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Abstract: A core problem in the development and main-
tenance of crowdsourced filter lists is that their main-
tainers cannot confidently predict whether (and where)
a new filter list rule will break websites. The enormity
of the Web prevents filter list authors from broadly un-
derstanding the compatibility impact of a new blocking
rule before shipping it to millions of users. This severely
limits the benefits of filter-list-based content blocking;:
filter lists are both overly conservative (i.e. rules are tai-
lored narrowly to reduce the risk of breaking things) and
error-prone (i.e. blocking tools still break large numbers
of sites). To scale to the size and scope of the Web, fil-
ter list authors need something better than the current
status quo of user reports and manual review, to stop
breakage before it has a chance to make it to end users.

In this work, we design and implement the first auto-
mated system for predicting when a filter list rule breaks
a website. We build a classifier, trained on a dataset gen-
erated by a combination of compatibility data extracted
from the EasyList filter project and novel browser in-
strumentation, and find that our classifier is accurate
to practical levels (AUC 0.88). Our open-source system
requires no human interaction when assessing the com-
patibility risk of a proposed privacy intervention. We
also present the 40 page behaviors that most predict
breakage in observed websites.
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1 Introduction

A large and growing body of research has shown that
filter-list-based content blocking significantly improves
Web privacy|[1, 2], security[3, 4], and performance[5, 6].
The proliferation of cosmetic-only rules in popular filter
lists suggests that filter lists significantly improve the
user-perceived aesthetics of Web browsing. And the ever-
expanding popularity of extensions and browsers that
include filter-list-based content blocking suggests that
filter lists are important to large swaths of Web users.

While the benefits of filter lists are well studied and
understood, systematizing and automating the creation
of these lists remains an open challenge. This is largely
because research is very good at measuring the benefits
of blocking network requests (e.g. number of trackers
blocked, data saved, CPU cycles reduced), but compar-
atively poor at measuring the costs of blocking requests
(e.g. number of websites broken or user-desirable fea-
tures impacted). In effect, Web researchers mainly count
one side of the ledger, and as a result, filter list curation
in practice remains a nearly completely manual process,
consisting of activists and community members making
best-effort predictions of the Web-scale impact of filter
list rules. The result is that filter lists are both too con-
servative (i.e. there are things that filter list authors
would like to block, but don’t to avoid breaking sites)
and too liberal (i.e. content blocking tools still break
plenty of websites).

Additional human labor will not fundamentally im-
prove the situation. Because of the size and constantly-
changing nature of the Web, any efforts by filter list
authors to manually evaluate the Web-wide impact of
a filter list rule will be incomplete, and dramatically so.
As a result, users of filter list tools end up being both
the consumers and testers of new filter rules. This means
broken sites for users, and in some cases giving up on
the privacy, security, and performance wins of content
blocking tools.

1.1 Problem Difficulty

We need an automated way to predict the Web compat-
ibility impact of a new or updated filter list rule, so that
rules can be tested, tailored, and optimized before be-
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ing shipped to users. Alas, this is a tough problem for
several reasons.

First, determining if a page is broken is difficult be-
cause “brokenness” presents itself in a variety of forms.
A page can be “broken” in an obvious way (e.g. the page
is blank), in a very subtle way (e.g. a form on a deeply-
nested page does not submit correctly), and everything
in between. Furthermore, compatibility breakage some-
times only reveals itself after a user interacts with a page
or attempts to trigger some interactivity.

Another obstacle to automated detection is the diffi-
culty of assembling a large dataset of “broken” web sites.
Both site authors and filter list maintainers have strong
incentives to fix broken sites as quickly as possible (and,
generally, with as few people noticing as possible). This
makes it harder for researchers to obtain a generalized
understanding of the problem, and so makes developing
automated detection systems tricky.

1.2 Contributions

This work improves the state of filter list content block-
ing by designing a fully automated classifier that accu-
rately predicts whether a filter list rule breaks a website,
in the subjective evaluation of a browser user. Our clas-
sifier requires no human interaction to run and takes
advantage of deep browser engine instrumentation, and
so can scale far beyond what is possible with human as-
sessments. Our classification pipeline takes as input i)
a filter list rule and ii) a Web page URL, and returns
a prediction of whether executing the given Web page
with the given filter list rule applied will break the page.
We build our classification dataset in two novel steps.
First, we use the commit history of the EasyList filter
project to build up a labeled dataset of Web page URLs
paired with filter list rules that cause either a breaking or
non-breaking change when applied to the page. Second,
we use a heavily modified version of a Chromium-based
browser to analyze the execution of these Web pages
with and without the corresponding rules. Significantly,
our modified browser records both what events occurred
during the Web page’s execution (e.g. which scripts were
executed, which DOM nodes were inserted or modified,
which event listeners were registered), and which actors
on the page were responsible for each event (e.g. which
script fetched a given resource, or inserted a DOM ele-
ment, or fetched a dependent script). Our instrumented
browser then allows us to export the recording of each
page execution as an XML-encoded directed graph.
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We combine these sources of data to generate a large
dataset of Web page executions paired with filter rules
labeled as causing either a breaking or non-breaking
page behavior change. We then extract 433 features from
the execution recordings in each of these samples, and
train a classifier that performs with AUC of 0.88 to pre-
dict sample labels.

More specifically, this work offers the following con-
tributions:

1. The design of a multi-step fully automated sys-
tem for accurately predicting whether a privacy in-
tervention (i.e. a filter list rule) would break a web-
site, in the subjective evaluation of a browser user.

2. A public dataset consisting of 1,469 unique real-
world filter list rules, applied to 2,570 unique Web
pages that they affect, resulting in 2,662 recordings
of page behavior changes, each labeled with whether
the applying the rules yielded a broken or working
version of the page.

3. A detailed discussion of which page behaviors
predicted pages breaking (and which page be-
haviors did not).

4. The open source implementation! of both our
data collection pipeline and classifier, implemented
in a Chromium-based browser and scikit-learn.

2 Motivation and Overview

2.1 A Brief Introduction to Filter Lists

Filter lists are collections of regular-expression-like rules
describing trust statements over URLs. The most com-
mon applications of filter lists are in browsers and
browser extensions to block unwanted requests when
browsing the Web (e.g. requests for trackers, unwanted
advertisements, distracting page content, etc). Usually
filter list rules describe origins and paths that should be
blocked, but most tools that apply filter lists have addi-
tional syntax to further restrict how and when each rule
should be applied. For example, rules can be restricted
to only be applied to certain kinds of requests (e.g. im-
ages, sub-documents, scripts) or only applied in certain
contexts (e.g. specifying that some rules should only be
considered when visiting certain sites).

1 https://github.com/brave-experiments/webcompat-
measurement-pipeline



Most popular filter lists are crowd-sourced by com-
munities that add and refine rules in large shared
lists. Rules are added when a list contributor finds
out about a new tracking script (or otherwise un-
wanted Web resource) and decides to block it. For ex-
ample, assume a filter list maintainer is browsing a
site and notices the site has included a tracking script,
served from https://tracker.example/bad.js. The filter

list maintainer, wanting to protect other users, adds a
new rule to the filter list, instructing the browser to
block the tracker from loading on the current site?. The
filter list maintainer then tests out the rule by revisiting
the site with the new rule applied. The maintainer sees
that the tracking script is now blocked, and that the site
continues working correctly. Having checked that the fil-
ter list rule works (i.e. the target script was blocked)
and that the site still works, the filter list maintainer
commits the new rule to the filter list, which is soon
downloaded by millions of filter list subscribers, block-
ing the tracking script on that specific site for all users.

