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Plant organelles predominantly rely on the actin cytoskeleton and the myosin motors for
long-distance trafficking, while using microtubules and the kinesin motors mostly for
short-range movement. The distribution and motility of organelles in the plant cell are fun-
damentally important to robust plant growth and defense. Chloroplasts, mitochondria,
and peroxisomes are essential organelles in plants that function independently and coor-
dinately during energy metabolism and other key metabolic processes. In response to
developmental and environmental stimuli, these energy organelles modulate their metab-
olism, morphology, abundance, distribution and motility in the cell to meet the need of
the plant. Consistent with their metabolic links in processes like photorespiration and
fatty acid mobilization is the frequently observed inter-organellar physical interaction,
sometimes through organelle membranous protrusions. The development of various
organelle-specific fluorescent protein tags has allowed the simultaneous visualization of
organelle movement in living plant cells by confocal microscopy. These energy organelles
display an array of morphology and movement patterns and redistribute within the cell in
response to changes such as varying light conditions, temperature fluctuations, ROS-
inducible treatments, and during pollen tube development and immune response, inde-
pendently or in association with one another. Although there are more reports on the
mechanism of chloroplast movement than that of peroxisomes and mitochondria, our
knowledge of how and why these three energy organelles move and distribute in the
plant cell is still scarce at the functional and mechanistic level. It is critical to identify
factors that control organelle motility coupled with plant growth, development, and stress
response.

Introduction
Plant cells are often envisioned as the classic textbook cartoon: static organelles spaced indiscrimin-
ately in the cytoplasm within the confines of rigid cell walls. However, organelles are highly dynamic,
as their quantities fluctuate via biogenesis, fission, fusion, and degradation and their morphologies
shift among a variety of sizes and shapes. Organelles traverse the cell by cytoplasmic streaming and
organelle-specific, targeted motility along the cytoskeleton, driven by molecular motors that travel
along the tracks of the cytoskeletal filaments.
Eukaryotic cells employ the cytoskeletal motors of kinesins, dyneins, and myosins that hydrolyze

ATP to propel organelle transport directionally along polarized microtubule and actin tracks, whose
orientation dictates the direction of travel. Active motor-mediated movement can trigger other modes
of transportation, including cytoplasmic streaming and ‘hitchhiking’, in which organelles are trans-
ported indirectly by associating with cargoes already being carried by motors [1].
In animal cells, the microtubule-based cytoskeleton, along with kinesin and dynein motors, are pre-

dominantly responsible for vesicle and organelle trafficking [2–4]. In contrast, actin filaments com-
prise the major intracellular highway system in plants for long-range organelle trafficking, driven
primarily by the class XI myosin proteins [5–9]. Plant microtubules and their associated motors, kine-
sins, mainly direct short-range organelle movement, pauses, and orientation in coordination with the
actin cytoskeleton [10–14]. Additionally, the endoplasmic reticulum (ER) is intricately involved in

Version of Record published:
17 November 2023

Received: 28 September 2023
Revised: 6 November 2023
Accepted: 8 November 2023

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-

ND).

1

Biochemical Society Transactions (2023)
https://doi.org/10.1042/BST20221093

http://orcid.org/0000-0002-4635-4299
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


motor-assisted organelle motility. For example, the ER is associated with the dynamic cytoskeletal network
through tethering and anchoring mechanisms, most especially at ER-plasma membrane contact sites [6,15].
Furthermore, proximity and interactions among organelles correlate with fluctuations in ER morphology,
which suggests that the ER mediates the positioning and movements of organelles, including chloroplasts, mito-
chondria and peroxisomes [16,17].
A number of studies testing organelle motility in Arabidopsis myosin mutants and myosin localization in

plant cells indicate functional redundancy in the Myosin XI protein family and targeting of the same myosin
motor to multiple types of organelles [5,18–22]. The apparent promiscuity in the interactions between myosin
motors and organelles beckons for regulatory mechanisms of organelle movement that is possibly governed by
organelle-specific receptors/adaptors, which recruit designated Myosin XI motors [23].
These molecular motors and their associated cytoskeleton facilitate the movement and dynamics of the

