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ARTICLE INFO ABSTRACT

Keywords: In large-scale additive manufacturing (AM), ensuring product quality and production efficiency has been
Large scale additive manufacturing dependent on the skills and experiences of machine operators, and there has been a lack of guidelines based
Physics-based model on accurate data and a model from systematic analyses. The product quality and the production efficiency

Layer time optimization are highly influenced by layer deposition time (a.k.a. layer time). The determination of a proper layer time

involving a high-fidelity model requires high computational cost, and cannot be utilized for an online feedback
system where fast temperature prediction is necessary. In this work, we propose a fast layer time optimization
framework utilizing a reduced physics-based one-dimensional heat transfer model to predict the cooling
behavior and layer temperature. We also perform a high-fidelity three-dimensional finite element analysis
(FEA) with two geometries involving large angles and sharp angles. The temperature from the reduced model
is adjusted by variances calibrated based on the FEA model reflecting geometric effect so that the prediction
from the reduced model can be applied to complex geometric designs. This process of temperature prediction
is named the hybrid model, and it allows the offline design of layer time optimization. We combine the
temperature data into an optimization model, which monitors the temperature of multiple positions and
balances the relationship between the layer time and the layer temperature. We also develop an iteration-
based solution approach by combining the layer time optimization model with the hybrid model. The approach
involves iterations between the proposed layer time from the optimization model and the temperature predicted
from the hybrid model until the predicted temperature converges to a target layer temperature, determining an
optimal layer time. We apply the developed process to two cases with different printing geometries: hexagon
and star shapes. This paper provides a simplified and lower-cost methodology to determine an optimal layer
time and improve product quality in the large-scale AM process.

1. Introduction physical objects directly from 3D computer-aided design (CAD) data
without using part-depending tools [1]”. It is also known as 3D print-

Additive Manufacturing (AM) can be defined as a “layer-based ing, and it has been widely used to fabricate complex geometries in
automated fabrication process for making scaled 3-dimensional(3D)
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Fig. 1. (Center) Failure cases in Big-Area Additive Manufacturing (BAAM) process due to improper temperature control and (Left) a photograph of the failure from interlayer
debonding due to over-cooling [6] and (Right) a photograph of the failure from material collapse due to over-heating.

the aerospace and automotive industry. The main developed methods
include extrusion deposition process, powder bed fusion, inkjet print-
ing, stereolithography, direct energy deposition, and laminated object
manufacturing. Metals, polymers, ceramics, and concrete, as common
materials, are used in the process of additive manufacturing [2].

In a large-scale polymer extrusion system, a granular or pelletized
polymer with a screw-type extruder, which is used in the traditional
extrusion manufacturing process, is used for a feeding system [3].
In the feeding system, the screw in the extruder generates pressure
and heat during the melting of the feedstock. The pressure allows
the melted substrate to flow throughout the print nozzle. Large-scale
additive manufacturing systems with thermoplastic use a combination
of the polymer extrusion system and a deposition system to liquefy
the feedstock and deposit the molten substance for building a large-
scale structure layer by layer [4]. LSAM® by Thermwood is an example
of a large-scale additive manufacturing system. The LSAM® system
allows the extruded deposition of polymer materials at the rate of up to
227 kg/h for large-scale structures. The system has a 40 mm print head,
and it supports producing parts 30.4 m long, 3.0 m wide, and 1.5 m
high by using a thermoplastic pellet form feedstock [5]. This com-
mercially available large-scale 3D printer contributes to manufacturing
with the benefits of cost-effective production and design freedom.

One of the major challenges with such large-scale printers is de-
termining an optimal layer deposition time since the prediction of the
temperature change during the process is not trivial due to a large
amount of deposited material with an arbitrary shape and size. An over-
cooled surface from too long layer deposition time (a.k.a. layer time)
will cause interlayer debonding, cracking, and warping. Conversely, an
over-heated surface from too short layer time will experience material
collapse due to the lack of stiffness when new layers are deposited [7].
Fig. 1 shows these two types of failure cases from Big Area Addi-
tive Manufacturing (BAAM) due to the improper layer times, which
are also typically shown across various types of large-scale extrusion
deposition systems. Layer time has a crucial impact on the internal
stresses and ultimate deformation of printed products with different
thermal gradients [8]. Therefore, in order to prevent these failures
during the large-scale additive manufacturing process, an optimal layer
time should be determined, considering product quality and production
efficiency.

In previous studies, a real-time control model is developed to de-
termine an optimal layer time and improve both product quality and
production efficiency [9]. In the model, the layer time is controlled
with the print surface temperature captured by infrared cameras during
the entire process. However, real-time temperature data is expensive
and inflexible because experiments should be repeated when printing
conditions change. Another alternative approach to getting temperature
history data is the finite element analysis (FEA) based simulation,
which is more flexible with different geometries, but the model is
computationally expensive [10].

Instead of using expensive experimental printing data and time-
consuming FEA-based simulations, this paper intends to generate tem-
perature prediction data by applying a reduced physics-based model
for a given layer time. This study develops a 1D heat transfer model,
considering conduction, natural convection, and radiation. Since the
developed model assumes a simple wall geometry, the model cannot
capture the geometry-dependent cooling effect. In order to handle the
effect of various geometries, temperature variances for each position in
the local cooling duration are extracted from the FEA-based simulation.
Then, the cooling temperature data given by the physics-based model
is added with the corresponding variances to simulate different cooling
curves for each position on the layer. A layer time optimization model
is developed to determine the optimal layer time for the printing
process by considering the trade-offs between temperature deviation
and production efficiency. Two cases with hexagon and star geome-
tries are used in this study. Besides the benefits of quality control
and efficiency improvement, this study can provide a more simplified
and cost-effective tool for the large-scale additive manufacturing pro-
cess. The proposed method focuses on homogeneous single-bead print
with constant width and height for manufacturing simple geometries.
Approaches, which apply to more complicated geometries, will be
considered in future work.

The paper is structured as follows. Relevant pieces of literature are
reviewed in Section 2. Section 3 shows the material characterization
and the two geometries printed from LSAM®. The FEA-based simula-
tion and the reduced physics-based model for temperature prediction
are introduced in Section 4, and the optimal layer time control is
provided in Section 5. 6 presents two tested cases based on different
geometries. Finally, conclusions and future work are summarized in
Section 7.

