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ABSTRACT. In this article, we continue the study of a certain family of 2-Calabi-Yau tilted
algebras, called dimer tree algebras. The terminology comes from the fact that these algebras
can also be realized as quotients of dimer algebras on a disc. They are defined by a quiver
with potential whose dual graph is a tree, and they are generally of wild representation type.
Given such an algebra B, we construct a polygon S with a checkerboard pattern in its interior,
that defines a category Diag(S). The indecomposable objects of Diag(S) are the 2-diagonals in
S, and its morphisms are certain pivoting moves between the 2-diagonals. We prove that the
category Diag(S) is equivalent to the stable syzygy category of the algebra B. This result was
conjectured by the authors in an earlier paper, where it was proved in the special case where
every chordless cycle is of length three.

As a consequence, we conclude that the number of indecomposable syzygies is finite, and
moreover the syzygy category is equivalent to the 2-cluster category of type A. In addition,
we obtain an explicit description of the projective resolutions, which are periodic. Finally, the
number of vertices of the polygon S is a derived invariant and a singular invariant for dimer tree
algebras, which can be easily computed form the quiver.
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FIGURE 1. A quiver @ together with its dual graph on the left, and the corre-
sponding checkerboard polygon on the right. The module M., determined by the
2-diagonal v is the cokernel of the map f, : P(5) @ P(6) - P(3) @ P(4), deter-
mined by the crossing of « with the radical lines 3,4,5, and 6.
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1. INTRODUCTION

In this paper, we continue our study of syzygies over 2-Calabi-Yau tilted algebras initiated in
[SS]. Our main result is the proof of the main conjecture of that article in full generality.

The syzygy modules over a ring or an algebra play a fundamental role in both commutative
and non-commutative algebra. By definition, they are the submodules of projective modules, and
hence syzygies are the building blocks of projective (or free) resolutions. In particular, every
module can be approximated by its syzygies. Understanding the category of syzygies provides
valuable information about the algebra, but in general this is a difficult problem. The algebras
we consider here are wild in general, and thus there is no hope for understanding their module
category entirely. However, this paper provides a complete description of the syzygy category.

Our algebras have the property that their syzygy category is equivalent to the category of
maximal Cohen-Macauley modules and also to the singularity category. Cohen-Macauley modules
and rings are central in commutative algebra, in particular, in the McKay correspondence, matrix
factorization, and resolutions of singularities [E, LW, M, PV, Y]. Buchweitz brought these ideas
to the non-commutative setting of Iwanaga-Gorenstein rings, introducing the singularity category
in [Bu], which was later rediscovered and generalized to the graded setting by Orlov [O]. An
important problem is the classification of rings of finite Cohen-Macauley type, which is solved for
hypersurface singularities and for normal Cohen-Macauley rings of Krull dimension two, in the
commutative case. For higher dimensions, as well as for non-commutative rings the problem is
open.

In this paper, we are interested in a special class of 2-Calabi-Yau tilted algebras. The family of 2-
Calabi-Yau tilted algebras arises from the categorification of cluster algebras [Am, BMRRT] and are
a generalization of cluster-tilted algebras and of Jacobian algebras of quivers with potentials. Keller
and Reiten showed that every 2-Calabi-Yau tilted algebra is Iwanaga-Gorenstein of Gorenstein
dimension one and that their stable syzygy category is 3-Calabi-Yau [KR].

Here we study a special family of 2-Calabi-Yau tilted algebras which are characterized by the
condition that the dual graph of their quiver is a tree, see Definition 3.2. The potential is given by
the alternating sum of the chordless cycles. These algebras can be realized as quotients of dimer
algebras on a disc which implies that the boundary arrows in our quiver also induce relations on
the algebra. These are zero relations and guarantee that the algebra is finite-dimensional and
schurian. Because of this similarity we call our algebras dimer tree algebras. For example, algebras
arising from the coordinate rings of the Grassmannians Gr(3,n) are dimer tree algebras. Dimer
algebras have been studied extensively, see [HK, Po, JKS, BKM, Pr| and the references therein;
for their connection to homological mirror symmetry, see [Bo].

Main result. Let B be a dimer tree algebra with quiver ). Let mod B denote the category of
finitely generated right B-modules and CMP B the category of non-projective syzygies. Also, let
Q denote the syzygy functor. To every boundary arrow « of @, we associate a weight w(«) which
equals either 1 or 2, depending on the parity of the length of its cycle path (or zigzag path), see
Definition 3.7. The total weight of B, which is the sum of weights of all boundary arrows will be
denoted by 2N. We use a polygon S with 2N vertices to provide a geometric model for the syzygy
category CMP B of B.

Let Diag(S) be the category of 2-diagonals in S, whose morphisms are given by pivoting moves
between the 2-diagonals. This is a triangulated category whose shift functor is given by the
clockwise rotation R by w/N. Our polygon S is also quipped with a checkerboard pattern that
is defined by a set of radical lines p(i) associated to the vertices ¢ of ). Then each 2-diagonal
v in S corresponds to an indecomposable syzygy M., and its intersections with the checkerboard
pattern determines the projective presentation of M.,. Moreover, the 2-diagonal  will be oriented
and hence its crossings with the lines p(4) of the checkerboard pattern come with an orientation
as well. We define projective modules Py(vy) = @, P(¢) and Py () = ®;P(j), where the first sum is
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over all 7 such that p(7) crosses v from right to left and the second sum is over all j such that p(j)
crosses « from left to right.
We are now ready to state our main result.

Theorem 1.1. Let B be a dimer tree algebra of total weight 2N and S the associated checkerboard
polygon. For each 2-diagonal v in S there exists a morphism f.:Pi(y) - Po(7y) such that the
mapping vy = coker f, induces an equivalence of categories

F:Diag(S) -~ CMP B.

Under this equivalence, the radical line p(i) corresponds to the radical of the indecomposable pro-
jective P(i) for allie Qo. The clockwise rotation R of S corresponds to the shift Q in CMP B and
R? corresponds to the inverse Auslander-Reiten translation 771 = Q2. Thus

F(p(i)) = rad P(i)
F(R(7)) =QF(7)

F(R*(y)) =77 F(v)

Furthermore, F maps the 2-pivots in Diag(S) to the irreducible morphisms in CMP B, and the
meshes in Diag(S) to the Auslander-Reiten triangles in CMP B.

An example is given in Figure 1.

Theorem 1.1 was conjectured in [SS|, where it was proved in the special case where every
chordless cycle in @ has length 3. Now that this conjecture is proved, we also have Corollaries
1.3-1.8 of [SS] in full generality, some of which we recall now. To begin with, the category CMP B
is equivalent to the 2-cluster category of type Ay_o and the number of indecomposable syzygies
is N(N - 2). In particular, dimer tree algebras have finite Cohen-Macauley type. Furthermore,
the projective resolutions of syzygies are completely determined by the checkerboard polygon S
and are periodic of period N or 2N. Additionally, the indecomposable syzygies are rigid, meaning
they have no self-extensions in mod B. We conjecture that they are also 7-rigid. Moreover, the
total weight of B is a derived invariant, even a singular invariant, for the dimer tree algebra B,
and it can be easily read off the quiver. Finally, the same checkerboard polygon also provides a
geometric model for the stable cosyzygy category CMI B, and we have a commutative diagram of
equivalences

CMP B . CMI B
7_71
coke\ %yﬂy
Diag(S)

1

where 7,77" are the Auslander Reiten translations and v is the Nakayama functor in mod B.

A few words about the proof. In the proof, we establish certain derived equivalences and singular
equivalences and use them to reduce the problem to the case when B has only one chordless cycle,
see Section 4. Some of these equivalences are given by mutation while others are given by removal
or addition of vertices to the quiver. This process builds on earlier results by Bastian-Holm-Ladkani
[BHL], Lu [Lu], and Chen [C3]. In Section 5, we then give a new construction of the checkerboard
pattern and show that it is equivalent to the one in [SS]. The main result is proved in Section 6.

One difference from the approach in [SS] is that we show the existence of the morphism f, in
the main theorem, but we do not have an explicit construction. It would be useful to have such a
description, but, judging from [SS], such a description would be quite involved.
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Related work. For the very special class of cluster-tilted algebras of finite representation type, the
syzygy categories were studied before by Chen, Geng and Lu in [CGL], where they gave a classi-
fication of the syzygy categories of these algebras. In particular, they show that the components
of CMP B are equivalent to the stable categories of certain self-injective algebras. Their proce-
dure involves a case by case analysis that uses a classification of the derived equivalence classes of
cluster-tilted algebras of Dynkin type in [BHL, BHL2]. Later Lu extended these results to simple
polygon-tree algebras [Lu]. One of the ingredients of the proof is successive mutation at vertices
of the exterior cycles and reduction to a cluster-tilted algebra of Dynkin type D, and we generalize
this method in the first step of our proof in section 4. These algebras are special cases of dimer tree
algebras. The above results determine only the type of the syzygy category but do not describe
the objects or the morphisms.

Garcia-Elsener and the first author have described the syzygy category of cluster-tilted algebras
of type D in terms of arcs in a once-punctured polygon in [GES].

For gentle algebras, the singularity categories have been described by Kalck in [K] using m-
cluster categories of type A;. In our setting the algebra is gentle if and only if the quiver has a
unique chordless cycle. This has been extended to skew-gentle algebras by Chen and Lu in [CL].
For further results on singularity categories of finite dimensional algebras see [C, C2, CSZ, LZ, Sh].

Future directions. In a work in progress, we describe the connection to dimer algebras and show
how to embed our checkerboard polygon in an alternating strand diagram of the dimer model. For
an illustration, we show in Figure 2 an alternating strand diagram that contains the checkerboard
polygon of Figure 1. The orientation of the strands is such that the shaded regions are oriented,
while the white regions are alternating. The corresponding dimer algebra on the disc is given by
the quiver on the right in the same figure. Each vertex represents a white region in the alternating
strand diagram and two regions are connected by an arrow if they share a crossing point. The full
subquiver on the vertices 1, 2, ..., 9 is equal to the twisted quiver @ of the quiver @ from Figure 1
in the sense of Bocklandt [Bo]. The vertices 10, 11, ...23 are frozen vertices. Note that both the
checkerboard polygon and the alternating strand diagram have 14 boundary vertices.