nucleus and endomembrane system, including ER, Golgi, and vesicles, which have been expertly reported in
several recent papers [24–27]. In this review, we focus on the motility of plant energy organelles — chloro-
plasts, mitochondria, and peroxisomes — which work independently as well as in concert during energy
metabolism. These organelles modulate not only their metabolism and morphology but also their distribution
and motility in accordance with developmental stages and environmental conditions. Here, we introduce the
collaborative nature of these three energy organelles in photosynthetic organisms and methods used to study
their motilities and discuss the factors that trigger and modulate their movement and distribution. We apolo-
gize to researchers whose publications cannot be cited due to space limitation.

Organelle functions
Chloroplasts, enclosed by double envelopes and containing their own genome, house the photosynthetic
machinery that performs light capture and carbon assimilation, along with many other vital cellular functions
beyond direct energy production, such as the biosynthesis of lipids, phytohormones and other key molecules
[28–31]. Mitochondria are double-membraned, DNA-containing organelles whose primary role is cellular res-
piration while also performing plant-specific functions such as malate oxidation and photorespiration [32].
Peroxisomes are single-membraned and DNA-less organelles involved in fatty acid degradation and detoxifica-
tion of reactive oxygen species, along with plant-specific functions such as phytohormone production and
photorespiration [33–35].
Several of the above-mentioned processes require the collaboration of chloroplasts, mitochondria, and/or per-

oxisomes [36–38]. Namely, the photorespiratory pathway requires these three organelles to recover mis-
assimilated carbon produced due to the oxygenase activity of the photosynthetic enzyme Rubisco, protecting
the plant cell from toxic byproducts [39,40]. Besides being essential to the survival of organisms performing
oxygenic photosynthesis in ambient air, photorespiration also has a demonstrated role in immunity [41]. In
addition, during the metabolism of fatty acids, triacylglycerol stored in oil bodies can be degraded in peroxi-
somes via β-oxidation, after which the glyoxylate cycle, also housed in peroxisomes, produces metabolites that
are exported to mitochondria for the tricarboxylic acid (TCA) cycle to ultimately release the stored energy
[33,42]. Moreover, lipid transfer can occur directly between chloroplasts and mitochondria during phosphate
starvation [43]. As a final example, jasmonate ( JA) biosynthesis requires chloroplasts to produce the precursor
12-oxo-phytodienoic acid (OPDA), which is then imported into the peroxisome to be converted to JA via
β-oxidation [33,44,45].
Consistent with their metabolic connections, these organelles are often observed to be in close physical prox-

imity. Mitochondrial associations with chloroplasts increase under high light in the diatom Phaedactylum, as
well as during mixotrophy (compared with phototrophy) in the alga Nannochloropsis [46]. In Arabidopsis, the
proximity area between these organelles expands in light compared with dark [47]. Chloroplast-peroxisome-
mitochondrion complexes are formed more frequently in light than in dark, and light-induced triple organelle
interaction is suggested to be regulated by photosynthesis and facilitated by ER-chloroplast nexuses [47–49]. ER
reorganization is also proposed to contribute to the formation of tubular protrusions from chloroplasts, peroxi-
somes, and mitochondria, termed stromules, peroxules, and matrixules, respectively [50]. During high light
irradiation, small mitochondria cluster around peroxules [49]. While proximity among all three energy orga-
nelles increases in mesophyll in light [47,48] and stromule formation is more frequent in light-treated epider-
mal pavement cells (Figure 1A), similar numbers of mitochondria and peroxisomes interact with both the
chloroplast body and stromules in these pavement cells [51]. These organelle protrusions very likely provide a
platform for inter-organellar interaction and metabolite exchange among the organelles.
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Methods for organelle and cytoskeletal visualization
Chloroplasts, due to their superiorly large size and chlorophyll autofluorescence, can be readily visualized
through light and fluorescence microscopy [52].
In early studies, detections of peroxisomes and mitochondria were largely dependent on organelle-specific