2. Literature review

The characteristics of the final product, such as dimensional accu-
racy, better mechanical properties, and reduced deformation, highly
depend on the process parameters of the extrusion deposition process.
Mohan et al., [11] reviewed various studies on the optimization of
process parameters for quality characteristics of the extrusion depo-
sition process. Studies have been conducted on the process parame-
ter optimization such as layer thickness [12,13], the diameter of the
nozzle, temperature evolution, temperature of extrusion, raster orien-
tation [14], and raster angle and raster gap [15] during the extrusion
deposition process. These studies focused on verifying the relationship
between different process parameters and the corresponding effects
on the final product. Other studies focused on the relationship be-
tween print quality and the surface temperature during the whole
process [16-18]. Thermal cameras were used to measure the extruder
head and extruded substance temperature at the moment of deposition
in the polymer AM process [19]. A recent study [8] suggests that
warping and cracking occur as the print surface temperature goes below
the glass transition temperature.
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Online layer time control models were developed to improve print
quality and prevent failure [9,20]. In the control models, thermal
images were gathered by IR cameras to measure the surface layer
temperature. The temperature data were used in their feedback system
to determine an optimal layer time. The adjusted layer time ensured the
proper surface layer temperature when a new layer was deposited. In
the process of determining the optimal layer time, a regression model
was used to predict the layer temperature before a new layer was
deposited. The regression model utilized the temperature data from
experiments with a constant layer time, so the model was not flexible
enough to be applied to various scenarios with different manufacturing
conditions. An advanced optimization model was proposed to enhance
its applicability [21], considering the effect of various layer time cases.
The model improved the printing efficiency, but it still needs a large
amount of experimental data.

The simulations of the extrusion deposition process utilize a pro-
gressive element activation technique, in which the initially inactive
elements are activated with the printing head movement (tool path).
In a large-scale extrusion deposition process, the large deposition beads
and high deposition rate produce large thermal mass and residual heat,
which then leads to residual stresses during cooling, causing warping
and delamination between deposited layers. Therefore, the accurate
prediction of temperature (i.e., residual heat) is important to minimize
the warpage and optimize the printing process. FEA simulation has
often been used to predict the temperature evolution in the extrusion
deposition process [22-24]. In our previous study [10], surface layer
temperature in LSAM® was predicted via FEA simulation with the
progressive element activation. With the predicted surface layer tem-
perature, the optimal control approach in Ref. [9] was used to optimize
the layer time [10]. Typically, performing simulation is less expensive
than large-scale additive manufacturing; nevertheless, a high-fidelity
complex simulation model is still time-consuming. If a layer time
optimization algorithm requires multiple iterations of simulations with
different layer times, then the time it takes to obtain an optimal layer
time will be determined by an individual simulation run time.

A reduced 1D thermal model was developed to simulate the thermal
history for the large-scale thermoplastic AM process is developed [8],
and the model predicted layer temperatures that are in excellent agree-
ment with the observed temperatures from corresponding experiments.
The printed wall is assumed to have a large length compared to width
and thickness (Biot number <« 1) for the 1D heat transfer condition.
Also, a 2D finite volume model is developed with 2D spatial dis-
cretization to simulate the heat transfer during the large-scale additive
manufacturing process [25]. Inspired by the aforementioned studies,
we developed a simplified physics-based activation model to predict
the temperature change in additive manufacturing. Then, an adjusted
optimal control model is practiced to generate the best optimal layer
time, which can be used to ensure both product quality and production
efficiency. This method avoids applying large amounts of costly ex-
perimental or high-fidelity simulation data, and it provides reasonable
results.

3. Experiments
3.1. Material characterization

In our previous study [26], tensile tests were conducted to investi-
gate the relationship between the layer temperature and the interlayer
bonding property. Single bead wall hexagon structures were fabricated
in the LSAM® system using carbon fiber reinforced polycarbonate
(CF/PC) with different layer times — 140, 200, 260, and 320 s. The
corresponding layer temperatures from the four-layer times (140, 200,
260, and 320 s) were 140 °C, 120 °C, 104 °C, and 89 °C, respec-
tively. The layer time was changed by modifying the waiting time
(i.e., parking time of the nozzle) while maintaining the printing time
(i.e., deposition time with nozzle movement). The layer time is the
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Fig. 2. Effect of layer temperature on the tensile strength of printed part fabricated
by LSAM® system. Y-axis in the figure is the ultimate tensile strength in the stacking
direction [26].

time from the deposition moment of a layer until the subsequent layer
is deposited on top of the previous layer (i.e., layer time = waiting
time + printing time). Also, in this work, we define layer temperature
as the temperature of the top layer right before the next top layer is
deposited (i.e., the temperature of the top layer after the layer time
had passed). Therefore, a long layer time corresponds to a low layer
temperature because the layer takes a long time to cool down. Tensile
test specimens were fabricated from the printed hexagon structures
in the stacking direction to measure the interlayer bonding strength.
The effect of layer temperature on the tensile strength in the stacking
direction is shown in Fig. 2 [26]. The interlayer strength increased
when the layer temperature reached 140 °C, indicating a substantial
association between the layer temperature and the interlayer strength.
The experiment results align well with previous research, which shows
the relationship between the layer temperature and the interlayer
bonding property in a large-scale extrusion deposition system [27].
Furthermore, the tensile strength in the stacking direction exhibited
continuous improvement until the layer surface temperature reached
the glass transition temperature. However, excessive overheating can
lead to polymer degradation and successive material collapse [28].

Dynamic mechanical analysis (DMA) was conducted to measure the
glass transition temperature, and the result is shown in Fig. 3(a). The
DMA result shows the glass transition temperature of 145 °C [26],
which is the layer temperature at the upper limit of the interlayer bond-
ing strength in Fig. 2. Therefore, the glass transition temperature can
be a target layer temperature in the large-scale additive manufacturing
process. When the layer temperature is 20 °C higher than the glass
transition temperature, the printed structure collapses due to the lack of
stiffness. Considering the deposited polymer material should be solidi-
fied to ensure enough stiffness, the upper limit of the layer temperature
should be 165 °C. Conversely, when the layer temperature is 20 °C
lower than the glass transition temperature, the tensile strength rapidly
decreases in the interlayer bonding test. Throughout these experimental
results, our layer temperature window during the optimization process
is determined between 125 °C (lower limit) and 165 °C (upper limit).

Heat capacity was measured [26] as a function of temperature
for CF/PC based on the American Society for Testing and Materials
(ASTM) E1269 standard [29], and Fig. 3(b) shows the test result. The
heat capacity was measured by differential scanning calorimetry (DSC)
under an inert atmosphere and with sapphire as the reference material.
In this study, we adopt the material properties in Fig. 3 (b). Piecewise
linear regression is used to describe the change of heat capacity with
temperature (red dashed line), and it is used in the FEA simulation and
the reduced 1D model.

