privacy inter-

ventions on the Web), but all proposed privacy interven-

tions would benefit from similar systems.
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A Appendix

Parameter Default Value Tuning Range

base_score 0.5 (0.45, 0.55)

colsample_bylevel 1 (0.8, 1)

colsample_bynode 1 (0.8, 1)

colsample_bytree 1 (0.8, 1)

gamma 0 (0, 5)

learning_rate 0.3 (0.2, 0.4)

max_delta_step 0 (0, 5)

max_depth 6 (4, 8)

min_child_weight 1 (1, 5)

n_estimators 100 (80, 120)

num_parallel_tree 1 (1, 5)

reg_alpha 0 (0, 5)

reg_lambda 0 (1, 5)

scale_pos_weight 1 (0.8, 1)

subsample 1 (0.8, 1)

Table 3. XGBoost hyper-parameters with tuning ranges.

Ranges are chosen so as to explore configurations in the neigh-

bourhood of parameter default values. These parameters are

described in more detail in the XGBoost documentation16.

16 https://xgboost.readthedocs.io/en/stable/python/python_

api.html
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