enzymes or distinct properties of their membranes. For example, using fluorescence microscopy, plant peroxi-
somes were detected by immunofluorescence using antibodies against catalase [53] while mitochondria were
probed by dyes like rhodamine 123 that binds to P-glycoproteins [54,55]. Due to disadvantages associated with
rhodamine 123 like challenges of sample washes and photostability, it has largely been replaced by synthetic
hydrophobic dyes commonly known as MitoTrackers, which bind to mitochondrial membranes and can be
conjugated with different fluorophores [56] to track mitochondria in living plant cells [57].
Lately, fluorescent protein (FP) tags introduced by recombinant DNA techniques have been widely adopted

to monitor the dynamic behavior of peroxisomes and mitochondria, when either stable transformation or

Figure 1. Examples of energy organelle dynamics in photosynthetic organisms during environmental and

developmental changes.

Changes in the distribution and movement of chloroplasts/plastids (green), mitochondria (yellow), and peroxisomes (pink) are

shown. (A) Chloroplasts and mitochondria exhibit photorelocation and cold positioning in Arabidopsis and tobacco pavement

cells (PC), mesophyll cells (MC), and guard cells (GC). Peroxisome proliferation and motility increase in light. Light-induced

morphological changes include mitochondrial aggregation, peroxisome elongation, and chloroplast stromule formation.

(B) Seasonal rearrangement of chloroplasts occurs in conifer species. (C) Chloroplasts redistribute during pathogen infection

and immune response in Arabidopsis and tobacco leaves. (D) The three energy organelles are differentially distributed and vary

their motility during pollen tube development in flowering plants. (E) Dynamics of the three energy organelles shift in response

to reactive oxygen species (ROS) in Arabidopsis leaves. Mitochondria slow and aggregate while peroxisomes speed up and

form peroxules. (F) Mitochondria slow down, redistribute under fluctuating carbon dioxide (CO2) levels in Chlamydomonas.

(G) Peroxisomes are more concentrated in the meristematic zone in root tips and their morphology is altered in response to

cadmium (Cd2+) toxins in roots. Arrows in (A), (D) and (E) represent general motility patterns. MeJA, methyl jasmonate;

NO, nitric oxide. The nucleus (blue) is only depicted when its interaction with energy organelles is involved. Created with

BioRender.com.
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transient expression is applicable in the host cells. Besides the founding green fluorescent protein (GFP),
numerous FPs may be chosen nowadays for their features of color, brightness, quantum yield, maturation prop-
erty, pKa, and lifetime, which are frequently updated by the research community (https://www.fpbase.org/).
When covalently attached to proteins that are unique to the respective organelle at either the organelle mem-
branes or lumens after translation, these FPs faithfully report the intracellular positions of the organelles by
fluorescence microscopy. Moreover, organelle and cytoskeletal FP marker collections have expanded beyond
model plants and are now optimized for uses in crop plants like maize [58], rice [59,60], and barley [61].
Several excellent articles have summarized typical examples [62–64].
To label peroxisomes, a 3-amino acid canonical peroxisomal targeting signal 1 (PTS1) sequence, such as

Ser-Lys-Leu (SKL) or Ser-Arg-Leu (SRL), is usually translationally conjugated to the C-terminus of an FP
[63,65]. Peroxisomes can also be illuminated using the fusion of the N-terminus of a peroxisome matrix
protein containing the PTS2 nonapeptide, such as that from the 3-ketoacyl-CoA thiolase or the glyoxysomal
malate dehydrogenase, and the FP [66]. When an FP-PTS1 or PTS2-FP fusion protein is expressed under con-
stitutively active promoters like the viral 35S promoter, it is in high abundance so that peroxisomes are brightly
labeled for convenient observation by confocal microscopy.
Similarly, mitochondria can be labeled by attaching their targeting sequence at the N-terminus of FPs. A