3.2. Sample printing in large-scale additive manufacturing

Hexagon and star shape geometry parts with single bead walls are
designed and fabricated with different layer times, using the LSAM®
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Fig. 3. Material property measurements with CF/PC (a) DMA result for the glass transition temperature [26] and (b) DSC results for the heat capacity as a function of

temperature [26].
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Fig. 4. Snapshots of temperature field captured from the IR camera (a), (c), and photographs of the printed structures (b), (d), for the hexagon shape print and the star shape

print.

system. The parts have a 1 m length and 0.3 m height with 61
layers. The printing parameters such as extrusion temperature, bed
temperature, ambient temperature, bead height, and bead width are
shown in Table 1. The material used in experiments is polycarbonate
reinforced with 20% carbon fiber by weight (CF/PC). Thermal images
are gathered via an infrared (IR) camera during the entire LSAM®
process. Fig. 4(a) and (b) show a snapshot of the temperature field
from the IR camera during the printing of the hexagon shape structure
and a photograph of the fabricated structure. Also, Fig. 4(c) and (d)
show a snapshot of the temperature field from the IR camera during the
printing of the star shape structure and a photograph of the fabricated
structure. Temperature data are extracted from the IR thermal images.
Temperature history and cooling behavior during the LSAM® process
are investigated from the temperature data. Also, the temperature data
during the entire process are used to verify the results of the FEA
simulation and the reduced 1D model.

4. Temperature profile prediction
4.1. FEA simulation

Finite element analysis (FEA) is used in the AM process simula-
tion to investigate temperature profiles and layer temperature. In the

FEA simulation, heat transfer occurs by conduction, convection, and
radiation. The manufacturing process and heat transfer mechanisms

Table 1
Experimental conditions for the large-scale 3D printing.

Printing conditions Value
Extrusion temperature, [°C] 265

Bed temperature, [°C] 30

Ambient temperature, [°C] 30

Bead height, [mm] 5.08

Bead width, [mm] 20.32

Layer deposition time (Hexagon), [s] 90, 140, 200
Layer deposition time (Star), [s] 200

are shown in Fig. 5. The CF/PC used material exhibits anisotropic
thermal properties due to the presence of reinforced carbon fibers.
The addition of carbon fibers increases the thermal conductivity of the
composite along the fiber direction [30]. Thus, fiber orientation should
be considered to simulate the manufacturing process.

The three-dimensional Fourier’s law governs the anisotropic thermal
conductivity with three conductivity parameters (k;, k,;, k33) for the
X, y, and z directions. Considering that the reinforced fibers are aligned
along the tool path direction, the principal direction (x-direction) for
the material is chosen as the deposition direction, and the z-direction is
chosen as the stacking direction. The conductivity values are measured
in previous research for the used material with the same large-scale ma-
terial deposition system [26]. The values are the product of the thermal
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Fig. 5. Schematic of the large-scale additive manufacturing process with polymer extrusion and heat transfer via conduction, convection, and radiation in the 3D FEA model.

Table 2
FEA simulation Input parameters.

Variable name Value

0.77, 0.35, 0.27

Thermal conductivity at T,, ky;, k5, k33 [W/m K]

Density, p [kg/m?] 1470
Convection coefficient, h,, [W/m? K] 4
Emissivity, € 0.9
Stefan-Boltzmann constant, ¢ [W/m? K*] 5.67x 1078
Deposition temperature, T,,, [°C] 210
Ambient temperature, 7,,, [°C] 30

Bed temperature, T,,, [°C] 50

Layer Height, 4/, [mm] 5.08
Thickness, w, [mm] 20.32

diffusivity, the heat capacity, and the density in piecewise functions of
temperature. The piecewise functions are used in the FEA simulation.
Newton’s law of cooling with a constant heat transfer coefficient is used
for the natural convection (4,,). The convection coefficient is calibrated
by comparing the cooling behavior of the printed substance between
the experiment and the simulation. Thermal radiation is governed by
the Stefan-Boltzmann law with a constant emissivity (¢). The emissivity
is calibrated by comparing the temperature of extruder measured by
thermocouple and the temperature of extruded material measured by IR
thermal image. We determine the emissivity when the thermal IR data
shows the same temperature as the extrusion temperature. The used
material property values in FEA simulation are summarized in Table 2.

In the FEA model, the spatial and temporal domains during the
deposition process are discretized into finite elements (DC3D8, linear
heat transfer brick with eight nodes) and time steps (1 step = 5 s),
respectively. To implement the layer-by-layer deposition process, the
elements are generated with the height of a printed layer (height
= 5.08 mm). When the tool path passes through the element, the
element is activated, and the boundary conditions are concurrently
updated over the entire simulation. The progressive material activation
technique is used to imitate the additive manufacturing process, and the
progressive deposition process is shown in Fig. 6(c). The temperature
profiles from simulations and experiments for the hexagon prints at
different process times are compared, and the results are shown in
Fig. 6(d). The temperature profiles are recorded from the base to
the top surface at the wall and the angle positions. The solid lines
correspond to the simulation results, while the dashed lines represent
the experimental results. The red and blue lines show the temperature
profile at the wall and angle, respectively. During the printing process
in the experiments, there is a temperature discrepancy between the wall
and the angle positions. The material at the corner (i.e., at the angled
position) cools faster than the material at the wall position. It is because
the material at the corner has a larger surface area on the outside

surface than the inside surface. The difference in surface area between
the inside and the outside surface will be more significant if the
corner becomes sharper (i.e., smaller angle); hence higher temperature
discrepancy is expected for sharper geometries between the angled
position and the wall position. The temperature discrepancy due to the
angle is accurately captured in the simulation. Despite the complexity
of the printing, the simulation results show a good agreement with
experiments, illustrating the reliability of the numerical simulations in
predicting the layer temperature.

4.2. Finite differential model with node activation (1D model)

A reduced physics-based model is developed to predict the tem-
perature history, substituting the time-consuming FEA simulations. A
schematic of the large-scale AM process and 1D heat transfer bound-
ary conditions are shown in Fig. 7. In the finite differential model,
heat transfer occurs by thermal conduction, natural convection, and
radiation. The model assumes that the deposited single bead wall
has infinite length and a constant width (w), and layer height (4/).
In this condition, the Biot number (=0.1818), which shows the ratio
of convection to conduction, suggests that thermal equilibration via
conduction is faster than the rate of heat loss due to convection at
the surface. Also, in the condition, the temperature is assumed to be
uniform in the through-thickness direction so that conduction only
occurs in the vertical direction [8]. Therefore, the model assumes that
there are no thermal gradients along the length and width direction
of the printed wall, indicating that heat conduction only occurs in
the vertical (1D) direction. A node is activated with time increment,
updating the boundary conditions, like a new layer is built during the
AM process. The time increment is defined by the layer time (4r).
At the upper surface of a top layer and the sides of all layers, free
surfaces experience natural convection and radiation to the environ-
ment at temperature (7,,,). The bottom layer experiences conduction
with a constant temperature boundary condition of the bed (7}.,).
The relevant material properties used in this model are specific heat
capacity(C,), density (p), thermal conductivity (), natural convection
coefficient (4,,), Stefan-Boltzmann constant (¢), and emissivity (¢). The
material property values are summarized in Table 3. The heat capacity
changes corresponding to the temperature during the heat transfer
process.