2.2 Breaking Sites is Too Easy

Filter list maintainers, though, have to choose between
privacy and compatibility. Worse, they often have to try
and choose between these goals without data, relying
only on intuition and best guesses.

To see why, refer back to the example discussed in
the previous sub-section. The filter list author specified
that the tracking script should only be blocked when it
is included by one specific site; the tracking script will
continue to be loaded on every other site on the web,
continuing to harm users despite the filter list author
identifying the script as a tracker. The privacy harm
continues because the rule was written narrowly.

Alternatively, the filter list author could have writ-
ten the rule to be general, and to block the tracking
script whenever it was included on any site3. This would
prevent more privacy harm, but risks breaking sites. The
filter list author only checked that one specific site still
worked when the script was blocked; other sites might
have integrated the script in such a way that they break
if the script is not present. This is common, and happens
when pages rely on utility functions tracking scripts pro-
vide or otherwise deeply integrate the tracking script.

2 This rule might look like | |tracker.example/bad.js$domain=

site.example.

3 This general rule might look like | [tracker.example/bad. js.
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In the scenario where the filter list author commits
the general rule, not only has the author broken an un-
known number of pages but, worse, the author won’t
find out about the breakage until after the rule has been
shipped to users, when users start encountering broken
sites and (hopefully) reporting issues. The underlying
problem is that filter list maintainers have no scaleable,
automated way to test rules before shipping them. Main-
tainers can browse sites with the rule enabled, but this
only works for rules tied to a small number of sites: it
does not scale to real rules that impact huge fractions
of the Web. The Web is too large, and the number of
filter list maintainers too small.

2.3 Towards Automated Detection of
Breakage

Filter list authors need tools to help them protect user
privacy, while minimizing risks to compatibility. The
ideal solution would be an oracle that allowed filter list
authors to submit a proposed filter list rule and receive
back a list of sites the rule would break. This system
would be automated so that filter list authors can repeat-
edly and quickly query it, allowing rules to be optimized
(i.e. maximizing privacy while minimising breakage) be-
fore shipping them to users.

In practice this is difficult. Determining if a site is
broken is tricky for a variety of reasons. The broken func-
tionality might not be immediately obvious, and might
only be triggered after interacting with the page. Block-
ing a script on one site might not affect its users at all,
while blocking the same script on another site might
break the site entirely. Breaking a page might not have
any visual side effect, only manifesting itself through un-
intended application flow. These are just some examples
of why “site breakage” is a difficult classification prob-
lem.

However, as a step towards building an automated
site breakage oracle, we designed a system that pre-
dicts whether a site will break, given three inputs: i)
a Web page (described by its URL), ii) a filter list
rule, and, optionally, iii) a browser profile, allowing the
browser to be arbitrarily configured before classification.
We developed our system using a ground truth dataset
constructed from the commit history of the EasyList
project, and consisting of tuples of i) a Web page URL,
ii) a filter list rule, and iii) whether the filter list rule
broke the site (Section 3.1). We visited each URL in a
crawler instrumented to record the page’s execution at
an extremely detailed level (Section 3.2). We then ex-



EasyList commit history

|

’ Parse, filter, and transform commits (§3.1) ‘

|

[Tuples of {page URL, filter list diff, broken/working Iabel}]

!

’ Generate pre-/post-intervention filter lists (§3.2) ‘

|

’ Capture page behavior with PageGraph (§3.2) ‘

!

’ Post-process graph data (§3.3) ‘

|

{Tuples of {page URL, filter list diff, broken/working}

label, page behavior recording graphs}

Fig. 1. Pipeline diagram of our Web compatibility dataset genera-
tion process.

tracted 433 features from the execution record for each
site, and used those features to train a classifier (Sec-
tion 4.3) that performs with mean AUC of 0.88 (Section
5.1). Finally, we used the classifier to learn 40 features
that predict whether a filter list rule will break a website
(Section 5.2).

3 Dataset

Our first contribution is a dataset of examples of filter
list changes and their effects on page behavior, labeled
with whether or not those effects represent Web compat-
ibility breakage from a user perspective, and the novel
methodology with which we assembled this dataset at
a sufficiently large scale for ML classifier training. The
dataset contains a total of 2,662 examples, each consist-
ing of a page URL, a corresponding filter list change af-
fecting the page, a broken-or-working label, and record-
ings of how the page’s behavior responds to the change.
Figure 1 summarizes our data collection pipeline.

3.1 Collecting Examples of Broken and
Working Sites

To train our classifier to detect when a filter list change
breaks a site, we first needed a set of examples for
the classifier to learn from, of sites breaking when
such a change is introduced. Manually hunting through
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P: https://www.mealty.ru/catalog/ (Fixes
https://forums.lanik.us/viewtopic.php?t=47335)

easyprivacy/easyprivacy_allowlist_international.txt:

Q0| Imc.yandex.ru/metrika/tag. js$script,
domain=auto.yandex | coddyschool.com
+ 0@||mealty.ru/js/ga_events.js$~third-party
@@ | |megafon.ru/static/?files=%/tealeaf.js

Fig. 2. A sample Web compatibility fix commit excerpted from
the EasyList repository?, inserting an exception rule to allow
through a script which shares its filename with a popular analytics
script. Blocking the script breaks a page on mealty.ru.

A: https://tinyzonetv.to/
Block adserver at https://tinyzonetv.to/

easylist/easylist_adservers.txt:

|| sftapi.com”™
+ ||sfzover.com”
|| sg2rgnza7k9t . com”

Fig. 3. A sample coverage-expanding commit excerpted from the
EasyList repository®, inserting a rule to block an ad server at
sfzover.com, found on the site tinyzonetv.to.

the Web for broken sites, and then debugging filter
lists to identify the rules responsible in each instance,
would have been too time- and labor-intensive given
the dataset size required to effectively train and test
the classifier: our final dataset contains over a thousand
such examples. Moreover, this approach would place us
as the judges of page brokenness, a subjective measure:
our judgments may differ from those of end users.

We sidestep these problems by mining labeled ex-
amples of Web page breakage from a non-traditional
source: the commit logs of the EasyList project®, a large
and widely-used community-maintained filter list distri-
bution. The EasyList authors use the Git version con-
trol system to coordinate the development of their filter
lists, so each update to the rules is logged with an asso-
ciated commit message, numbering over 169,000 across
the project’s history. The commit messages follow uni-
form conventions agreed on by the authors. In particular,
a rule update to fix Web compatibility breakage should
be tagged with the prefix “P:” and reference the URL of

4 https://github.com/easylist/easylist /commit/
a509c¢21b72¢2d4959bff05394082821f207730fd

5 https://github.com/easylist/easylist/commit/
0c453dbe0882640cel6dc823fc72dc3aaadbbect2

6 https://easylist.to/



at least one page on which the problem occurs. Figure 2
shows a sample compatibility-fix commit taken from Ea-
syList. These commits are often made in response to user
reports, and are further vetted by the domain-expert
maintainers that merge them into the EasyList reposi-
tory; therefore, we claim that they represent something
close to ground truth for page breakage as perceived by
end users. Each of these commits typically comprises one
or a few rule additions and/or deletions, constituting a
filter list change which repairs compatibility breakage
on the referenced page. Inverting the change—i.e., flip-
ping additions to deletions and deletions to additions—
produces a filter list change which breaks the page in-
stead of repairing it. By scanning the EasyList commit
history for Web compatibility commits, parsing out the
associated URLs, and applying this inversion to each
commit, we seeded our dataset generation with positive
examples of filter list changes that introduce breakage,
tied to specific Web pages on which that breakage oc-
curs.

