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Abstract. In this article, we continue the study of a certain family of 2-Calabi-Yau tilted

algebras, called dimer tree algebras. The terminology comes from the fact that these algebras

can also be realized as quotients of dimer algebras on a disc. They are defined by a quiver

with potential whose dual graph is a tree, and they are generally of wild representation type.

Given such an algebra B, we construct a polygon S with a checkerboard pattern in its interior,

that defines a category Diag(S). The indecomposable objects of Diag(S) are the 2-diagonals in

S, and its morphisms are certain pivoting moves between the 2-diagonals. We prove that the

category Diag(S) is equivalent to the stable syzygy category of the algebra B. This result was

conjectured by the authors in an earlier paper, where it was proved in the special case where

every chordless cycle is of length three.

As a consequence, we conclude that the number of indecomposable syzygies is finite, and

moreover the syzygy category is equivalent to the 2-cluster category of type A. In addition,

we obtain an explicit description of the projective resolutions, which are periodic. Finally, the

number of vertices of the polygon S is a derived invariant and a singular invariant for dimer tree

algebras, which can be easily computed form the quiver.
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Figure 1. A quiver Q together with its dual graph on the left, and the corre-
sponding checkerboard polygon on the right. The module Mγ determined by the
2-diagonal γ is the cokernel of the map fγ ∶ P (5) ⊕ P (6) → P (3) ⊕ P (4), deter-
mined by the crossing of γ with the radical lines 3,4,5, and 6.
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1. Introduction

In this paper, we continue our study of syzygies over 2-Calabi-Yau tilted algebras initiated in
[SS]. Our main result is the proof of the main conjecture of that article in full generality.

The syzygy modules over a ring or an algebra play a fundamental role in both commutative
and non-commutative algebra. By definition, they are the submodules of projective modules, and
hence syzygies are the building blocks of projective (or free) resolutions. In particular, every
module can be approximated by its syzygies. Understanding the category of syzygies provides
valuable information about the algebra, but in general this is a difficult problem. The algebras
we consider here are wild in general, and thus there is no hope for understanding their module
category entirely. However, this paper provides a complete description of the syzygy category.

Our algebras have the property that their syzygy category is equivalent to the category of
maximal Cohen-Macauley modules and also to the singularity category. Cohen-Macauley modules
and rings are central in commutative algebra, in particular, in the McKay correspondence, matrix
factorization, and resolutions of singularities [E, LW, M, PV, Y]. Buchweitz brought these ideas
to the non-commutative setting of Iwanaga-Gorenstein rings, introducing the singularity category
in [Bu], which was later rediscovered and generalized to the graded setting by Orlov [O]. An
important problem is the classification of rings of finite Cohen-Macauley type, which is solved for
hypersurface singularities and for normal Cohen-Macauley rings of Krull dimension two, in the
commutative case. For higher dimensions, as well as for non-commutative rings the problem is
open.

In this paper, we are interested in a special class of 2-Calabi-Yau tilted algebras. The family of 2-
Calabi-Yau tilted algebras arises from the categorification of cluster algebras [Am, BMRRT] and are
a generalization of cluster-tilted algebras and of Jacobian algebras of quivers with potentials. Keller
and Reiten showed that every 2-Calabi-Yau tilted algebra is Iwanaga-Gorenstein of Gorenstein
dimension one and that their stable syzygy category is 3-Calabi-Yau [KR].

Here we study a special family of 2-Calabi-Yau tilted algebras which are characterized by the
condition that the dual graph of their quiver is a tree, see Definition 3.2. The potential is given by
the alternating sum of the chordless cycles. These algebras can be realized as quotients of dimer
algebras on a disc which implies that the boundary arrows in our quiver also induce relations on
the algebra. These are zero relations and guarantee that the algebra is finite-dimensional and
schurian. Because of this similarity we call our algebras dimer tree algebras. For example, algebras
arising from the coordinate rings of the Grassmannians Gr(3, n) are dimer tree algebras. Dimer
algebras have been studied extensively, see [HK, Po, JKS, BKM, Pr] and the references therein;
for their connection to homological mirror symmetry, see [Bo].

Main result. Let B be a dimer tree algebra with quiver Q. Let modB denote the category of
finitely generated right B-modules and CMPB the category of non-projective syzygies. Also, let
Ω denote the syzygy functor. To every boundary arrow α of Q, we associate a weight w(α) which
equals either 1 or 2, depending on the parity of the length of its cycle path (or zigzag path), see
Definition 3.7. The total weight of B, which is the sum of weights of all boundary arrows will be
denoted by 2N . We use a polygon S with 2N vertices to provide a geometric model for the syzygy
category CMPB of B.

Let Diag(S) be the category of 2-diagonals in S, whose morphisms are given by pivoting moves
between the 2-diagonals. This is a triangulated category whose shift functor is given by the
clockwise rotation R by π/N . Our polygon S is also quipped with a checkerboard pattern that
is defined by a set of radical lines ρ(i) associated to the vertices i of Q. Then each 2-diagonal
γ in S corresponds to an indecomposable syzygy Mγ and its intersections with the checkerboard
pattern determines the projective presentation of Mγ . Moreover, the 2-diagonal γ will be oriented
and hence its crossings with the lines ρ(i) of the checkerboard pattern come with an orientation
as well. We define projective modules P0(γ) = ⊕iP (i) and P1(γ) = ⊕jP (j), where the first sum is
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over all i such that ρ(i) crosses γ from right to left and the second sum is over all j such that ρ(j)
crosses γ from left to right.

We are now ready to state our main result.

Theorem 1.1. Let B be a dimer tree algebra of total weight 2N and S the associated checkerboard
polygon. For each 2-diagonal γ in S there exists a morphism fγ ∶P1(γ) → P0(γ) such that the
mapping γ ↦ cokerfγ induces an equivalence of categories

F ∶Diag(S)→ CMPB.

Under this equivalence, the radical line ρ(i) corresponds to the radical of the indecomposable pro-
jective P (i) for all i ∈ Q0. The clockwise rotation R of S corresponds to the shift Ω in CMPB and
R2 corresponds to the inverse Auslander-Reiten translation τ−1 = Ω2. Thus

F (ρ(i)) = radP (i)
F (R(γ)) = ΩF (γ)

F (R2(γ)) = τ−1 F (γ)
Furthermore, F maps the 2-pivots in Diag(S) to the irreducible morphisms in CMPB, and the
meshes in Diag(S) to the Auslander-Reiten triangles in CMPB.

An example is given in Figure 1.
Theorem 1.1 was conjectured in [SS], where it was proved in the special case where every

chordless cycle in Q has length 3. Now that this conjecture is proved, we also have Corollaries
1.3-1.8 of [SS] in full generality, some of which we recall now. To begin with, the category CMPB

is equivalent to the 2-cluster category of type AN−2 and the number of indecomposable syzygies
is N(N − 2). In particular, dimer tree algebras have finite Cohen-Macauley type. Furthermore,
the projective resolutions of syzygies are completely determined by the checkerboard polygon S
and are periodic of period N or 2N . Additionally, the indecomposable syzygies are rigid, meaning
they have no self-extensions in modB. We conjecture that they are also τ -rigid. Moreover, the
total weight of B is a derived invariant, even a singular invariant, for the dimer tree algebra B,
and it can be easily read off the quiver. Finally, the same checkerboard polygon also provides a
geometric model for the stable cosyzygy category CMIB, and we have a commutative diagram of
equivalences

CMPB
τ // CMIB

τ−1
oo

Diag(S)
kerνfγ

99

cokerfγ

ee

where τ, τ−1 are the Auslander Reiten translations and ν is the Nakayama functor in modB.

A few words about the proof. In the proof, we establish certain derived equivalences and singular
equivalences and use them to reduce the problem to the case when B has only one chordless cycle,
see Section 4. Some of these equivalences are given by mutation while others are given by removal
or addition of vertices to the quiver. This process builds on earlier results by Bastian-Holm-Ladkani
[BHL], Lu [Lu], and Chen [C3]. In Section 5, we then give a new construction of the checkerboard
pattern and show that it is equivalent to the one in [SS]. The main result is proved in Section 6.

One difference from the approach in [SS] is that we show the existence of the morphism fγ in
the main theorem, but we do not have an explicit construction. It would be useful to have such a
description, but, judging from [SS], such a description would be quite involved.
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Related work. For the very special class of cluster-tilted algebras of finite representation type, the
syzygy categories were studied before by Chen, Geng and Lu in [CGL], where they gave a classi-
fication of the syzygy categories of these algebras. In particular, they show that the components
of CMPB are equivalent to the stable categories of certain self-injective algebras. Their proce-
dure involves a case by case analysis that uses a classification of the derived equivalence classes of
cluster-tilted algebras of Dynkin type in [BHL, BHL2]. Later Lu extended these results to simple
polygon-tree algebras [Lu]. One of the ingredients of the proof is successive mutation at vertices
of the exterior cycles and reduction to a cluster-tilted algebra of Dynkin type D, and we generalize
this method in the first step of our proof in section 4. These algebras are special cases of dimer tree
algebras. The above results determine only the type of the syzygy category but do not describe
the objects or the morphisms.

Garcia-Elsener and the first author have described the syzygy category of cluster-tilted algebras
of type D in terms of arcs in a once-punctured polygon in [GES].

For gentle algebras, the singularity categories have been described by Kalck in [K] using m-
cluster categories of type A1. In our setting the algebra is gentle if and only if the quiver has a
unique chordless cycle. This has been extended to skew-gentle algebras by Chen and Lu in [CL].
For further results on singularity categories of finite dimensional algebras see [C, C2, CSZ, LZ, Sh].

Future directions. In a work in progress, we describe the connection to dimer algebras and show
how to embed our checkerboard polygon in an alternating strand diagram of the dimer model. For
an illustration, we show in Figure 2 an alternating strand diagram that contains the checkerboard
polygon of Figure 1. The orientation of the strands is such that the shaded regions are oriented,
while the white regions are alternating. The corresponding dimer algebra on the disc is given by
the quiver on the right in the same figure. Each vertex represents a white region in the alternating
strand diagram and two regions are connected by an arrow if they share a crossing point. The full
subquiver on the vertices 1, 2, . . . , 9 is equal to the twisted quiver Q̃ of the quiver Q from Figure 1
in the sense of Bocklandt [Bo]. The vertices 10, 11, . . . 23 are frozen vertices. Note that both the
checkerboard polygon and the alternating strand diagram have 14 boundary vertices.

In another direction, it will be interesting to see if we can relax the conditions on the quiver
such as allowing the dual graph to be disconnected or to contain cycles. Other future projects
include the behavior of the checkerboard polygon under mutations, a description of the syzygies in
terms of their composition factors, and the question of τ -rigidity of the indecomposable syzygies.

Acknowledgements: We thank Eleonore Faber, Alastair King and Matthew Pressland for inter-
esting discussions. We also thank the anonymous referee for useful comments.