widely used targeting sequence in plants is a 29-amino acid peptide derived from the yeast cytochrome c
oxidase IV (COX4) [63]. Mitochondrial-specific proteins like the γ-subunit of F1-ATPase serve the purpose
equally well in plant cells [64]. Although they require transcription and translation in host cells, such FP-based
probes are often favored over lipophilic dyes because of their organelle specificity.
The motility as well as polarized distribution of plant organelles including peroxisomes and mitochondria is

dependent primarily on actin microfilaments and employs the myosin motors [18,53]. Live-cell imaging of
actin filaments has evolved from the application of the fluorescent dye-conjugated fungal toxin of phalloidin to
FP-tagged polypeptides of various actin-binding proteins [67,68]. Earlier adoption of the actin-binding protein
talin often resulted in the formation of thick actin bundles [68]. As a replacement, ABD2, an actin-binding
domain of the Arabidopsis fimbrin 1 protein, or the 17-amino acid Lifeact peptide derived from the yeast actin-
binding protein Abp140 [69], is often used these days, both of which can significantly reduce the bundling and
aggregation of actin microfilaments.
The ever-growing diversity of FPs and highly sophisticated microscopes with exceptional resolution enable

synchronous visualization of multi-organellar and cytoskeletal topology in living cells. For example, peroxi-
somes, mitochondria, and actin labeled with multicolored FP-fusion biomarkers as described above, along with
autofluorescent chloroplasts, can be monitored simultaneously in living tobacco epidermal cells (Figure 2). This
concurrent visualization enables direct comparisons of organelles in the context of one another. Moreover,
intricate visualization techniques have vast potential to further illuminate organelle dynamics and motility by
rapid capture of organelles in action (Supplementary Movie 1).
FP-tagged probes are also used to detect the dynamic microtubule network in plant cells. The microtubule-

binding domain (MBD) derived from the mammalian microtubule-associated protein 4 (MAP4) decorates cor-
tical microtubules in fava bean epidermal cells upon transient expression [70]. This GFP-MBD renders superior
brightness, possibly resulted from induced microtubule bundling. Alternatively, an MBD derived from the atyp-
ical casein kinase CKL6 has also been used to mark microtubules in living plant cells [71]. To minimize the
potential impact of ectopically expressing an MBD in plant cells, one wishes to fuse FP with tubulins so that
microtubules are labeled when the FP-tubulin fusion is incorporated into polymerized microtubules, which
often requires stable transformation as demonstrated first by a GFP-α-tubulin in Arabidopsis [72]. The
β-tubulin isoform TUB6 was later chosen because of its minimal toxicity after ectopic expression [73]. Stable
expression of TUB6 under its native promoter in Arabidopsis results in neglectable disturbance to the dynamic
remodeling of microtubule arrays and plant growth [74].
Progressively advanced, specific, and tunable visualization techniques equip researchers to uncover the

nuances of energy organelle dynamics and expand our current knowledge of chloroplastic/plastidial, mitochon-
drial, and peroxisomal distribution and motility.

Chloroplasts
As light-harvesting apparatus, chloroplasts optimize photon capture by shifting their positions in the cell, a
process termed photorelocation [75–78] (Figure 1A). In the dark, chloroplasts are distributed along the bottom
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of mesophyll cells and the top of pavement cells [51,79]. However, in shaded or low-light environments, chlor-
oplasts accumulate across the peri-clinal cortex to increase light absorbance and energy capture, and pavement
cell chloroplasts relocate to the bottom of the cell nearer to mesophyll chloroplasts. Conversely, when light
intensity exceeds the plant’s photosynthetic capacity, chloroplasts reduce photodamage by employing an avoid-
ance mechanism in which they stack along the anti-clinal walls of the cell [51,80] (Figure 1A). During blue-
light avoidance, nuclei move concordantly with chloroplasts by hitchhiking as passengers of chloroplasts to
protect DNA from UV damage [81,82] (Figure 1A). While photorelocation is predominantly described in
mesophyll cells where photosynthesis is most active, evidence suggests that chloroplasts are repositioned in an
actin-dependent manner in guard cells in the epidermis as well. Shifts in light modulate stomatal aperture,
which is also regulated by phytohormones produced in the chloroplast. Chloroplasts in tobacco guard cells
redistribute from the inner peri-clinal walls to the dorsal walls at the center of guard cells during white
light-induced stomatal opening (Figure 1A), a process proposed to be mediated by stochastic dynamics of actin
filaments [83,84].
Because light availability fluctuates, chloroplasts must readily initiate photorelocation routinely. Blue-light