In another direction, it will be interesting to see if we can relax the conditions on the quiver
such as allowing the dual graph to be disconnected or to contain cycles. Other future projects
include the behavior of the checkerboard polygon under mutations, a description of the syzygies in
terms of their composition factors, and the question of 7-rigidity of the indecomposable syzygies.
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esting discussions. We also thank the anonymous referee for useful comments.
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2. PRELIMINARIES

Let k be an algebraically closed field. If A is a finite-dimensional k-algebra, we denote by
mod A the category of finitely generated right A-modules. Let D denote the standard duality
D = Hom(—,k). If Q4 is the ordinary quiver of the algebra A, and i is a vertex of Q4, we de-
note by P(i),1(i),S(¢) the corresponding indecomposable projective, injective, simple A-module,
respectively.

Let rad A denote the Jacobson radical of A. If M € mod A its radical is defined as rad M =
M (rad A) and its top as top M = M /rad M. Thus in particular top P(i) = S(i). Given a module
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FIGURE 2. An alternating strand diagram that contains the checkerboard polygon
of Figure 1. The corresponding quiver is shown on the right. Its mutable part is
the twist of the quiver of the checkerboard polygon.

M, we denote by add M the full subcategory of mod A whose objects are direct sums of summands
of M.
For further information about representation theory and quivers we refer to [ASS, S2].

2.1. Cohen-Macauley modules over 2-Calabi-Yau tilted algebras. From now on, let B be a
2-Calabi-Yau tilted algebra. Thus B is the endomorphism algebra of a cluster-tilting object in a 2-
Calabi-Yau category. A B-module M is said to be projectively Cohen-Macauley if Ext’; (M, B) = 0
for all ¢ > 0. In other words, M has no extensions with projective modules.

We denote by CMP B the full subcategory of mod B whose objects are the projectively Cohen-
Macauley modules. This is a Frobenius category. The projective-injective objects in CMP B are
are precisely the projective B-modules. The corresponding stable category CMP B is triangulated,
and its inverse shift is given by the syzygy operator 2 in mod B. The category is closed under
extensions in mod B.

Moreover, by Buchweitz’s theorem [Bu, Theorem 4.4.1], there exists a triangle equivalence
between CMP B and the singularity category D°(B) /ng, 7(B) of B. Keller and Reiten showed in
[KR] that the category CMP B is 3-Calabi-Yau.

It was shown in [GES] that if M € mod B is indecomposable then the following are equivalent.

(a) M is a non-projective syzygy;
(b) M €ind CMP B;
(c) Q%7pM = M.
‘We may therefore use the terminology “syzygy” and “Cohen-Macauley module” interchangeably.
Two algebras are said to be derived equivalent if there exists a triangle equivalence between
their bounded derived categories. Two algebras are said to be singular equivalent if there exists a
triangle equivalence between their singularity categories.

2.2. Quivers with potentials. A quiver @ = (Qo, Q1,s,t) consists of a finite set of vertices @, a
finite set of arrows @1 and two maps s,t: Q1 - Qo, where s is the source and ¢ is the target of the
arrow. Thus if o € Q1 then a:s(a) - t(a).

A potential W on a quiver @) is a linear combination of non-constant cyclic paths. For every
arrow « € @1, the cyclic derivative 9, is defined on a cyclic path ajas...a; as

Oa(aran...ay) = Z Qpsl - OGQ - .. Clp_q
prap=a
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and extended linearly to the potential W.

The Jacobian algebra Jac(Q, W) of the quiver with potential is the quotient of the (completed)
path algebra k@ by (the closure of) the 2-sided ideal generated by all partial derivatives 0, W,
with a € Q1. Two parallel paths in the quiver are called equivalent if they are equal in Jac(Q,W).

If @ has no oriented 2-cycles then Jac(@Q, W) is 2-Calabi-Yau tilted by [Am].

Let (Q,W) be a quiver with potential and k a vertex of @ that does not belong to an oriented
2-cycle. Using a cyclic shift if necessary, we may assume without loss of generality that none
of the cyclic paths in W starts at k. The mutation of (Q,W) at k is the quiver with potential
ﬂk(Q’ W) = (Q,7W,)7 where

(i) @' is the quiver obtained from @ by the following local transformations

, . . [aB] .
- For every path of length two i —> k 2 j , introduce a new arrow 1 g— 7.

- Replace every arrow «:i — k ending at k by its opposite a:i < k and every arrow 3:k — j
starting at k by its opposite B:k < j.
(ii) W' = [W] + Ay, where
Ay = > [aB] Ba
o,BeQq:t(a)=s(B)=k
and [W] is obtained from W by substituting [a8] for each factor a8 with t(a) = s(8) = k.

A potential that does not contain any 2-cycles is called reduced. It may happen that the
mutation of a reduced potential is no longer reduced. However, often it is possible to replace W’
by an equivalent potential that is reduced. In that case, we also may remove all 2-cycles from the
quiver, and then we obtain the quiver Q' = u,Q given by ordinary quiver mutation at k.

2.3. Translation quivers and mesh categories. We review here the notions of translation
quiver and mesh category from [Ri, Ha]. These notions are often used in order to define a category
from combinatorial data. Examples of such constructions are the combinatorial constructions of
cluster categories of finite type in [BM, BM2, CCS, S].

A translation quiver (I',7) is a quiver I’ = (I'g,T'1) without loops together with an injective
map 7:T( - Ty (the translation) from a subset T'{; of T’y to I'g such that, for all vertices x € T,
y € I'g, the number of arrows from y — x is equal to the number of arrows from & — y. Given a
translation quiver (I',7), a polarization of T is an injective map o : '] - 'y, where I'] is the set
of all arrows a:y — x with z € I'(), such that o(«): 7z — y for every arrow a:y - x € I';. From now
on we assume that I' has no multiple arrows. In that case, there is a unique polarization of T'.

The path category of a translation quiver (I',7) is the category whose objects are the vertices
Ty of ', and, given z,y € Iy, the k-vector space of morphisms from x to y is given by the k-vector
space with basis the set of all paths from x to y. The composition of morphisms is induced from
the usual composition of paths. The mesh ideal in the path category of I' is the ideal generated
by the mesh relations

my= Y, ola)a
ay—T
for all z € T'y,.

The mesh category of the translation quiver (I',7) is the quotient of its path category by the

mesh ideal.

2.4. The category of 2-diagonals of a polygon. In this subsection, we recall a geometric
model for the 2-cluster categories of type A obtained by Baur and Marsh in [BM].

Let S be a regular polygon with an even number of vertices, say 2N. Let R be the automorphism
of S given by a clockwise rotation about 180/N degrees. Thus R*V is the identity.

Following [BM], we define the category Diag(.S) of 2-diagonals of S as follows. The indecom-
posable objects of Diag(S) are the 2-diagonals in S. Recall that a 2-diagonal is a diagonal of
S connecting two vertices such that the two polygons obtained by cutting S along the diagonal
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FIGURE 3. The arc v and its 2-pivots +',7” are shown on the left, and the
crossing between 4 and 4/ on the right gives rise to an extension in Ext’ (M, M).

both have an even number of vertices and at least 4. In particular, boundary segments are not
2-diagonals.

The irreducible morphisms of S are given by 2-pivots. We recall the definition below. An
illustration is given in Figure 3 on the left.

Definition 2.1. Let v be a 2-diagonal in the polygon S and denote its endpoints by a and =z.
Denote by b the clockwise neighbor of a, and by ¢ the clockwise neighbor of b on the the boundary
of S. At the other end, denote by y the clockwise neighbor of x, and by z the clockwise neighbor
of y on the boundary of S.

Unless a and z are neighbors on the boundary, the 2-diagonal +' connecting a and z is called
the 2-pivot of v fizing the endpoint a.

Unless ¢ and z are neighbors on the boundary, the 2-diagonal "' connecting ¢ and z is called
the 2-pivot of v fixing the endpoint x.

Let T be the quiver whose vertices are the 2-diagonals in S, and there is an arrow from the
2-diagonal v to the 2-diagonal " precisely if 7' is obtained from ~ by a 2-pivot. Then the pair
(T, R7?) is a translation quiver.

Definition 2.2. [BM] The category Diag(.S) of 2-diagonals in the polygon S is the mesh category
of the translation quiver (I', R72).

Next, we recall that the category of diagonals is equivalent to the 2-cluster category. Let H be
the path algebra of a Dynkin quiver of type A,. Let C? denote the 2-cluster category of type A,.
This category is defined as the orbit category of the bounded derived category D°(mod H) by the
functor 75'[2]. Here 7p is the Auslander-Reiten translation and [2] = [1]o[1] is the second power
of the shift functor in the derived category. Thus

C? = D’(mod H) /75 [2].
This category was introduced in [K, T], and was studied in [BRT, IY, Tor].

Theorem 2.3. [BM] Let S be a polygon with 2N wvertices. Then the category Diag(S) is equivalent
to the 2-cluster category of type An_s.

Under this equivalence each 2-diagonal v of S’ corresponds to an indecomposable object M, in
C2%. Moreover, there exists a nontrivial extension between two indecomposable objects in C? if and
only if the corresponding 2-diagonals cross.

Next, we introduce orientations on the diagonals to determine the direction of the extension
between the two objects in C? whose corresponding 2-diagonals cross. Label the boundary vertices
of S from 1 to 2N in clockwise order. Then the two endpoints of any 2-diagonal have different
parity, and we orient a 2-diagonal from its odd labeled endpoint to its even labeled endpoint. Given
2-diagonals ~y,~" that cross, we say that v crosses v from right to left (respectively left to right)
in the situations shown in Figure 4. Using this notation we obtain the following result.

Lemma 2.4. Let v,~" be oriented 2-diagonals in Diag(S) that cross.
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FIGURE 4. Crossings of oriented 2-diagonal. In the left picture 4" crosses v from
right to left, and in the right picture 4’ crosses v from left to right.