The first author was supported by the NSF grants DMS-1800860, DMS-2054561, and by the
University of Connecticut. The second author was supported by the NSF grant DMS-2054255.
This work was partially supported by a grant from the Simons Foundation. The authors would
like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality
during the programme Cluster Algebras and Representation Theory when work on this paper was
undertaken. This work was supported by: EPSRC Grant Number EP/R014604/1.

2. Preliminaries

Let k be an algebraically closed field. If A is a finite-dimensional k-algebra, we denote by
modA the category of finitely generated right A-modules. Let D denote the standard duality
D = Hom(−,k). If QA is the ordinary quiver of the algebra A, and i is a vertex of QA, we de-
note by P (i), I(i), S(i) the corresponding indecomposable projective, injective, simple A-module,
respectively.

Let rad A denote the Jacobson radical of A. If M ∈ modA its radical is defined as rad M =

M(rad A) and its top as topM =M/rad M . Thus in particular topP (i) = S(i). Given a module
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Figure 2. An alternating strand diagram that contains the checkerboard polygon
of Figure 1. The corresponding quiver is shown on the right. Its mutable part is
the twist of the quiver of the checkerboard polygon.

M , we denote by addM the full subcategory of modA whose objects are direct sums of summands
of M .

For further information about representation theory and quivers we refer to [ASS, S2].

2.1. Cohen-Macauley modules over 2-Calabi-Yau tilted algebras. From now on, let B be a
2-Calabi-Yau tilted algebra. Thus B is the endomorphism algebra of a cluster-tilting object in a 2-
Calabi-Yau category. A B-module M is said to be projectively Cohen-Macauley if ExtiB(M,B) = 0
for all i > 0. In other words, M has no extensions with projective modules.

We denote by CMPB the full subcategory of modB whose objects are the projectively Cohen-
Macauley modules. This is a Frobenius category. The projective-injective objects in CMPB are
are precisely the projective B-modules. The corresponding stable category CMPB is triangulated,
and its inverse shift is given by the syzygy operator Ω in modB. The category is closed under
extensions in modB.

Moreover, by Buchweitz’s theorem [Bu, Theorem 4.4.1], there exists a triangle equivalence
between CMPB and the singularity category Db(B)/Db

perf(B) of B. Keller and Reiten showed in

[KR] that the category CMPB is 3-Calabi-Yau.
It was shown in [GES] that if M ∈modB is indecomposable then the following are equivalent.

(a) M is a non-projective syzygy;
(b) M ∈ indCMPB;
(c) Ω2

BτBM ≅M .

We may therefore use the terminology “syzygy” and “Cohen-Macauley module” interchangeably.
Two algebras are said to be derived equivalent if there exists a triangle equivalence between

their bounded derived categories. Two algebras are said to be singular equivalent if there exists a
triangle equivalence between their singularity categories.

2.2. Quivers with potentials. A quiver Q = (Q0,Q1, s, t) consists of a finite set of vertices Q, a
finite set of arrows Q1 and two maps s, t∶Q1 → Q0, where s is the source and t is the target of the
arrow. Thus if α ∈ Q1 then α∶ s(α)→ t(α).

A potential W on a quiver Q is a linear combination of non-constant cyclic paths. For every
arrow α ∈ Q1, the cyclic derivative ∂α is defined on a cyclic path α1α2 . . . αt as

∂α(α1α2 . . . αt) = ∑
p∶αp=α

αp+1 . . . αtα1 . . . αp−1



6 RALF SCHIFFLER AND KHRYSTYNA SERHIYENKO

and extended linearly to the potential W .
The Jacobian algebra Jac(Q,W ) of the quiver with potential is the quotient of the (completed)

path algebra kQ by (the closure of) the 2-sided ideal generated by all partial derivatives ∂αW ,
with α ∈ Q1. Two parallel paths in the quiver are called equivalent if they are equal in Jac(Q,W ).

If Q has no oriented 2-cycles then Jac(Q,W ) is 2-Calabi-Yau tilted by [Am].
Let (Q,W ) be a quiver with potential and k a vertex of Q that does not belong to an oriented

2-cycle. Using a cyclic shift if necessary, we may assume without loss of generality that none
of the cyclic paths in W starts at k. The mutation of (Q,W ) at k is the quiver with potential
µk(Q,W ) = (Q′,W ′), where

(i) Q′ is the quiver obtained from Q by the following local transformations

- For every path of length two i
α // k

β // j , introduce a new arrow i
[αβ] // j .

- Replace every arrow α∶ i→ k ending at k by its opposite α∶ i← k and every arrow β∶k → j

starting at k by its opposite β∶k ← j.

(ii) W ′
= [W ] +∆k, where

∆k = ∑
α,β∈Q1∶t(α)=s(β)=k

[αβ]β α

and [W ] is obtained from W by substituting [αβ] for each factor αβ with t(α) = s(β) = k.
A potential that does not contain any 2-cycles is called reduced. It may happen that the

mutation of a reduced potential is no longer reduced. However, often it is possible to replace W ′

by an equivalent potential that is reduced. In that case, we also may remove all 2-cycles from the
quiver, and then we obtain the quiver Q′ = µkQ given by ordinary quiver mutation at k.

2.3. Translation quivers and mesh categories. We review here the notions of translation
quiver and mesh category from [Ri, Ha]. These notions are often used in order to define a category
from combinatorial data. Examples of such constructions are the combinatorial constructions of
cluster categories of finite type in [BM, BM2, CCS, S].

A translation quiver (Γ, τ) is a quiver Γ = (Γ0,Γ1) without loops together with an injective
map τ ∶Γ′0 → Γ0 (the translation) from a subset Γ′0 of Γ0 to Γ0 such that, for all vertices x ∈ Γ′0,
y ∈ Γ0, the number of arrows from y → x is equal to the number of arrows from τx → y. Given a
translation quiver (Γ, τ), a polarization of Γ is an injective map σ ∶ Γ′1 → Γ1, where Γ′1 is the set
of all arrows α∶ y → x with x ∈ Γ′0, such that σ(α)∶ τx→ y for every arrow α∶ y → x ∈ Γ1. From now
on we assume that Γ has no multiple arrows. In that case, there is a unique polarization of Γ.

The path category of a translation quiver (Γ, τ) is the category whose objects are the vertices
Γ0 of Γ, and, given x, y ∈ Γ0, the k-vector space of morphisms from x to y is given by the k-vector
space with basis the set of all paths from x to y. The composition of morphisms is induced from
the usual composition of paths. The mesh ideal in the path category of Γ is the ideal generated
by the mesh relations

mx = ∑
α∶y→x

σ(α)α
for all x ∈ Γ′0.

The mesh category of the translation quiver (Γ, τ) is the quotient of its path category by the
mesh ideal.

2.4. The category of 2-diagonals of a polygon. In this subsection, we recall a geometric
model for the 2-cluster categories of type A obtained by Baur and Marsh in [BM].

Let S be a regular polygon with an even number of vertices, say 2N . Let R be the automorphism
of S given by a clockwise rotation about 180/N degrees. Thus R2N is the identity.

Following [BM], we define the category Diag(S) of 2-diagonals of S as follows. The indecom-
posable objects of Diag(S) are the 2-diagonals in S. Recall that a 2-diagonal is a diagonal of
S connecting two vertices such that the two polygons obtained by cutting S along the diagonal
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Figure 3. The arc γ and its 2-pivots γ′, γ′′ are shown on the left, and the
crossing between γ and γ′ on the right gives rise to an extension in Ext1(Mγ ,Mγ′).

both have an even number of vertices and at least 4. In particular, boundary segments are not
2-diagonals.

The irreducible morphisms of S are given by 2-pivots. We recall the definition below. An
illustration is given in Figure 3 on the left.

Definition 2.1. Let γ be a 2-diagonal in the polygon S and denote its endpoints by a and x.
Denote by b the clockwise neighbor of a, and by c the clockwise neighbor of b on the the boundary
of S. At the other end, denote by y the clockwise neighbor of x, and by z the clockwise neighbor
of y on the boundary of S.

Unless a and z are neighbors on the boundary, the 2-diagonal γ′ connecting a and z is called
the 2-pivot of γ fixing the endpoint a.

Unless c and x are neighbors on the boundary, the 2-diagonal γ′′ connecting c and x is called
the 2-pivot of γ fixing the endpoint x.

Let Γ be the quiver whose vertices are the 2-diagonals in S, and there is an arrow from the
2-diagonal γ to the 2-diagonal γ′ precisely if γ′ is obtained from γ by a 2-pivot. Then the pair(Γ,R−2) is a translation quiver.

Definition 2.2. [BM] The category Diag(S) of 2-diagonals in the polygon S is the mesh category
of the translation quiver (Γ,R−2).

Next, we recall that the category of diagonals is equivalent to the 2-cluster category. Let H be
the path algebra of a Dynkin quiver of type Ar. Let C2 denote the 2-cluster category of type Ar.
This category is defined as the orbit category of the bounded derived category Db(modH) by the
functor τ−1

D
[2]. Here τD is the Auslander-Reiten translation and [2] = [1] ○ [1] is the second power

of the shift functor in the derived category. Thus

C
2
= D

b(modH)/τ−1
D
[2].

This category was introduced in [K, T], and was studied in [BRT, IY, Tor].

Theorem 2.3. [BM] Let S be a polygon with 2N vertices. Then the category Diag(S) is equivalent
to the 2-cluster category of type AN−2.

Under this equivalence each 2-diagonal γ of S corresponds to an indecomposable object Mγ in
C
2. Moreover, there exists a nontrivial extension between two indecomposable objects in C2 if and

only if the corresponding 2-diagonals cross.
Next, we introduce orientations on the diagonals to determine the direction of the extension

between the two objects in C2 whose corresponding 2-diagonals cross. Label the boundary vertices
of S from 1 to 2N in clockwise order. Then the two endpoints of any 2-diagonal have different
parity, and we orient a 2-diagonal from its odd labeled endpoint to its even labeled endpoint. Given
2-diagonals γ, γ′ that cross, we say that γ′ crosses γ from right to left (respectively left to right)
in the situations shown in Figure 4. Using this notation we obtain the following result.

Lemma 2.4. Let γ, γ′ be oriented 2-diagonals in Diag(S) that cross.
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γ γ′ γ γ′

Figure 4. Crossings of oriented 2-diagonal. In the left picture γ′ crosses γ from
right to left, and in the right picture γ′ crosses γ from left to right.

(a) γ′ crosses γ from right to left if and only if Ext1(Mγ ,Mγ′) /= 0.
(b) γ′ crosses γ from left to right if and only if Ext1(Mγ′ ,Mγ) /= 0.

Proof. Let γ have endpoints a, x and γ′ have endpoints a′, x′ as in Figure 3 on the right.
By Theorem 2.3, the crossing of γ, γ′ corresponds to an extension between Mγ ,Mγ′ in the 2-

cluster category. Moreover, Ext1(Mγ ,Mγ′) /= 0 if and only if there is a triangle in the 2-cluster
category as follows, where at most one of Mε,Mε′ may be zero.

