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Multitrack detection architectures provide throughput and areal density gains over the current industry’s standard of single-track
detection architectures. One major challenge of multitrack architectures is the complexity of implementing conventional pattern-
dependent media noise prediction (PDNP) strategy within the multitrack symbol detector. In this paper we propose a neural network
media noise predictor with manageable complexity that iterates with our rotating target (ROTAR) symbol detector in the turbo
equalization fashion to predict and cancel the media noise for multitrack detection of asynchronous tracks. We evaluate the proposed
detection strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed solution can effectively
mitigate the media noise and therefore can replace the prohibitively complex PDNP solution for multitrack detection.

Index Terms—Intertrack interference, multitrack detection, multiple-input multiple-output (MIMO) channel, timing recovery,
turbo equalization, two-dimensional magnetic recording (TDMR).

I. INTRODUCTION

THE STANDARD media noise mitigation technique is
the pattern-dependent noise prediction algorithm [1]–[3].

This algorithm adds a linear predictor to the trellis-based
symbol detector. The additional taps of the noise predictor
filter exponentially increase the number of the trellis states.
Consequently, the complexity of the resulted detector will
be 2K(ℓ+∆), where K is the number of tracks to be jointly
detected, ℓ is the length of the target response, and ∆ is
the length of the noise predictor filter. Although this added
complexity is hesitantly tolerated in current industry’s single-
track read channels where K = 1, when we move to the
multitrack detection where K can potentially be 2, 3, or more,
the conventional PDNP leads to a state explosion of the trellis-
based detector and can no longer be implemented. Further,
our ROTAR detector of [4]–[6], in order to account for the
asynchrony of the tracks being detected, also adds a minimum
of 2 × (K − 1) additional memory elements to the target
response. This means that if the conventional PDNP is to be
implemented within ROTAR, the number of trellis states will
grow to a formidable 2K(ℓ+∆)+2×(K−1). Therefore, a straight-
forward extension of the conventional PDNP to a multitrack
trellis-based symbol detector and especially ROTAR is not
possible.

In addition, the conventional PDNP mentioned above only
considers the noise in the downtrack dimension and ignores it
in the crosstrack dimension. A 2-D extension of the traditional
1-D PDNP is proposed in [7], however, with the above
mentioned added complexity and for multitrack detection of
synchronous tracks. In this paper we develop such a strategy
for multitrack detection of the more realistic asynchronous
tracks with manageable complexity within the GPRML read
channel of [6]. The idea is to remodel the outputs of our
asynchronous partial-response (APR) equalizer [6] such that
both the signal part and the noise part of the outputs are
functions of the bits written on multiple adjacent tracks,

according to
yk = s(Ak) + nk(Ak), (1)

where yk is the vector of the equalized readback samples at
time k, and both the signal s and the zero-mean noise n depend
on the matrix-valued pattern Ak = [ak+I , ...,ak, ...,ak−J ],
where ak contains the fractionally delayed bits on the adjacent
tracks of interest at time k. Since the characteristics of the
media noise depend on the pattern of the written bits, we
model the noise as a pattern-dependent autoregressive Gaus-
sian process with memory Np, according to

nk =

Np∑
i=0

Pi(Ak)nk−i +Λ(Ak)uk, (2)

where uk ∼ N (0, I) is a matrix-valued white sequence of
Gaussian noise vectors, Λ(Ak) is a pattern-dependent stan-
dard deviation matrix, and where {Pi(Ak)} are the pattern-
dependent autoregressive filter coefficients.

