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ABSTRACT

Distributed cyberinfrastructures (CI) pose opportunities and chal-
lenges for the execution of scientific workflows, especially in the
context of Earth science applications. They provide heterogeneous
resources that can meet the needs of the applications that are part
of the scientific workflows and provide the necessary performance
and scalability to achieve scientific goals. However, the challenge
with distributed CI is that it is difficult to find the right resources for
the applications and to orchestrate the workflow execution from
resource provisioning to job execution to delivering the final results.
In some cases, poor choice of resources may result in slow execution
or outright failure. In this paper, we present Advanced Cyberinfras-
tructure Coordination Ecosystem: Services & Support (ACCESS)
Pegasus, a CI solution built as part of the U.S. National Science
Foundation ACCESS program that provides automated execution
of scientific applications. We demonstrate Pegasus’s capabilities
with SOil MOisture SPatial Inference Engine (SOMOSPIE), an earth
science multi-component application for fine-grained soil moisture
predictions. We identify a roadmap to migrate applications such
as SOMOSPIE on ACCESS resources with the support of ACCESS
Pegasus, outlining both strengths and weaknesses of this approach.
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1 INTRODUCTION

Today, scientists have access to various computing resources to do
their work, including high-performance computing (HPC), high-
throughput computing (HTC), commercial and academic clouds,
and edge and quantum systems. Using these resources, scientists
can execute complex, resource-demanding applications to gain
insights and knowledge about the world around us and the world
we can create. However, the power of these resources is limited
to those who know cyberinfrastructure (CI) and how to leverage
the CI to execute their applications [3] successfully. The ACCESS
initiative, based in the US, seeks to expand the use of CI across a
broader and more diverse scientific community. ACCESS is a single
entry point for over 20 compute, cloud, storage, and networking
systems. While aggregating a large number of resources can benefit
research overall, it also makes it more and more difficult for users
to choose and combine compute resources effectively. To enable a
broad community of scientists with various levels of CI knowledge
to leverage the power of distributed CI, we need to provide users
with solutions that automate the end-to-end resource provisioning
process and workflow management.

This experiential paper presents our solution to this open chal-
lenge, ACCESS Pegasus [1], that serves as a central hub for au-
tomatic deployment of workflows on ACCESS resources. Specifi-
cally, ACCESS Pegasus provides services for automation for which
workflows automate repetitive and time-consuming tasks, thereby
reducing the workload of researchers and avoiding many human er-
rors; reusability for which workflows can be used to build libraries
of reusable code and tools that other researchers can adapt; repro-
ducibility for which workflows allow researchers to document and
reproduce their analyses, ensuring their validity; and scalability for
which workflows allow researchers to scale up their computations
to handle large data sets and complex analyses, enabling scientists
to tackle more challenging research problems. We pragmatically
illustrate ACCESS Pegasus’s functionalities by describing the in-
tegration process and execution challenges encountered while or-
chestrating an end-to-end ML-based earth science workflow called
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SOMOSPIE [19]. Through a use case studying the soil moisture
prediction of an agricultural region such as Oklahoma, we show
ACCESS Pegasus’s capability to address the need of scientists to
execute workflows automatically in heterogeneous environments.
This, in turn, empowers users from smaller projects and users with
limited research computing experience to join the community and
advance scientific discovery through the effective use of available
tools and resources. The contributions of this paper are as follows:

o We present ACCESS Pegasus and its integration into the
ACCESS software layers and computing resources.

e We demonstrate how earth science applications such as SO-
MOSPIE can be easily executed on top of ACCESS Pegasus.

o We deploy SOMOSPIE on top of ACCESS Pegasus to predict
the soil moisture in a fine-grained resolution for the state of
Oklahoma and measure data transfers, short and long-term
storage, and memory usage during the execution.

o We extract lessons learned from our use case that apply to a
broader range of scientific applications.

In Section 2, we present ACCESS Pegasus with its integration into
well-known software packages such as Open OnDemand [11], HT-
Condor [21] Annex, and the Open Storage Network (OSN) [22]
on top of ACCESS resources such as IU JetStream2 [10], Purdue
Anvil [20]. In Section 3, we describe how we engineer SOMOSPIE
to execute on top of ACCESS Pegasus. In Section 4, we demonstrate
the use of SOMOSPIE on top of ACCESS Pegasus for a real case
predicting soil moisture for the state of Oklahoma. Last, in Section 5,
we explore challenges encountered and lessons learned, and end
the paper with conclusions in Section 6.