(2.1) Mγ′

[ f
f ′
]
// Mε ⊕Mε′

[g g′ ] // Mγ
// Mγ′[1]

Here each f, f ′ is a sequence of irreducible morphisms corresponding to a sequence of 2-pivots such
that each 2-pivot in f fixes the endpoint a′ of γ′ and takes γ′ to ε and each 2-pivot in f ′ fixes the
endpoint x′ of γ′ and takes γ′ to ε′. Similarly, g, g′ each correspond to a sequence of 2-pivots such
that each 2-pivot in g fixes the endpoint x of ε and takes ε to γ, and each 2-pivot in g′ fixes the
endpoint a of ε′ and takes ε′ to γ. In particular, ε and ε′ are 2-diagonals.

Without loss of generality we may assume that ε is oriented from a′ to x, since these are 2-
diagonals. This means that γ′ is oriented from a′ to x′ and γ is oriented from a to x, see Figure 3
on the right. Hence, we see that γ′ crosses γ from right to left if Ext1(Mγ ,Mγ′) /= 0. Note that if
instead we were to suppose that ε is oriented from x to a′, we would still conclude that γ′ crosses
γ from right to left, because both γ, γ′ would change orientation. Conversely, if γ′ crosses γ from
right to left, then we can construct the triangle in (2.1) with the desired properties. Note that
the line segments with endpoints x,x′ and a, a′ respectively are not 2-diagonals, because of the
orientation on γ and γ′, and hence ε, ε′ correspond to the middle terms of the triangle. This shows
part (a), and part (b) follows directly from (a). �

3. Dimer tree algebras

In this section, we define a class of Jacobian algebras that are the subject of this paper. An
example is given in the introduction.

A chordless cycle in a quiver Q is a cyclic path C = x0 → x1 → ⋅ ⋅ ⋅→ xt → x0 such that xi ≠ xj if
i ≠ j and the full subquiver on vertices x0, x1, . . . , xt is equal to C. The arrows that lie in exactly
one chordless cycle will be called boundary arrows and those that lie in two or more chordless cycles
interior arrows of Q.

Definition 3.1. The dual graph G of Q is defined as follows. The set of vertices G0 is the union
of the set of chordless cycles of Q and the set of boundary arrows of Q. The set of edges G1 is
the union of two sets called the set of trunk edges and the set of leaf branches. A trunk edge

C
α

C ′ is drawn between any pair of chordless cycles (C,C ′) that share an arrow α. A leaf

branch C
α

α is drawn between any pair (C,α) where C is a chordless cycle and α is a
boundary arrow such that α is contained in C.

Definition 3.2 (The quiver). Throughout the paper, we let Q be a finite connected quiver without
loops and 2-cycles satisfying the following conditions.
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(Q1) Every arrow of Q lies in at least one chordless cycle.
(Q2) The dual graph of Q is a tree.

The following properties follow easily from the definition.

Proposition 3.3. [SS, Proposition 3.4] Let Q be a quiver satisfying Definition 3.2.

(1) Q has no parallel arrows.
(2) Q is planar.
(3) For all arrows α of Q,

(a) either α lies in exactly one chordless cycle,
(b) or α lies in exactly two chordless cycles.

(4) Any two chordless cycles in Q share at most one arrow.

Since the dual graph G of Q is a tree, the quiver contains a chordless cycle C0 that contains
exactly one interior arrow. If C is any chordless cycle in Q we define the distance d(C) of C from
C0 to be the length of the unique path from C0 to C in G.

Definition 3.4. Let Q be a quiver that satisfies Definition 3.2 and let W = ∑C(−1)d(C)C be
its potential, where the sum is taken over all chordless cycles of Q. The the Jacobian algebra
B = Jac(Q,W ) is called a dimer tree algebra.

In other words, the chordless cycle C appears with a positive sign in the potential if and only
if the path from C0 to C is of even length.

Remark 3.5. A dimer tree algebra is not strictly speaking a dimer algebra, since the boundary
arrows in a dimer tree algebra also induce relations. Still there are many similarities, in particular,
the zigzag paths in a dimer algebra correspond to our cycle paths defined below.

An algebra is called schurian if dimHom(P (i), P (j)) ≤ 1 for all vertices i, j of Q.

Proposition 3.6. [SS, Corollary 3.31] Every dimer tree algebra is a schurian algebra. In partic-
ular, any two nonzero parallel paths are equal, and any non-constant cyclic path is zero.

3.1. Cycle paths, weight, and total weight. We review some definitions from [SS] relating
to the quiver Q. Recall that an arrow in Q is called a boundary arrow if it lies in exactly one
chordless cycle.

Definition 3.7. Let α be a boundary arrow in Q.

(a) The cycle path of α is the unique path c(α) = α1α2⋯α`(α) such that
(i) α1 = α and α`(α) are boundary arrows, and α2, . . . , α`(α)−1 are interior arrows,
(ii) every subpath of length two αiαi+1, is a subpath of a chordless cycle Ci, and Ci ≠ Cj

if i ≠ j.
(b) The weight w(α) of α is defined as

w(α) = { 1 if the length of c(α) is odd;
2 if the length of c(α) is even.

(c) Dually, the path c(α) is uniquely determined by the last arrow α`(α), and it is called the
cocycle path of α`(α). Define the coweight w(α`(α)) of α`(α) to be equal to w(α).

Define

∑
α

w(α) =∑
α

w(α),
where the sum is over all boundary arrows of Q, to be the total weight of Q. The total weight is
an important statistic of the quiver because of the following result.

Proposition 3.8. [SS, Corollary 3.17] The number of boundary edges in the checkerboard polygon
S is equal to the total weight of Q.
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In the example of Figure 1, we list the cycle paths and their corresponding weights below. In
particular, we see that the total weight equals 14, which is the same as the size of the corresponding
checkerboard polygon S.

cycle path weight

1→ 2→ 3→ 4→ 6→ 9 1
3→ 1→ 2 2

8→ 3→ 4→ 5 1
7→ 8→ 3 2
6→ 7→ 8 2
6→ 9→ 4 2

9→ 4→ 6→ 7 1
4→ 5→ 2 2

5→ 2→ 3→ 1 1

Corollary 3.9. The total weight of a dimer tree algebra is a derived invariant and a singular
invariant of the algebra.

Remark 3.10. In the dimer terminology, a cycle path is usually called a zigzag path. In the
checkerboard polygon the cycle paths are realized by going clockwise around the white regions.

Remark 3.11. A dimer tree algebra is a gentle algebra if and only if its quiver consists of one
single cycle. In this case, the algebra is cluster-tilted of type D. This case is considered in detail
in the appendix. More generally, a dimer tree algebra is cluster-tilted if and only if its quiver is
mutation equivalent to an acyclic quiver. In [Lu], Lu constructed a class of algebras called polygon-
tree algebras by recursive gluing of cycles. It is not difficult to see that the class of polygon-tree
algebras coincides with the class of dimer tree algebras. In order to study the syzygy category, Lu
imposes an additional condition on the algebras and calls them simple polygon-tree algebras [Lu,
Definition 4.2]. In our terminology, these additional conditions require that every vertex of the
quiver lies in at most three chordless cycles and every cycle path is of length at most 4.

4. A triangle equivalence CMPB ≅ Diag(S)
In this section, we generalize a result of [Lu] which will show that the category CMPB of

non-projective syzygies over B is triangle equivalent to the category Diag(S) of 2-diagonals of a
polygon S, see Theorem 4.12.

4.1. Recollections. We start by recalling several results from the literature. The following result
was proved by Chen.

Theorem 4.1. [C3, Proposition 3.1] Let A be a finite dimensional k-algebra, AM a left A-module
and NA a right A-module. Let φ∶M ⊗kN → A be a monomorphism. Then imφ is a two-sided ideal
in A. Assume further that (imφ)M = 0 and N(imφ) = 0. Define the matrix algebra

Γ = (A M

N k
) ,

whose multiplication is given by the formula

(a m

n λ
)(a′ m′

n′ λ′
) = (aa′ + φ(m⊗ n′) am′ + λ′m

na′ + λn′ λλ′
) .

Then there is a triangle equivalence between the singularity categories of Γ and A/imφ.

We will need the following corollary about the special case of one-point extensions and co-
extensions. With the notation above, we say that

(1) Γ is a one-point extension of A if M = 0 and N is a projective module.
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(2) Γ is a one-point co-extension of A if N = 0 and (the dual of) M is an injective module.

In both cases the tensor product M ⊗k N is trivial and φ is the zero morphism.

Corollary 4.2. If Γ is a one-point extension or a one-point co-extension of A then Γ and A are
singular equivalent.

Remark 4.3. If M = ⊕P (i) then the quiver of the one-point extension Γ is obtained from the quiver
of A by adding one vertex x and adding one arrow x→ i for each indecomposable summand P (i)
of M . Moreover, none of the new arrows appears in a relation in Γ.

The following result was obtained in [L, BHL, Lu] for arbitrary schurian algebras. We reformu-
late it here in our setting. If B = Jac(Q,W ) be a dimer tree algebra and k is a vertex of Q, we
define the mutation at k as the Jacobian algebra of the quiver with potential obtained by mutation
at k, see section 2.2. In other words µkB = Jac(µk(Q,W )).
Theorem 4.4. [BHL, Propositions 2.9 & 2.15][Lu, Proposition 2.17] With the above notation, the
algebras B and µkB are derived equivalent if

(i) before the mutation, there is at most one arrow ending in k and, if v is a nonzero path in
B ending at k, then there exists an arrow α such that vα ≠ 0 in B; and

(ii) after the mutation, there is at most one arrow starting at k and, if v is a nonzero path
starting at k in µkB, then there exists an arrow α such that αv ≠ 0 in µkB.

Proof. The result is a reformulation of the references cited. We clarify the details here. By [Lu]
Proposition 2.17(b) the algebras B and µkB are derived equivalent if the following conditions hold:

(1) Q has at most one arrow ending at k (this we also require in part (i) of the theorem)
(2) the simple module S(k) is not a submodule of the radical of P (k) (this is always true for

us since there are no nonzero cycles in B by our Proposition 3.6)
(3) the two mutations µ+kB and µ−k(µkB) are defined.

Part(a) of [Lu, Proposition 2.17] gives a dual characterization that leads to part (ii) of our theorem.
To reformulate condition (3) above, we use [BHL, Proposition 2.9]. It states that µ+kB is defined

if, whenever v is a nonzero path in B ending at k, then there exists an arrow α such that vα ≠ 0
in B, and, dually, µ−k(µkB) is defined if, whenever v is a nonzero path in µkB starting at k, then
there exists an arrow α such that αv ≠ 0 in B. �

4.2. Extending nonzero paths. Let B be a dimer tree algebra. In this subsection, we use the
weight of a boundary arrow to characterize when a nonzero path in B can be extended by a
boundary arrow.

A prefix of a path v in Q is a subpath u such that v = uv′ in Q. A suffix of a path v in Q is a
subpath u such that v = v′u in Q.

Lemma 4.5. Let γ∶ i→ j be a boundary arrow of Q. Then the following are equivalent.

(1) For all nonzero paths v ending at i the composition vγ is nonzero.
(2) The weight w(γ) of γ is 1.