The 1D partial differential equation that describes heat transfer in
the printed layers is,

°T eh)

dT
pprAlE = kwAlaT - Qout

Quu = € AT (1) =T

env

)+ h AT, 1) -T,,,) (2)

where T is temperature, t is time, and A is area of the free surface.
We assume there is no energy generation within the material. The
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article.)

Table 3 internal heat transfer of the printed layer occurs through conduction
Input parameters. and the printed layer experiences heat loss through convection and ra-
Variable name Value diation.The partial differential equation is converted into a recurrence
Thermal conductivity, « [W/m K] 0.27 relation with finite differences. The first derivative becomes,

Density, p [kg/m?] 1470

Convection coefficient, ., [W/m? K] 4 ar ~ i(T(l, t+ A1) =T, 1) 3)
Emissivity, e 0.9 dt At

Stefan-Boltzmann constant, ¢ [W/m? K*] 5.67x 1078 The second derivative becomes,

Deposition temperature, T, [°C] 210 PT 1

Ambient temperature, 7,,, [°C] 30 — = _Z(T(I —AlLt)=2T(,t)+ T + Al 1)) 4)
Bed temperature, T,,, [°C] 50 al Al

Layer Height, Al, [mm] 5.08 The model has four sets of boundary conditions according to the
Thickness, w, [mm] 20.32 position and stacking condition, as shown in Fig. 8. In the first case,

Fig. 8(a), the first layer is deposited on the heated bed, which has a
constant temperature. The layer has three free surfaces (A= w+24/) and
one conduction surface with the base. In the second case, Fig. 8(b), the
bottom layer becomes the middle position layer with the upper layer
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reduced 1D heat transfer model.

and the base. So, it has two free surfaces (A= 24/), one conduction
surface with the base and one conduction surface with the upper layer.
In the third case, Fig. 8(c), the layer is located in the middle of two
layers. It has two free surfaces for convection and radiation (A= 24I),
and two conduction surfaces with upper and lower layers. For the last
condition, Fig. 8(d), the top layer is the lastly deposited, and it has three
free surfaces (A= w+2A4l) and one conduction surface with a lower
layer. Substituting Egs. (3) and (4) into Eq. (1), the new temperature
T(l,1+4t) can be solved for each of the possible boundary condition sets,
as shown in Eq. (5). The stability of the numerical solution is ensured

by the Von Neumann stability criterion in Eq. (6).

4k At

T(L, 1)+ 7C,aP T,y = T(L, 1)) — ﬁQW , bottom/surface
4K At
T(L,1)+ W(T(L — ALYy —T(L,1)
KAt At )
T4 a0 = tocar (T + ALty =T, 1) - 7y Ot , bottom/middle
T(L,t)+ pC“XIZ (T(L - AlLt)y=2T(L,t))+T( + Al 1)
At .
T pCwal Qou , middle
KAt At
(L0 + F (ML= A0 = T(L.0) = 400, t0p
(5)
adt < l,
@n =2 ©
a=kK/cyp.

A comparison between the experiment, the simulation, and the 1D
heat transfer model is conducted. Fig. 9 shows the temperature extract-
ing positions for each case. In the simulation results, temperature data
at 4 points in the center of a layer are extracted, and an average value
is used as an element temperature, Fig. 9(a). Element height is designed
as half of a layer height to capture the center temperature of a layer and
reduce the error caused by a nodal mass in the FEA simulation. In the
1D heat transfer model, temperature data are extracted at the center
of an element, Fig. 9(b). The temperature profile comparison results at
three different process times are shown in Fig. 10. Also, a comparison
at a fixed position is conducted, and the results are shown in Figs. 11
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Fig. 10. Comparison of temperature profiles of hexagon shape print from the exper-
iment (red dashed line), FEA simulation (blue solid line), and reduced model (brown
slid line) with those from the experiment at wall position when 20, 40, and 61 layers
are deposited. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 11. Comparison of element temperature of the hexagon shape print from FEA
simulation with that from the reduced (layer 50).

and 12 on different geometries. There is a temperature bounding when
a new layer is deposited on the fixed position. The developed 1D model
shows a good agreement with the simulation result at the wall position.
However, the 1D model cannot capture the temperature difference
between the wall and angle positions. Therefore, we analyze spatial
variances of the temperatures to account for the effect of the corner.

4.3. Variance addition

The element temperature predicted by the 1D heat transfer model
considers several physical parameters, while the geometric influences
are ignored due to the simplification. Therefore, the cooling process
is consistent for all positions on the layer, and it is not affected by
printing shapes. The 1D heat transfer model will provide one pre-
dicted temperature cooling curve, which can be considered as only
one position on the entire layer. This result is reasonable for wall
geometry but not for geometries with corners. In layer printing, the
temperature changes differently between straight walls and corners due
to the variant contact surface area. Node positions at corners should
have a higher or lower temperature, which is shown by the experiment
results and the FEA simulation in Fig. 6.

By considering the complexity of geometry in reality manufacturing,
making some adjustments for the temperature prediction results are
necessary. As known, the FEA simulation behaves with good prediction
performance with various geometries; hence, the temperature-changing
curves between different positions on an entire layer generated from
the FEA simulation are analyzed. The variances of temperatures among
all positions at each timestamp are extracted from the corresponding
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Fig. 12. Comparison of element temperature of the star shape print from FEA
simulation with that from the reduced model (layer 50).