2 ACCESS PEGASUS SOFTWARE
INTEGRATION

We design ACCESS Pegasus as a web-based platform that offers
seamless workflow management across ACCESS resources. AC-
CESS Pegasus interfaces with numerous CI components, such as
Open OnDemand and Jupyter for a web interface, CILogon [2]
for authentication, Open Storage Network (OSN) for data manage-
ment [22], HTCondor for workload and resource management [21],
and Pegasus [6] for user workflow definition and execution. AC-
CESS Pegasus deploys user-friendly navigation, featuring com-
prehensive self-guided Jupyter training modules. Figure 1 shows
Pegasus integration with ACCESS: the web browser is used (1) to
authenticate (2) and interact with Open OnDemand, Jupyter, and
the ACCESS Pegasus APIs. Workflow jobs are handed off to the
HTCondor job queue. Users can then provision resources via HT-
Condor Annex (3°) or the IU JetStream Exosphere web interface
(3”). Once the pilot jobs are provisioned (4), workflow jobs exe-
cute on the resources. The jobs transfer data in/out of the Open
Storage Network (5). These modules aid users in creating, submit-
ting, monitoring, and troubleshooting their workflows for effective
deployment across ACCESS resources.

2.1 Pegasus Features

ACCESS Pegasus’s core is the Pegasus’s Workflow Management
System (WMS), an engine used to compose and execute multi-step
computational workflows. These workflows represent a series of
computational tasks or jobs to be executed in a particular order,
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modeled as a Directed Acyclic Graph (DAG). Pegasus orchestrates
end-to-end workflows, managing the scheduling of jobs and the
data staging in and out of the components across a local or wide-
area network. In contrast to most other workflow systems, Pegasus
focuses on data management. This means that Pegasus performs
data transfers as part of the workflow, considers data placement
when scheduling jobs, and cleans up data when it is no longer re-
quired. These data features are crucial to running workflows in
distributed environments, such as when ACCESS compute and stor-
age resources are not colocated. Pegasus also serves as a powerful
tool for tracking the workflow status and debugging of failed jobs in
a workflow. Specifically, we include a variety of monitoring and de-
bugging tools in Pegasus such as Pegasus-monitor, Pegasus-status,
and Pegasus-analyzer, to get statistics and essential information
related to the execution of end-to-end workflows. This is critical
in lowering the barrier of entry to new users and systems. The
Pegasus’s runtime monitoring daemon, which is launched when
the execution of a workflow starts, monitors the end-to-end flow
of data, generating the log information needed for the scheduling
in an interactive cycle.

2.2 Open OnDemand Web-based Interface

We deploy Open OnDemand as the web-based interface for ACCESS
Pegasus to enable users to employ Jupyter Notebooks and command-
line interfaces directly from their web browser. Open OnDemand
integrates with CILogon, enabling seamless login/authentication
for any ACCESS user with a current allocation, thereby simplify-
ing access. This interface allows researchers easy access to high-
performance computing (HPC) resources, enabling them to manage
their jobs, files, and data directly through a user-friendly web inter-
face, without requiring extensive knowledge of the command-line
interface or the intricacies of HPC systems.

2.3 HTCondor Annex Resource Provisioning

ACCESS Pegasus delegates HTCondor [21] Access Point (AP) to
execute workflows on ACCESS resources. A cornerstone of ACCESS
Pegasus is its ability to bring in resources on demand: to associate an
ACCESS allocation with a workflow and make the jobs run under
that allocation. In ACCESS Pegasus, we use the new htcondor
annex command-line tool, which supports a subset of ACCESS
resources and uses the collections of capacity method to manage
annexes. Management includes creating, monitoring, and shutting
down annexes. An annex can shut itself down if it is idle for longer
than a configurable amount of time. Users can manually stop using
capacity when they no longer have jobs to run, minimizing waste.

2.4 1IU Jetstream2 and Purdue Anvil Resources

We deploy two computing resources available on ACCESS for our
use cases: IU Jetstream2 and Purdue Anvil. Jetstream2 and Anvil
contain features of other available resources (including SDSC Ex-
panse, PSU Bridges2, and TACC Stampede2). Jetstream? is a cloud
resource, whereas Anvil is an HPC (High-Performance Computing)
resource. We provide pilot jobs on Jetstream2 via the Exosphere
interface1[8]. We initiate virtual machines within their allocations,
choosing the suitable size for our scientific use case described in
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Figure 1: Overview of ACCESS Pegasus integration.