(a) ' crosses vy from right to left if and only if EXti(M%M’y’) £0.
(b) 4" crosses v from left to right if and only if Ext™ (M., M) # 0.

Proof. Let v have endpoints a,z and +' have endpoints a’, 2" as in Figure 3 on the right.

By Theorem 2.3, the crossing of v,7" corresponds to an extension between M., M, in the 2-
cluster category. Moreover, Ext'(M,, M,/) # 0 if and only if there is a triangle in the 2-cluster
category as follows, where at most one of M., M. may be zero.

/
(2.1) M, uMeeeMe, (CR VAV TY

Here each f, f is a sequence of irreducible morphisms corresponding to a sequence of 2-pivots such
that each 2-pivot in f fixes the endpoint a’ of 4" and takes 7’ to € and each 2-pivot in f” fixes the
endpoint 2’ of 7" and takes +' to €. Similarly, g,¢" each correspond to a sequence of 2-pivots such
that each 2-pivot in g fixes the endpoint z of € and takes € to 7, and each 2-pivot in ¢’ fixes the
endpoint a of € and takes ¢’ to . In particular, € and € are 2-diagonals.

Without loss of generality we may assume that e is oriented from a’ to x, since these are 2-
diagonals. This means that +’ is oriented from a’ to 2’ and ~ is oriented from «a to z, see Figure 3
on the right. Hence, we see that 4" crosses v from right to left if Extl(MW, M.,/) #0. Note that if
instead we were to suppose that € is oriented from x to a’, we would still conclude that v’ crosses
~ from right to left, because both +v,7" would change orientation. Conversely, if v’ crosses v from
right to left, then we can construct the triangle in (2.1) with the desired properties. Note that
the line segments with endpoints x,z’ and a,a’ respectively are not 2-diagonals, because of the
orientation on  and 4/, and hence €, €’ correspond to the middle terms of the triangle. This shows
part (a), and part (b) follows directly from (a). O

3. DIMER TREE ALGEBRAS

In this section, we define a class of Jacobian algebras that are the subject of this paper. An
example is given in the introduction.

A chordless cycle in a quiver @ is a cyclic path C = z¢g - 21 = --- = 24 - ¢ such that z; # x; if
i # j and the full subquiver on vertices xg, z1, ...,z is equal to C. The arrows that lie in exactly
one chordless cycle will be called boundary arrows and those that lie in two or more chordless cycles
interior arrows of Q.

Definition 3.1. The dual graph G of @ is defined as follows. The set of vertices G is the union
of the set of chordless cycles of @ and the set of boundary arrows of (). The set of edges G is
the union of two sets called the set of trunk edges and the set of leaf branches. A trunk edge

C —2—C" is drawn between any pair of chordless cycles (C,C’) that share an arrow . A leaf

branch C —*— o is drawn between any pair (C,a) where C is a chordless cycle and « is a
boundary arrow such that « is contained in C.

Definition 3.2 (The quiver). Throughout the paper, we let @ be a finite connected quiver without
loops and 2-cycles satisfying the following conditions.
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(Q1) Every arrow of @ lies in at least one chordless cycle.
(Q2) The dual graph of Q) is a tree.

The following properties follow easily from the definition.

Proposition 3.3. [SS, Proposition 3.4] Let Q be a quiver satisfying Definition 3.2.
(1) @ has no parallel arrows.
(2) Q is planar.
(3) For all arrows o of Q,
(a) either « lies in exactly one chordless cycle,
(b) or « lies in eractly two chordless cycles.
(4) Any two chordless cycles in Q share at most one arrow.

Since the dual graph G of @ is a tree, the quiver contains a chordless cycle Cy that contains
exactly one interior arrow. If C' is any chordless cycle in @ we define the distance d(C) of C' from
Cy to be the length of the unique path from Cj to C in G.

Definition 3.4. Let Q be a quiver that satisfies Definition 3.2 and let W = ¥4 (-1)4“)C be
its potential, where the sum is taken over all chordless cycles of (). The the Jacobian algebra
B =Jac(Q,W) is called a dimer tree algebra.

In other words, the chordless cycle C' appears with a positive sign in the potential if and only
if the path from Cj to C is of even length.

Remark 3.5. A dimer tree algebra is not strictly speaking a dimer algebra, since the boundary
arrows in a dimer tree algebra also induce relations. Still there are many similarities, in particular,
the zigzag paths in a dimer algebra correspond to our cycle paths defined below.

An algebra is called schurian if dim Hom(P(i), P(j)) <1 for all vertices i, j of Q.

Proposition 3.6. [SS, Corollary 3.31] Fvery dimer tree algebra is a schurian algebra. In partic-
ular, any two nonzero parallel paths are equal, and any non-constant cyclic path is zero.

3.1. Cycle paths, weight, and total weight. We review some definitions from [SS] relating
to the quiver ). Recall that an arrow in @ is called a boundary arrow if it lies in exactly one
chordless cycle.
Definition 3.7. Let o be a boundary arrow in Q.

(a) The cycle path of a is the unique path c(a) = aga---ayy) such that

(i) a1 =a and oy, are boundary arrows, and g, ...,y q)-1 are interior arrows,
(ii) every subpath of length two a;a.1, is a subpath of a chordless cycle C;, and C; # C;
ifi%].

(b) The weight w(a) of « is defined as

() = 1 if the length of ¢(«a) is odd;
WA= 2 if the length of c(«) is even.

(c) Dually, the path c¢(c) is uniquely determined by the last arrow a4y, and it is called the
cocycle path of ay(,). Define the coweight W(cy(qy) of ay(q) to be equal to w(a).

Define
Yow(a) =) w(a),

where the sum is over all boundary arrows of @, to be the total weight of (). The total weight is
an important statistic of the quiver because of the following result.

Proposition 3.8. [SS, Corollary 3.17] The number of boundary edges in the checkerboard polygon
S is equal to the total weight of Q.
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In the example of Figure 1, we list the cycle paths and their corresponding weights below. In
particular, we see that the total weight equals 14, which is the same as the size of the corresponding
checkerboard polygon S.

cycle path weight
1-2-3-4-6->9
3—->1->2
8>3->4-5
7->8—->3
6->7->8
6—>9->4
9-54-6->7
4->5->2
5—>2->3-1

N NN - N

Corollary 3.9. The total weight of a dimer tree algebra is a derived invariant and a singular
inwvariant of the algebra.

Remark 3.10. In the dimer terminology, a cycle path is usually called a zigzag path. In the
checkerboard polygon the cycle paths are realized by going clockwise around the white regions.

Remark 3.11. A dimer tree algebra is a gentle algebra if and only if its quiver consists of one
single cycle. In this case, the algebra is cluster-tilted of type ID. This case is considered in detail
in the appendix. More generally, a dimer tree algebra is cluster-tilted if and only if its quiver is
mutation equivalent to an acyclic quiver. In [Lu], Lu constructed a class of algebras called polygon-
tree algebras by recursive gluing of cycles. It is not difficult to see that the class of polygon-tree
algebras coincides with the class of dimer tree algebras. In order to study the syzygy category, Lu
imposes an additional condition on the algebras and calls them simple polygon-tree algebras [Lu,
Definition 4.2]. In our terminology, these additional conditions require that every vertex of the
quiver lies in at most three chordless cycles and every cycle path is of length at most 4.

4. A TRIANGLE EQUIVALENCE CMP B = Diag(.5)

In this section, we generalize a result of [Lu] which will show that the category CMP B of
non-projective syzygies over B is triangle equivalent to the category Diag(S) of 2-diagonals of a
polygon S, see Theorem 4.12.

4.1. Recollections. We start by recalling several results from the literature. The following result
was proved by Chen.

Theorem 4.1. [C3, Proposition 3.1] Let A be a finite dimensional k-algebra, M a left A-module
and N a right A-module. Let ¢: M @ N — A be a monomorphism. Then im ¢ is a two-sided ideal
in A. Assume further that (im¢@)M =0 and N(im¢) = 0. Define the matriz algebra

A M
(v E)

whose multiplication is given by the formula

a m\fa" mY\ fad' +¢(men’) am'+Nm
n AfJ\n XN na' + An/ AN '

Then there is a triangle equivalence between the singularity categories of I' and Afim ¢.

We will need the following corollary about the special case of one-point extensions and co-
extensions. With the notation above, we say that

(1) T is a one-point extension of A if M =0 and N is a projective module.
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(2) T is a one-point co-extension of A if N =0 and (the dual of) M is an injective module.

In both cases the tensor product M ®;; N is trivial and ¢ is the zero morphism.

Corollary 4.2. If T is a one-point extension or a one-point co-extension of A then I' and A are
singular equivalent.

Remark 4.3. If M = ®P(i) then the quiver of the one-point extension I' is obtained from the quiver
of A by adding one vertex z and adding one arrow x — i for each indecomposable summand P (%)
of M. Moreover, none of the new arrows appears in a relation in I.

The following result was obtained in [L, BHL, Lu] for arbitrary schurian algebras. We reformu-
late it here in our setting. If B = Jac(Q, W) be a dimer tree algebra and k is a vertex of Q, we
define the mutation at k as the Jacobian algebra of the quiver with potential obtained by mutation
at k, see section 2.2. In other words uxB = Jac(ux(Q, W)).

Theorem 4.4. [BHL, Propositions 2.9 & 2.15][Lu, Proposition 2.17] With the above notation, the
algebras B and pB are derived equivalent if

(i) before the mutation, there is at most one arrow ending in k and, if v is a nonzero path in
B ending at k, then there exists an arrow a such that va#0 in B; and

(ii) after the mutation, there is at most one arrow starting at k and, if v is a nonzero path
starting at k in pp B, then there exists an arrow a such that av #0 in ugB.

Proof. The result is a reformulation of the references cited. We clarify the details here. By [Lu]
Proposition 2.17(b) the algebras B and py B are derived equivalent if the following conditions hold:

(1) @ has at most one arrow ending at k (this we also require in part (i) of the theorem)

(2) the simple module S(k) is not a submodule of the radical of P(k) (this is always true for
us since there are no nonzero cycles in B by our Proposition 3.6)

(3) the two mutations p; B and p; (urB) are defined.