A main approach, therefore, is to, upon observing {yk},
find a joint ML solution for the signal and the noise parts in
the above multitrack detection problem in the face of pattern-
dependent noise. The Viterbi algorithm provides this solution,
that is a solution for detecting the state sequence of a finite-
state machine based on observations of the APR equalizer
outputs contaminated by the media noise. Such solution,
however, requires complete knowledge of the autoregressive
filter coefficients {Pi(Ak)}, the pattern-dependent standard
deviation matrices {Λ(Ak)}, and the pattern-dependent signal
components {s(Ak)}. Normally, the PDNP mechanism esti-
mates these parameters during training where bits are known
and results in a trellis where each bit pattern (each trellis
branch) has its own set of parameters and thereby its own
predicted noise pattern. This entire process of adding noise
predictors to the trellis yields 2K(Np+I+J) states, where I+J
and Np can be viewed as the length of the target response
and the noise predictor filter, respectively. Also, if we add the
ROTAR mechanism to mitigate the asynchrony, we yield the
total of 2K(Np+I+J)+2×(K−1) states which is impractical.
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Fig. 1. Block diagram of the ROTAR-NN noise predictor turbo detector.

II. TURBO-CONNECTED NEURAL NETWORK NOISE
PREDICTOR AND ROTAR DETECTOR

Our proposed approach to the joint estimation of the signal
and the noise in (1) is to iteratively adapt between a solution
for the signal and a solution for the noise. This approach
follows the well-established turbo equalization (also known
as the turbo detection) principle in communication systems
[8]. Thereby, the idea is to avoid the state explosion due to
the PDNP mechanism by separating the symbol detection and
media noise prediction into two separate modules and then
use the turbo equalization principle to exchange information
between them. Further, since a neural network can better learn
and therefore predict the nonlinear characteristics of the media
noise, we use a neural network in place of the conventional
autoregressive model of (2). This idea has been explored
for the 1-D magnetic recording case where a single-track of
interest is detected from a single readback waveform [9].

Fig. 1 shows our proposed strategy for predicting the media
noise using a neural network within our GPRML read channel
for multitrack detection of asynchronous tracks. The soft
output extrinsic information is passed from ROTAR to the
noise predictor which in return provides an estimate of the
noise to be subtracted form the branch metrics within the
ROTAR algorithm. The equalized outputs are also fed to
the noise predictor network. We explored using a multilayer
perceptron of four layers and a deep neural network and
observed efficient performance with the multilayer perceptron.

III. SIMULATION RESULTS

The simulations are performed on a data set provided by
data storage institute [10]. The waveforms are generated from
the grain-flipping probability model in building the magnetized
medium. This model generates realistic 2-D waveforms with
media noise. A write frequency offset of τ

(2)
k = k∆T2/T =

2× 10−4k, where 1/T is the ADC sampling rate, is injected
into the bits of TRACK 2 by linearly shifting the position of
the writer. The rest of the tracks are written without any timing
offsets. Fig. 2 shows the BER performance of the ultimate
proposed read channel of Fig. 1 in comparison with the
same GPRML read channel that lacks the noise cancellation
mechanism. The figure plots the average BER performance
for the two middle tracks being detected using two readers
separated based on track pitch (width) (TP). The proposed
read channel is trained anew for each reader spacing to find
the optimum target and equalizer pair, and the neural network
weights for different readback waveforms selected.

The curve labeled “GPRML, W/ NN NOISE CANCEL-
LATION” is the performance of the proposed read channel
where the neural network noise predictor has four fully
connected hidden layers that apply tangent-sigmoid activation

TP/4 TP/2 3TP/4 TP
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Fig. 2. BER performance of the proposed read channel with and the same
read channel without the neural network noise cancellation.

function to their inputs. The baseline read channel is the
same as the proposed read channel without any noise can-
cellation mechanism and is labeled as “GPRML, W/O NOISE
CANCELLATION”. Since the prediction functionality is not
integrated into the trellis of ROTAR, the complexity of the
trellis remains equal to the complexity of only the ROTAR
detector without noise cancellation, that is 2K×ℓ+2×(K−1) =
22×1+2×1 = 16 states. This is in contrast to adding the
standard PDNP mechanism into ROTAR which would have
resulted in 2K(Np+I+J)+2×(K−1) = 22(8+1)+2×1 = 1048576
states. The proposed read channel shows an average 43.75%
reduction in BER, and an average 55% gain in the areal
density compared to the baseline read channel without any
noise cancellation mechanism.
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