Section 3 in terms of cores, memory, disk space, and so forth. To con-
figure the virtual machine, we only need to supply a token provided
by ACCESS Pegasus. The HTCondor Annex enables provisioning
on Anvil. We remain within the ACCESS Pegasus environment in
this scenario. We leverage the fact that all commands for HTCondor
Annex are issued within the Open OnDemand web-based command
line.

2.5 Open Storage Network

We leverage the Open Storage Network (OSN)[22] as our stor-
age. OSN functions as a centralized object store, employing an
S3-compatible API For our work, we use OSN for storing interme-
diate data that are an integral part of the data provenance of our
use case execution and for preserving final output data to deliver
to the scientists. By segregating the location of intermediate data
from computing locations, we can execute our workflows across
multiple ACCESS resources. This arrangement allows for the late
binding of jobs to available computing resources. In other words, a
job can be executed on any ACCESS resource, retrieve data from
OSN, perform computations, and store the results back to OSN.
Pegasus seamlessly manages the data, including all transactions
(gets/puts) with OSN. However, as we will explore in Section 3, this
convenient setup does come with a trade-off: a potential decline in
performance.

3 SOMOSPIE INTEGRATION

SOMOSPIE is an earth science engine that deploys machine learn-
ing (ML) models to predict high-resolution soil moisture from 27km
resolution satellite data. SOMOSPIE combines the satellite-based
data from the ESA-CCI soil moisture database [17] with hydro-
logically meaningful terrain parameters of the region of interest
to perform the downscaling. The strategy for downscaling based
on satellite-derived soil moisture is an alternative to traditional

methods that involve simple extrapolation and interpolation based
on data from monitoring networks [4, 5, 7]. The advancement of
flexible frameworks like SOMOSPIE improves our comprehension
of soil moisture changes and their impacts on ecological processes
and climate change forecasting on regional and global scales. The
finer resolutions provided by SOMOSPIE are required for practical
use in applications such as precision forestry and agriculture, hy-
drology for landscape ecology, and regeneration dynamics, where
coarse-resolution data is inadequate [9, 12-14]. SOMOSPIE com-
prises three components: a terrain parameter generation [18], a
data transformation, and an ML-based prediction. Figure 2 shows
the full pipeline with the three components.

Building on our previous efforts to enable reproducibility [15]
and scalability [16] by leveraging HPC and cloud-converged tech-
nology, we integrate SOMOSPIE into ACCESS Pegasus, implement-
ing each component of SOMOSPIE as an ACCESS Pegasus workflow.
ACCESS Pegasus enables portability across ACCESS resources. We
submit the workflows for execution on a single Jupyter Notebook
on two different compute sites. ACCESS Pegasus performs indepen-
dent resource management after submission by leveraging HTCon-
dor’s provisioning capabilities. With Jetstream2, the provisioning
is done by starting previously configured VM instances; with Anvil,
the HTCondor Annex tool sends pilot jobs to the ACCESS resource
providers.

3.1 Terrain Parameter Generation

This SOMOSPIE component predicts the terrain parameters of a
region of interest at the desired finer resolution. The component
uses a Digital Elevation Model (DEM) of the region of interest
downloaded from the USGS 3D Elevation Program [23] as input.
The DEM is pre-processed by reprojecting it into a metric-unit
coordinate system. Then, it is partitioned into tiles with a buffer
region which is introduced to prevent boundary artifacts since
computation at a single pixel uses values from adjacent pixels. After
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Figure 2: The three SOMOSPIE components.

computing three terrain parameters (i.e., aspect, hillshading, and
slope), a mosaic is built using the average values of the overlapping
regions within the tiles. Finally, the parameters and the DEM are
reprojected to the WGS84 (EPSG:4326) coordinate system to be later
combined with the satellite-based soil moisture data.

The ACCESS Pegasus workflow generating terrain parameters
is designed using a Jupyter notebook and leverages the Pegasus
API. The notebook describes each task, specifying the software
used, arguments, necessary input data files, and expected output
files. Additionally, we stipulate that tasks run within a Singularity
container with the SOMOSPIE software stack installed. Figure 3
shows the resulting Pegasus workflow implementing the terrain
parameter generation with its data dependencies and transforma-
tions; ellipses represent transformations, green rectangles input
data, gray intermediate data, and blue output data.