geometry simulation data. As shown in Fig. 13(a), the x-axis is recog-
nized as the local layer time instead of the global layer time, and the
y-axis is the temperature variances, which keeps increasing over time.
Because the local layer time is applied here, the temperature cools as
the x-axis timestamps go up. Therefore, the variance values are lower
when the temperature is high and higher when the temperature is low.
The hexagon geometry has all wide corners 120°; the star geometry
comes with 36° sharp corners and 108° wide corners. According to the
positions on the entire layer, the temperature variance for one type of
corner hexagon shape is slightly lower than that in two types of a corner
star shape in the first 10 s printing. After that, the temperature variance
in the Hexagon geometry grows faster, and it is around 0.75, which is
higher than a 0.5 variance in the star geometry after the 200 s. In order
to explore the effect of corners, variances of the temperature from the
whole structure and wall positions are compared under both hexagon
shape and star shape. The wall positions are determined by excluding
the corner positions where defined as a normalized distance of four
times the printing bead width from the edges. According to Fig. 14(a)
and (b), the temperature variance of a wall position, denoted by the
blue line, starts to drop gradually after a 5 s printing, and it is near zero
after the first 25 s, which is trivial. However, the temperature variance
of the whole structure, represented as a red line, rises all the time, and
it increases more significantly in the hexagon shape, which means that
corners positively influence the variance of layer temperature change.
Because sharp corners in star geometry cool like a wall over time, as
shown in Fig. 12, the differences in temperature cooling rates between
corner and non-corner positions will be more evident as corner degrees
widen. In addition, denote 7,,,, and T,,, as the highest and lowest layer
temperature at a time, respectively. Based on the FEA simulation data,
Fig. 13(b) shows that the temperature differences between 7,,,, and
T, under the hexagon shape case and star shape case match with the
change of temperature variances. The smallest temperature difference
is around 1.5 °C at the initial deposition time, and it increases to a
stable value of 6 °C for the hexagon geometry and a stable value of 5
°C for the star geometry.

Therefore, to generate the final prediction data as accurately as the
FEA simulation data, more than the 1D heat transfer model is needed,
and it is reasonable to construct more sample data by considering the
properties of corners. Here, a hybrid prediction model is proposed. We
consider the corner property as variances based on the cooling data
from an initial simulation, and the normal distribution is applied at
each timestamp to collect more temperature samples. In the hybrid
prediction model, the predicted temperature obtained from the 1D heat
transfer model is set as a mean value, and variance extracted from
the FEA simulation is added by timestamps as the variance value.
Then, normalized random samples are able to be generated at each
timestamp, so we have multiple temperature cooling curves as variate
positions on an entire printing layer. Fig. 15 shows temperature cooling
curves of this hybrid prediction and the FEA simulation on the top
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Fig. 14. Comparisons of the temperature variances from the whole structure and the wall position (excluding the corner) based on the FEA simulation (top layer). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

layer. After a duration of layer time 140 s, the temperature is in a range
of 157.28 °C to 151.40 °C in the FEA simulation, and the temperature
from the hybrid prediction cools to a range from 158.18 °C to 153.87 °C.
In Fig. 16, temperature ranges are compared between the FEA sim-
ulation and the hybrid prediction over time. The temperature ranges
highly overlap after a 100 s cooling. In addition, on each timestamp,
a Kullback-Leibler divergence for the hybrid prediction distribution is
calculated by setting the FEA simulation distribution as the benchmark.
Kullback-Leibler divergences among timestamps in 140 s layer time are
from the lowest 0.02 to the highest 1.71, which are very close to 0.
Therefore, it is confident that the hybrid prediction model can mimic
various temperatures of the FEA simulation well.

With the proper predicted temperature data, we are able to find
the optimal layer time. The entire layer time can be divided into
printing and waiting times. As stated in the experimental design, the
printing time is 84 s for the hexagon geometry, and it is fixed, so
we control the time after the printing time. Therefore, the tiny pre-
diction difference after 100 s hardly influences the accuracy of the
final optimization result. The structured layer time optimization model
can monitor temperatures of multiple positions on an entire layer
and find the optimal layer time that considers both product quality
and production efficiency. Due to this function, the accuracy of the
predicted temperature range is more important than single temperature
values. Hence, the hybrid prediction model allows the offline design of
layer time optimization.

5. Layer time control

As discussed, a layer’s surface temperature closely influences the
product quality and manufacturing efficiency in large-scale additive

manufacturing. Overheated and overcooled surfaces will cause defor-
mation, cracking, and delamination issues. The product defects can be
efficiently reduced when the layer temperature is controlled within the
range from the lower bound 7, to the upper bound 7, and very close
to the best temperature 7). In order to guarantee the product quality,
temperatures of multiple positions on the layer will be monitored.
Therefore, an optimal layer time control model based on predicted tem-
perature is applied. Because the predicted temperature from Section 4 is
element temperature instead of surface temperature, the 156 °C element
temperature corresponding to the surface temperature of 145 °C will be
used as the best temperature.

5.1. Model for layer time optimization

Let M represent the number of positions being monitored. The
temperature change of the ith location, for i = 1,2,..., M, is modeled
by physics-based activation equations and variance adjustments in
Section 4. The time ¢ is known as the 1 s timestamp in the case study,
which is a positive integer, in the following case study section; ¢ for
predicted element temperature at the ith position 7%(r) starts with time
0 when thermoplastic material is deposited at the ith position. The time
0 is also known as the activation of nodes in the FEA simulation. The
less timestamp gap, the more accurate and stable optimal result will be
given. The optimization model with integer decision variable 7 is built
as follows:

M
min /() = X, () - T,)* + @t %)

i=1
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In the objective Eq. (7), f(¢) is calculated as a weighted summation
with the weight for each term denoted by w;, for i = 0,1, ...,M. Here,
a trade-off between the importance of temperature difference for each
node position and the layer time will be considered by the weight w,.
The first part of the objective function Zf\i | w,-(ff (1) — T,)* represents
how close a position’s element temperature is to the target temperature
T,(156 °C). The second term w,t considers the weight of layer time.
By combining both terms, getting more minor differences between
element temperature and target temperature among positions and min-
imizing layer time can be considered simultaneously by minimizing the
objective function.

There are three constraints in Eq. (8). The first constraint ensures
that all positions have an element temperature higher than the given
lower temperature bound 7; (140 °C) at time ¢. Similarly, the second
constraint guarantees that no position can have a layer temperature
greater than the upper temperature bound 7, (165 °C) at time ¢. The
last constraint regulates the layer time t to be positive integers as it
represents timestamps. The reorganized feasible region of layer time t,
denoted by [#,,7,], can be obtained as follows:

1= mrzlx{f"i(t) =T,teZ")

L . ©)
tu:Intln{T’(t):T,,tGZ }

The layer time optimization model can be solved by minimizing the
objective function f(r) over bounded decision variable interval [7,,1,]
by using the Sequential Quadratic Programming (SQP) method [9].