In order to teach our classifier to distinguish filter
list changes which break pages, we also needed to show it
examples of changes which don’t cause breakage. These
changes should still have an effect on their target pages,
but a desirable one: blocking an ad, for example, or
circumventing a privacy-invading tracker. Again we re-
turned to the EasyList commit logs, where such changes
are tagged with the prefix “A:”, and also reference page
URLs on which the intended effects can be observed. Fig-
ure 3 shows a sample from the EasyList Git repository.
We applied the same process of scanning the commit
history, minus the inversion step, to seed our dataset
generation with negative examples: non-breaking filter
list changes and specific Web pages they affect.

3.2 Capturing Page Behavior

It would be difficult if not impossible to predict page
breakage by looking just at Web page URLs and filter
rule source code. Instead, our classifier draws its predic-
tions from the way those pages behave at runtime in a
browser equipped with content blocking, and how their
behavior is altered by changes to the content blocker’s
filter lists. We recorded page behavior with PageGraph?,
our deep browser instrumentation system built into the
Brave Browser. Every page opened in a PageGraph-
enabled browser build is monitored at runtime, and its

7 https://github.com/brave/brave-browser/wiki/PageGraph
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parser
id=1

node create
A 4

DOM node

HTTP response

id=197, tag="img",
status=200,
src="https://a.com/b.png"
size=13191,
headers="..."

network resource

HTTP request

id=218, type="image",

type="Image",
size=1880,

"

url="https://a.com/b.png

"

headers="...

Fig. 4. PageGraph encoding of the initialization of an image
element. The browser's HTML parser creates a DOM node to
represent a decoded <img> tag. An HT TP request is dispatched
to retrieve the image file pointed to by the image element’s src
attribute, and a success response is received.

activity across the browser engine is recorded in a uni-
fied directed graph structure. Nodes of this graph corre-
spond to interacting entities in the mini-ecosystem of a
Web page: actors like scripts, the parser, and the content
blocker which perform actions, and those that are acted
upon, like network resources, DOM nodes, Web APIs,
and filter rules. Edges represent the actions that connect
them: node insert rules between the parser and DOM
nodes, resource block edges between filter rules and
network resources, APT call edges between script actors
and Web APIs; as well as structure edges which record
parent-child relationships between DOM nodes. Figure 4
shows a sample excerpt from a PageGraph graph, illus-
trating how a Web request to load the image pointed
to by the URL of an HTML <img> tag is encoded as
a pair of HTTP request and HTTP response edges, con-
necting the DOM node for the <img> tag to the network
resource node representing the image file at the given
URL, all annotated with metadata captured from this
runtime interaction.

From the collection of positive and negative exam-
ples assembled in Section 3.1, we used our PageGraph-
enabled Brave Browser build to crawl each Web page
twice, capturing its behavior both with and without the
corresponding filter list change (the “intervention”) ap-
plied. First, we used the EasyList Git repository to gen-
erate a version of the filter list without the change. We
then injected this filter list into the browser’s content
blocker, replacing the built-in filter list. Our crawler



launched the browser, controlling it with the Puppeteer
automation framework®, and navigated to the page
URL. The crawler waited for the DOM load event to
fire, and a further 15 seconds beyond that to give the
page time to fully settle. The page’s behavior during this
time was captured by PageGraph and exported in graph
form at the end of the browsing session, taking a base-
line for the page’s normal operation; we refer to this as a
pre-intervention graph. Next, we generated a second ver-
sion of the filter list, this time with the change applied,
and injected it into the content blocker. Repeating the
crawling process produced a second graph, representing
the page’s behavior under the influence of the filter list
change; we refer to this as a post-intervention graph. For
positive examples, this graph reflects the page in a bro-
ken state; for negative examples, it reflects a desirable,
intentional change in behavior (e.g., blocking an ad).

Because we were using historical data—the EasyList
commit log—to drive our crawling, there was a chance
that the pages we were visiting had been altered or had
even disappeared in the time since the original com-
mits were made. As an initial heuristic, we only con-
sidered commits dated 2013 or later. We rejected any
pages which produced an error response (e.g., 404 Not
Found) during crawling. We further validated that ap-
plying the corresponding filter list change still actually
had an effect on the page, by using the adblock-rust?
library to evaluate the filter rules with and without the
change against the page’s recorded network activity. If
there was no difference between the blocking decisions
made in the two cases, the page was excluded from our
dataset. At the completion of crawling and filtering, we
were left with a dataset of 2,662 examples; later analysis
(§5.3) would indicate that this is more than enough to
train a useful classifier.

Another approach to accounting for the historical
nature of the EasyList data could be to proxy crawler
Web requests through cached versions of the target
pages contemporary with the EasyList commit dates.
We tried this approach using the Internet Archive’s
Wayback Machine'® as that cache, but ultimately dis-
carded the idea. Snapshots cached by the Archive proved
to be of insufficient fidelity and completeness to accu-
rately reproduce page behavior. For example, we ob-
served that requests sent by ad-network-integration code
were often missing from the cache, introducing errors

8 https://puppeteer.github.io/puppeteer/
9 https://github.com/brave/adblock-rust
10 https://web.archive.org
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that would not have occurred on live pages. Since the
filtered dataset proved to be of sufficient size for our pur-
poses, we did not explore this line of inquiry further in
our study.

3.3 Post-Processing Data

At this point, we had two recorded PageGraph graphs
for each example, one representing the page’s behav-
ior without the corresponding filter list change ap-
plied (“pre-intervention”), and one representing its be-
havior with the change in place (“post-intervention”).
We post-processed this dataset to generate a third
“intervention-only” graph per example, which approxi-
mated the delta in page behavior caused by the inter-
vention. Each intervention-only graph is a sub-graph of
the pre-intervention graph, containing graph nodes and
edges describing the behavior of the parts of the page
that would be blocked if the intervention were applied.
We hypothesized that providing these narrowed-down
sub-graphs as part of the input to our classifier would
help it find a stronger signal, tuning out some of the
noise of surrounding page behavior unaffected by the
filter list change, while helping to control for the dy-
namism of Web content.

To generate an intervention-only graph, we
first identify network resource nodes in the pre-
intervention graph that the content blocker allowed
through under the pre-intervention filter rules, but
which it would have blocked under the post-intervention
ruleset. These nodes represent the network resources
covered by the filter rule change!'!. Starting from these
resource nodes, we selectively walk outward in the pre-
intervention graph, marking additional nodes and edges
for inclusion in the sub-graph. We walk up from each
resource node to the node which caused the resource
to be requested over the network, e.g., from image re-
source nodes to the HTML <img> DOM nodes point-
ing to those images; we mark these nodes and the con-
necting HTTP request/response edges for inclusion. For
any HTML <script> DOM nodes we discover, we follow
script execute edges leading out from them to script
actor nodes that represent those scripts running in the

11 Note that we identify these network resource nodes by ap-
plying the post-intervention filter rules to network traffic in the
pre-intervention condition, and not by cross-referencing with the
post-intervention graph. This avoids introducing noise from unre-
lated variations in page behavior between multiple visits to the
page.



browser’s JavaScript engine. Finally, we mark all ad-
ditional nodes which are reachable by taking one step
from any already-marked node, as well as the connect-
ing edges. This captures, e.g., the effects that scripts
blocked by the filter list change have on the page when
not blocked, like the insertion or modification of DOM
nodes, the registration and un-registration of event lis-
teners, and Web API calls. Extracting the marked nodes
and edges produces a new graph focused on the effects
of the intervention on page behavior.