3.2 Data Transformation

This SOMOSPIE component combines the terrain parameters with
satellite-based soil moisture data to generate the input files for the
ML-based prediction workflow. The component starts by down-
loading soil moisture daily values from the ESA-CCI database for a
specific year and then computes their monthly averages. Afterward,
it projects these averages to match the projection of the terrain
parameters (WGS84). Then, it finds the values of the terrain param-
eters at the points where there is soil moisture data and generates
a file with a stack of values for each month. It crops the data to
the region of interest. Additionally, it generates a set number of
evaluation tiles corresponding to the stacked terrain parameters
within the region of interest, which the ML-based prediction uses
to generate high-resolution values.

The Pegasus workflow implementing the data transformation
follows a similar structure and execution approach as the terrain
parameter generation. The choice to separate these into two dis-
tinct workflows stemmed from logical divisions in processing (see
Figure 2) and the varied frequency at which each component needs
to be executed. Figure 4 shows the Pegasus workflow implementing
the data transformation with its input, intermediate, and output
data.
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Figure 3: Pegasus workflow implementing the terrain param-
eter generation component.

3.3 ML-based Prediction

This SOMOSPIE component uses the training and evaluation data
from the previous workflow to predict fine-grained soil moisture
for the region of interest. We take the training data that combines
the satellite soil moisture data and terrain parameters at satellite
resolution (27km) and standardize it using the z-score method. We
save the fitted scaler and apply it to the evaluation data, which
includes the terrain parameters at the desired prediction resolution,
so we keep consistency in the standardization. The standardized
training data is then used to train and save an ML model (e.g.,
K-Nearest Neighbor or Random Forest). We apply these models
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Figure 4: Pegasus workflow implementing the data transfor-
mation component.

to the standardized evaluation data to compute high-resolution
predictions. As an output of this process, we obtain a mesh of soil
moisture values at the aimed resolution for the region of interest.
Like the first two components, the third component is also imple-
mented as a separate Pegasus workflow due to differences in execu-
tion frequency. One advantage of this separation is evident when
further developing and adding ML models. This division means
the scientist can update and execute the ML workflow without re-
running the terrain parameter generation and data transformation
workflows. While Pegasus allows for data reuse (i.e., re-executing
workflows with available partial results), which prunes the DAG
based on data availability, collaborators might prefer a clearer logi-
cal component division over a more intricate workflow and execu-
tion setup. Figure 5 shows the Pegasus workflow implementing the
fine-grained predictions with the two available ML models.
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4 SCIENTIFIC USE CASE

We run SOMOSPIE on top of ACCESS Pegasus to predict Okla-
homa’s soil moisture values at 10m resolution and measure critical
statistics (i.e., workflow wall time, memory, and CPU usage). We
select this resolution because it is large enough to raise memory us-
age concerns when running with the largest CPU instance available
in Jetstream2. At the same time, 10m resolution keeps the work-
flow wall time under 11 hours using one VM and, therefore, does
not hinder rapid iteration. Table 1 shows each ACCESS Pegasus
workflow’s input and output data sizes for the Oklahoma region.
For the first workflow, the terrain parameter generation (T.P. Gen.),
the input data are the Digital Elevation Models (DEMs) at the reso-
lution we aim to predict, in this case, 10m with a size of 17GB. We
use these DEMs to calculate the terrain parameters (i.e., elevation,
aspect, hillshading, and slope), generating around 55GB. For the
second workflow, the data transformation (Data Tf.), we combine
the terrain parameters and satellite soil moisture data to create the
training and evaluation data. The training data includes the soil
moisture satellite data at 27km and the terrain parameters sampled
at the same resolution (27km). Given the coarse resolution in the
training files, these files are in the order of KBs. The evaluation
data includes the terrain parameters at the resolution for prediction
(10m), the largest files in SOMOSPIE (64GB). As we increase the
resolution of prediction in a region, more points are covered, trans-
lating into larger DEMs, terrain parameters, and evaluation data
from GBs to TBs. In contrast, the training data remains the same
given that the satellite soil moisture resolution never changes; it
is always 27km. We use the training and evaluation data for the
third workflow, the ML-based prediction at high resolution (ML
Prediction), to get the models and predictions. The models are in
the order of MBs, while the predictions are in GBs for our use case.

Table 1: Data scenario for Oklahoma at 10m resolution.
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Figure 5: Pegasus workflow implementing the ML-based pre-
diction component.