10

5.2. Iteration based solution approach

Even though the above optimal control model provides an optimal
layer time under each case, it may not be the final result due to the
cooling rate that varies under cases with different layer deposition
times. As tested in the optimal control model between simulation cases
with variate layer deposition time [10], the optimal layer time tends
to decrease when the given layer time of simulation increases. When
the layer deposition time is longer, the topside surface temperature
of the layer is cooler. At the time a new layer is printed onto this
cooler surface, the temperature cooling rate of the new topside layer
will increase; then, the optimal control model will generate a shorter
optimal layer time and vice versa. Finding optimal layer time is a
dynamic process with a trend of convergence. Therefore, the final
optimal layer time can be generated when it is equal to the layer
deposition time of the simulation.

Based on the above findings, an adjusted iteration method is con-
structed, and the process framework is shown in Fig. 17. Denote 7, t*,
for k = 0,1,2..., as the layer deposition time in kth iteration and the
relative optimal layer time in kth iteration, respectively. The process
will start with an initial layer deposition time 7°, which is the input
parameter of the 1D heat transfer model. By utilizing the temperature
values predicted based on the layer deposition time z°, an optimal
result 10 for the Oth iteration is obtained from the optimization model.
If this value is not equal to the layer deposition time, a new iteration
will start, and we use ¥ to update the 7% as the value of z!. In each
iteration of this framework, the optimal control model will provide an
optimal layer time ¢¥ based on the temperature cooling data generated
by the 1D heat transfer model and adjusted by variances extracted
from an initial FEA simulation with the layer deposition time z*.
Then, comparing whether the given 7* is different from #*. If the layer
time converges, the final recommended optimal layer time #* is found.
Otherwise, the k+1th iteration process begins, and the layer deposition
time 7¥*! will be updated by the deposition time based optimal result
t*; the temperature prediction and optimal time control processes will
be applied iteratively until the layer deposition time equals optimal
layer time. The converged layer time is the final optimal layer time
for the printing process. Based on the hexagon shape, three iteration
processes starting with different initial z° = 90 s, 130 s, and 200 s are
shown in Fig. 18. The x-axis is the time(s), and the y-axis is represented
by ¢ — t* (s), which is the difference between the layer deposition
time and its optimal layer time in the kth iteration. When this value
equals zero, a convergence is achieved. After several iterations, the final
optimal layer time under those three scenarios converges to the same
number, 139 s.
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Fig. 18. Convergence of the optimal layer time for hexagon geometry with different initial layer deposition time z°.

6. Case studies

Two cases with different printing geometries are tested to show the
performance of the physics-based layer time optimization model. In
order to verify the accuracy of the best optimal layer time for each
case, the corresponding simulation data with a given layer deposition
time is generated. An optimal result based on the simulation should be
very similar to the best optimal layer time given by the model described
in Sections 4 and 5.

6.1. Hexagon shape
A simple case based on layer 61, the topside, of the hexagon

geometry is considered. First, the proposed hybrid model is applied to
predict the layer temperature. Starting with the 1D heat transfer model

(b) Initial 7° = 130s

11

(c) Initial 7% = 200s

0

and predicting the element temperature, the initial layer deposition
time is set to be 130 s with the deposition temperature of 220 °C; then,
a generalized temperature cooling dataset with 61 layers is predicted.
Next, variances extracted from a 130 s FEA simulation are added to
the above-generalized dataset to show angle properties. In the initial
simulation of this case, all positions on the layer are monitored except
the first printed position and the last deposited node. The position
printed first shows temperature anomaly and is ignored due to extra
heat affection from the coming extrusion. A 1 s timestamp is used
in this case. For the timestamp range from 0 to 200, temperature
variances among monitored positions at each timestamp are observed
from the simulation with 130 s layer deposition time. Table 4 analyzes
a description of element temperature on layer 61 by mean and standard
deviation.
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Table 4
Description of element temperature among positions over time on layer 61
(Hexagon).
Timestamp (1 s) 0 1 199 200
Position count 156 156 156 156
Mean 218.429 217.857 144.689 144.496
std 0.509 0.236 0.857 0.857
220
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Fig. 19. Final optimization result on 1D model of hexagon shape with layer deposition
time = 140 s. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

In order to simulate temperature cooling curves of different po-
sitions on the layer, more random samples of temperatures need to
be generated by a normal distribution on each timestamp. Because
the temperature predicted by the 1D heat transfer model is viewed
as an average element temperature for positions on the layer, it is
reasonable to set this temperature cooling data as the mean value at
each timestamp. Therefore, random cooling samples as 150 positions
are structured from a normal distribution with the above mean and
variance. Besides, the coefficients w;, for i = 0,1, ...,150, in the
optimal control model are all equal to 1. The above processes will
iterate until the optimal results and layer deposition time converge.
The final optimal result given by this paper dithers between 139 s and
140 s. In this situation, the optimal layer time is 140 s based a 139 s
temperature prediction data; a 139 s optimal layer time is given by the
140 s prediction data. A single converged result is not obtained for two
main reasons. First, the variable timestamp t, put in the optimal model,
is positive integer values instead of continuous numbers, so the optimal
output is susceptible to temperature values. Second, the randomly
added variance values increase the sensitivity of layer time result in
each time rerunning the program, which causes the final result to dither
between two adjacent timestamps. Even though there is not a single
converged layer time result, the final optimal layer time is narrowed
down to a tiny range, and only two choices are needed to be verified
to get the final suggestion when the timestamp is large, for example
a 5 s timestamp. In our case study, because a 1 s timestamp is used
and the difference between optimal results is very small, we assume
that the results converge to the smaller value when the difference
is less than 1 s. Therefore, the best optimal layer time given by the
developed model is 139 s, which is shown in Fig. 19. The temperature
curves are drawn based on temperature data predicted from the hybrid
model. The solid blue line represents the temperature curve predicted
by the 1D heat transfer model, and the two temperature cooling curves
in the orange color are lines adjusted by adding variances with 95%
confidence level.

A test based on the FEA simulation data shown in Fig. 20 verifies
the optimal results given by developed approaches in this paper. The
element temperature of simulation cooling data is extracted for compar-
ison reasons, and the position of a node defined as element temperature
in the hexagon simulation is shown in Fig. 9. The element temperature

12

Additive Manufacturing 72 (2023) 103597

tg =139

-
8]
<
g
=
=
[
-
Q
o
E 140 s
=

120 s Lower/Upper bound

---- Ideal temperature (156 °C)
100
0 50 100 150 200 250
Time (s)

Fig. 20. Verified optimal layer time on hexagon shape simulation with layer deposition
time = 139 s. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 21. Final optimization result on 1D model of star shape with layer deposition
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Fig. 22. Verified optimal layer time on star shape simulation with layer deposition
time = 124 s.

cooling curves in Fig. 20 are shown by uniting the start printing time of
positions in hexagon simulation with 139 s layer time. The y-axis is the
element temperature (°C) on a layer, and the x-axis is the layer time
(s). With the lower bound (140 °C)/upper bound (165 °C) shown in the
red dashed line and target temperature (156 °C) described as the blue
dashed line, the element temperature for each position cools down to
around 156 °C as the vertical line #; marks the optimal layer time =
139 s, which is the same as its layer deposition time.