receptors (phototropins) trigger the reorganization of specialized chloroplast actin filaments (cp-actin) via
actin-bundling proteins, while Chloroplast Unusual Positioning Protein 1 (CHUP1) mediates interactions
among chloroplasts, cp-actin, and the plasma membrane [77,79,85–87]. Although some data suggests the
involvement of myosin proteins in chloroplast photorelocation [88], the process predominantly depends on
actin reorganization itself in which cp-actin aggregates at the leading edge of chloroplasts to direct movement
towards anti- or peri-clinal cell walls [83,87,89].
Critical to the cold acclimation of photosynthesis, the chloroplast avoidance response can be triggered by

weaker light intensities at low temperatures in Arabidopsis (Figure 1A), suggesting the modulation of photopro-
tective mechanisms upon the onset of dark when temperatures drop [90,91]. Since cold positioning was first

Figure 2. Simultaneous visualization of plant energy organelles and actin in tobacco cells.

Chloroplasts (chlorophyll autofluorescence, green), mitochondria (COXIV29aa-eYFP, yellow), peroxisomes (mScarlet-I-SRL, red),

and actin (Lifeact-eGFP, purple) in Nicotiana tabacum were imaged using a 3i spinning disk confocal microscope with

excitation wavelengths 640 nm, 515 nm, 561 nm, and 488 nm, respectively. The emission capture range for each fluorophore is

as follows: 672–712 nm for chlorophyll, 528.5–555.5 nm for eYFP, 580.5–653.5 nm for mScarlet-I, and 510–540 nm for eGFP.

Scale bar represents 10 mm.
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described in ferns [92], researchers have further elaborated on the links between photorelocation and cold accli-
mation in bryophytes [90,91] and flowering plants [90]. Phototropins act as thermosensors via blue-light regu-
lated autophosphorylation [95] and subcellular re-localization [96–98], modulating the actin-dependent
repositioning of chloroplasts as unfused aggregates in response to cold [99–101]. Seasonal rearrangement of
chloroplasts was also observed in the mesophyll of two conifer species, in which chloroplasts move from the
periphery along the cell wall in the summer to a more internal location in the cell in the winter (Figure 1B), a
process that involves the vacuole and cytoplasmic strands [102].
Chloroplasts cluster around the nucleus during innate immune response. Oppositional movement of nuclei

and chloroplasts is proposed to contribute to the formation of stromules enriched in proximity to the nucleus
(Figure 1C), possibly to facilitate the exchange of defense signals [103–107]. Independent of nuclear movement,
chloroplasts accumulate at the pathogen interface (Figure 1C) during Phytophthora infestans infection in
Nicotiana benthamiana [108]. They even employ some components of the photorelocation mechanism for
motility in Arabidopsis epidermal cells during fungal infections [109,110]. Immunity-related repositioning
observed in tobacco is directed by the coordinated efforts of actin, microtubules, and stromules [103], all of
which have dynamic roles in chloroplast motility and environmental stress response [111].
During pollen tube elongation, plastids exhibit differential motility patterns that are loosely correlated with a

variety of plastid morphologies, where spherical plastids correspond with less streaming and elongated plastids
and stromules with higher rates of streaming. Specifically, plastids move long-distances from pole-to-pole at
high velocities (∼1.5 mm/s), with slower motions (∼0.4 mm/s) and arrests predominating in the middle region
of the tube, and short vibrations or fluctuations at the tip end of the shank with a velocity of ∼0.5 mm/s
[112,113] (Figure 1D).