We execute the entire pipeline of the three Pegasus workflows
(i.e., generating terrain parameters, transforming data, and predict-
ing high-resolution soil moisture values) with Oklahoma at 10m
as input data on Jetstream2 and Anvil. We use OSN as the data
staging site for both compute resources. The access point is outside
the compute site, so it does not share a filesystem with the worker
nodes (Jetstream VM instances or Anvil nodes). The jobs run in
a local directory inside a container on the worker node, which
means the input data gets transferred from OSN, and the output
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data gets transferred in the other direction. We use a single VM on
Jetstream2 with 64 CPU cores, 250GB RAM, and a volume-backed
2TB disk. As for Anvil, one node with 128 CPU cores, 256GB of
RAM, and 480GB disk was requested. The wall time for each of the
workflows executed in both sites is shown in Table 2. The workflow
wall time is the time that passes between the start of the workflow
execution to its end, while the cumulative job wall time is the sum
of the wall time of all jobs in the workflow. For the execution of the
terrain parameter generation and data transformation components
of SOMOSPIE, the difference between the cumulative job wall time
and that seen from the submit side reflects the impact of the data
transfers and job management overhead on the overall execution.
If the workflows were using a local shared file system, then this
difference would be potentially smaller, accounting only for the
job management overhead since data transfers between sites are
eliminated. On the other hand, for the execution of ML-based pre-
diction, the similarity between the wall time and the cumulative
wall time represents the non-parallelizable parts of the workflows
either because of resource constraints or data dependencies. This
lack of parallelism is due to the memory requirements of the Model
Evaluation job, as shown in Table 5, which limits the system to run
one job at a time because, otherwise, memory capacity is surpassed.

Table 2: Workflow wall time for workflow executions on
Jetstream2 and Anvil.

‘Workflow Wall time Jetstream2 Anvil
Workflow 1 h, 8 mins 1 h, 24 mins
TP. Gen. gumu}agve J:OE 1 h, 42 mins 1 h, 35 mins
umulative job as seen
*J0 2h, 42 mins | 2 h, 48 mins
from submit side
Workflow 57 mins, 0 s | 27 mins, 49 s
Data Cumulative job 1h,3mins | 54 mins, 32 s
Tf. C lative job
UITIATIve JO aS SEE | o3 h, 16 mins 7 h, 9 mins
from submit side
Workflow 7 h, 53 mins 3 h, 58 mins
ML Cumulative job 7h,30 mins | 7h, 16 mins
Prediction | Cumulative job as seen . .
. 7 h, 53 mins 7 h, 49 mins
from submit side

The runtime and memory usage of the jobs from each of the
workflows is shown in Tables 3, 4, and 5. We observe that all the
transformations use approximately 13GB of memory. Merge Av-
erage is the longest job in Figure 3; it involves much computation
since it averages the overlapping values from the tiles of the gener-
ated terrain parameters and reprojects the resulting mosaic. The
workflow executing the data transformation component has the
least memory-intensive transformations, allowing for paralleliza-
tion if provided with sufficient resources. Its longest transformation
is Get Soil Moisture because it downloads daily values of soil mois-
ture worldwide from the ESA CCI database, then computes the
monthly averages and reprojects them to the same spatial reference
system as the terrain parameters computed by the terrain parameter
generation. Most of the script uses threading; however, the number
of threads that can be instantiated to download the soil moisture
data is limited by the FTP server, which restricts the number of
requests. In all cases, the runtime on Anvil is shorter, likely due to
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Table 3: Resource usage for the workflow generating terrain
parameters on Jetstream2 and Anvil.

. Runtime (s) Memory (GB)

Resource | Transformation Mean | Max | Mean | Max
Merge 171.77 | 171.77 13.14 13.14

Reproject 138.88 | 144.24 13.07 | 13.06

Jetstream?2 | Crop 93.10 | 110.81 12.69 | 12.69
Compute 397.06 | 497.11 13.43 | 13.88

Merge Average 787.83 | 911.66 14.73 | 14.73

Merge 156.84 | 156.84 13.51 13.51

Reproject 133.83 | 138.72 13.51 13.58

Anvil Crop 86.79 | 104.11 12.99 | 12.99
Compute 371.33 | 471.18 13.89 13.54

Merge Average 711.94 | 801.74 15.02 | 15.02

the larger number of cores per node. The most memory-intensive

Table 4: Resource usage for the workflow executing data
transformation on Jetstream2 and Anvil.