Proof. Let c(γ) = γδ0δ1 . . . δt be the cycle path of γ. Thus w(γ) = 1 if t is odd, and w(γ) = 2 if t
is even. Let C0, C1, . . . , Ct be the chordless cycles along c(γ) in order and define the path ui by
C0 = γδ0u0 and Ci = δi−1δiui for i = 1,2, . . . , t, see Figure 5. Note that δt is a boundary arrow and
all δi with i < t are interior arrows.

(1) ⇒ (2). Suppose w(γ) = 2, so t is even. Then the path v = utut−2 . . . u2u0 is nonzero ending
at i and, using the relations ∂δiW = ±(uiδi−1 − δi+1ui+1), we get

vγ = utut−2 . . . u2u0γ = utut−2 . . . u2δ1u1 = utut−2 . . . δ3u3u1 = utδt−1ut−1 . . . u3u1

which is zero, because utδt−1 = ∂δtW = 0.
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i

γ

��
j

δ0 // ⋅

δ1

��

u0

oo

⋅
δ2 //u1

OO

⋅

u2

oo

δ3

��
⋅u3

NN

⋱

Figure 5. Proof of Lemma 4.5. The beginning of the cycle path c(γ) =
γδ0δ1δ2δ3 . . . and the chordless cycles Ci = δi−1δiui.

(2) ⇒ (1). Suppose v is a nonzero path ending at i such that vγ = 0. We want to show that
t is even. Since vγ = 0, there must be a relation that involves both a path equivalent to v and
the arrow γ, and that relation must end with the arrow γ. Since γ is a boundary arrow, the only
relation that ends in γ is

(4.1) ∂δ0W = { u0γ if t = 0;
±(u0γ − δ1u1) if t > 0.

If t = 0 there is nothing to show. Assume t > 0. Then without loss of generality we may assume
that the path u0 is a suffix of v. Thus there is a path v1 such that

v = v1u0.

Using the relation (4.1) we get

(4.2) 0 = vγ = v1u0γ = v1δ1u1.

Now, v1 is a nonzero path, since it is a subpath of v. Furthermore, v1 does not end with the arrow
δ0, since δ0u0 = 0. Thus equation (4.2) implies that there must be a relation involving a path
equivalent to v1 and the arrow δ1.

If t = 1 then δ1 is a boundary arrow and hence the only relations involving δ1 come from the
chordless cycle C1 = δ0δ1u1. Since v cannot end in δ0, we see that vγ ≠ 0, a contradiction. Now
suppose t > 1. This means that δ1 is an interior arrow and thus there exists another chordless cycle
C2 = δ1δ2u2 containing δ1. Thus the relation in question must be

(4.3) ∂δ2W = { u2δ1 if t = 2;
±(u2δ1 − δ3u3) if t > 2.

If t = 2 there is nothing to show, so we may assume t > 2. Then, without loss of generality, the
path u2 is a suffix of v1, thus v1 = v2u2 and

(4.4) vγ = v1δ1u1 = v2u2δ1u1 = v2δ3u3u1,

where the last equality uses relation (4.3). Again, v2 is a nonzero path and it does not end with the
arrow δ2, because otherwise, the path v would contain the zero subpath δ2u2u0 = u1δ0u0. If t = 3
then δ3 is a boundary arrow and hence the only relations involving δ3 come from the chordless
cycle C3 = δ2δ3u3. Since v2 cannot end in δ2, we see that vγ ≠ 0, a contradiction. So we may
assume t > 3.
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Continuing this way, we see that whenever t = 2s + 1 is odd then vγ ≠ 0 and we obtain a
contradiction. This process must stop, because the cycle path is a well-defined finite path. �

We also have the dual statement of Lemma 4.5.

Lemma 4.6. Let γ∶ i→ j be a boundary arrow of Q. Then the following are equivalent.

(1) For all nonzero paths v starting at j the composition γv is nonzero.
(2) The coweight w(γ) of γ is 1.

4.3. Derived equivalences given by mutation. Let B = Jac(Q,W ) be a dimer tree algebra. In
this subsection, we describe two specific situations where the mutation of the quiver with potential
at a vertex k yields a derived equivalent algebra.

Lemma 4.7. If Q contains one of the following two subquivers, then the mutation at the vertex
k is a derived equivalence that preserves the total weight of the quivers. Moreover, the mutated
quiver with potential again defines a dimer tree algebra.

(a)

k
β

��
⋅

α

@@

⋅
uoo

where α,β are boundary arrows with w(α) = 1 and w(β) = 2 and u is a path completing the
chordless cycle.

(b)

⋅

γ

��
⋅

v
..

k
α

oo
β

// ⋅

σ

^^





u

where α,β are boundary arrows, u is a path that consists entirely of boundary arrows, and v is a
path completing the chordless cycle. Moreover, v is not a boundary arrow.

Proof. (a) Locally, the mutated quiver µkQ is one of the following

k ^^
β

⋅
[αβ] //��

α

⋅

u

gg

k ^^
β

⋅
��

α

⋅

where the left picture corresponds to the case where the path u has length at least 2 and the right
picture to the case where u is an arrow. Because w(α) = 1, the path u is not a boundary arrow.
In both cases, the quiver µkQ satisfies the conditions of Definition 3.2.

Now we show that the mutation of the potential also satisfies our definition. We need to treat
the case where the path u is a single arrow separately. Suppose first that u is not an arrow. Then
we write the potential as W = ±αβu+W ′, where none of the terms of W ′ goes through the vertex
k, hence W ′ does not change under the mutation. Therefore the mutated potential is

µkW = ± [αβ]u ± [αβ]βα +W ′.

To match our sign conventions in Definition 3.4, it suffices to change bases by replacing α by −α,
so we get the desired potential

± [αβ]u ∓ [αβ]βα +W ′.
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On the other hand, if u is an arrow, then it is an interior arrow (because w(α) = 1), and there is
a unique path v ≠ αβ forming the second chordless cycle with u. Then we can write the potential
as W = ±(αβu − uv) +W ′′, and W ′′ does not contain α,β or u. Then the mutated potential is

µkW = ±([αβ]u + [αβ]βα − uv) +W ′′.

Note that the first term on the right hand side is a 2-cycle. Using the relations [αβ] = v and

u = −βα, which are obtained from the cyclic derivatives in the arrows u and [αβ], we see that this

potential is equivalent to the desired potential ∓βαv +W ′′.
Next we want to show that the mutation is a derived equivalence. Note that the weight of α in

µkQ is opposite to the weight of β in Q, independent of the length of u. Indeed, the cycle path of
α is

c(α) = { α [αβ] δ . . . if the length of u is at least 2 and δ is the first arrow in u;
αε . . . if the length of u is one, and ε is the first arrow in v,

and the cycle path of β in Q is

c(β) = { β δ . . . if the length of u is at least 2 and δ is the first arrow in u;
β u ε . . . if the length of u is one, and ε is the first arrow in v.

Hence, since w(β) = 2, we have w(α) = 1. By Theorem 4.4, we conclude that the mutation at k is
a derived equivalence because

(i) before mutating, there is precisely one arrow ending in k and, if v is a nonzero path in Q

starting at k, then Lemma 4.6 implies that αv ≠ 0, since w(α) = 1.
(ii) after mutating, there is precisely one arrow starting in k and, if v is a nonzero path in µkQ

ending at k, then Lemma 4.5 implies that the composition vα ≠ 0 because w(α) = 1.
It remains to check that the total weight remains unchanged. By our assumptions, we have

w(α) = 2, w(α) = 1, w(β) = 2,
while on the other hand

w(α) = 1, w(α) = 2, w(β) = w(α) + 1 = 2,
and the result follows. Note that the cocycle path of β is equal to the cycle path of α, so the
contribution of w(β) to the total weight of Q is already counted in w(α). Similarly, the cycle

path β is equal to the cocycle path of α, so the contribution of w(β) to the total weight of µkQ is
already counted in w(α).

(b) After mutating at k, the quiver is one of the following

⋅OO

γ

⋅
��
[γα
]

v
..

k//
α

oo
β
⋅




u ⋅OO

γ

⋅ k//
α

oo
β
⋅




u

where the left picture corresponds to the case where the path v has length at least 2 and the right
picture to the case where v is an arrow. Denote the potential of the original quiver by

W = ±(γαv − γβσ + σu) +W ′.

Its mutation is

µkW = ±([γα]v + [γα]αγ − [γβ]σ − [γβ]βγ + σu) +W ′

≅ ±([γα]v + [γα]αγ − βγu) +W ′,

where the last equivalence is the reduction of the potential obtained by replacing σ by −βγ, which
removes the 2-cycle [γβ]σ. To match our sign conventions in Definition 3.4, it suffices to change
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bases by replacing α and β by their negatives. Moreover, if v has length 1 then µkW can be
reduced further to ∓βγu +W ′.

Next we want to show that the mutation is a derived equivalence. Let δ denote the last arrow
in the path u and write u = u′δ. Note that u′ is a non-constant path, since Q does not contain
2-cycles. If w is a nonzero path in µkQ starting at k such that βw = 0 then β and a prefix of w
must lie in a relation. Since β is a boundary arrow, the only such relation is ∂δW = βγu

′. Thus w
is equivalent to a path γu′w′. However, since u is a boundary path, the only arrow starting at the
endpoint of u′ is δ. Then w ≠ 0 implies w = γu′. In this situation, αw = αγu′ is a nonzero path.

We have thus shown that for every nonzero path w starting at k in µkQ there is an arrow ε = α

or β such that εw ≠ 0. Moreover, note that w(β) = 1, since u is a boundary path. Thus Lemma 4.5
implies that before mutating, if w is a nonzero path in Q ending at k then wβ ≠ 0. This shows
that µk is a derived equivalence by Theorem 4.4.

To check that the total weight is preserved, note that in Q

w(α) = a, w(α) = 2, w(β) = 1, w(β) = b,
with a, b ∈ {1,2}, and in µkQ

w(α) = 1, w(α) = b, w(β) = w(α) = a, w(β) = 2,
independent of the length of v. Thus the sum of the weights and coweights of the arrows, and
hence the total weight, remains unchanged. �

4.4. Singular equivalences. Let B = Jac(Q,W ) be a dimer tree algebra. In this subsection,
we describe two specific situations where a local change in the quiver with potential produces a
singular equivalent algebra.

Lemma 4.8. If Q contains the subquiver on the left below, then replacing that subquiver with the
quiver on the right induces a singular equivalence on the corresponding algebras that preserves the
total weight of the quivers.