Part(a) of [Lu, Proposition 2.17] gives a dual characterization that leads to part (ii) of our theorem.

To reformulate condition (3) above, we use [BHL, Proposition 2.9]. It states that p} B is defined
if, whenever v is a nonzero path in B ending at k, then there exists an arrow « such that va # 0
in B, and, dually, p; (urB) is defined if, whenever v is a nonzero path in pB starting at k, then
there exists an arrow « such that av #0 in B. ]

4.2. Extending nonzero paths. Let B be a dimer tree algebra. In this subsection, we use the
weight of a boundary arrow to characterize when a nonzero path in B can be extended by a
boundary arrow.

A prefiz of a path v in Q is a subpath u such that v = uv’ in Q. A suffiz of a path v in Q is a
subpath u such that v = v'u in Q.

Lemma 4.5. Let vy:i — j be a boundary arrow of Q. Then the following are equivalent.

(1) For all nonzero paths v ending at i the composition vy is nonzero.
(2) The weight w(vy) of v is 1.

Proof. Let ¢(vy) = v0gd1 ...d; be the cycle path of 4. Thus w(y) = 1if ¢ is odd, and w(y) =2 if ¢
is even. Let Cyp,C1,...,C; be the chordless cycles along ¢(v) in order and define the path w; by
Co =vdoug and C; = d;_16;u; for i =1,2,... t, see Figure 5. Note that ; is a boundary arrow and
all §; with 7 < ¢ are interior arrows.

(1) = (2). Suppose w(vy) =2, so t is even. Then the path v = usus—o ... ugug is nonzero ending
at i and, using the relations 95, W = +(u;8;-1 — d;41u;41), We get

VY = Uplhpg - - - UDUQY = UpUp—2 - - - U201UT = Uplhp2 - - - O3UIUL = UpCp—_1Up—1 - - - U3UL

which is zero, because u.0;-1 = 95, W = 0.
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FIGURE 5. Proof of Lemma 4.5. The beginning of the cycle path ¢(y) =
Y9p610203 ... and the chordless cycles C; = §;-10;u;.

(2) = (1). Suppose v is a nonzero path ending at ¢ such that vy = 0. We want to show that
t is even. Since vy = 0, there must be a relation that involves both a path equivalent to v and
the arrow -, and that relation must end with the arrow . Since = is a boundary arrow, the only
relation that ends in « is

| uoy if t =0;
(41) 860W_{ i(uofy—51u1) ift>0.
If t = 0 there is nothing to show. Assume ¢ > 0. Then without loss of generality we may assume
that the path ug is a suffix of v. Thus there is a path v, such that

v = v1U.
Using the relation (4.1) we get
(4.2) 0 = vy = viugy = v101U7.

Now, v; is a nonzero path, since it is a subpath of v. Furthermore, v; does not end with the arrow
o, since dgug = 0. Thus equation (4.2) implies that there must be a relation involving a path
equivalent to vy and the arrow d;.

If t = 1 then §; is a boundary arrow and hence the only relations involving §; come from the
chordless cycle Cy = dgdiuy. Since v cannot end in &g, we see that vy # 0, a contradiction. Now
suppose t > 1. This means that §; is an interior arrow and thus there exists another chordless cycle
C5 = 0102us containing §;. Thus the relation in question must be

UQ51 if t = 2;

(4.3) 05, W = { +(uz6y — b3ugz) if t > 2.

If ¢ = 2 there is nothing to show, so we may assume ¢ > 2. Then, without loss of generality, the
path us is a suffix of vy, thus v; = vous and

(44) vy = ’U1(51U1 = ’U2U2(51U1 = ’112(53’1131117

where the last equality uses relation (4.3). Again, vy is a nonzero path and it does not end with the
arrow Jo, because otherwise, the path v would contain the zero subpath dsusug = ui1dpug. If t =3
then d3 is a boundary arrow and hence the only relations involving d3 come from the chordless
cycle C3 = d203u3. Since vy cannot end in J2, we see that vy # 0, a contradiction. So we may
assume t > 3.



A GEOMETRIC MODEL FOR SYZYGIES OVER 2-CALABI-YAU TILTED ALGEBRAS II 13

Continuing this way, we see that whenever ¢ = 2s + 1 is odd then vy # 0 and we obtain a
contradiction. This process must stop, because the cycle path is a well-defined finite path. O

We also have the dual statement of Lemma 4.5.

Lemma 4.6. Let vy:i — j be a boundary arrow of Q. Then the following are equivalent.

(1) For all nonzero paths v starting at j the composition ~yv is nonzero.
(2) The coweight W(7y) of 7 is 1.

4.3. Derived equivalences given by mutation. Let B = Jac(Q,W) be a dimer tree algebra. In
this subsection, we describe two specific situations where the mutation of the quiver with potential
at a vertex k yields a derived equivalent algebra.

Lemma 4.7. If Q contains one of the following two subquivers, then the mutation at the vertex
k is a derived equivalence that preserves the total weight of the quivers. Moreover, the mutated
quiver with potential again defines a dimer tree algebra.

(a)

where «, B are boundary arrows with W(a) = 1 and w(B) = 2 and w is a path completing the
chordless cycle.

(b)

v :
v
o B

where o, B are boundary arrows, u is a path that consists entirely of boundary arrows, and v is a
path completing the chordless cycle. Moreover, v is not a boundary arrow.

Proof. (a) Locally, the mutated quiver p@ is one of the following

where the left picture corresponds to the case where the path u has length at least 2 and the right
picture to the case where u is an arrow. Because W(«) = 1, the path u is not a boundary arrow.
In both cases, the quiver u@ satisfies the conditions of Definition 3.2.

Now we show that the mutation of the potential also satisfies our definition. We need to treat
the case where the path u is a single arrow separately. Suppose first that u is not an arrow. Then
we write the potential as W = +afu+ W', where none of the terms of W' goes through the vertex
k, hence W' does not change under the mutation. Therefore the mutated potential is

W =+ [aflu + [aB]Ba+W'.

To match our sign conventions in Definition 3.4, it suffices to change bases by replacing @ by —«a,
so we get the desired potential

+[af]u ¥ [aB]Ba+ W',
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On the other hand, if u is an arrow, then it is an interior arrow (because W(«) = 1), and there is
a unique path v # o8 forming the second chordless cycle with u. Then we can write the potential
as W= x(afu—uv) + W"”, and W" does not contain «, 8 or u. Then the mutated potential is

wW = +([afB]u + [af]Ba —uv) + W
Note that the first term on the right hand side is a 2-cycle. Using the relations [af] = v and
u = —Ba, which are obtained from the cyclic derivatives in the arrows u and [«3], we see that this
potential is equivalent to the desired potential ¥Bawv + W”.
Next we want to show that the mutation is a derived equivalence. Note that the weight of @ in
wiQ is opposite to the weight of 8 in @), independent of the length of u. Indeed, the cycle path of
a is

(@) = alafB]d... if the length of u is at least 2 and ¢ is the first arrow in u;
7 @e... if the length of u is one, and € is the first arrow in v,

and the cycle path of 8 in Q is

(8) - B6... if the length of u is at least 2 and 0 is the first arrow in wu;
¢ | Bue... ifthe length of u is one, and € is the first arrow in v.

Hence, since w(f3) = 2, we have w(@) = 1. By Theorem 4.4, we conclude that the mutation at & is
a derived equivalence because
(i) before mutating, there is precisely one arrow ending in k and, if v is a nonzero path in @
starting at k, then Lemma 4.6 implies that av # 0, since W(a) = 1.
(ii) after mutating, there is precisely one arrow starting in k and, if v is a nonzero path in u;Q
ending at k, then Lemma 4.5 implies that the composition va # 0 because w(@) = 1.

It remains to check that the total weight remains unchanged. By our assumptions, we have
w(a) =2, w(a)=1, w(p) =2,
while on the other hand
w(@) =1, w(a) =2, w(B) =w(a)+1=2,

and the result follows. Note that the cocycle path of S is equal to the cycle path of a, so the
contribution of W(3) to the total weight of @ is already counted in w(«). Similarly, the cycle
path 3 is equal to the cocycle path of @, so the contribution of w(3) to the total weight of ;@ is
already counted in W(@).

(b) After mutating at k, the quiver is one of the following

e . w e u
o - -

) TW %
14 14

where the left picture corresponds to the case where the path v has length at least 2 and the right
picture to the case where v is an arrow. Denote the potential of the original quiver by
W = +(yav —yBo +ou) + W'.
Its mutation is
W = x([valv+[yalay - [y8lo - [vB]B7 + ou) + W'

= +([yalv+ [ya]ay - B7u) + W',

where the last equivalence is the reduction of the potential obtained by replacing o by —37, which
removes the 2-cycle [y8]o. To match our sign conventions in Definition 3.4, it suffices to change
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bases by replacing @ and 3 by their negatives. Moreover, if v has length 1 then s, W can be
reduced further to ¥ fyu + W'.

Next we want to show that the mutation is a derived equivalence. Let § denote the last arrow
in the path © and write u = u’§. Note that u’ is a non-constant path, since ) does not contain
2-cycles. If w is a nonzero path in p;Q starting at k such that fw = 0 then 3 and a prefix of w
must lie in a relation. Since f is a boundary arrow, the only such relation is 9sW = f7u’. Thus w
is equivalent to a path Ju'w’. However, since u is a boundary path, the only arrow starting at the
endpoint of v’ is 4. Then w # 0 implies w = Fu’. In this situation, @w = a7yu’ is a nonzero path.

We have thus shown that for every nonzero path w starting at k in px@Q there is an arrow € = &
or 3 such that ew # 0. Moreover, note that w(f3) = 1, since u is a boundary path. Thus Lemma 4.5
implies that before mutating, if w is a nonzero path in @ ending at k then wp # 0. This shows
that py is a derived equivalence by Theorem 4.4.