4 Classifier Construction

We aim to construct a machine learning (ML) classi-
fier with sufficient accuracy to predict whether a filter
list rule will break a site. Additionally, we aim to an-
alyze each classifier’s predictions to better understand
which features predict site breakage. As a simple base-
line, we employed a classical feature-based ML model
over an end-to-end learning system such as deep neural
networks. The learning task is posed as a binary classi-
fication problem with the positive label “site did break”
and the negative label “site did not break”.

In this sections we outline the data pre-processing
and feature extraction, followed by a description of the
full classification pipeline.

4.1 Data Pre-Processing

Our dataset numbers 2,662 examples, each consist-
ing of a “pre-intervention” graph, a “post-intervention”
graph, and an “intervention-only” graph (as defined in
Section 3.3). We excluded any examples with empty
intervention-only graphs (indicating no measured effect
on the page resulting from the intervention). This left
1,966 training samples with 1,011 positive labels and 955
negative labels. As a pre-processing step, we converted
each graph into pandas'? data frames, with each graph
represented as an edge list.

4.2 Generating Candidate Features

We next describe how we generated the set of candi-
date features considered when constructing our classifier
(Section 4.3 describes how we determined which features

12 https://pandas.pydata.org/
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had significant predictive value, and Section 5.2 presents
which features ended up being predictive).

To generate the candidate features, we first defined
three dimensions that might be useful for predicting
site breakage; each dimension is described below. We
then generated 433 features by selecting different op-

tions from each feature dimension.

4.2.1 Scope of Analysis

The first dimension we considered was whether to ex-
tract features from i) the behavior of the overall page,
or ii) the behavior that was blocked by the the filter list
rule.

Page scope features capture whether patterns in
a pages’ overall behavior predicts breakage. These fea-
tures would be predictive if certain aspects of the page’s
design and implementation predicted breakage, indepen-
dent of what was blocked on the page. For example,
“page scope” features might detect if site complexity in
general predicts breakage. We extracted “page scope”
features from the “pre-intervention” graph (as described
in Section 3.3).

Conversely, intervention scope features look for
patterns that predict breakage specifically in the page
behaviors blocked or modified by the filter list rule.
These features will be predictive if what is being
blocked predicts breakage (instead of the page con-
text that blocking is occurring in). “Intervention scope”
features would be predictive if, for example, blocking
certain JavaScript API calls causes pages to break.
We extracted “intervention scope” features from the
“intervention-only” graph (see Section 3.3).

4.2.2 Absolute vs. Relative Values

The second feature dimension we considered was
whether to quantify behaviors using i) absolute counts,
or ii) as relative ratios.

Features using absolute counts are based on the
number of times an event or element was observed dur-
ing a page’s execution. For example, an “absolute count”
feature would be based on the number of video elements
that were embedded in a page, or the number of network
calls that were blocked by a filter list. “Absolute count”
features could be used to detect if the size of a page, or
the number of images on a page, can predicted break-
age, independent of how many elements or images were
blocked.



Features targeting relative counts, on the other
hand, capture what percentage of occurrences of an
event on a page were blocked by the filter list rule. For
example, a “relative count” feature would consider the
percentage of images blocked on a page, or the number
of network requests prevented because of the filter list
rule.

4.2.3 Expertly Curated vs. Automatically Generated
Target Behaviors

The third feature dimension we considered was what
strategy we used to decide what page behaviors to mea-
sure. Some of the behaviors we targeted were manually
curated, drawing from domain knowledge and “expert”
intuition; other features were automatically generated
by examining generic graph features.

The expert curated features were generated by ex-
trapolating from our domain knowledge and past expe-
rience dealing with broken websites. Our domain knowl-
edge comes form various sources, including our research
and experiences contributing to and maintaining privacy
tools'3. We then generalized our observations about how
websites break, and tried to capture those generaliza-
tions as features. Some examples of “expert curated” fea-
tures we generated include i) whether a blocked script
fetches additional scripts, or ii) whether a blocked script
registered event handlers in the page.

We also automatically generated a large num-
ber of additional features that considered counts of dif-
ferent graph attributes (node types, edge types, node
attributes, edge attributes). These automatically gener-
ated features did not consider the relationship between
different graph elements, or the semantics of the values
for node and edge attributes. As a result, the “automat-
ically generated” features were generally much simpler
than the kinds of page behaviors captured in the “ex-
pert curated” features. Some examples of “automatically
generated” features include i) how many DOM nodes
of each HTML tag appeared in the page (HTML tag
names are recorded in node attributes in PageGraph),
or ii) how many Web APIs were called during a page’s
execution (Web API invocations are recorded in Page-
Graph with edges of type “call”).

We then categorized our features (whether “expert
curated” or “automatically generated”) into one of the

13 Links and references omitted for anonymization.
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following five categories, depending on the kinds of page

behaviors were measured by the feature.

— HTML structure: aspects of the structure and
composition of the document (e.g. numbers of dif-
ferent tags, amount of text on the page)

— JavaScript modifications of page structure:
measures of how the page’s structure was con-
structed or modified by scripts (e.g. numbers of
DOM nodes inserted by scripts, amount of text mod-
ified by scripts)

— Other JavaScript behaviors: script operations
and calls not directly related to modifying DOM
structure (e.g. counts of API calls made by scripts,
numbers of event handlers registered by scripts)

— Network behaviors: the sub-resources and other
network calls made during page execution (e.g.
number of bytes fetched, number of sub-resources
fetched)

— Generic graph features: graph measurements
with considering the behaviors being encoded by
the graph (e.g. number of nodes and edges, number
unique node attribute values)

We note that this categorization was not used in the
training or evaluating of the classifier; this categoriza-
tion was instead to benefit the later discussion of what
kinds of page behaviors predicted breakage (Section
5.2).

4.3 Classification Pipeline

The classification pipeline consists of the model to learn
the target function based on the extracted features as
described in the previous section, as well as several steps
to transform the inputs before making predictions.

We select XGBoost!'4, a popular model choice which
has been shown to achieve state-of-the-art performance
across a wide range of prediction tasks [7]. As a tree-
based method, XGBoost has several characteristics that
make it particularly suitable to serve as an off-the-shelf
baseline method. First, variable selection is performed
automatically, making it immune to the inclusion of irrel-
evant features. We empirically verify this by conducting
recursive feature selection over all 433 input features,
and found that it has no significant effect on perfor-
mance. Second, tree-based methods are robust to out-
liers due to the way they partition the input space. We

14 https://github.com/dmlc/xgboost



verify this empirically by removing the top 1-percentile

of training samples w.r.t. their node/edge ratio, finding

no significant effect on performance. Last, tree-based

methods naturally deal with missing values (see e.g.

(8, 9]).