1
ρ // 2

v

��

σ

��
3

α
ff

5

u

OO

4
γ

oo β

88

1
ρ // 2

v

��
OO

σ[σγ
]

��

3′
&&

ε

5

u

OO

4//
γ

xx δ

Here α,β, γ are boundary arrows and u, v are paths that complete the chordless cycles. The path u

is allowed to be of length 0; in that case the vertices 1 and 5 are the same and the quivers become

1
ρ // 2

v

��

σ

~~
4

γ

OO

β // 3

α

OO 1 2

v

��
>>

σ

4
��

γ

oo δ
3′
��
ε

Proof. The proof has three steps. First we perform a one-point coextension at vertex 4, see the
left quiver in Figure 6. This is a singular equivalence by Corollary 4.2. Call the new vertex 3′.
Then the mutation at vertex 4, which produces the quiver shown in the right picture of Figure 6,
is a derived equivalence by Theorem 4.4, because

(i) before mutating, there is exactly one arrow ending at 4 and every nonzero path ending at
4 can be composed with the new arrow δ, thereby producing a nonzero path,

(ii) after mutating, there is exactly one arrow starting at 4 and every nonzero path starting at

4 can be precomposed with the arrow β, producing a nonzero path.
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1
ρ // 2

v

��

σ

��
3

α
gg

5

u

OO

4
γ

oo

β
88

δ
// 3′

1
ρ // 2

ε

&&
[σγ
]

��

v

��
OO

σ 3′

5

u

OO

4//
γ

xx
δ

oo
β

3

Figure 6. Proof of Lemma 4.8. The quiver on the left is the quiver of the one-
point coextension of B at vertex 4. The quiver on the right is then obtained by
mutation at vertex 4. Note that the vertices 3 and 3′ have exchanged their position.

Finally, this last quiver is the one-point extension of the quiver on the right in the statement of
the lemma. Hence the two algebras are singular equivalent.

Clearly, the new quiver Q′ satisfies the conditions in Definition 3.2. In order to check that the
new potential satisfies the condition in Definition 3.4, let us denote the original potential by

W = ±(ασβ − ρσγu + ρv) + W̃ .

The one-point coextensions do not change the potential. On the other hand, the mutation at 4
changes the potential to

W ′
= εδσ ± ([σβ]βσ + α[σβ] − [σγ]γσ − ρ[σγ]u + ρv) + W̃
≅ εδσ ± (−[σγ]γσ − ρ[σγ]u + ρv) + W̃ ,

where ε is the arrow [σδ]. If the path u has length at least 1 then this potential does not contain
any 2-cycles, and our sign conventions can be achieved by a change of bases, replacing σ (and ε if
necessary) by its negative.

On the other hand, if u has length 0 then we also need to remove the 2-cycle ρ[σγ] from W ′.
This is done using the relations [σγ] = v and ρ = −γσ, which are obtained from the derivatives in
the arrows ρ and [σγ], and we get the desired potential

W ′
≅ εδσ − v γσ + W̃ ,

using the change of bases replacing γ by −γ, if necessary.
To show that the total weight is preserved under this operation, we compute the weights and

coweights in Q

w(α) = 1, w(β) = 2, w(β) = a, w(γ) = b, w(γ) = 1
with a, b ∈ {1,2}. On the other hand, in the new quiver, we have

w(ε) = 2, w(ε) = 1, w(δ) = b, w(γ) = 1, w(γ) = a
where a and b are the same as above. This completes the proof. �

4.4.1. Removing a 3-cycle. In this subsection, we study when the removal of a boundary 3-cycle
induces a singular equivalence.

Lemma 4.9. If α,β are boundary arrows that lie in a 3-cycle αβγ, and b, b′ are paths such that
bα ≠ 0, βb′ ≠ 0 and bαβb′ = 0 then αβb′ = 0 or bαβ = 0.

Proof. If γ is a boundary arrow then Q is a single 3-cycle and the conclusion follows. Suppose now
that γ is not a boundary arrow. Let ε1γδ1u be the other chordless cycle at γ, where u is a path of
length ≥ 0, see Figure 7. The figure also shows the beginning of the cycle path c(β) = βγδ1δ2δ3 . . .
and the end of the cocycle path c(α) = . . . ε3ε2ε1γα, as well as the paths ui, vi that complete the
chordless cycles along these paths.
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k
β

&&
⋅

α
88

δ1
��

⋅
v1

&&

γoo

⋅

u1

88

δ3
��

⋅
δ2oo u // ⋅

ε1

OO

v2 &&

⋅
ε2oo

. . . ⋅

u2

88

⋅

ε3
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. . .

Figure 7. Proof of Lemma 4.9.

Let b̃ denote an arbitrary path equivalent to b and b̃′ a path equivalent to b′. First we show that
b̃αβb̃′ does not contain a cycle. Indeed, b̃α and βb̃′ do not contain cycles because they are nonzero
paths. If the composition b̃αβb̃′ contains a cycle, then b̃ and b̃′ must share a vertex, and since the
dual graph is a tree, the only possible ways are

(1) the path b̃ or b̃′ uses γ (but this is impossible, because γα = βγ = 0).

(2) one of b̃, b̃′ contains a segment that runs antiparallel to the path u. In this case, either

b̃ is equivalent to a path that contains δ2u1 as a subpath, which is impossible because
δ2u1 = uε1γ and γα = 0; or b̃′ is equivalent to a path that contains v1ε2, which is impossible
because v1ε2 = γδ1u and βγ = 0.

(3) u is a constant path and b̃, b̃′ both contain its vertex. Then again b̃ is equivalent to a path
that contains δ2u1, and we have the same contradiction as in case (2) above.

So b̃αβb̃′ does not contain a cycle, for any paths b̃ ≅ b and b̃′ ≅ b′. Also note that b̃′ cannot
contain v1ε2 as a subpath, because βv1ε2 = βγδ1u = 0, since βγ = 0. Then bαβb′ = 0 implies that
there is a path w that is equivalent to bαβb′ and there exists a boundary arrow η such that w

contains ∂ηW as a subpath.
We first show that the path w must contain either αβ or u as a subpath. Indeed, while we may

replace αβ by δ1uε1, and also u1δ1 by δ3u2, the resulting paths u2 and u are not in a relation
because otherwise there would be a cycle in the dual graph formed by the chordless cycles around
the vertex s(u). A similar argument at the vertex t(u) shows that we cannot remove both u and
αβ from the path w. Thus we need one of the paths αβ or u to go from the left part of the quiver
to the right.

Also note that the boundary arrow η cannot be α or β because, otherwise, bαβb′ would contain
the cycle (∂αW )α or β(∂βW ).

Furthermore η cannot be an arrow of u, because if u = u′ηu′′ then ∂ηW = u′′ε1γδ1u
′ and w

must go through the starting point s(u) of u first in order to get to the starting point of u′′. Then
w would contain a subpath w′ = uε1γδ1u, since it has to reach t(u) in order to join the path b′;
otherwise t(u) would be an interior point of Q, contradicting the assumption that the dual graph
is a tree. Moreover, w must be equivalent to a path that contains δ1w

′ or w′ε1 as a subpath,
because w is equivalent to the path bαβb′. Thus w′ ≅ αβγδ1u and hence b′ is equal to a path using
γ, which is a contradiction to (1).

Define Q(u) as follows. If u is a boundary arrow, let Q(u) = {u}. If u is an interior arrow, let
v be the unique path different from ε1γδ1 such that uv is a chordless cycle, and let Q(u) be the
connected component of Q ∖ {s(u), t(u), u} containing the remaining vertices of v. If u is not an
arrow let Q(u) be the connected component of Q ∖ {s(u), t(u)} containing the remaining vertices
of u. Then the same argument also shows that η cannot be an arrow in the subquiver Q(u).

Finally, let Q(δ) and Q(ε) be the two connected components of Q ∖ (Q(u) ∪ {k, γ}). We have
shown that the arrow η lies in Q(δ) or in Q(ε). In the first case, we see that the path bαβ is
equivalent to a path that contains the same zero relation ∂ηW because the dual graph is a tree.
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Thus bαβ = 0. In the second case, the path αβb′ is equivalent to a path that contains ∂ηW . Thus
αβb′ = 0. �

Proposition 4.10. Let B = Jac(Q,W ) be a dimer tree algebra. Suppose Q contains a subquiver
of the form

k
β

��
⋅

α

@@

⋅
γoo

with α,β boundary arrows. Let (Q′,W ′) be the quiver with potential obtained from (Q,W ) by
removing the vertex k and the arrows α and β from the quiver and the cycle αβγ from the potential.
Let B′ = Jac(Q′,W ′) be the corresponding Jacobian algebra. If w(α) = 1 and w(β) = 1 then the
algebras B and B′ are singular equivalent and both have the same total weight.

Proof. Our first step is to use Theorem 4.1 to show that B and B′ are singular equivalent if and
only if for all paths b, b′ such that bα and βb′ are nonzero paths, the composition bαβb′ is nonzero.
Indeed, we can write B as a matrix algebra

B = ( A Aα

βA k
)

where A = B/BekB is the quotient of B by the two-sided ideal generated by all paths that contain
the vertex k, Aα is the left A-module generated by α, and βA is the right A-module generated
by β. The multiplication can be seen in matrix form as shown below, where we use the fact that
βc1b2α = 0, because every non-constant cyclic path is zero in B, in the lower right corner.

( a1 b1α

βc1 λ1
)( a2 b2α

βc2 λ2
) = (a1a2 + b1αβc2 a1b2α + λ2b1α

βc1a2 + λ1βc2 λ1λ2
)

where ai, bi, ci ∈ A and λi ∈ k.
Let us now check that in this situation the conditions of Theorem 4.1 are satisfied. The morphism

φ∶Aα ⊗k βA → A is given by concatenation φ(bα ⊗ βc) = bαβc. We have (imφ)(Aα) = 0 and(βA)(imφ) = 0, because every non-constant cyclic path is zero in B. The only remaining condition
is that φ is mono. Since any two nonzero parallel paths are equal in B it suffices to show that if
bα and βc are nonzero paths then bαβc is a nonzero path.

Because of Lemma 4.9, it suffices to show that bαβ and αβc are both nonzero. For the first
path this follows directly from Lemma 4.5, because bα ≠ 0 and w(β) = 1. For the second path, it
follows from Lemma 4.6, because βb′ ≠ 0 and w(α) = 1.

Therefore Theorem 4.1 implies that B and A/imφ are singular equivalent. Note that imφ is
the ideal in A generated by all paths that have αβ as a subpath. In particular, if we let u ≠ αβ be
the unique other path in Q that forms a chordless cycle γu with γ, then in B the path u is equal
to the path αβ. In particular, the path u is nonzero in A, and it is a generator of the ideal imφ.
Thus in A/imφ we have the additional relation u = 0 which is equal to the derivative ∂γW

′ of the
potential W ′. Thus B′ ≅ A/imφ.

To show that the total weight remains unchanged, observe that in Q we have

w(α) +w(β) +w(α) = 2 + 1 + 1 = 4.
In Q′, the arrow γ becomes a boundary arrow with weight w(γ) = w(β) + 1 = 2 and coweight
w(γ) = w(α)+ 1 = 2. Thus the total weight is preserved. We point out that we do not need to add
the coweight of β in this situation, because its contribution to the total weight is already counted
in the weight of α, since the cycle path of α is equal to the cocycle path of β (both are αβ). �

Remark 4.11. The converse of Proposition 4.10 is also true, meaning that if the weight conditions
do not hold then the algebras are not singular equivalent. This can be proved using the main
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Figure 8. Proof of Theorem 4.12. A sequence of equivalences that reduces the
length of the cycle by 1.

result of this paper. Indeed, if w(β) = 2 in Q then w(γ) = 1 in Q′, and so the total weight changes.
Dually, if w(α) = 2 in Q then the first arrow in the cocycle path of α will change weight from 2 to
1, and again the total weight is not preserved.