To check that the total weight is preserved, note that in @

W(a) =a, W(0‘) =2, W(ﬂ) =1, W(ﬂ) =0,
with a,b e {1,2}, and in prQ

w(@) =1, w(@) =b, w(f) =w(a) =a, W(B)=2,
independent of the length of v. Thus the sum of the weights and coweights of the arrows, and
hence the total weight, remains unchanged. |

4.4. Singular equivalences. Let B = Jac(Q,W) be a dimer tree algebra. In this subsection,
we describe two specific situations where a local change in the quiver with potential produces a
singular equivalent algebra.

Lemma 4.8. If Q contains the subquiver on the left below, then replacing that subquiver with the
quiver on the right induces a singular equivalence on the corresponding algebras that preserves the
total weight of the quivers.

v v

ey e
S LA
Y

S <~——

¥ S——>

Here «, B, are boundary arrows and u,v are paths that complete the chordless cycles. The path u
is allowed to be of length 0; in that case the vertices 1 and 5 are the same and the quivers become

//p e
1—=2 1 2
'y] / Ta 'yL y je
B 5 ,
4——3 4<—3

Proof. The proof has three steps. First we perform a one-point coextension at vertex 4, see the
left quiver in Figure 6. This is a singular equivalence by Corollary 4.2. Call the new vertex 3'.
Then the mutation at vertex 4, which produces the quiver shown in the right picture of Figure 6,
is a derived equivalence by Theorem 4.4, because
(i) before mutating, there is exactly one arrow ending at 4 and every nonzero path ending at
4 can be composed with the new arrow J, thereby producing a nonzero path,
(ii) after mutating, there is exactly one arrow starting at 4 and every nonzero path starting at
4 can be precomposed with the arrow 3, producing a nonzero path.
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Y o 5 B

FIGURE 6. Proof of Lemma 4.8. The quiver on the left is the quiver of the one-
point coextension of B at vertex 4. The quiver on the right is then obtained by
mutation at vertex 4. Note that the vertices 3 and 3’ have exchanged their position.

Finally, this last quiver is the one-point extension of the quiver on the right in the statement of
the lemma. Hence the two algebras are singular equivalent.

Clearly, the new quiver Q' satisfies the conditions in Definition 3.2. In order to check that the
new potential satisfies the condition in Definition 3.4, let us denote the original potential by

W = +(aof - poyu+ pv) + W.

The one-point coextensions do not change the potential. On the other hand, the mutation at 4
changes the potential to

W' = &5 +([08]B7 +alop] - [07]77 - plov]u+ pv) + W
2 €0 = (-[ov]yo - plovy]u+pv) + W,

where € is the arrow [od]. If the path u has length at least 1 then this potential does not contain
any 2-cycles, and our sign conventions can be achieved by a change of bases, replacing & (and € if
necessary) by its negative.

On the other hand, if u has length 0 then we also need to remove the 2-cycle p[o~y] from W'.
This is done using the relations [0y] = v and p = -7, which are obtained from the derivatives in
the arrows p and [o], and we get the desired potential

W' = eo —vye+ W,
using the change of bases replacing 7 by —7, if necessary.

To show that the total weight is preserved under this operation, we compute the weights and
coweights in )

w(a) =1, w(B) =2, w(B) =a, w(y)=b, W(y) =1
with a,b € {1,2}. On the other hand, in the new quiver, we have
w(e) =2, W(€) =1, w(9) =b, w(7) =1, W(7) =a
where a and b are the same as above. This completes the proof. O

4.4.1. Removing a 3-cycle. In this subsection, we study when the removal of a boundary 3-cycle
induces a singular equivalence.

Lemma 4.9. If o, 8 are boundary arrows that lie in a 3-cycle afBy, and b,b’ are paths such that
ba =0, Bb' 0 and bafb’ =0 then afb’ =0 or bafS = 0.

Proof. If « is a boundary arrow then (@ is a single 3-cycle and the conclusion follows. Suppose now
that v is not a boundary arrow. Let €;yd;u be the other chordless cycle at v, where u is a path of
length >0, see Figure 7. The figure also shows the beginning of the cycle path ¢(3) = 75102053 . . .
and the end of the cocycle path ¢(a) = ...eze2€1vx, as well as the paths u;,v; that complete the
chordless cycles along these paths.
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FIGURE 7. Proof of Lemma 4.9.

Let b denote an arbitrary path equivalent to b and Va path equivalent to b’. First we show that
Zaﬁl? does not contain a cycle. Indeed, b and Bl;; do not contain cycles because they are nonzero
paths. If the composition baBb contains a cycle, then b and & must share a vertex, and since the
dual graph is a tree, the only possible ways are

(1) the path b or & uses  (but this is impossible, because yo = 87 = 0).

(2) one of 3,1? contains a segment that runs antiparallel to the path u. In this case, either
b is equivalent to a path that contains dou; as a subpath, which is impossible because
douy = uery and ya = 0; or v is equivalent to a path that contains v;es, which is impossible
because vi€es = yd1u and Gy = 0.

(3) w is a constant path and F, b’ both contain its vertex. Then again bis equivalent to a path
that contains dauq, and we have the same contradiction as in case (2) above.

So ’50462)7 does not contain a cycle, for any paths bxband b = . Also note that b cannot
contain vi€y as a subpath, because Bvies = Bydiu = 0, since By = 0. Then baBb" = 0 implies that
there is a path w that is equivalent to bafb’ and there exists a boundary arrow 7 such that w
contains 0,W as a subpath.

We first show that the path w must contain either a3 or u as a subpath. Indeed, while we may
replace af by dyuer, and also u1d; by dsug, the resulting paths us and w are not in a relation
because otherwise there would be a cycle in the dual graph formed by the chordless cycles around
the vertex s(u). A similar argument at the vertex t(u) shows that we cannot remove both u and
af from the path w. Thus we need one of the paths af or u to go from the left part of the quiver
to the right.

Also note that the boundary arrow 1 cannot be « or 8 because, otherwise, ba3b" would contain
the cycle (0,W)a or S(0gW).

Furthermore 1 cannot be an arrow of u, because if u = u'nu” then 9,W = u"e;yd1u’ and w
must go through the starting point s(u) of u first in order to get to the starting point of u”. Then
w would contain a subpath w’ = ue;ydiu, since it has to reach ¢(u) in order to join the path b';
otherwise t(u) would be an interior point of @, contradicting the assumption that the dual graph
is a tree. Moreover, w must be equivalent to a path that contains d;w’ or w’e; as a subpath,
because w is equivalent to the path baSb’. Thus w’ = aB~vd1u and hence b’ is equal to a path using
~, which is a contradiction to (1).

Define Q(u) as follows. If u is a boundary arrow, let Q(u) = {u}. If u is an interior arrow, let
v be the unique path different from e;vd; such that wv is a chordless cycle, and let Q(u) be the
connected component of @ ~ {s(u),t(u),u} containing the remaining vertices of v. If u is not an
arrow let Q(u) be the connected component of @ ~ {s(u),#(u)} containing the remaining vertices
of u. Then the same argument also shows that 1 cannot be an arrow in the subquiver Q(u).

Finally, let Q(d) and Q(¢) be the two connected components of @ \ (Q(u) U {k,~v}). We have
shown that the arrow 7 lies in Q(d) or in Q(¢). In the first case, we see that the path bags is
equivalent to a path that contains the same zero relation 9, W because the dual graph is a tree.
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Thus ba = 0. In the second case, the path afb’ is equivalent to a path that contains 9,W. Thus
aBb’ = 0. ]

Proposition 4.10. Let B = Jac(Q,W) be a dimer tree algebra. Suppose QQ contains a subquiver

of the form
AR
¥

S —

with «, B boundary arrows. Let (Q',W') be the quiver with potential obtained from (Q,W) by
removing the vertex k and the arrows « and B from the quiver and the cycle afy from the potential.
Let B’ = Jac(Q',W') be the corresponding Jacobian algebra. If W(a) =1 and w(B) =1 then the
algebras B and B’ are singular equivalent and both have the same total weight.

Proof. Our first step is to use Theorem 4.1 to show that B and B’ are singular equivalent if and
only if for all paths b, such that ba and 80" are nonzero paths, the composition ba8b’ is nonzero.
Indeed, we can write B as a matrix algebra

A A«
o= )
where A = B/Bey B is the quotient of B by the two-sided ideal generated by all paths that contain
the vertex k, A« is the left A-module generated by «, and SA is the right A-module generated

by . The multiplication can be seen in matrix form as shown below, where we use the fact that
Beibsa = 0, because every non-constant cyclic path is zero in B, in the lower right corner.

a1 bia\fax b\ [aiaz+biaBca  arbsa+ Aabio
Ber M Berag + A Beo Ao

Bea g
where a;,b;,c; € A and \; € k.

Let us now check that in this situation the conditions of Theorem 4.1 are satisfied. The morphism
¢: Aa ®x A - A is given by concatenation ¢(ba ® S¢) = bafBe. We have (im¢)(Aa) = 0 and
(BA)(im ¢) = 0, because every non-constant cyclic path is zero in B. The only remaining condition
is that ¢ is mono. Since any two nonzero parallel paths are equal in B it suffices to show that if
ba and (B¢ are nonzero paths then bafc is a nonzero path.

Because of Lemma 4.9, it suffices to show that baf8 and afc are both nonzero. For the first
path this follows directly from Lemma 4.5, because ba # 0 and w(5) = 1. For the second path, it
follows from Lemma 4.6, because b’ + 0 and W(«) = 1.

Therefore Theorem 4.1 implies that B and A/im ¢ are singular equivalent. Note that im ¢ is
the ideal in A generated by all paths that have a3 as a subpath. In particular, if we let u # a5 be
the unique other path in @ that forms a chordless cycle yu with -, then in B the path u is equal
to the path af. In particular, the path u is nonzero in A, and it is a generator of the ideal im ¢.
Thus in A/im ¢ we have the additional relation u = 0 which is equal to the derivative 0,W" of the
potential W', Thus B’ = A/im ¢.

To show that the total weight remains unchanged, observe that in () we have

w(a)+w(B)+w(a)=2+1+1=4.