Despite the ability for tree-based methods to handle
missing values and correlated features, we conduct the
following transformations on the input data in order to
improve robustness of the model and reduce training
time:

1. All features which contain a percentage of empty
values above a certain threshold are dropped (em-
pirically we found a good threshold to be 0.85, see
section 5.1).

2. All features which have a Pearson correlation coef-
ficient above a certain threshold with at least one
other feature, are dropped (empirically we found a
good threshold to be 0.73, see section 5.1).

3. All remaining features are standardised by removing

the mean and scaling to unit variance.

5 Classifier Evaluation

This section outlines the analysis of the classifier de-

scribed in the previous section with respect to its predic-

tive and explanatory power, as well as its sample com-
plexity. We divide the evaluation into three parts:

1. In section 5.1 we train, tune and test the classifier
in order to optimise its predictive performance and
show whether it is possible to achieve practical util-
ity on the PageGraph data set.

2. In section 5.2 we train and test the classifier without
tuning on subsets of features to analyse the effect of
individual features on the predictions.

3. In section 5.3 we train and test the classifier without
tuning on training data samples of increasing size,
including all features. The aim is to understand how
much data is needed to achieve practical utility.

To summarize and evaluate the accuracy of the pre-
dicted class probabilities, we use the area under the re-
ceiver operating characteristic curve (ROC-AUC) as a
threshold-invariant metric.

5.1 Practical Utility

First, we evaluate the performance of the classifier with
respect to its practical utility. To that end, we con-
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Fig. 5. ROC-AUC curves averaged over 10 folds with hyper-
parameter tuning to evaluate the practical utility of the classifier.

Fold Accuracy ROC-AUC AP
1 0.781726 0.834881 0.807511
2  0.796954 0.855301 0.864379
3 0.888325 0.932653 0.953064
4 0.837563 0.911097 0.930447
5 0.847716 0.909447 0.922484
6 0.837563 0.918936 0.920909
7 0.821429 0.893486 0.910913
8 0.785714 0.857426 0.889738
9 0.780612 0.888275 0.904671
10 0.724490 0.827410 0.860115

Table 1. Practical utility of the classifier (§5.1) as measured by
Accuracy, ROC-AUC and Average-Precision (AP) scores across 10
folds with hyper-parameter tuning.

duct several hyper-parameter optimization rounds to im-
prove the predictive performance of the classifier. We
use nested cross-validation to estimate the generaliza-
tion error and prevent over-fitting. We only explore a
small range of values around the parameters’ default
values. All hyper-parameters and their tuning ranges
are given in Table 3 in the appendix. In the inner loop,
the validation fold is rotated across 3 folds to choose
the best hyper-parameter configuration (modelled as
samples from a Gaussian Process using the framework
of Bayesian Optimization with 10 parameter configura-
tions being tested per fold). Hereby, we optimize over all
pipeline steps including the thresholds for dropping null-
valued and correlated features. The outer loop with 10
folds is used to evaluate the performance of the learner.
The evaluation is conducted over all 1,966 training sam-
ples with all 433 features.

As shown in Figure 5, we find that the classifier can
achieve practical utility, with an average ROC-AUC of
0.88(+£0.03) across the outer 10 folds. We list accuracy



and average precision (AP) metrics across all folds in
Table 1. We thus show that an off-the-shelf classifier
can extract enough signal from the PageGraph data set
to separate positive examples (breaking) from negative
examples (non-breaking) well above random (i.e. a ROC-
AUC of 0.50). Depending on the modelling objective it
is possible to further optimize performance with respect
to precision and recall or type I and type II error by
tuning the classification threshold.

5.2 Feature Importance

Next, we analyze the explanatory power of the classifier
by inspecting the effect of the extracted features on pre-
dictions. First we conduct the analysis along the lines of
the feature generating dimensions by removing all fea-
tures belonging to a specific dimension and measuring
the drop in predictive performance. We then repeat the
analysis for individual features to establish a rank-order
of the most predictive features. Despite the fact that the
Leave-One-Covariate-Out[10] importance metric doesn’t
capture interaction effects if applied to single features,
it can nonetheless hint at the relative amount of signal
contained in individual features.

To estimate the importance metric for feature
groups and single features respectively, we first fit the
classifier with default parameters (no tuning) and all
433 features to serve as a baseline. We then generate a
new data set for each feature (group) by removing the
respective features from the training data before fitting
the model with the remaining features. We then esti-
mate the importance by subtracting the ROC-AUC of
the reduced feature set from the baseline for each fea-
ture respectively via 5-fold cross validation and report
the mean and standard deviation.

The results for the importance of feature groups
per feature generating dimension are shown in Figure 6.
Page features in isolation result in a slightly higher loss
than Intervention features, with a mean loss of ROC-
AUC 0.010 and 0.004 respectively. More pronounced is
the difference between expertly curated vs. automati-
cally generated features with the auto-generated fea-
tures incurring a mean loss of ROC-AUC 0.004 and 0.037
respectively. Slightly less pronounced is the difference
between absolute and relative features with a mean loss
of ROC-AUC of 0.024 and 0.009 respectively.

Results for the importance of individual features are
shown in Table 2, and are described in detail in the
following section.
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5.2.1 Features with Predictive Power

This process yielded 40 features, from an initial starting
set of 433 candidate features. Table 2 gives the 40 fea-
tures that had predictive power in our model. A wide
range of features ended up being useful, representing a
wide range of page behaviors (e.g. JavaScript API calls,
structure and size of the DOM, amount and size of net-
work calls). As illustrated in Figure 6, no single kind
of page behavior dominated the predictive power of the
classifier (though, as discussed later, features capturing
pages’ network behaviors were somewhat more predic-
tive than other categories of features).

Similarly, no other “dimenson” of features domi-
nated the classifier’s predictions. Nearly as many pre-
dictive features measured overall page behaviors (20) as
measured just the activities blocked by the filter list rule
(20). Similar numbers of expert-curated features were
predictive as automatically generated features (15 and
25, respectively).

However, there were some trends we observed in
which page behaviors predicted page breakage. We here
briefly note three interesting and surprising patterns we
observed.

First, the kinds and number of JavaScript fea-
tures used on a page predicted page breakage.
JavaScript behaviors that were blocked (i.e. the scripts
that were blocked by the filter list rule) were generally
more predictive than overall page behaviors (i.e. blocked
and not blocked scripts alike). The number of scripts
fetched and executed by blocked scripts, the number of
cookies set by blocked scripts, and the number (and %)
of DOM nodes injected by blocked scripts were all pre-
dictive of breakage.

These findings support an intuition that most Web
applications are highly modular, with the privacy-
threatening portions of each application being contained
in a small portion of the overall implementation. How-
ever, this does not mean that the privacy-harming parts
of Web applications can generally be cleanly severed
from the overall application. In fact, these modules tend
to be tightly coupled, and blocking privacy-harming
scripts often breaks the overall application. This con-
clusion is supported by other related work[11] that finds
that filter-list-based content blocking tools are insuffi-
ciently granular to effectively address many kinds of pri-
vacy harms on the Web.