4.5. The algorithm. We are now ready to prove the main result of this section. It generalizes
Lu’s theorem on simple polygonal-tree algebras.

Theorem 4.12. Let B = Jac(Q,W ) be a dimer tree algebra. Denote by 2N the total weight of Q,
and let S be a polygon with 2N vertices. Then there is a triangle equivalence of categories

CMPB ≅ Diag(S).
Proof. We proceed by induction on the number of chordless cycles in Q. If this number is 1, then
B is a selfinjective cluster-tilted algebra of Dynkin type Dn and CMPB =modB. It is well-known
that this category is equivalent to the category of 2-diagonals of a polygon with 2n vertices. For
convenience, we include a proof in the appendix. On the other hand, Q has n arrows, each a
boundary arrow and each having weight 2. So the total weight is 2n. Thus our result holds in this
case.

Now suppose Q has more than one chordless cycle. Since the dual graph is a tree, we may choose
a chordless cycle C0 that has exactly one interior arrow γ. Denote by 1,2, . . . ,m the vertices of C0

in order, where γ is the arrow from 1 to 2. Let α denote the arrow that follows γ in C0 and let
β be the arrow following α, see the first quiver in Figure 8. Let u be the unique path such that
C1 = γu is the second chordless cycle that contains γ. We consider two cases depending on the
coweight of the arrow α.

(1) Assume first that w(α) = 1. The idea is to successively shorten the chordless cycle C0 until
it will be completely absorbed into the cycle C1. Assume first that m > 4. Then the weight of the
arrow β is 2. We will now apply a sequence of derived and singular equivalences that preserve the
total weight in order to reduce the length of the cycle C0 from m to m − 1. The corresponding
quivers are shown in Figure 8, and the steps are justified below.

Step 1. Apply the mutation at 3, which is a derived equivalence that preserves the total weight,
by Lemma 4.7(a).

Step 2. Apply the singular equivalence of Lemma 4.8.
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Figure 9. Proof of Theorem 4.12. The second sequence of equivalences

Steps 3, 4 and 5. Apply the mutations at 5,6,7, . . . ,m. They are all derived equivalences, by
Lemma 4.7(b). Note that the last mutation at m makes the arrow γ disappear.

This sequence of equivalences has reduced the m-cycle C0 to an (m−1)-cycle. The cocycle path
of the arrow ε in the new quiver is c(ε) = 1 → m → 2 → 3′. Thus w(ε) = 1, and we can repeat the
sequence of equivalences again.

After m−4 rounds, we have reduced our cycle to length 4, and we obtain a subquiver isomorphic
to the first quiver in Figure 9. Moreover the coweight of the arrow α is 1. We now apply another
sequence of derived and singular equivalences that preserve the total weight. The corresponding
quivers are shown in Figure 9, and the steps are justified below.

Step 6. Apply the mutation at 3, which is a derived equivalence, by Lemma 4.7(a), since
w(α) = 1 and w(β) = 2.

Step 7. Apply the singular equivalence of Lemma 4.8 in the special case where the path u has
length 0.

Step 8. Now our cycle has length 3 and w(α) = 1. If w(β) = 1, we remove α,β and the vertex 3,
which is a singular equivalence, by Proposition 4.10. The resulting quiver has one less cycle, and
so we are done by induction.

On the other hand, if w(β) = 2, we apply the mutation at 3, which is a derived equivalence, by
Lemma 4.7(a). Again the resulting quiver has one less cycle, and we are done by induction.

This completes the proof in the case where the arrow α in the first quiver in Figure 8 has
coweight one.

(2) Now assume that the arrow α has coweight 2. This case is illustrated in Figure 10. If the
arrow ε at the other end of the cycle has weight 1, then we can use the dual argument of case (1).
So we may assume without loss of generality that w(ε) = 2. We will apply a sequence of derived
and singular equivalences that will reduce to case (1). The corresponding quivers are shown in
Figure 10, and the steps are justified below.

Step 1. Apply a one-point coextension at vertex 3. This is a singular equivalence by Corol-
lary 4.2. Call the new vertex 3′ and the new arrow δ.

Step 2. Apply the mutation at vertex 3. This is a derived equivalence by Theorem 4.4, because

(i) before mutating, there is exactly one arrow ending at 3, and if v is a nonzero path ending
in 3 then vδ ≠ 0;

(ii) after mutating, there is exactly one arrow starting at 3. Moreover, note that the arrow

β∶4 → 3 has coweight w(β) = 1, because before the mutation w(α) = 2. Thus if v is a

nonzero path starting at 3 then βv ≠ 0, by Lemma 4.6.

Step 3. Apply mutations at 4,5, . . . , (m−1). These are all derived equivalences, by Lemma 4.7(b).
The resulting quiver is the first quiver in the second row of Figure 10.
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Figure 10. Proof of Theorem 4.12, second case.

Step 4. Apply the mutation at m, which also is a derived equivalence by Lemma 4.7(b).

Note that in the resulting quiver, the first arrow α′ of our chordless cycle now has coweight 1,
because ε is a boundary arrow. Since w(α′) = 1, we can use the argument of case (1) and the proof
is complete. �

5. Construction of the checkerboard pattern

Throughout this section, B = Jac(Q,W ) is a dimer tree algebra. In this section, we show that,
knowing that the stable syzygy category of B is equivalent to the category of 2-diagonals of a
polygon, there exists a unique checkerboard pattern on the polygon that realizes the homological
structure of the category, see Theorem 5.11.

5.1. Extensions between syzygies and radicals of projectives. In this subsection, we show
that extensions between a syzygy M and the radicals radP (i) are determined by the projective
resolution of M . We start with a preliminary lemma about the radicals.

Lemma 5.1. The radical radP (i) is an indecomposable non-projective syzygy.

Proof. Since radP (i) = ΩS(i), we see that radP (i) is a syzygy. Note that it is nonzero, because
every vertex lies in an oriented cordless cycle in Q so there are no sinks in Q. Moreover, since every
arrow of Q lies in a relation, it follows that radP (i) is non-projective. To show that radP (i) is
indecomposable consider the top of radP (i). If the top is simple, then we are done. Otherwise, the
top is semi-simple and isomorphic to S(a1)⊕⋅ ⋅ ⋅⊕S(ak) for some k ≥ 2, where i→ aj → ⋅ ⋅ ⋅→ bj → i

and i→ aj+1 → ⋅ ⋅ ⋅→ bj → i are oriented chordless cycles in Q that have an arrow in common. Then
the representation radP (i) is supported on the path

aj → ⋅ ⋅ ⋅→ bj ← ⋅ ⋅ ⋅← aj+1

for j = 1, . . . , k − 1, which shows that it is indecomposable. �

Now, we consider extensions in the module category between syzygies and radicals of projectives.

Lemma 5.2. Let M be an indecomposable non-projective syzygy in modB, and let P0 be the
projective cover of M . Then the following are equivalent.

(a) Ext1B(M, radP (x)) /= 0.
(b) P (x) is a direct summand of P0.



22 RALF SCHIFFLER AND KHRYSTYNA SERHIYENKO

Proof. Suppose (a). Consider the following diagram where the first row is a minimal projective
resolution of M in modB.

. . . // P2

p2 // P1

p1 //

g

��

P0

p0 //

h

��

M // 0

radP (x)
i

��
P (x)

Let the map g ∶ P1 → radP (x) induce a nonzero element of Ext1B(M, radP (x)). Then gp2 = 0 and
g does not factor though the map p1. Let i ∶ radP (x) → P (x) be the inclusion morphism of the
radical into its corresponding projective module. Since M is a syzygy then Ext1B(M,P (x)) = 0.
In particular, the equivalence class of the map ig is zero in Ext1B(M,P (x)), and so igp2 /= 0 or ig
factors through p1. Since gp2 = 0, we must have that ig factors through p1. Thus, there exists
h ∶ P0 → P (x) such that

hp1 = ig.

Now, suppose to the contrary that P (x) is not a direct summand of P0. Then h factors through
i, so there exists h′ ∶ P0 → radP (x) such that ih′ = h. Therefore,

ig = hp1 = ih
′p1.

Because i is injective we conclude that g = h′p1. Therefore, g factors through p1 which is a
contradiction to it being nonzero in Ext1B(M, radP (x)). This shows that (a) implies (b).

Now suppose (b). Consider the following diagram.

kerπ′ //
� _

��

kerπ� _

��
0 // radP (x) // X //

π′

����

M //

π
����

0

0 // radP (x) // P (x) p // S(x) // 0

The bottom row of the diagram is a short exact sequence ending in the simple module S(x). Since
P (x) is a direct summand of the projective cover of M , then S(x) appears in the top of M . Let
π ∶M → S(x) be the corresponding projection. The pullback of S(x) along π and p yields a short
exact sequence appearing in the second row of the diagram. If this sequence is nonsplit, then
we obtain a nonzero element of Ext1B(M, radP (x)) and we are done. Otherwise, we have that
X ≅ radP (x)⊕M .

Since π is surjective, then by the snake lemma π′ is also surjective and kerπ′ ≅ kerπ. Moreover,
we obtain another short exact sequence appearing in the second column of the diagram which ends
in the projective P (x). This sequence must split and we conclude X ≅ kerπ ⊕ P (x).

Hence, kerπ ⊕ P (x) ≅ radP (x) ⊕M , and we have that P (x) is a direct summand of M or
radP (x). The former is not possible because M is non-projective and indecomposable by assump-
tion, and the latter is not possible because the algebra B is finite dimensional. This shows that
(b) implies (a). �

Next, we show that the previous result also holds for extensions in the syzygy category, but first
we need the following lemma.

Lemma 5.3. Let M,N ∈ CMPB. Then Ext1B(M,N) = 0 if and only if Ext1CMPB(M,N) = 0.
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Proof. The forward direction follows because every triangle in CMPB lifts to a short exact sequence
in modB. It remains to show the backward direction, so we suppose that Ext1B(M,N) /= 0. Since
N ∈ CMPB, let X = Ω−1N be its shift. Hence, we have ΩX = N in CMPB, and since Ω is the
same in CMPB and modB we get a short exact sequence with P a projective cover of X.

0→ N → P →X → 0

Applying HomB(M,−) to this sequence, we obtain

HomB(M,P )→ HomB(M,X)→ Ext1B(M,N)→ Ext1B(M,P ).
The last term above is zero because M ∈ CMPB. By assumption Ext1B(M,N) /= 0, which implies
that the map HomB(M,P )→ HomB(M,X) is not surjective. Thus there exists a morphism from
M to X that does not factor through P . Since P is the projective cover of X, this implies that
not every morphism from M to X factors through a projective module. Thus the lemma follows
from the equation below.

0 /= HomB(M,X) ≅ HomCMPB(M,X) ≅ Ext1CMPB(M,ΩX) = Ext1CMPB(M,N). �

Proposition 5.4. Let M be an indecomposable non-projective syzygy in modB, and let

P1
// P0

// M // 0

be the minimal projective resolution of M in modB. Then

(i) Ext1CMPB(M, radP (x)) /= 0 if and only if P (x) ∈ addP0.