In @', the arrow v becomes a boundary arrow with weight w(v) = w(8) + 1 = 2 and coweight
W(v) =W(a)+1=2. Thus the total weight is preserved. We point out that we do not need to add
the coweight of 8 in this situation, because its contribution to the total weight is already counted
in the weight of «, since the cycle path of « is equal to the cocycle path of 8 (both are a8). O

Remark 4.11. The converse of Proposition 4.10 is also true, meaning that if the weight conditions
do not hold then the algebras are not singular equivalent. This can be proved using the main
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FIGURE 8. Proof of Theorem 4.12. A sequence of equivalences that reduces the
length of the cycle by 1.

result of this paper. Indeed, if w(8) =2 in @ then w(v) =1 in @', and so the total weight changes.
Dually, if W(a) =2 in @ then the first arrow in the cocycle path of a will change weight from 2 to
1, and again the total weight is not preserved.

4.5. The algorithm. We are now ready to prove the main result of this section. It generalizes
Lu’s theorem on simple polygonal-tree algebras.

Theorem 4.12. Let B = Jac(Q, W) be a dimer tree algebra. Denote by 2N the total weight of Q,
and let S be a polygon with 2N vertices. Then there is a triangle equivalence of categories

CMP B = Diag(5).

Proof. We proceed by induction on the number of chordless cycles in . If this number is 1, then
B is a selfinjective cluster-tilted algebra of Dynkin type D,, and CMP B = mod B. It is well-known
that this category is equivalent to the category of 2-diagonals of a polygon with 2n vertices. For
convenience, we include a proof in the appendix. On the other hand, @) has n arrows, each a
boundary arrow and each having weight 2. So the total weight is 2n. Thus our result holds in this
case.

Now suppose ) has more than one chordless cycle. Since the dual graph is a tree, we may choose
a chordless cycle Cj that has exactly one interior arrow y. Denote by 1,2, ..., m the vertices of Cy
in order, where v is the arrow from 1 to 2. Let a denote the arrow that follows v in Cjy and let
B be the arrow following «, see the first quiver in Figure 8. Let u be the unique path such that
C1 = vyu is the second chordless cycle that contains v. We consider two cases depending on the
coweight of the arrow a.

(1) Assume first that W(a) = 1. The idea is to successively shorten the chordless cycle Cp until
it will be completely absorbed into the cycle C;. Assume first that m > 4. Then the weight of the
arrow (3 is 2. We will now apply a sequence of derived and singular equivalences that preserve the
total weight in order to reduce the length of the cycle Cy from m to m — 1. The corresponding
quivers are shown in Figure 8, and the steps are justified below.

Step 1. Apply the mutation at 3, which is a derived equivalence that preserves the total weight,
by Lemma 4.7(a).

Step 2. Apply the singular equivalence of Lemma 4.8.
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FIGURE 9. Proof of Theorem 4.12. The second sequence of equivalences

Steps 3, 4 and 5. Apply the mutations at 5,6,7,...,m. They are all derived equivalences, by
Lemma 4.7(b). Note that the last mutation at m makes the arrow ~ disappear.

This sequence of equivalences has reduced the m-cycle Cy to an (m—1)-cycle. The cocycle path
of the arrow € in the new quiver is ¢(€) =1 - m — 2 — 3. Thus W(€) = 1, and we can repeat the
sequence of equivalences again.

After m—4 rounds, we have reduced our cycle to length 4, and we obtain a subquiver isomorphic
to the first quiver in Figure 9. Moreover the coweight of the arrow « is 1. We now apply another
sequence of derived and singular equivalences that preserve the total weight. The corresponding
quivers are shown in Figure 9, and the steps are justified below.

Step 6. Apply the mutation at 3, which is a derived equivalence, by Lemma 4.7(a), since
w(a) =1 and w(B) = 2.

Step 7. Apply the singular equivalence of Lemma 4.8 in the special case where the path u has
length 0.

Step 8. Now our cycle has length 3 and W(«) = 1. If w(53) = 1, we remove «, § and the vertex 3,
which is a singular equivalence, by Proposition 4.10. The resulting quiver has one less cycle, and
so we are done by induction.

On the other hand, if w(3) = 2, we apply the mutation at 3, which is a derived equivalence, by
Lemma 4.7(a). Again the resulting quiver has one less cycle, and we are done by induction.

This completes the proof in the case where the arrow « in the first quiver in Figure 8 has
coweight one.

(2) Now assume that the arrow « has coweight 2. This case is illustrated in Figure 10. If the
arrow € at the other end of the cycle has weight 1, then we can use the dual argument of case (1).
So we may assume without loss of generality that w(e) = 2. We will apply a sequence of derived
and singular equivalences that will reduce to case (1). The corresponding quivers are shown in
Figure 10, and the steps are justified below.

Step 1. Apply a one-point coextension at vertex 3. This is a singular equivalence by Corol-
lary 4.2. Call the new vertex 3’ and the new arrow 4.

Step 2. Apply the mutation at vertex 3. This is a derived equivalence by Theorem 4.4, because

(i) before mutating, there is exactly one arrow ending at 3, and if v is a nonzero path ending
in 3 then vd # 0;

(ii) after mutating, there is exactly one arrow starting at 3. Moreover, note that the arrow
B:4 - 3 has coweight W(3) = 1, because before the mutation W(a) = 2. Thus if v is a
nonzero path starting at 3 then fv # 0, by Lemma 4.6.

Step 3. Apply mutations at 4,5,. .., (m-1). These are all derived equivalences, by Lemma 4.7(b).
The resulting quiver is the first quiver in the second row of Figure 10.
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F1GURE 10. Proof of Theorem 4.12, second case.

Step 4. Apply the mutation at m, which also is a derived equivalence by Lemma 4.7(b).

Note that in the resulting quiver, the first arrow o’ of our chordless cycle now has coweight 1,
because € is a boundary arrow. Since W(a') = 1, we can use the argument of case (1) and the proof
is complete. ([l

5. CONSTRUCTION OF THE CHECKERBOARD PATTERN

Throughout this section, B = Jac(Q, W) is a dimer tree algebra. In this section, we show that,
knowing that the stable syzygy category of B is equivalent to the category of 2-diagonals of a
polygon, there exists a unique checkerboard pattern on the polygon that realizes the homological
structure of the category, see Theorem 5.11.

5.1. Extensions between syzygies and radicals of projectives. In this subsection, we show
that extensions between a syzygy M and the radicals rad P(:) are determined by the projective
resolution of M. We start with a preliminary lemma about the radicals.

Lemma 5.1. The radical rad P(%) is an indecomposable non-projective syzygy.

Proof. Since rad P(i) = Q.5(4), we see that rad P() is a syzygy. Note that it is nonzero, because
every vertex lies in an oriented cordless cycle in ) so there are no sinks in (). Moreover, since every
arrow of @) lies in a relation, it follows that rad P(4) is non-projective. To show that rad P(i) is
indecomposable consider the top of rad P(%). If the top is simple, then we are done. Otherwise, the
top is semi-simple and isomorphic to S(a1)@---®S(ax) for some k > 2, where i > aj; > --- > bj > ¢
and ¢ — aj41 = --- = b; — ¢ are oriented chordless cycles in @) that have an arrow in common. Then
the representation rad P(4) is supported on the path

aj _)..._)bj PR (_aj+1
for j=1,...,k -1, which shows that it is indecomposable. O
Now, we consider extensions in the module category between syzygies and radicals of projectives.

Lemma 5.2. Let M be an indecomposable non-projective syzygy in mod B, and let Py be the
projective cover of M. Then the following are equivalent.

(a) Extp(M,rad P(z)) #0.

(b) P(x) is a direct summand of Py.
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Proof. Suppose (a). Consider the following diagram where the first row is a minimal projective
resolution of M in mod B.
p2

Py

P,

g /

rad P(x) //h

l
P(z)

Let the map g : P, — rad P(x) induce a nonzero element of Ext (M, rad P(x)). Then gps = 0 and
g does not factor though the map p;. Let 7 : rad P(z) - P(z) be the inclusion morphism of the
radical into its corresponding projective module. Since M is a syzygy then Eth(M,P({L‘)) = 0.
In particular, the equivalence class of the map ig is zero in Ext (M, P(z)), and so igps # 0 or ig
factors through p;. Since gps = 0, we must have that ¢g factors through p;. Thus, there exists
h: Py - P(x) such that
hp1 =1g.

Now, suppose to the contrary that P(z) is not a direct summand of Py. Then h factors through
i, so there exists h': Py - rad P(x) such that ¢h’ = h. Therefore,

ig = hpy = ih'p,.
Because i is injective we conclude that g = h'p;. Therefore, g factors through p; which is a

contradiction to it being nonzero in Extp (M, rad P(x)). This shows that (a) implies (b).
Now suppose (b). Consider the following diagram.

ker 7’ ——kerm

0 ——=rad P(x) 1( J\f 0
0 — rad P(z) P(z) —2= S(z) 0

The bottom row of the diagram is a short exact sequence ending in the simple module S(x). Since
P(z) is a direct summand of the projective cover of M, then S(x) appears in the top of M. Let
m: M — S(z) be the corresponding projection. The pullback of S(z) along 7 and p yields a short
exact sequence appearing in the second row of the diagram. If this sequence is nonsplit, then
we obtain a nonzero element of Extp (M, rad P(x)) and we are done. Otherwise, we have that
X zrad P(z)® M.

Since 7 is surjective, then by the snake lemma 7’ is also surjective and ker 7’ = ker w. Moreover,
we obtain another short exact sequence appearing in the second column of the diagram which ends
in the projective P(x). This sequence must split and we conclude X = ker 7 & P(x).

Hence, kerm @ P(x) 2~ rad P(z) @ M, and we have that P(x) is a direct summand of M or
rad P(x). The former is not possible because M is non-projective and indecomposable by assump-
tion, and the latter is not possible because the algebra B is finite dimensional. This shows that
(b) implies (a). O

Next, we show that the previous result also holds for extensions in the syzygy category, but first
we need the following lemma.