Second, the number of sub-documents in a
Many of the behav-
iors that predict breakage relate to the number of sub-

page predicts page breakage.

documents included on the page, both directly (e.g. “%
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Rank  Scope Source AUC Loss Description

Page Structure Features

3 Intervention  Auto 0.00374 % of sub-document requests blocked

6 Page Auto 0.00222  # of tags and text nodes in initial HTML
13 Intervention Auto 0.00156 A in # of sub-documents after blocking
19 Page Auto 0.00078 # of <iframe> in page
33 Page Auto 0.00025 % of DOM nodes that are <html>
36 Page Auto 0.00018 % of DOM nodes that are <iframe>
40 Intervention  Expert 0.00012 % of <html> elements blocked

Generic Graph Features

11  Page Auto 0.00179  # of unique node and edge types
22 Intervention  Auto 0.00061  # of unique types of actions taken by blocked scripts
35 Page Auto 0.00023  # of unique types of actions in entire page

Features Regarding JavaScript Modifying Page Structure

7 Intervention Auto 0.00217  # of DOM nodes created by HTML parser prevented by blocking
12 Intervention Auto 0.00169 % of JS DOM nodes created by blocked scripts
16 Intervention Auto 0.00116  # of DOM node insertions done by blocked scripts
21  Intervention  Expert 0.00062  # of <html> elements created by blocked scripts
25 Intervention  Expert 0.00046  # of DOM nodes created by blocked scripts
30 Page Auto 0.00032 # of DOM nodes created by scripts in entire page
34  Intervention  Auto 0.00024 % of DOM nodes deletions done by blocked scripts

Other JavaScript Features

4 Page Expert 0.00295  # of times any script accessed properties on window.navigator
5 Intervention Auto 0.00254  # of scripts fetched or eval’ed by blocked scripts
8 Page Expert 0.00216  # of times any script deleted a value from sessionStorage
9 Intervention  Expert 0.00205 % of document.cookie sets occurring in blocked scripts

10 Intervention  Auto 0.00190 % of localStorage operations occurring in blocked scripts
14 Page Auto 0.00126  # of scripts fetched or eval'ed in entire page

15 Intervention  Expert 0.00120 # of times blocked scripts read from document.cookie

17 Page Auto 0.00113  # of document.cookie operations in entire page

18 Intervention Auto 0.00083 % of sessionStorage operations done by blocked scripts

20 Page Expert 0.00073  # of WebGL calls, over the entire page

23 Intervention  Auto 0.00059  # of Web API calls made by blocked scripts

26  Intervention  Auto 0.00042 % of eventListener removals done by blocked scripts

28 Page Auto 0.00034  # of eventListener registrations in entire page

29 Intervention  Expert 0.00033 % of window.navigator reads made by blocked scripts

31 Page Auto 0.00027  # of <script> tags in page

37 Page Expert 0.00017 # of window.screen reads over entire page

38 Page Auto 0.00016  # of cross-document script-reads in entire page

39 Page Expert 0.00013  # of localStorage reads over entire page

Network Features

1 Intervention Expert 0.00831 A in bytes sent over network after blocking

2 Intervention  Expert 0.00550  size of resources directly blocked
24 Intervention  Expert 0.00059  # of resources blocked (direct or indirect)
27 Page Auto 0.00034 % of page actions that were network requests
32 Intervention  Expert 0.00026 % of network resources that were blocked

Table 2. This table presents the 40 features (from the 433 features considered) that predicted page breakage. The “Rank” column
gives the relative importance of each feature, with 1 being the most predictive, 40 the least. “Scope” describes whether the feature was
extracted from the pre-intervention graph, denoted “Page” or intervention-only graph, denoted “Intervention” (Section 4.2.1). “Source”
gives whether the feature was developed through expert curation or automatic generation (re Section 4.2.3. “AUC Loss” gives how
much predictive power was lost when the feature was removed (Section 4.3). “Description” provides a terse description of the page
behavior captured by the feature.
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Fig. 6. Importance of the feature generating dimensions Scope of Analysis, Absolute vs. Relative Values and Expertly Curated vs.

Automatically Generated Target Behaviors as measured by the mean loss in ROC-AUC when removing the respective features from
the training data. Error bars indicate the standard deviation across 5 folds.

of sub-document requests blocked”, rank 3, or “A of #
sub-documents after blocking”, rank 13) and indirectly
(“# of <html> elements created by blocked scripts”, rank
21). Similarly, whether the same <iframe> element was
used to load multiple sub-documents further predicted
page breakage. For example, “A in # of sub-documents
after blocking” (rank 13) was predictive of breakage, in-
dependent of the “# of <iframe> on the page” (rank
19).

Third, network behaviors were highly predic-
tive of breakage. Though only five of the 40 predictive
features in our set directly related to network requests
made by the page, this group contains both the first
and second most predictive features (“A in bytes sent
over network after blocking” and “size of resources di-
rectly blocked”, respectively). The number and percent
of network requests blocked were also, unsurprisingly,
predictive of breakage (rank 24 and 32, respectively).

5.2.2 Features without Predictive Power

Additionally, we briefly note some features we expected
(i.e. they were “expert curated”) to predict page break-
age, but which ended up not being predictive. We give
below a list of features we expected to be predictive, but
which were not.

For example, we expected the number of blocked
event registrations (i.e. the number of events that
blocked scripts would have registered) to predict page
breakage. We expected this on the intuition that at least
some of these event registrations would have been impor-
tant page behaviors (e.g. form handlers, interactive page
elements), behaviors that would “break” the page if they
were omitted. However, this proved not to be the case;

the number of blocked event registrations did not pre-
dict breakage. We suspect this might be because most
event registrations in blocked scripts end up not being
core to page behavior, and are instead more likely to
be related to user tracking or other undesirable (to the
user) behaviors (e.g. interaction “heat maps” and other
fine-grained behavioral tracking).

Similarly, despite our expectations, the number of
text nodes inserted by blocked scripts did not predict
page breakage. Our intuition was that if blocking a script
removes a lot of text from the page, that script is likely
important to the page. However, this turned out to not
be the case; this feature was not predictive of breakage.
One possibility is that unwanted scripts (e.g. large adver-
tisements, captions for video ads, etc.) end up also being
responsible for a large amount of text, and so “amount
of text added to the page” ends up not being useful for
distinguishing blocking that breaks a page from blocking
that leaves the page functioning well.

5.3 Sample Complexity

Last, we empirically analyze the sample complexity of
the classifier in order to understand the amount of train-
ing data needed to achieve practical utility.

Analogous to the previous section we omit the tun-
ing step and initialise the classifier with default parame-
ters. We then train the classifier on varying amounts of
data (1%, 25%, 50%, 75% and 100% of training samples)
including all features, each time reporting the mean
ROC-AUC over 10 folds to estimate classification per-
formance given the respective amount of data. Finally,
we plot the mean ROC-AUC as a function of the number
of training samples in Figure 7.
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Fig. 7. Empirical sample complexity estimated by the mean ROC-
AUC as a function of the number of training samples across 10
folds.

We can see that performance converges after train-
ing the classifier on roughly 50% of the training data
(983 samples), i.e. collecting and training on additional
training samples yields diminishing returns. Given the
cost of acquiring new samples, this is a desirable result.

6 Discussion

We next provide some discussion of how our system
could be deployed, extended and improved by future
work. We first discuss practical deployment scenarios for
our compatibility classifier, and how our system could
be used by filter list authors to improve the compatibil-
ity and coverage of crowd sourced filter lists. Next, we
discuss how our approach could be extended to other,
non-filter list privacy interventions, and the potential
difficulties in doing so. We then examine the potential
effects of the dynamism of Web content on our mea-
surements, and describe the strategies we employed to
mitigate this. Last, we discuss some of the limitations
and weaknesses in our approach, and how they could be
addressed by future work.