6.2. Star shape

The star geometry is a more complex case than the hexagon shape.
As described in Section 3, the star shape experimental design comes
with 36° sharp corners and 108° wide corners instead of single type
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Table 5

Description of element temperature among positions over time on layer61 (Star).
Timestamp (1 s) 0 1 199 200
Position count 71 71 71 71
Mean 209.188 208.511 131.868 131.668
std 0.255 0.242 0.731 0.732

120° corners in the Hexagon case. First, the element temperature of
the star geometry is extracted by a dictionary of coordinates from
initial simulation data with 180 s layer time. Two specific element
positions of sharp corners are removed as outliers due to the design
difference between the real 3D print and the FEA simulation. In the
1D heat transfer model, the initial layer deposition time matches our
initial simulation case, which is 180 s; the deposition temperature is
210 °C for the start geometry. Then the same process as in Section 6.1
is applied. The element temperature of 71 positions is considered, and
the standard deviation for this case is shown in Table 5.

With all coefficients w; = 1, the final optimal result given is a
converged 124 s layer time, which is shown in the hybrid prediction
model based Fig. 21. Fig. 22 verifies the result with a 124 s layer
deposition time based on the FEA simulation data, and the vertical line
t;, denotes the optimal layer time in this simulation case when the target
temperature is (156 °C). Therefore, the best optimal layer time based
on the star geometry is founded, which is 124 s, and this simulation
verifies the model output given by the methods in this paper.

7. Conclusion

We propose an optimization framework to determine an optimal
layer deposition time for the large-scale additive manufacturing pro-
cess. With the determined optimal layer deposition times, successive
layers are deposited on the surface, which has the proper layer tempera-
ture. In the optimization framework, a reduced physics-based activation
model (the 1D heat transfer model) is used to predict the temperature
history, substituting the time-consuming finite element analysis (FEA)
and experiments. Temperature variances are extracted from a high-
fidelity FEA model to consider the geometric characters. The variances
are used to generate the geometry-considered temperature data with
the reduced model for different layer deposition times. An optimal con-
trol model is practiced to suggest a new layer deposition time, which
is expected to have a proper surface temperature. The optimization
process starts with a given initial layer deposition time and iterates
until the predicted surface temperature converges to the target temper-
ature. When the predicted surface temperature is the same as the target
temperature, the optimization process stops and provides an optimal
layer deposition time. The optimization process uses the reduced model
for the iteration; thus, this process saves time for running complex
simulations and the expensive costs of experiments.

The proposed optimization framework can be potentially improved
in future works. First, the physics-based reduced model will be en-
hanced to predict the corner position temperature for reflecting ge-
ometry factor instead of extracting temperature variances from the
FEA simulation model. Also, we only consider single-bead printing
for the optimization model. Future work can be extended to study
applicability of multi-bead printing. In addition, an optimization model
which applies to the geometry with a non-homogeneous shape, without
constant width and height, will be investigated in the future study.

CRediT authorship contribution statement

Lu Liu: Writing - original draft, Software, Methodology, Formal
analysis, Data curation. Eonyeon Jo: Writing — original draft, Method-
ology, Investigation, Formal analysis, Data curation. Dylan Hoskins:
Project administration, Data curation, Conceptualization. Uday Vaidya:

13

Additive Manufacturing 72 (2023) 103597

Supervision. Soydan Ozcan: Supervision, Project administration, In-
vestigation, Funding acquisition. Feng Ju: Writing — review & editing,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Conceptualization. Seokpum Kim: Writing — review & editing, Su-
pervision, Project administration, Funding acquisition, Data curation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
The data that has been used is confidential.
Acknowledgments

The authors gratefully acknowledge support from the
High-Performance Computing for Energy Innovation (HPC4EI) program
and the HPC4Materials project sponsored by the Vehicle Technologies
Office, Office of Energy Efficiency and Renewable Energy, U.S. De-
partment of Energy. The research was also supported in part by the
U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy, Advanced Manufacturing Office, under contract DE-ACO05-
000R22725 with UT-Battelle, LLC. The authors also appreciate the
support from the National Science Foundation, United States, CMMI-
1922739. The large-scale 3D printing system used in this work is
LSAM®, developed by Thermwood Corp., and the system was operated
by Local Motors for this work.

References

[1] A. Gebhardt, Understanding additive manufacturing: rapid prototyping - rapid
tooling - rapid manufacturing, Carl Hanser Verlag, Munich, Germany, 2012.
T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing
(3D printing): A review of materials, methods, applications and challenges,
Composites B 143 (2018) 172-196.

A. Bellini, L. Shor, S.I. Guceri, New developments in fused deposition modeling
of ceramics, Rapid Prototyp. J. 11 (2005) 214-220.

C.E. Duty, V. Kunc, B. Compton, B. Post, D. Erdman, R. Smith, R. Lind, P. Lloyd,
L. Love, Structure and mechanical behavior of big area additive manufacturing
(BAAM) materials, Rapid Prototyp. J. 23 (2017) 181-189.

Thermwood, Large scale additive manufacturing, 2019, http://thermwood.com/
Isam/brochures/lsam2017brochure/index.html Last accessed on Jan. 16, 2019.
L.J. Love, Utility of Big Area Additive Manufacturing (BAAM) For The Rapid
Manufacture of Customized Electric Vehicles, Technical Report, Oak Ridge
National Lab. (ORNL), Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United
States), 2015.

B. Brenken, E. Barocio, A. Favaloro, V. Kunc, R.B. Pipes, Fused filament
fabrication of fiber-reinforced polymers: A review, Addit. Manuf. 21 (2018) 1-16.
B.G. Compton, B.K. Post, C.E. Duty, L. Love, V. Kunc, Thermal analysis of
additive manufacturing of large-scale thermoplastic polymer composites, Addit.
Manuf. 17 (2017) 77-86.

F. Wang, S. Fathizadan, F. Ju, K. Rowe, N. Hofmann, Print surface thermal
modeling and layer time control for large-scale additive manufacturing, IEEE
Trans. Autom. Sci. Eng. 18 (1) (2020) 244-254.

E. Jo, L. Liu, F. Ju, D. Hoskins, D.K. Pokkalla, V. Kunc, U. Vaidya, S. Kim, The
design of layer time optimization in large scale additive manufacturing with fiber
reinforced polymer composites, in: SAMPE Technical Conference Program, 2022.
N. Mohan, P. Senthil, S. Vinodh, N. Jayanth, A review on composite materials
and process parameters optimisation for the fused deposition modelling process,
Virtual Phys. Prototyp. 12 (1) (2017).