(ii) Ext2CMPB(M, radP (x)) /= 0 if and only if P (x) ∈ addP1.

Proof. Part (i) follows directly from Lemmas 5.2 and 5.3. Part (ii) follows from (i) by replacing

M with ΩM since Ext2CMPB(M, radP (x)) ≅ Ext1CMPB(ΩM, radP (x)). �

Remark 5.5. The above proposition, as well as the Lemmas 5.2 and 5.3, hold more generally for
B an Artinian 1-Gorenstein algebra.

Moreover, Lemma 5.3 can also be deduced from the work of Buchweitz as follows. Give
M,N ∈ CMPB, by [Bu, Corollary 6.4.1(i)] and [Bu, Definition 6.1.1] we obtain ExtiB(M,N) ≅
HomDb(B)(M[−i],N), where Db(B) is the quotient of the bounded derived category of modB

by the prefect complexes and [1] denotes the shift. Then by [Bu, Theorem 4.4.1] we conclude

that HomDb(B)(M[−i],N) ≅ HomCMPB(ΩiM,N) which in turn is isomorphic to ExtiCMPB(M,N)
since Ω is the inverse shift in CMPB. This shows that ExtiB(M,N) ≅ ExtiCMPB(M,N), which is
a stronger statement than the one proved in Lemma 5.3.

As an immediate corollary, we obtain an explicit description of the projective presentation of
radP (i).
Corollary 5.6. The minimal projective presentation of the radical radP (x) in modB is

⊕
j→x∈Q1

P (j)→ ⊕
x→i∈Q1

P (i)→ radP (x)→ 0.

Proof. It is easy to see that the projective cover of radP (x) is as in the statement. Next, we
consider the second term in the projective resolution of radP (x). By [SS, Proposition 3.32] there

exists an arrow j → x in the quiver Q if and only if Ext1B(radP (j), radP (x)) /= 0. By Lemma 5.2
and Proposition 5.4(i), this is equivalent to the statement that

Ext1CMPB(radP (j), radP (x)) /= 0.
Then

Ext1CMPB(radP (j), radP (x)) ≅DExt2CMPB(radP (x), radP (j))



24 RALF SCHIFFLER AND KHRYSTYNA SERHIYENKO

by the 3-Calabi-Yau property of CMPB. Then Proposition 5.4(ii) implies that the last term is
nonzero if and only if P (j) is a summand of the second term in the projective presentation of
radP (x). This yields the desired result. �

5.2. Arrows and extensions. In this section we study the connection between arrows in the
quiver and extensions between the corresponding radicals.

Lemma 5.7. If i→ j is an arrow in Q, then Ext1CMPB(ΩradP (i), radP (j)) = 0.
Proof. First we claim that

(5.1) HomB(ΩradP (i), S(j)) = 0.
To show the claim consider a short exact sequence in modB

0→ ΩradP (i)→ P → radP (i)→ 0.

Apply HomB(−, S(j)) to obtain the exact sequence

0→ HomB(radP (i), S(j))→ HomB(P,S(j))→ HomB(ΩradP (i), S(j))→
→ Ext1B(radP (i), S(j))→ Ext1B(P,S(j))

The last term is zero since P is projective. Since there is exactly one arrow i→ j then both vector
spaces HomB(radP (i), S(j)) and HomB(P,S(j)) are 1-dimensional. Therefore, we conclude that

(5.2) HomB(ΩradP (i), S(j)) ≅ Ext1B(radP (i), S(j)).
By Corollary 5.6, the second term in the projective resolution of radP (i) is ⊕P (x) where the

sum runs over all arrows x→ i in the quiver Q. Since by assumption there is an arrow i→ j in Q,
then there is no arrow j → i, and so P (j) is not a summand of the second term in the projective
resolution of radP (i). This implies that Ext1B(radP (i), S(j)) = 0 and completes the proof of (5.1).

Now, we want to show the following

(5.3) Ext1B(ΩradP (i), radP (j)) = 0.
Applying HomB(ΩradP (i),−) to the short exact sequence

0→ radP (j)→ P (j)→ S(j)→ 0,

we obtain

HomB(ΩradP (i), S(j))→ Ext1B(ΩradP (i), radP (j))→ Ext1B(ΩradP (i), P (j)).
The first term above is zero by (5.1) and the last term is zero because Ω radP (i) ∈ CMPB. This
shows (5.3), and the conclusion follows from Lemma 5.3. �

Proposition 5.8. If i→ j is a boundary arrow in Q, then

Ext1CMPB(ΩradP (i), radP (j)) = Ext1CMPB(radP (j),ΩradP (i)) = 0.
Proof. By Lemma 5.7 it suffices to show that Ext1CMPB(radP (j),ΩradP (i)) = 0. This is equivalent
to

HomB(radP (j), radP (i)) = 0
which we show below using the particular structure of these quiver representations.

Consider the local configuration around vertex j shown below. Here each dotted arrow is either
a single arrow or a sequence of arrows such that each bounded region is an oriented chordless cycle
in Q. The arrow i → j is a boundary arrow as in the statement of the proposition, and, without
loss of generality, we may assume that the other boundary arrow j → ak at vertex j is oriented
away from j. The other case follows similarly.
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Then the representation radP (j) has the following structure, where each simple representation
S(ar), r = 1,2, . . . , k, appears in the top of radP (j). Moreover, radP (j) is supported on the paths
ar → ⋅ ⋅ ⋅→ br+1 ← ⋅ ⋅ ⋅← ar+1 for r < k.
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The representation radP (i) has the following structure. Note that the top of radP (i) is not
generally S(j) and corresponds to all vertices that have an arrow from i, but here we only depict
the relevant vertices. Moreover, radP (i) may not be supported on the path ⋅ ⋅ ⋅ ← a0 → ⋅ ⋅ ⋅ → b1
if i → j → a0 → i is a 3-cycle and the arrow a0 → i is a boundary arrow. We consider the most
general situation below, because the proof in this special case follows similarly.
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Let f ∈ HomB(radP (j), radP (i)) be nonzero. Then f = (fx)x∈Q0
is a collection of linear maps

that map each vector space at vertex x in the representation radP (j) to the vector space at x

in the representation radP (i). Note that by Proposition 3.6, the dimension of the vector space
at each vertex of the radicals radP (i), radP (j) is at most one. Therefore, each fx is multiplica-
tion by a scalar. Moreover, the linear maps ϕα, ϕ

′

α on the arrows α ∈ Q in the representations
radP (i), radP (j) respectively are identity.

Since f is nonzero, then the restriction of f to the top of radP (j) is also nonzero. Hence, there
exists some ar such that far

/= 0, and without loss of generality we may assume that far
= 1. Since

f is a map of quiver representations, and, by the structure of the representations depicted above,
ϕα, ϕ

′

α equal 1 for all arrows α in the support of radP (i), radP (j), respectively, it follows that
the map f is also 1 on every vertex along the paths

br ← ⋅ ⋅ ⋅← ar → ⋅ ⋅ ⋅→ br+1.

Similarly, since fbr+1 = fbr = 1, then we conclude that the map f is 1 on every vertex along the
paths ar+1 → ⋅ ⋅ ⋅→ br+1 and ar−1 → ⋅ ⋅ ⋅→ br. In particular, far+1

= far−1
= 1. Continuing in this way

we conclude that far
= 1 for all r. Hence, f maps via identity the top of radP (j) to radP (i). It

is easy to see that such f factors through the projective P (j) so f ∶ radP (j) ↪ P (j) → radP (i).
This shows that f is zero in HomB(radP (j), radP (i)). Therefore, HomB(radP (j), radP (i)) = 0
which completes the proof. �
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ρ(i)

ρ(j)

ρ(i)

ρ(j) ρ(k)

ρ(s)

Figure 11. Construction 5.10 of the checkerboard pattern.

5.3. Construction of the checkerboard polygon. Given a quiver Q that satisfies Definition 3.2
and of total weight 2N , we provided a combinatorial construction of a checkerboard polygon S of
size 2N in [SS, Section 3.1]. That construction only depends on the structure of the quiver Q and a
priori does not take into account the representation theory of the corresponding dimer tree algebra
B. At the time, we were only able to show that our construction yields a model for the syzygy
category of B in the special case where every chordless cycle in Q is of length 3. By Theorem 4.12,
we now know that the syzygy category of B is always modeled by a polygon S of size 2N . In this
section, we construct the checkerboard pattern of that polygon using the representation theory of
B, and we show that it agrees with the combinatorial construction in [SS].

First, we will need the following result. By Theorem 4.12, every indecomposable object in
CMPB corresponds to a 2-diagonal in S. By Lemma 5.1, each radical is an indecomposable non-
projective syzygy, and we denote by ρ(i) the 2-diagonal corresponding to radP (i). The following
result is a reformulation of Proposition 5.8 in the geometric setting. Recall that R denotes the
clockwise rotation in S.

Proposition 5.9. If i→ j is a boundary arrow in Q, then the 2-diagonals Rρ(i) and ρ(j) do not
cross.

Proof. By Proposition 5.8, if i→ j is a boundary arrow then the syzygies Ω radP (i) and radP (j)
do not have extensions in either direction in CMPB. From Lemma 2.4, we know that extensions
in CMPB correspond to crossings in the polygon, therefore Rρ(i), the 2-diagonal corresponding
to Ω radP (i), and ρ(j) do not cross. �

Construction 5.10. (Checkerboard polygon) Given the algebra B we construct a polygon S

together with a certain checkerboard pattern. We place line segments in the plane corresponding
to 2-diagonals ρ(i) and then add boundary vertices and segments of S.

Step 1: Construct the checkerboard patter. Start with a boundary arrow i → j in Q, then by
[SS, Proposition 3.32] the corresponding 2-diagonals ρ(i) and ρ(j) cross in S. Hence, we draw
two line segments in the plane labeled ρ(i) and ρ(j) that cross. Moreover, by Proposition 5.9 the
clockwise rotation Rρ(i) of ρ(i) and the line ρ(j) do not cross. Hence, an endpoint of ρ(i) and an
endpoint of ρ(j) are connected by a boundary segment of S as in Figure 11 on the left. We also
shade the triangular bounded region on the boundary of S. We label the lines in such a way that
when going around the shaded region in the counterclockwise direction starting on the boundary
edge, one passes on ρ(i) first and then on ρ(j), see Figure 11.

Next, since i→ j is a boundary arrow there exists a unique chordless cycle

i // j // k // . . . // suu

containing this arrow. For every new vertex in this cycle k, . . . , s, draw a line segment ρ(k), . . . , ρ(s)
such that two lines cross if and only if there is an arrow between their corresponding vertices.
Moreover, we draw these lines so that they bound an interior polygonal region with as many edges
as vertices in the cycle. Finally, we shade the region enclosed by these lines, see Figure 11 on the
right.
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Figure 12. An example of a quiver and its checkerboard pattern after completing
Step 1 of Construction 5.10.
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even
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ρ(t)
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ρ(l)

Figure 13. The checkerboard pattern after completing Steps 2 and 3 respectively
of Construction 5.10 of the quiver in Example 12.