6.1 Deployment Strategies

We here briefly discuss several ways our classifier could
be used by privacy developers to improve the usability of
content blocking filter lists, and by site authors to detect
and repair when their sites break for users of content
blocking tools.
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6.1.1 Aid Existing Filter List Auditors

One possible deployment strategy for a Web compatibil-
ity classifier is to use the classifier as an aid to existing
human evaluators, crawling the Web and flagging any
potentially-broken websites it encounters. In this case,
the classifier could be tuned to favor recall over preci-
sion, and reduce the number of broken sites a human
evaluator would need to consider and label as working
or broken, from “the universe of all possible websites” to
“any false positives generated by the classifier”. The clas-
sifier would be, effectively, a force-multiplier for existing
filter list developers.

6.1.2 Protecting Must-Work Sites

Similarly, the classifier could be deployed to warn when
a new rule might break “high-priority” sites, as part a
continuous-integration-style system for filter list devel-
opment. Different communities of filter list users (or de-
velopers) may have sites that are of extra-importance
to them (e.g. high popularity sites, either globally or by
linguistic community, or sites vital to communication
or safety with threatened groups, etc). In such cases,
filter list authors might wish to be extremely confident
that these priority sites continue to work when new filter
list rules are added. Manually checking such sites every
time a new filter list rule is added would be prohibitive:
popular filter lists are updated several times a day. An
automated classifier could bring the amount of manual
verification needed down to manageable levels.

6.1.3 Assisting Site Authors

Finally, the classifier could also be used by site authors
who wish to be warned when a new filter list rule might
break their site for users of content blocking tools. While
we expect that most site authors would prefer visitors
not use content blocking tools at all, the popularity of
“please disable your content blocker” notifications with
a “dismiss” option suggests that a non-trivial number of
site authors would prefer their sites work in the presence
of a content blocking tool over their sites breaking alto-
gether. In these cases, concerned site authors could use
the classifier to receive an “early warning” when their
pages might break for filter list users. Web hosting ser-
vices or reverse-proxy services like Cloudflare or Fastly
could offer such “breakage” warnings as a service to their
clients.



6.2 Applicability to Other Privacy
Interventions

Though we chose to build our classifier to predict when
filter list rules could break a page, we expect our ap-
proach could be extended to other privacy interventions
which risk breaking websites, because they fail to dis-
tinguish between benign and malicious behavior, or be-
cause the malicious behavior they prevent is deeply en-
twined with desirable page behaviors. We expect that a
classifier that could detect when these other privacy in-
terventions break sites would be beneficial to their devel-
opers and users, for many of the same reasons discussed
in Section 2. Developers of these tools could use an auto-
mated classifier to detect when, and what kinds of, sites
break, and use that information to either refine their
tools or create application-exceptions when needed.

While we expect the general approach of construct-
ing and training our classifier would work for other pri-
vacy interventions, extending our classifier to other sys-
tems would require some non-trivial changes. For exam-
ple, our work leverages the EasyList commit history to
create a “naturally occuring” ground truth dataset; find-
ing a comparable set of pre-labeled data may be diffi-
cult for other projects. Similarly, many of the features
we selected for predicting page breakage are likely more
applicable to filter-list blocking than other privacy in-
terventions (e.g. changes in number of scripts requested,
sub-documents loaded, or event handlers registered). De-
tecting when other kinds of privacy interventions break
pages likely will require other (or at least additional)
features.

6.3 Dynamic and Changing Page Behavior

The Web is not deterministic. Visiting the same URL
multiple times can return different content, sometimes
entirely different pages as time passes and Web sites
naturally change and evolve. Moreover, the same con-
tent can potentially behave very differently from visit to
visit, even if the visual appearance of the page looks un-
changed. Recordings of multiple visits to a URL are thus
not necessarily comparable: the same browser events will
not necessarily occur in both instances, let alone in the
same order, introducing noise beyond whatever variable
was intentionally altered between the visits (e.g. filter-
rule changes). We account for the inherent dynamism of
the Web with a multi-pronged approach.

First, we employed multiple levels of validation
and pruning when collecting examples for our training
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dataset to ensure that the historical filter-rule changes
we examined still meaningfully applied to the current
versions of the Web pages our crawler visited. Filter-
rule changes from before 2013 were excluded altogether;
extracted URLs which resolved to HTTP error codes
were similarly cut from crawling. We then evaluated
both the pre-intervention and post-intervention filter
rules against each page’s recorded network activity, and
dropped pages which showed no resulting difference in
blocking decisions between the two rulesets (§3.2). A fi-
nal layer of validation ensured that the pre-intervention
PageGraph recorded for each page contained elements
connected to network resources blocked by the inter-
vention, implying that the intervention would actually
change page behavior (§4.1). This process pruned our
dataset down to the 1,966 examples used to train our
classifier.

Second, we avoided computing any single classi-
fier feature from recordings of more than one visit to
a page. To compute the difference in the number of
bytes sent over the network with and without the in-
tervention, we could have totaled up the transferred
bytes tracked in each of the pre- and post-intervention
PageGraph recordings, then subtracted the one from
the other. But because these recordings represent sep-
arate page loads, other factors beyond the interven-
tion could change page behavior between visits by our
crawler and influence any difference in these numbers.
Instead of comparing numbers between the pre- and
post-intervention graphs, we computed features like this
from the intervention-only graph detailed in Section 3.3.
Briefly, the intervention-only graph for a page is the
subgraph of the pre-intervention PageGraph containing
recorded page behavior which can be attributed to re-
sources that would be blocked by the post-intervention
filter rule set but are not blocked by the pre-intervention
rules. Then the number of bytes transferred as recorded
by the intervention-only graph gives us a measure of the
network activity impacted by the blocking behavior of
the intervention. In this way, we measure the effects of
the intervention without allowing avenues for the Web’s
dynamism to enter into our calculations. These features
ranked highly in predictivity in our analysis presented
in Table 2.

6.4 Limitations and Future Work

Finally, we note some weaknesses and limitations in
our approach, and suggest how they could be improved
through future work. First, our crawler does not interact



with pages when recording (through PageGraph) page
behaviors. As a result, there are likely cases where our
crawler does not trigger some “broken” behaviors on the
page, causing those broken behaviors to not be recorded
in our dataset. This means that our classifier is not con-
sidering some (possibly) predictive information, and so
is not performing optimally.

For example, consider the case when a filter list rule
blocks a form validation script, but that form valida-
tion script is only applied to the page after some user
interaction (such as clicking on a “contact us” button
on the page). Our crawler would record the script being
blocked, but not how the page behaves when the user
tries to submit the now-broken contact form. As a result,
certain categories of broken behaviors are missed by our
crawler and classifier. Future work in this area might
address this weakness (and so likely improve the perfor-
mance of the classifier) by having the crawler interact
with pages, either by having the instrumented browser
be driven by a human user, or through software that
attempts to simulate human interactions!®.

Second, and more broadly, while our system can tell
filter list authors when a site might be breaking, our sys-
tem does not provide the filter list author with an easy
way of fixing the site. Filter list authors could choose to
remove the relevant rule, or modify the rule so that the
rule is not applied to the breaking site. This would main-
tain compatibility, but only by undermining the initial
goal of the filter list! Figuring out how to modify fil-
ter list rules so they protect privacy without sacrificing
compatibility is beyond the scope of work, but is an im-
portant area for future work.