. Runtime (s) Memory (GB)

Resource Transformation Mean | Max | Mean | Max
Get Soil Moisture 646.26 | 646.26 0.54 0.54

Jetstream?2 | Generate Training 14.49 16.54 1.09 1.09
Generate Evaluation 53.88 70.23 3.08 3.22

Get Soil Moisture 181.17 | 181.17 0.54 0.54

Anvil Generate Training 10.04 16.90 1.09 1.09
Generate Evaluation 49.49 66.27 3.08 3.22

transformation of SOMOSPIE is part of the workflow performing
the ML-based predictions. The Evaluate Model jobs use 132GB of
memory at worst on Jetstream?2 and 229GB on Anvil. The gap be-
tween the mean and the maximum memory use among these jobs
comes from the fact that the input tiles are of variable sizes; this
disparity can hinder parallelism when the worst case is used as a
measure to request memory for every job (see Sec. 5).

Table 5: Resource usage for the workflow executing ML-based
predictions on Jetstream?2 and Anvil.

. Runtime (s) Memory (GB)

Resource Transformation Mean Max Mean | Max
Jetstream? Train Model 6.18 6.18 0.17 0.17
Evaluate Model 848.77 | 1153.56 87.58 | 132.76

Anvil Train Model 5.58 5.58 0.18 0.18
Evaluate Model 809.12 | 1096.36 | 168.18 | 229.94

5 CHALLENGES AND LESSONS LEARNED

Most of the complexities of SOMOSPIE come from its data-intensive
nature. The data grows due to either the increased resolution at
which soil moisture is modeled or the selection of a region of interest
with a larger area. The three component workflows handle large
amounts of intermediate and output data, which poses challenges
in terms of data transfers, short and long-term storage, and memory
usage during computation. We discuss the challenges and lessons
learned during the integration process and execution of the use
case.



5.1 Memory and Storage

5.1.1  Early termination on memory-intensive jobs. There is a persis-
tent challenge related to the early termination of specific jobs when
allocating substantial amounts of memory. This issue repeatedly
occurs when jobs are terminated without indicating that the under-
lying problem is related to memory. In these cases, stdout, stderr,
and log files offered no insights. Early termination specifically af-
fects two jobs: Merge Average and the evaluation of the ML model.
The former relies on the GDAL toolset, while the latter utilizes
scikit-learn libraries. Both of these tools have a reputation for being
challenging to manage in terms of memory, as there is no simple
or direct method to limit memory consumption. We anticipate that
potential system configuration adjustments, such as enhancing the
cgroups configuration within HTCondor, can improve the man-
agement of these exceptions. This change is expected to enable
the detection and reporting of early termination associated with
memory problems.

5.1.2  Memory requirements. Jobs that require large amounts of
memory limit the number of tasks that can be run in parallel. For
example, the ML-based prediction workflow’s job requiring the
most memory is the evaluation model. None of the 31 independent
jobs from non-empty tiles required for the transformation were
performed in parallel when running on Jetstream2; the largest CPU
instance with 250GB of memory is not enough to host more than one
job at a time given that for each job 130GB were requested to take
into account the largest input (tile). The lack of parallelization is
evident from the similarity between the workflow wall time and the
cumulative job wall time displayed on 2. In contrast, the cumulative
job wall time is 1.83 times longer than the workflow wall time for
the Anvil run because a single node is larger than the Jetstream VM.
Besides performing optimizations at the transformation level to
reduce memory usage, such as using lower precision data types or
more memory-efficient data structures, the simplest way to enable
parallelism is to provision more resources, which can either be a
VM with a larger memory capacity, such that multiple jobs can run
simultaneously or an increase in the number of VMs in the case of
Jetstream2. Despite increasing the number of Jetstream2 VMs from
1 to 2 and 4, the wall time does not decrease by the same amount.
This is due to the non-parallelizable parts of the workflows, job
management overhead, and data transfers. The workflow executing
the terrain parameter generation does not benefit from running on
more resources. With one VM, this workflow is already exploiting
all the available parallelization.

5.1.3 Storage requirements. Similar to the memory requirements,
the storage requirements of a job can prevent other jobs from run-
ning on the same machine simultaneously. However, optimizations
can be implemented at the transformation level to use less storage,
such as using file formats with built-in compression or lowering
stored data’s precision. SOMOSPIE uses georeferenced data, so
GEOTIFF is the preferred file format for storage with LZW com-
pression. At the workflow level, storage requirements can grow due
to job interaction. When jobs use the same inputs, data gets staged
multiple times, which impacts not only the amount of storage used
by the workflow but also the number of data transfers between
sites since data is downloaded to the compute site multiple times.
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Table 6: Workflow wall time and cost in Jetstream service
units as the number of VMs increases.