B. Lee, J. Abdullah, Z. Khan, Optimization of rapid prototyping parameters for
production of flexible ABS object, J. Mater Process. Technol. 169 (2005) 54-61.
X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Interface and performance of 3D printed
continuous carbon fibre reinforced PLA composites, Composites A 88 (2016)
198-205.

N. Hill, M. Haghi, Deposition direction-dependent failure criteria for fused
deposition modelling polycarbonate, Rapid Prototyp. J. 20 (2014) 221-227.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]


http://refhub.elsevier.com/S2214-8604(23)00210-5/sb1
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb1
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb1
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb2
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb2
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb2
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb2
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb2
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb3
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb3
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb3
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb4
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb4
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb4
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb4
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb4
http://thermwood.com/lsam/brochures/lsam2017brochure/index.html
http://thermwood.com/lsam/brochures/lsam2017brochure/index.html
http://thermwood.com/lsam/brochures/lsam2017brochure/index.html
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb6
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb6
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb6
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb6
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb6
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb6
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb6
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb7
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb7
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb7
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb8
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb8
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb8
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb8
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb8
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb9
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb9
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb9
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb9
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb9
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb10
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb10
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb10
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb10
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb10
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb11
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb11
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb11
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb11
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb11
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb12
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb12
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb12
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb13
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb13
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb13
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb13
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb13
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb14
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb14
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb14

L. Liu et al.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Experimental investigations of
process parameters influence on rheological behaviour and dynamic mechanical
properties of FDM manufactured parts, Mater. Manuf. Process. 31 (2015)
1983-1994.

S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, A.T. Clare, Review of in-
situ process monitoring and in-situ metrology for metal additive manufacturing,
Mater. Des. 95 (2016) 431-445.

S. Berumen, F. Bechmann, S. Lindner, J. Kruth, T. Craeghs, Quality control of
laser and powder bed based additive manufacturing (AM) technologies, Physics
Procedia 5 (2010) 617-622.

F. Wang, H. Mao, D. Zhang, X. Zhao, Y. Shen, Online study of cracks during
laser cladding process based on acoustic emission technique and finite element
analysis, Appl. Surf. Sci. 255 (2008) 3267-3275.

J.E. Seppala, K.D. migler, Infrared thermography of welding zones produced by
polymer extrusion additive manufacturing, Addit. Manuf. 12 (2016) 71-76.

S. Fathizadan, F. Ju, K. Rowe, A. Fiechter, N. Hofmann, A novel real-time thermal
analysis and layer time control framework for large-scale additive manufacturing,
J. Manuf. Sci. Eng. 143 (1) (2021).

S. Fathizadan, F. Ju, F. Wang, K. Rowe, N. Hofmann, Dynamic material
deposition control for large-scale additive manufacturing, IISE Trans. 54 (9)
(2022) 817-831.

B. Brenken, E. Barocio, A. Favaloro, V. Kunc, B.R. Pipes, Development and
validation of extrusion deposition additive manufacturing process simulations,
Addit. Manuf. 25 (2019) 218-226.

14

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Additive Manufacturing 72 (2023) 103597

Y. Zhang, Y.K. Chou, Three-dimensional finite element analysis simulations of
the fused deposition modeling process, Proc. Inst. Mech. Eng. B 220 (2006).

T. D’Amico, A.M. Peterson, Bead parameterization of desktop and room-scale ma-
terial extrusion additive manufacturing: How print speed and thermal properties
affect heat transfer, Int. J. Adv. Manuf. Technol. 34 (2020).

J.T. Owens, A. Das, M.J. Bortner, Accelerating heat transfer modeling in material
extrusion additive manufacturing: From desktop to big area, Addit. Manuf. 55
(2022).

D. Hoskins, E. Barocio, D. Koester, D. Penumadu, V. Kishore, A.J. Thomas,
W. Henken, J.A. Remirez, S. Kim, M. Ramirez, T. Smith, F. Mattingly, C.E.
Duty, V. Kunc, Development of Large Scale Extrusion Deposition for Structural
Applications, Technical Report, Institute for Advanced Composites Manufacturing
Innovation (IACMI), IACMI, Knoxvill, TN, 37932, 2022.

A. Nycz, V. Kishore, J. Lindahl, C.E. Duty, C. Carnal, V. Kunc, Controlling
substrate temperature with infrared heating to improve mechanical properties
of large-scale printed parts, Addit. Manuf. 33 (2020).

V. Kishore, A. Nycz, J. Lindahl, C. Duty, C. Carnal, V. Kunc, Effect of infrared
preheating on the mechanical properties of large format 3d printed parts, in:
2019 International Solid Freeform Fabrication Symposium, University of Texas
at Austin, 2019.

ASTM.standard, Standard Test Method for Determining Specific Heat Capacity
By Differential Scanning Calorimetry, ASTM International, West Conshohocken,
PA, 2018.

L.J. Love, V. Kunc, O. Rios, C.E. Duty, A.M. Elliott, B.K. Post, R.J. Smith, C.A.
Blue, The importance of carbon fiber to polymer additive manufacturing, J.
Mater. Res. 29 (2014).


http://refhub.elsevier.com/S2214-8604(23)00210-5/sb15
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb15
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb15
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb15
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb15
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb15
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb15
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb16
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb16
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb16
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb16
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb16
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb17
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb17
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb17
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb17
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb17
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb18
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb18
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb18
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb18
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb18
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb19
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb19
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb19
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb20
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb20
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb20
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb20
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb20
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb21
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb21
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb21
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb21
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb21
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb22
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb22
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb22
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb22
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb22
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb23
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb23
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb23
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb24
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb24
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb24
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb24
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb24
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb25
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb25
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb25
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb25
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb25
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb26
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb27
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb27
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb27
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb27
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb27
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb28
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb28
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb28
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb28
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb28
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb28
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb28
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb29
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb29
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb29
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb29
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb29
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb30
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb30
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb30
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb30
http://refhub.elsevier.com/S2214-8604(23)00210-5/sb30

	Layer time optimization in large scale additive manufacturing via a reduced physics-based model
	Introduction
	Literature review
	Experiments
	Material characterization
	Sample printing in large-scale additive manufacturing

	Temperature profile prediction
	FEA simulation
	Finite differential model with node activation (1D model)
	Variance addition

	Layer time control
	Model for layer time optimization
	Iteration based solution approach

	Case studies
	Hexagon shape
	Star shape

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