Third, we note that there are other kinds of features
that could be used to possibly further improve classifier
performance. Our implementation only considered page
behaviors when trying to predict breakage, but our ap-
proach could be extended to consider other available
data. For example, features could be designed to con-
sider visual differences in a page before and after block-
ing, on the (possible) intuition that if applying a filter
list rule causes a large visual difference, its more likely
the filter list rule has broken the page. Future work could
try boosting the classifier’s performance with many such
other sources of information.

Finally, because we screened out filter-rule changes
which had no observable effect on network content-
blocking decisions (§3.2), our study ignores changes

15 For example, stress-testing scripts like https://github.com/
marmelab/gremlins.js.
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which touch only so-called “cosmetic” filter rules. These
rules inject small snippets of CSS styling into pages
to touch up their appearance, predominantly to hide
loaded elements and fix up blank spaces left by blocked
page components like banner ads. We feel comfortable
omitting such rules because, in our experience, they
break pages far less often than network rules. The im-
pact of blocking a network resource can cascade out-
ward, preventing scripts from running or causing errors
in loaded scripts, leading in turn to failures in page con-
struction and interactive functionality; style changes, on
the other hand, don’t have the same knock-on effect
on page behavior. Moreover, our focus is on improv-
ing Web privacy, and style rules do not (generally) pro-
vide users with privacy protections: instead of stopping
unwanted content from loading or preventing privacy-
invading code from executing, they simply cover up the
visible effects.

7 Related Work

In this section we discuss how our automated compati-
bility classifier compares and relates to other work in the
area, and specifically to existing research exploring how
the compatibility risks of privacy interventions, and the
challenges and history of maintaining content blocking
filter lists.

7.1 Compatibility of Privacy Protections

Our work most directly relates to a focused but impor-
tant area of research and practice around the compati-
bility costs of privacy enhancing techniques.

Much of the existing work in this area starts with
proposed method of improving privacy for users, and
then evaluating the compatibility costs of the proposed
intervention. For example, Yu et al.[12] proposed an au-
tomated system for detecting trackers on the Web, based
on how often third-parties reoccurred across first-party
sites. They then built an extension that would block de-
tected trackers, and then estimated how many websites
their extension broke based on how often users reloaded
pages. Snyder et al.[13] similarly suggested that Web pri-
vacy and security could be improved by removing infre-
quently used Web APIs, and had human labelers eval-
uate how many websites broke when each feature was
blocked. Smith et al. proposed improving Web privacy
with an automated system that would rewrite scripts



to remove privacy harming behaviors without disrupt-
ing benign, user serving code paths. They too evaluated
their system with human labelers. Igbal et al. 2020[14]
and 2021[15] used similar human evaluation systems for
determining the compatibility impact of machine learn-
ing based approaches for blocking tracking scripts and
detecting fingerprinting scripts, respectively.

Other research has focused on evaluating the com-
patibility trade-offs in existing Web systems, instead of
evaluating the compatibility of a newly proposed sys-
tem. Jueckstock et al.[16] used a human labeling system
to evaluate how often different systems for managing
third-party storage in Web browsers broke sites. Mes-
bah et al.[17], Choudhary et al.[18] and Van Deursen et
al.[19] proposed systems for measuring when differences
in browser implementations of Web standards broke
websites.

Finally, recent work by Mandalari et al.[20] de-
scribes a system that determines when privacy inter-
ventions break user desirable systems, but for internet-
of-things devices instead of websites. Their system au-
tomatically distinguishes necessary traffic flows from
non-core flows, and only applies privacy protections (i.e.
blocking) to traffic flows not necessary for a devices user-

serving functionalities.

7.2 Filter List Maintenance

Our work also builds on a large body of work identi-
fying and/or addressing difficulties in maintaining con-
tent blocking filter lists. Snyder et al.[21] measured how
much “dead weight” (i.e. non-useful rules) had accumu-
lated in popular filter lists, and proposed a system for
optimizing filter lists by removing rules that were not
ever applied during automated crawls of the Web. Chen
et al.[22] proposed a system for detecting when track-
ers evade filter lists by moving, combining, or renam-
ing tracking scripts by identifying scripts by their be-
haviors (instead of their URLS). They proposed using
their approach to automatically add “evading” scripts
to existing filter lists. Sjosten et al.[23] found that many
region-specific filter lists were not as well maintained as
filter lists targeting languages with more global speak-
ers (e.g. English, Spanish, Chinese, etc), and proposed a
machine-learning approach for augmenting regional fil-
ter lists based on what is blocked by global lists. Bha-
gavatula et al.[24] proposed a system for assisting filter
list authors by using machine learning to detect textual
patterns in blocked URLs, and to use that classifier to
generate new filter list rules.
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Alrizah et al.[25] measured how often, and how long
it took for blocked scripts to try and evade being blocked
by filter lists, and found that it often takes filter list
authors over a month to respond to evasion efforts.
Wang et al.[26] similarly found filter lists have difficulty
keeping up when websites attempt to evade detection,
though their work focused on websites modifying page
structure to avoid cosmetic filtering rules.

Finally, a body of work has studied the difficulties
filter list authors face when sites attempt to block filter
list users (e.g. “anti-ad-block”, or “ad-block-blockers”).
Igbal et al.[27] and Nithyanand et al.[28], for example,
both find that many sites attempt to detect when a visi-
tor is applying a filter list (either by checking for blocked
requests or for hidden page elements) and apply a range
of countermeasures to try and coerce the visitor to dis-
able their content blocking tool.

8 Conclusion

In this work we have presented the first accurate and
fully automated system for classifying whether apply-
ing a filter list rule to a website would break the user-
desirable features on that website. Past work has doc-
umented the significant privacy, performance, and secu-
rity benefits of filter-list-based blocking, but such work
only counts the “benefits” side of the ledger. Absent a
way of systematically predicting the “costs” of adding
more privacy protections, privacy research risks becom-
ing detached from reality. Without a scalable way of
estimating compatibility risk, more blocking, more fil-
tering, and more interventions will always look better.
If the usability costs are ignored, a broken system will
always appear more private than a functioning one.

We hope our work is a useful step towards finding
practical, scalable ways of detecting when privacy inter-
ventions break the systems they aim to improve. Our
work focuses on filter lists rules (because filter lists are
among the most popular and well-studied privacy inter-
ventions on the Web), but all proposed privacy interven-
tions would benefit from similar systems.
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A Appendix

Parameter Default Value Tuning Range
base_score 0.5 (0.45, 0.55)
colsample_bylevel 1 (0.8, 1)
colsample_bynode 1 (0.8, 1)
colsample_bytree 1 (0.8, 1)
gamma 0 (0, 5)
learning_rate 0.3 (0.2, 0.4)
max_delta_step 0 (0, 5)
max_depth 6 (4, 8)
min_child_weight 1 (1, 5)
n_estimators 100 (80, 120)
num_parallel_tree 1 (1, 5)
reg_alpha 0 (0, 5)
reg_lambda 0 (1,5)
scale_pos_weight 1 (0.8, 1)
subsample 1 (0.8, 1)

Table 3. XGBoost hyper-parameters with tuning ranges.
Ranges are chosen so as to explore configurations in the neigh-
bourhood of parameter default values. These parameters are
described in more detail in the XGBoost documentation®6.

16 https://xgboost.readthedocs.io/en/stable/python/python__
api.html
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