# of Wall Cost per | Cost

Worlflow VMs | time (h) Speedup VM (SI{JS) (SUs)
1 1.21 1.00 39 39

T.P. Gen. 2 1.26 0.96 40 81
4 1.18 1.03 38 151

1 0.95 1.00 30 30

Data Tf. 2 0.76 1.25 24 49
4 0.43 2.19 14 55

ML 1 7.88 1.00 252 252
Prediction 2 4.50 1.75 144 288
4 2.55 3.09 82 326

In SOMOSPIE, the workflows implementing the terrain parameter
generation and data transformation have this feature.

In the terrain parameter generation, two intermediate files get
staged more than one time during the execution of the workflow
because multiple jobs use them as input. As shown in Figure 6,
the Mosaic file is used by 2 Reproject jobs, one that generates one
of the workflow outputs and the other that generates elevation in
Albers projection which is required to compute the other terrain
parameters. For our use case, the Mosaic file is 15GB which means
62GB are needed to run both Reproject jobs in parallel in a single
machine, 30GB for the input file downloaded twice, 17GB for the
Elevation (Albers) file and 15GB for the Elevation (WGS84) file. The
same phenomenon occurs for the Crop Tile jobs since the Elevation
(Albers) file is used as input by all of them, so the available storage
space limits the number of jobs that can run concurrently. Similarly,

15GB Mosaic
[

v v

Reproject Reproject
¢ Elevation
Elevation
17 GB (Albers) (WGS84) 17 GB
|
v v v v
Crop tile Crop tile Crop tile Crop tile
v v
Elevation Elevation Elevation Elevation
tile 0 tile 1 tile 2 tile 3
4GB 1GB 5GB 6 GB

Figure 6: Part of the workflow generating terrain parame-
ters - red rectangles represent files that must be downloaded
multiple times to the compute site to run multiple jobs in
parallel.

in the data transformation in Figure 7, all of the Generate Train and
Generate Evaluation Data jobs use the terrain parameters from the
workflow generating terrain parameters as input data (i.e., elevation,
aspect, hillshading, and slope) and a file that describes the shape of
the region of interest. Neglecting the size of the other inputs in the
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order of KB, 55GB of storage is needed only for the input files to
run one of the aforementioned jobs.

55 GB
Shape File

(region)
[ Elevation | [Hillshading |
538 KB - 931KB 1| (WGS84) || (WGS84)
[ Aspect Slope |
Monthly Monthly : ’ ‘ ‘ :
Average (Jan) e Average (Dec) 1 (WGSM) L (WGSM) - :

v v v
Generate Generate Generate Generate
Training Training Evaluation Evaluation

Training file Training file Evaluation Evaluation
(Jan) (Dec) tile 0 tile 35
9 KB 9 KB 1GB - 3 GB

Figure 7: Part of the workflow transforming data - red rectan-
gles represent files that must be downloaded multiple times
to the compute site to run multiple jobs in parallel.

One simple solution to enable job-level parallelism is to provi-
sion more disk space per individual VM or increase the number
of VMs. Another solution is job clustering to ensure data is not
downloaded multiple times to the compute site if more than one
job uses the same input data, so available disk space is used more
efficiently. This enables other jobs, separate from the clustered ones,
to run in parallel since disk space is more readily available, reducing
workflow wall time.

5.14 Customizing requested memory per job. The Evaluate Model
transformation in ML-based predictions is notably memory-intensive,
with usage ranging from 117GB to a considerable 229GB. This varia-
tion in memory consumption between jobs arises due to differences
in the input tile sizes. This disparity is attributed to the irregular
shape of the region combined with the rectangular tile shape, as
depicted in Figure 8. Initially, when constructing the workflow, we
provisioned memory for every Evaluate Model job based on the
maximum potential need - the largest input. This conservative ap-
proach is illustrated in Tables 2 and 5. Allocating large memory
blocks that might remain underutilized restricts the number of jobs
that can concurrently operate on a single node. Managing resources

Figure 8: Region with irregular shape when cut into tiles.

with unbalanced input sizes can be complex, requiring profiling
to grasp the link between input size and transformation memory

Roa, et al.

usage. Even so, this method ensures fewer resources are left idle,
fostering job-level parallelism. In our experience with the ML-based
prediction workflow, assigning memory per job led to a significant
2-hour and 26-minute cut in total workflow duration, equating to a
1.45x speedup on Jetstream2.

Table 7: Workflow wall time when requesting the same mem-
ory for all jobs vs. custom request per job on Jetstream2.