Mitochondria
Early characterizations of mitochondrial dynamics describe the organelle behavior and morphology as highly
heterogeneous [114], which is further emphasized by the mitochondrial diversity recently observed across
microalgae [46], indicating its multipotent functions in photosynthetic organisms. Mitochondria traverse plant
cells along actin filaments in a variety of patterns, including short oscillations, bidirectional long-range move-
ment, and turnaround motions facilitated by circular actin bundles [115,116]. Their morphology and motility
are influenced by development, cell-type, proximity to other organelles, and environmental conditions, as
described below.
The fundamental regulation of mitochondrial movement is likely combinatorial and collaborative, involving

actin and myosins for various speeds and patterns of motion as well as microtubules and likely kinesins for
positioning [116,117]. This translocation and positioning infrastructure enables the mitochondria to meet the
energy demands of the cell. For example, lily mitochondria are concentrated at the sub-apex of the pollen tube
(Figure 1D), where energy is required for elongation [14,118,119]. The pollen tube exhibits a characteristic
reverse fountain-like pattern of cytoplasmic streaming in which organelles, including mitochondria, move
through the shank towards the apex (∼2.67 mm/s) but then reverse course (Figure 1D) as the actin structure
shifts from long filaments to shorter parallel bundles referred to as the actin fringe [118,120,121]. This fast
forward movement followed by slowing down in the sub-apical region is attributed to actin/myosins and micro-
tubules/kinesins, respectively [122]. In fact, specific motors Kinesin-like Protein 1 [123] and Myosin XI-C2 are
associated with mitochondria, and Myosin XI-C2 contributes to mitochondrial as well as peroxisomal and
Golgi movement in Arabidopsis pollen tubes [124].
ROS accumulation acts as a trigger for mitochondrial redistribution during heat stress-, UV- and methyl jas-

monate (MeJA)-induced programmed cell death, in which mitochondria aggregate in clusters, shift from elon-
gated morphology to more swollen and spherical shapes, and decrease their overall motility [125–127]
(Figure 1E). These morphological changes are believed to be pivotal early steps in the progression of pro-
grammed cell death.
The trend towards more spherical, shorter, or simplified shapes for mitochondria is also evident in the tran-

sition from dark to light in Arabidopsis mesophyll cells [47] (Figure 1A). Light conditions also influence mito-
chondrial distribution and mobility. In Arabidopsis mesophyll cells, weak and strong blue light illuminations
cause differential localization of mitochondria compared with mesophyll cells in the dark, mirroring chloroplast
accumulation and avoidance [128] (Figure 1A). Mitochondrial long-range motility is dependent on actin,
whereas they become more static in the proximity of chloroplasts, adopting slower, actin-independent wiggling-
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type motions [129]. In the green alga Chlamydomonas, mitochondria are closely associated with the plasma
membrane in ambient CO2 and more uniformly distributed throughout the cytoplasm under high CO2 [130]
(Figure 1F). These mitochondrial movements may facilitate necessary associations among chloroplasts, mito-
chondria, as well as peroxisomes during processes requiring their collaboration, such as photorespiration that is
modulated by light and CO2 levels [131].