If the arrow s → i is a boundary arrow, then again by Proposition 5.9, we draw a boundary
segment of S between the two neighboring endpoints of ρ(s) and ρ(i) and shade the resulting
triangular region on the boundary. Otherwise, s → i is an interior arrow, and then there exists
a unique other cordless cycle containing this arrow. Similarly to the above, we add an interior
shaded region whose edges correspond to the vertices in the cordless cycle. Continue in this way
until all the cycles and boundary arrows of Q are exhausted, see for example Figure 12.

Now, all 2-diagonals corresponding to radicals are complete, it remains to construct the rest of
the boundary of S.

Step 2: Orient the 2-diagonals. If we were to label the vertices of S from 1 to 2N in order, then
the two endpoints of each ρ(i) will have opposite parities, since ρ(i) is a 2-diagonal. Therefore,
we can choose to orient ρ(i) so that it goes from an odd to an even labeled endpoint as follows.
Choose an endpoint of ρ(i) on the boundary of S and label it odd. Orient the line ρ(i) away from
this endpoint. Label the other endpoint of ρ(i) even. The odd labeled endpoint of ρ(i) lies in a
shaded triangular region that contains a boundary segment of S and another diagonal ρ(j). Label
the remaining boundary vertex of this region as even. Then the other endpoint of ρ(j) has an odd
label, and we orient ρ(j) from its odd to its even endpoint. For an example see Figure 13 on the
left.

By construction, these triangular shaded regions on the boundary correspond to boundary
arrows in Q. Since every vertex connects to exactly two boundary arrows, it follows that the odd
labeled endpoint of ρ(j) also lies in a such a region together with another diagonal ρ(r). Label
this endpoint of ρ(r) even and orient the diagonal towards it. Continuing in this way, we walk
around the boundary of the quiver i, j, r, . . . until we reach i again. Since every vertex lies on the
boundary of Q, this determines the orientation of every radical line and labels the vertices of S.

Step 3: Construct the boundary of S. Every two shaded triangular regions next to each other
are separated by a white region W . Consider two vertices x, y of W on the boundary of S, see
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W

x

y W

ifxand y have
the same parity

W

x

y

ifxand y have
different parity W

Figure 14. Closing white regions in Step 3 of Construction 5.10.

Figure 14. If the labels of x and y have the same parity, then we identify them. Otherwise, if the
labels of x and y have opposite parity, then we add a boundary segment of S that connects these
endpoints. This gives a polygon with a checkerboard pattern, see Figure 13 on the right for an
example. Note that this is the unique minimal way to close up the white regions to get a polygon
given the parity of the vertices.

The next result is the main theorem of this section. It says that the above construction gives
an alternate way to obtain the checkerboard polygon of [SS].

Let B = Jac(Q,W ) be a dimer tree algebra of total weight 2N . Denote by φ∶Diag(S)→ CMPB

the triangle equivalence of Theorem 4.12, where S is a polygon with 2N vertices. For i ∈ Q0, let
ρ(i) = φ−1(radP (i)) be the 2-diagonal in S corresponding to the radical of P (i). We call the ρ(i)
radical lines.

Theorem 5.11. With the notation above, the positions of the radical lines ρ(i) in the polygon S

are uniquely determined up to rotation. The resulting checkerboard pattern on S is the same as
the checkerboard pattern defined in [SS].

Proof. The relative position of each radical line in the construction 5.10 is determined as soon
as the first two radical lines ρ(i), ρ(j) are drawn in step 1, see the left picture in Figure 11.
Furthermore, the positions of ρ(i) and ρ(j) are determined up to rotation.

Now we show that the construction 5.10 produces the same checkerboard pattern as the one in
[SS]. Recall that the construction in [SS] realizes the pattern using the medial graph of the twisted
dual graph of the quiver Q. In 5.10 each chordless cycle of Q gives rise to an interior shaded region
in S. In [SS], this region is realized by the medial graph of the dual graph of the chordless cycle,
see the pictures on the left in Figure 15.

If two chordless cycles share an arrow j → k as in Figure 12, the corresponding shaded regions
meet at the intersection of the radical lines ρ(j) and ρ(k). In the quiver Q, the two chordless
cycles always have opposite orientations, one clockwise and the other counterclockwise, because
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Figure 15. Proof of Theorem 5.11. On the left, the shaded region of a chordless
cycle of Q is realized in the medial graph of the the dual graph of Q. On the right,
the twisted dual graph of the quiver in Figure 12 and the corresponding shaded
regions of the medial graph.

they share the arrow j → k. However, in the checkerboard pattern, both cycles are recovered by
going around the corresponding shaded regions in the same counterclockwise direction.

This is exactly the reason why in [SS] the dual graph is twisted. For example, in the situation
of Figure 12, the twisted dual graph and its medial graph are shown in the two pictures on the
right in Figure 15. The twisting occurs along the edge corresponding to the arrow j → k (labeled 8
in the figure), and it is the reason why the boundary arrows 5 and 7 switch their relative positions
when going from the dual graph to the twisted dual graph. The medial graph is shown in the
rightmost picture in Figure 15. It agrees with the interior shaded regions in Figure 12.

This shows that the two constructions produce the same checkerboard patterns in the interior
of the polygon. The fact that the checkerboard patterns also agree at the boundary follows from
the uniqueness in step 3 of the construction 5.10. �

Corollary 5.12. The checkerboard pattern obtained in construction 5.10 has the following prop-
erties.

(a) The interior shaded regions correspond to the chordless cycles in Q, the boundary shaded
regions to the boundary arrows in Q and the crossings between the radical lines to the
arrows in Q.

(b) The orientations of the radical lines are such that the segments that bound a shaded region
are oriented in the same way (either clockwise or counterclockwise) and the segments that
bound a white region have alternating orientation.

(c) Every white region has either a single vertex on the boundary or a boundary segment.
(d) Every white region has an even number of sides.
(e) If α is a boundary arrow and Sα the corresponding shaded region then the cycle path c(α)

and the cocycle path c(α) of α are given by the bounding edges of the white regions adjacent
to Sα.

Proof. These results were shown in [SS]. Part (a) is Lemma 3.1, (b) is Lemma 3.24, (c) is
Lemma 3.11, (d) is Lemma 3.20, and (e) is Remark 3.14 in that paper. �

6. Proof of Theorem 1.1

Theorem 4.12 implies that there exists a triangle equivalence φ∶Diag(S) → CMPB, where S is
a polygon with 2N vertices and 2N is the total weight of the quiver Q. Let S be the checkerboard
polygon of Q constructed in [SS]. Then S and S have the same size. By Theorem 5.11, there
exists a triangle equivalence π∶Diag(S) → Diag(S) such that F = φ ○ π∶Diag(S) → CMPB maps
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the radical line ρ(i) to radP (i), for all i. In fact, up to rotation, π is simply given by forgetting
the checkerboard pattern.

Moreover, F (R(γ)) = ΩF (γ), because Ω is the negative shift in CMPB by [KR] and R is
the negative shift in Diag(S) by [BM]. Therefore we also have F (R2(γ)) = Ω2F (γ), and hence
F (R2(γ)) = τ−1F (γ), because τ−1 = Ω2 in CMPB by [KR].

It remains to show that the projective resolutions in CMPB are determined by the crossing
patterns in Diag(S). Let M ∈ CMPB be indecomposable, and let γ = F −1(M) denote the corre-
sponding 2-diagonal in Diag(S). Let

P1

f // P0
// M // 0

be a minimal projective presentation of M . Then part (a) of Proposition 5.4 implies that P0 =

⊕xP (x), where the sum is over all x ∈ Q0 such that Ext1CMPB(M, radP (x)) ≠ 0. Now using the

equivalence F together with Lemma 2.4(a), we see that P0 = ⊕xP (x), where the sum is over all
x ∈ Q0 such that ρ(x) crosses γ from right to left. Similarly, the parts (b) of Proposition 5.4 and
Lemma 2.4 imply that P1 = ⊕yP (y), where the sum is over all y ∈ Q0 such that ρ(x) crosses γ

from left to right. Thus the morphism f ∶P1 → P0 satisfies the conditions of the map fγ in the
statement.

Finally, the fact that F maps 2-pivots to irreducible morphisms and meshes to Auslander-Reiten
triangles follows directly from [BM].

Appendix A.

Here we give a proof of the following well-known result.

Proposition A.1. Let Q be the quiver given by a single chordless cycle of length N and B =

Jac(Q,W ) be its dimer tree algebra. Let S be a polygon with 2N vertices. Then CMPB ≅ Diag(S).
Proof. The algebra B is cluster-tilted of type DN . Thus B = EndC(T ), where C is the cluster
category of type DN and T is a cluster-tilting object in C, see [BMRRT]. The cluster category is
equivalent to the category of tagged arcs in the punctured polygon P with N vertices [S]. Such an
arc is determined by its endpoints if we agree that the arcs (a, b) that connect a boundary point
a to a boundary point b go counterclockwise around the puncture, see Figure 16 for an example,
and the arcs that go from a boundary point a to the puncture p come in pairs, a plain arc (a, p)
and a notched arc (a, p)&.

The cluster-tilting object T corresponds to the triangulation consisting of the N plain arcs (a, p)
that are incident to the puncture, and by [BMR], the module category modB is equivalent to the
category of all arcs that are not in T .

Moreover the algebra B is self-injective and therefore every B-module is a syzygy. Thus the
stable category CMPB is equal to the stable module category. In the geometric model, the
projective modules correspond to the notched arcs (a, p)& incident to the puncture p. Thus the
stable category CMPB corresponds to the category of all arcs (a, b) where a, b are boundary
vertices in P . We denote this set of arcs by Arcs∂P . Thus

Arcs∂P = {(a, b) ∣ 1 ≤ a, b ≤ N, a ≠ b, a + 1 ≢ b (mod N)}.
The irreducible morphisms are given by pivots and the Auslander-Reiten quiver is illustrated in
Figure 17 in the case N = 5.

Let S be the polygon with 2N vertices labeled 1+,1−,2+,2−, . . . , n+, n− in counterclockwise order
around the boundary, see Figure 16. Then there is a bijection

χ∶Arcs∂P Ð→ Diag(S)(a, b) z→ (a−, b+).
Indeed, χ is well-defined, since (a−, b+) is a 2-diagonal, χ is clearly injective, and if (a−, b+) is a
2-diagonal in S, then b > a+1 and hence there exists an arc (a, b) ∈ Arcs∂P and thus χ is surjective.
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Figure 16. The the arcs (1,3) and (3,1) in the punctured 5-gon P and their
images (1−,3+) and (3−,1+) under the bijection χ the the 10-gon S.
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Figure 17. The Auslander-Reiten quiver of CMPB in terms of the arcs that
start and end at the boundary in a punctured 5-gon (top) and the Auslander-
Reiten quiver of Diag(S) (bottom).

Furthermore, the map φ induces an isomorphism between the Auslander-Reiten quivers of
CMPB and Diag(S). This completes the proof. �
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