Lemma 5.3. Let M,N ¢ CMP B. Then Exty(M,N) =0 if and only if Extiyp g(M,N) = 0.
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Proof. The forward direction follows because every triangle in CMP B lifts to a short exact sequence
in mod B. It remains to show the backward direction, so we suppose that Ext}g(M ,IN) #0. Since
N e CMP B, let X = Q!N be its shift. Hence, we have QX = N in CMP B, and since  is the
same in CMP B and mod B we get a short exact sequence with P a projective cover of X.

0-N->-P->X-0
Applying Hompg (M, -) to this sequence, we obtain
Homp(M, P) - Homp(M, X) - Exty (M, N) - Extg(M, P).

The last term above is zero because M ¢ CMP B. By assumption Exty (M, N) # 0, which implies
that the map Homp (M, P) — Hompg (M, X) is not surjective. Thus there exists a morphism from
M to X that does not factor through P. Since P is the projective cover of X, this implies that
not every morphism from M to X factors through a projective module. Thus the lemma follows
from the equation below.

0 # Hom (M, X) = Homgmp (M, X) = Extigp 5(M, QX) = Extoyp g(M, N). O
Proposition 5.4. Let M be an indecomposable non-projective syzygy in mod B, and let

P, P, M 0

be the minimal projective resolution of M in mod B. Then
(i) Extayp g(M,rad P(x)) #0 if and only if P(x) € add Py.
(i) Extgyp g(M,rad P(z)) # 0 if and only if P(z) € add P;.

Proof. Part (i) follows directly from Lemmas 5.2 and 5.3. Part (ii) follows from (i) by replacing
M with QM since Extgyp g(M,rad P(z)) 2 Extiyp (2 M, rad P(x)). O

Remark 5.5. The above proposition, as well as the Lemmas 5.2 and 5.3, hold more generally for
B an Artinian 1-Gorenstein algebra.

Moreover, Lemma 5.3 can also be deduced from the work of Buchweitz as follows. Give
M,N ¢ CMP B, by [Bu, Corollary 6.4.1(i)] and [Bu, Definition 6.1.1] we obtain Ext’y(M,N) =
Homps gy (M[~-i], N), where D'(B) is the quotient of the bounded derived category of mod B
by the prefect complexes and [1] denotes the shift. Then by [Bu, Theorem 4.4.1] we conclude
that Hompe gy (M [~i], N) = Homgmp 5(€2'M, N) which in turn is isomorphic to EXt%ﬂB(M, N)
since Q is the inverse shift in CMP B. This shows that Ext% (M, N) = Extiyp (M, N), which is
a stronger statement than the one proved in Lemma 5.3. -

As an immediate corollary, we obtain an explicit description of the projective presentation of
rad P(i).

Corollary 5.6. The minimal projective presentation of the radical rad P(x) in mod B is
@b P@y)-> @ P(i)—>radP(z) 0.
JoweQy T—>1€Q1

Proof. Tt is easy to see that the projective cover of rad P(z) is as in the statement. Next, we
consider the second term in the projective resolution of rad P(z). By [SS, Proposition 3.32] there
exists an arrow j — « in the quiver Q if and only if Ext} (rad P(j),rad P(z)) # 0. By Lemma 5.2
and Proposition 5.4(i), this is equivalent to the statement that

Ext(ljﬁB(radP(j),rad P(x)) #0.

Then
Exténp p(rad P(j),rad P(z)) = DExtZyp g (rad P(z),rad P(5))
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by the 3-Calabi-Yau property of CMP B. Then Proposition 5.4(ii) implies that the last term is
nonzero if and only if P(j) is a summand of the second term in the projective presentation of
rad P(xz). This yields the desired result. O

5.2. Arrows and extensions. In this section we study the connection between arrows in the
quiver and extensions between the corresponding radicals.

Lemma 5.7. Ifi - j is an arrow in Q, then Ext&ypp(Qrad P(i),rad P(j)) = 0.

Proof. First we claim that
(5.1) Homp(Qrad P(i),S(j)) = 0.
To show the claim consider a short exact sequence in mod B

0 - Qrad P(i) > P »rad P(i) — 0.
Apply Hompg(—,S(j)) to obtain the exact sequence

0 > Hompg(rad P(4),S(j)) -~ Homp(P,S(j)) —» Hompg(Qrad P(i),S(j)) —»
— Extp(rad P(i),S(j)) > Extp (P, S(5))
The last term is zero since P is projective. Since there is exactly one arrow ¢ — j then both vector
spaces Homp(rad P(%), S(j)) and Homp(P, S(j)) are 1-dimensional. Therefore, we conclude that
(5.2) Homp(Qrad P(i),S(5)) = Extl(rad P(i), S(j)).

By Corollary 5.6, the second term in the projective resolution of rad P(4) is @ P(z) where the
sum runs over all arrows x — ¢ in the quiver ). Since by assumption there is an arrow i - j in @,
then there is no arrow j — 4, and so P(j) is not a summand of the second term in the projective
resolution of rad P(7). This implies that Ext};(rad P(4),S(5)) = 0 and completes the proof of (5.1).

Now, we want to show the following

(5.3) Exth(Qrad P(i),rad P(j)) = 0.
Applying Hompg(Qrad P(i),-) to the short exact sequence
0 —rad P(j) > P(j) > 5(j) = 0,
we obtain
Homp(Qrad P(i),S(j)) - Exty(Qrad P(i),rad P(5)) - Exty(Qrad P(i), P(j)).
The first term above is zero by (5.1) and the last term is zero because Qrad P(i) e CMP B. This

shows (5.3), and the conclusion follows from Lemma 5.3. O

Proposition 5.8. Ifi — j is a boundary arrow in Q, then

Extéypp(Qrad P(i),rad P(5)) = Extoyp g (rad P(5), Qrad P(i)) = 0.

Proof. By Lemma 5.7 it suffices to show that Ext&yp g (rad P(5), Qrad P(i)) = 0. This is equivalent
to -
Hom g (rad P(j),rad P(i)) =0

which we show below using the particular structure of these quiver representations.

Consider the local configuration around vertex j shown below. Here each dotted arrow is either
a single arrow or a sequence of arrows such that each bounded region is an oriented chordless cycle
in Q. The arrow ¢ — j is a boundary arrow as in the statement of the proposition, and, without
loss of generality, we may assume that the other boundary arrow j — a; at vertex j is oriented
away from j. The other case follows similarly.
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Then the representation rad P(j) has the following structure, where each simple representation
S(a,), r=1,2,...,k, appears in the top of rad P(j). Moreover, rad P(j) is supported on the paths
Qp = o+ > by < o< apqq for r<k.

ap .. < . a1

ao ai az (95

N v N s N 4
by by by

rad P(j) =

The representation rad P(4) has the following structure. Note that the top of rad P(¢) is not
generally S(j) and corresponds to all vertices that have an arrow from 4, but here we only depict
the relevant vertices. Moreover, rad P(i) may not be supported on the path -+« ag - -+ = by
if i > j - ap - i is a 3-cycle and the arrow ag — i is a boundary arrow. We consider the most
general situation below, because the proof in this special case follows similarly.

rad P(7) =

Let f e Homp(rad P(j),rad P(i)) be nonzero. Then f = (fz)zeq, is a collection of linear maps
that map each vector space at vertex x in the representation rad P(j) to the vector space at x
in the representation rad P(i). Note that by Proposition 3.6, the dimension of the vector space
at each vertex of the radicals rad P(i),rad P(j) is at most one. Therefore, each f, is multiplica-
tion by a scalar. Moreover, the linear maps ¢q, ¢, on the arrows a € @ in the representations
rad P(i),rad P(j) respectively are identity.

Since f is nonzero, then the restriction of f to the top of rad P(j) is also nonzero. Hence, there
exists some a, such that f, +# 0, and without loss of generality we may assume that f,_ =1. Since
f is a map of quiver representations, and, by the structure of the representations depicted above,
©a, ph, equal 1 for all arrows « in the support of rad P(¢),rad P(j), respectively, it follows that
the map f is also 1 on every vertex along the paths

by < oy = > by

Similarly, since fy,,, = fp, = 1, then we conclude that the map f is 1 on every vertex along the
paths ap41 = -+ = byy1 and a,_1 = --- = b,. In particular, f,,,, = fs,_, = 1. Continuing in this way
we conclude that f, =1 for all ». Hence, f maps via identity the top of rad P(j) to rad P(i). It
is easy to see that such f factors through the projective P(j) so f:rad P(j) = P(j) — rad P(4).
This shows that f is zero in Hom (rad P(j),rad P(4)). Therefore, Hom(rad P(j),rad P(i)) =0
which completes the proof. |
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FiGure 11. Construction 5.10 of the checkerboard pattern.

5.3. Construction of the checkerboard polygon. Given a quiver ) that satisfies Definition 3.2
and of total weight 2N, we provided a combinatorial construction of a checkerboard polygon S of
size 2N in [SS, Section 3.1]. That construction only depends on the structure of the quiver @ and a
priori does not take into account the representation theory of the corresponding dimer tree algebra
B. At the time, we were only able to show that our construction yields a model for the syzygy
category of B in the special case where every chordless cycle in @ is of length 3. By Theorem 4.12,
we now know that the syzygy category of B is always modeled by a polygon .S of size 2/N. In this
section, we construct the checkerboard pattern of that polygon using the representation theory of
B, and we show that it agrees with the combinatorial construction in [SS].

First, we will need the following result. By Theorem 4.12, every indecomposable object in
CMP B corresponds to a 2-diagonal in S. By Lemma 5.1, each radical is an indecomposable non-
projective syzygy, and we denote by p(i) the 2-diagonal corresponding to rad P(¢). The following
result is a reformulation of Proposition 5.8 in the geometric setting. Recall that R denotes the
clockwise rotation in S.

Proposition 5.9. Ifi — j is a boundary arrow in Q, then the 2-diagonals Rp(i) and p(j) do not
cross.

Proof. By Proposition 5.8, if i — j is a boundary arrow then the syzygies Qrad P (i) and rad P(j)
do not have extensions in either direction in CMP B. From Lemma 2.4, we know that extensions
in CMP B correspond to crossings in the polygon, therefore Rp(i), the 2-diagonal corresponding
to Qrad P(i), and p(j) do not cross. O

Construction 5.10. (Checkerboard polygon) Given the algebra B we construct a polygon S
together with a certain checkerboard pattern. We place line segments in the plane corresponding
to 2-diagonals p(i) and then add boundary vertices and segments of S.