Peroxisomes
Despite having a simple structure, peroxisomes are highly dynamic in size, number, morphology, and biochem-
istry [33]. For instance, light increases peroxisome abundance in dark-grown Arabidopsis seedlings (Figure 1A)
through a phytochrome A-mediated signaling pathway involving the transcription factors Homolog (HYH) and
(Forkheaded-Associated Domain 3) FHA3 and the peroxisome elongation factor Peroxin 11b (PEX11b)
[132–134]. In addition, peroxisomes in Arabidopsis mesophyll are significantly larger in light compared with
the dark, and as their volume increases, they become less spherical [47] (Figure 1A). Moreover,
chloroplast-associated peroxisomes are more elliptical (Figure 1A), increasing surface area available for inter-
organellar interaction. This notion is further supported by stronger adhesion between these organelles in red/
blue light, although these changes are not regulated by the red and blue light receptors phytochromes and
phototropins [48]. In Arabidopsis root tips, peroxisomes are more intensely concentrated in the elongation and
meristematic zones compared with the maturation zone, which is correlated with the finding that nitric oxide
(NO), which exists in the peroxisome, distributes mostly in the primary and lateral root apices [135]
(Figure 1G). Interestingly, cadmium (Cd2+)-imposed ROS increases peroxisome proliferation in Arabidopsis
leaves and induces peroxule formation [136,137] (Figure 1E), while Cd2+ decreases the number of peroxisomes
in primary roots and increases peroxisome size (Figure 1G), suggesting increased organelle fusion [135].
Peroxisomes display various patterns of movement: vibrations or oscillations in place, short-range travel, and

traversing longer distances [7]. While myosin drives fast and long-range movement [18,138,139], oscillatory
patterns of peroxisome motion correlate with ER dynamics in Arabidopsis seedling epidermal cells, suggesting
a possible concomitant regulation of ER-peroxisome motility [140]. Moreover, individual peroxisomes switch
directions, speeds, and motions all within the same cell type and timeframe in Arabidopsis epidermal cells [7].
As such, peroxisomes are not simply passive passengers but rather are subject to yet undiscovered biological
triggers that govern their movements.
Developmental stage and tissue type is suggested to have an impact on peroxisome motility. Brownian-type

vibrations have been ascribed to peroxisomes in leaves, with slower velocities in younger leaves, whereas more
rapid peroxisomal movement is described in Arabidopsis roots, trichomes, mature leaves, and pollen tubes
[19,121,138,139,141]. However, these velocities are highly variable: <0.2 mm/s in seedling epidermis [141],
∼2.23 mm/s in pollen tubes [121], up to 7 mm/s in seedling mesophyll [49], indicating that careful consider-
ation regarding age, tissue, and cell type must be taken when evaluating peroxisome movements. Moreover,
environmental factors likely influence peroxisomal motion. For example, significantly more peroxisomes are
mobile in light compared with dark in Arabidopsis mesophyll cells (Figure 1A). Organelle mobility is main-
tained by actin filaments as peroxisome-chloroplast interactions increase, while peroxisome-chloroplast tether-
ing is an actin-independent process involving peroxule formation [48,142]. Motility quickens during Cd2
+-induced oxidative stress, which is hypothesized to be regulated by increased peroxisomal levels of ROS and
may involve calcium signaling [141] (Figure 1E). While overall motility increases 1–3 days following Cd2+ treat-
ment, peroxisomes were previously reported to pause during peroxule formation within 15 min of exposure to
Cd2+, followed by an increase in proliferation [136,141]. These data suggest peroxisomes may dwell when
undergoing morphological changes or intra/inter-organelle contact, and the number and size of peroxisomes
may affect their motility.

Perspectives
• Chloroplasts, mitochondria, and peroxisomes are essential organelles functioning independ-

ently as well as coordinately during plant energy metabolism and other key processes. The
motility and distribution of these energy organelles are fundamentally important for plant
physiology and defense.
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• Besides morphing between shapes, dividing and fusing, these energy organelles move
throughout the cell and interact with one another and with other cell compartments to accom-
plish their roles efficiently. Most of what we know till now about their motility and distribution
in photosynthetic organisms addresses general patterns and velocity changes in response to
developmental and environmental cues, whereas the underlying mechanisms are largely
unknown.

• Many questions remain to be addressed in future research. For example, how are the molecu-
lar motors recruited to the organelles selectively? Which signaling pathways trigger the
various modes of organelle positioning, movement, and physical interaction? What functional
role does organelle motility play in plant physiology and health? How do these organelles
coordinate their physical interaction and movement along the cytoskeletal tracks while per-
forming collaborative metabolic functions?
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