Wall time Common Request | Custom Request
Workflow 7 h, 53 mins 5h, 27 mins
Cumulative job 7 h, 30 mins 7 h, 30 mins

5.2 Data Transfer

5.2.1 Compute vs. data transfer time. Optimizations to limit data
movement can be of great value for workflows generating terrain
parameters and transformation data, which have computations that
require large amounts of intermediate data. When scaling up to
larger data sizes—in our case, when the increasing resolution or the
area of the region of interest—transfers become more costly. Table
8 shows the cumulative job wall time as seen from the submit side
and the portion of that metric that represents the time spent on
data transfers relative to the wall time spent on computation.

Table 8: Percentage of computing vs. data transfer time.

Resource Workflow Wall' time % %

(mins) Compute | Transfer

T.P. Gen. 162 63.0 37.0

Jetstream2 | Data Tf. 1396 45 95.5
ML Predict. 473 99.4 0.6

T.P. Gen. 168 56.5 43.5

Anvil Data Tf. 429 12.6 87.4
ML Predict. 469 93.0 7.0

The impact of data transfers is more significant in the workflow
transforming data than in the other workflows. Furthermore, the
effect is magnified when running on Jetstream?2: 95.5% as opposed
to 87.4% when running on Anvil. In the case of terrain parameter
generation, the data transfers and other overhead account for 37.0%
of the cumulative job wall time when running on Jetstream2, while
they account for 43.5% on Anvil. As for the ML-based prediction
workflow, we can see that the data transfers only play a minor
role in the overall wall time being below 7% when execution takes
place in either of the two compute sites. The impact of the time
that it takes to stage data in OSN for this example workflow makes
limiting data movement a priority which can be achieved through
optimizations such as clustering, using a shared high performance
file system, or bringing compute closer to storage.

5.2.2  Bypass staging. The input of the workflow generating ter-
rain parameters is the Digital Elevation Model (DEM) of the region
of interest at a specific resolution, in this case, Oklahoma at 10m.
The model comes in the form of multiple files downloaded from
the USGS 3D Elevation Program servers. By default, Pegasus down-
loads this data to the staging site, the OSN object store. After the



input is in the OSN bucket, the Merge job transfers the data to the
compute site (i.e., Jetstream2 or Anvil) as part of the job execution.
Since the Merge job is the only one in the workflow generating
terrain parameters to use this input, one of the data transfers can
be avoided without concerns about repeated requests to the USGS
servers or longer data staging time for other jobs; we use Pegasus’s
"bypass_staging" option to ensure it directly downloads the input
files for this job to the computing site. This decreases 4.12 minutes
in the runtime of the transfer jobs related to the Merge job. This
decrease is relatively small for this example workflow; however, the
effect is magnified when the data scenario of SOMOSPIE changes
to a much larger input size. In the case of Oklahoma at 10m, 39 files
are downloaded from the USGS servers at 17GB. However, if we
run the workflow for the region of the Contiguous United States
(CONUS) at the same resolution, the number of files increases to
971 and their size to 480GB. So the savings in the runtime of the
transfer jobs related to the Merge job become 1h1min when the
workflow is executed on Jetstream2. As the problem scales up, the
impact of bypass staging becomes more critical.

Table 9: Runtime savings in data transfers for Oklahoma
(OK) and the contiguous United States (CONUS) using bypass
staging on Jetstream2.

Resion DEM Data Transfers Runtime
g size Without With .
Savings | Speedup
bypass bypass
OK 17GB 8.88 mins | 4.68 mins | 4.12 mins 1.90
CONUS | 480GB | 1h 12mins 11 mins | 1h 1mins 6.45

6 CONCLUSIONS AND FUTURE WORK

This paper presents ACCESS Pegasus and its underlying cyberin-
frastructure components that enhance accessibility and productiv-
ity by integrating with the US-based CI, ACCESS. We demonstrate
ACCESS Pegasus’s capabilities with SOMOSPIE, an earth science
application for high-resolution soil moisture predictions. By de-
ploying ACCESS Pegasus’s workflows to execute SOMOSPIE, we
identify critical lessons learned when dealing with complex work-
flows on ACCESS resources, including memory limit management
and the automation of transfer optimizations.

Future work builds on the lessons learned and includes mov-
ing data closer to the computation process. Workflows such as
SOMOSPIE, which deal with terabytes of data, can benefit from
minimizing data transfers. A possible solution is clustering tasks in
an application pipeline into larger jobs that only require a single
transfer of the common data for all tasks. Another solution is to
replace the versatile OSN support with CI-specific optimizations
(e.g., JetStream2’s object store for Jetstream2 runs, and using the
Anvil shared work filesystem for Anvil jobs).
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