Step 1: Construct the checkerboard patter. Start with a boundary arrow ¢ — j in @, then by
[SS, Proposition 3.32] the corresponding 2-diagonals p(i) and p(j) cross in S. Hence, we draw
two line segments in the plane labeled p(i) and p(j) that cross. Moreover, by Proposition 5.9 the
clockwise rotation Rp(i) of p(i) and the line p(j) do not cross. Hence, an endpoint of p(i) and an
endpoint of p(j) are connected by a boundary segment of S as in Figure 11 on the left. We also
shade the triangular bounded region on the boundary of S. We label the lines in such a way that
when going around the shaded region in the counterclockwise direction starting on the boundary
edge, one passes on p(7) first and then on p(j), see Figure 11.

Next, since ¢ - j is a boundary arrow there exists a unique chordless cycle

1=j>k—>...=s
containing this arrow. For every new vertex in this cycle k, . .., s, draw a line segment p(k), ..., p(s)
such that two lines cross if and only if there is an arrow between their corresponding vertices.
Moreover, we draw these lines so that they bound an interior polygonal region with as many edges
as vertices in the cycle. Finally, we shade the region enclosed by these lines, see Figure 11 on the
right.
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FIGURE 12. An example of a quiver and its checkerboard pattern after completing
Step 1 of Construction 5.10.

odd even

F1GURE 13. The checkerboard pattern after completing Steps 2 and 3 respectively
of Construction 5.10 of the quiver in Example 12.

If the arrow s — i is a boundary arrow, then again by Proposition 5.9, we draw a boundary
segment of S between the two neighboring endpoints of p(s) and p(i) and shade the resulting
triangular region on the boundary. Otherwise, s — 4 is an interior arrow, and then there exists
a unique other cordless cycle containing this arrow. Similarly to the above, we add an interior
shaded region whose edges correspond to the vertices in the cordless cycle. Continue in this way
until all the cycles and boundary arrows of () are exhausted, see for example Figure 12.

Now, all 2-diagonals corresponding to radicals are complete, it remains to construct the rest of
the boundary of S.

Step 2: Orient the 2-diagonals. If we were to label the vertices of S from 1 to 2N in order, then
the two endpoints of each p(i) will have opposite parities, since p(i) is a 2-diagonal. Therefore,
we can choose to orient p(i) so that it goes from an odd to an even labeled endpoint as follows.
Choose an endpoint of p(i) on the boundary of S and label it odd. Orient the line p(i) away from
this endpoint. Label the other endpoint of p(i) even. The odd labeled endpoint of p(7) lies in a
shaded triangular region that contains a boundary segment of S and another diagonal p(j). Label
the remaining boundary vertex of this region as even. Then the other endpoint of p(j) has an odd
label, and we orient p(j) from its odd to its even endpoint. For an example see Figure 13 on the
left.

By construction, these triangular shaded regions on the boundary correspond to boundary
arrows in @. Since every vertex connects to exactly two boundary arrows, it follows that the odd
labeled endpoint of p(j) also lies in a such a region together with another diagonal p(r). Label
this endpoint of p(r) even and orient the diagonal towards it. Continuing in this way, we walk
around the boundary of the quiver 4, j,r,... until we reach i again. Since every vertex lies on the
boundary of @, this determines the orientation of every radical line and labels the vertices of S.

Step 3: Construct the boundary of S. Every two shaded triangular regions next to each other
are separated by a white region W. Consider two vertices x,y of W on the boundary of S, see
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FI1GURE 14. Closing white regions in Step 3 of Construction 5.10.

Figure 14. If the labels of z and y have the same parity, then we identify them. Otherwise, if the
labels of x and y have opposite parity, then we add a boundary segment of S that connects these
endpoints. This gives a polygon with a checkerboard pattern, see Figure 13 on the right for an
example. Note that this is the unique minimal way to close up the white regions to get a polygon
given the parity of the vertices.

The next result is the main theorem of this section. It says that the above construction gives
an alternate way to obtain the checkerboard polygon of [SS].

Let B = Jac(Q, W) be a dimer tree algebra of total weight 2N. Denote by ¢: Diag(S) - CMP B
the triangle equivalence of Theorem 4.12, where S is a polygon with 2N vertices. For i € Q, let
p(i) = =1 (rad P(4)) be the 2-diagonal in S corresponding to the radical of P(i). We call the p(i)
radical lines.

Theorem 5.11. With the notation above, the positions of the radical lines p(i) in the polygon S
are uniquely determined up to rotation. The resulting checkerboard pattern on S is the same as
the checkerboard pattern defined in [SS].

Proof. The relative position of each radical line in the construction 5.10 is determined as soon
as the first two radical lines p(i),p(j) are drawn in step 1, see the left picture in Figure 11.
Furthermore, the positions of p(i) and p(j) are determined up to rotation.

Now we show that the construction 5.10 produces the same checkerboard pattern as the one in
[SS]. Recall that the construction in [SS] realizes the pattern using the medial graph of the twisted
dual graph of the quiver @. In 5.10 each chordless cycle of @ gives rise to an interior shaded region
in S. In [SS], this region is realized by the medial graph of the dual graph of the chordless cycle,
see the pictures on the left in Figure 15.

If two chordless cycles share an arrow j — k as in Figure 12, the corresponding shaded regions
meet at the intersection of the radical lines p(j) and p(k). In the quiver @, the two chordless
cycles always have opposite orientations, one clockwise and the other counterclockwise, because
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F1GURE 15. Proof of Theorem 5.11. On the left, the shaded region of a chordless
cycle of @ is realized in the medial graph of the the dual graph of ). On the right,
the twisted dual graph of the quiver in Figure 12 and the corresponding shaded
regions of the medial graph.

they share the arrow j — k. However, in the checkerboard pattern, both cycles are recovered by
going around the corresponding shaded regions in the same counterclockwise direction.

This is exactly the reason why in [SS] the dual graph is twisted. For example, in the situation
of Figure 12, the twisted dual graph and its medial graph are shown in the two pictures on the
right in Figure 15. The twisting occurs along the edge corresponding to the arrow j — k (labeled 8
in the figure), and it is the reason why the boundary arrows 5 and 7 switch their relative positions
when going from the dual graph to the twisted dual graph. The medial graph is shown in the
rightmost picture in Figure 15. It agrees with the interior shaded regions in Figure 12.

This shows that the two constructions produce the same checkerboard patterns in the interior
of the polygon. The fact that the checkerboard patterns also agree at the boundary follows from
the uniqueness in step 3 of the construction 5.10. (Il

Corollary 5.12. The checkerboard pattern obtained in construction 5.10 has the following prop-
erties.

(a) The interior shaded regions correspond to the chordless cycles in Q, the boundary shaded
regions to the boundary arrows in @ and the crossings between the radical lines to the
arrows in Q.

(b) The orientations of the radical lines are such that the segments that bound a shaded region
are oriented in the same way (either clockwise or counterclockwise) and the segments that
bound a white region have alternating orientation.

(¢c) FEvery white region has either a single vertex on the boundary or a boundary segment.

(d) Every white region has an even number of sides.

(e) If « is a boundary arrow and S, the corresponding shaded region then the cycle path c¢(«)
and the cocycle path c(a) of « are given by the bounding edges of the white regions adjacent
to S,.

Proof. These results were shown in [SS]. Part (a) is Lemma 3.1, (b) is Lemma 3.24, (c) is
Lemma 3.11, (d) is Lemma 3.20, and (e) is Remark 3.14 in that paper. O

6. PROOF OF THEOREM 1.1

Theorem 4.12 implies that there exists a triangle equivalence ¢: Diag(S) - CMP B, where S is
a polygon with 2N vertices and 2N is the total weight of the quiver Q. Let S be the checkerboard
polygon of @ constructed in [SS]. Then § and S have the same size. By Theorem 5.11, there
exists a triangle equivalence 7:Diag(S) — Diag(S) such that F' = ¢ o m:Diag(S) - CMP B maps
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the radical line p(4) to rad P(4), for all 4. In fact, up to rotation, 7 is simply given by forgetting
the checkerboard pattern.

Moreover, F(R(v)) = QF(y), because 2 is the negative shift in CMP B by [KR| and R is
the negative shift in Diag(S) by [BM]. Therefore we also have F(R?()) = Q*F(v), and hence
F(R?(v)) =7 'F(v), because 7! = Q? in CMP B by [KR].

It remains to show that the projective resolutions in CMP B are determined by the crossing
patterns in Diag(S). Let M € CMP B be indecomposable, and let v = F~1(M) denote the corre-
sponding 2-diagonal in Diag(S). Let

r—'>p M 0

be a minimal projective presentation of M. Then part (a) of Proposition 5.4 implies that Py =
@, P(z), where the sum is over all z € Qy such that Extéyp g(M,rad P(x)) # 0. Now using the
equivalence F' together with Lemma 2.4(a), we see that Py = &, P(z), where the sum is over all
2 € Qo such that p(x) crosses v from right to left. Similarly, the parts (b) of Proposition 5.4 and
Lemma 2.4 imply that P; = ®,P(y), where the sum is over all y € Qo such that p(z) crosses 7
from left to right. Thus the morphism f:P; — P, satisfies the conditions of the map f, in the
statement.

Finally, the fact that F maps 2-pivots to irreducible morphisms and meshes to Auslander-Reiten
triangles follows directly from [BM].

APPENDIX A.

Here we give a proof of the following well-known result.

Proposition A.1. Let QQ be the quiver given by a single chordless cycle of length N and B =
Jac(Q, W) be its dimer tree algebra. Let S be a polygon with 2N wvertices. Then CMP B = Diag(S).

Proof. The algebra B is cluster-tilted of type Dy. Thus B = End¢(T), where C is the cluster
category of type Dy and T is a cluster-tilting object in C, see [BMRRT]. The cluster category is
equivalent to the category of tagged arcs in the punctured polygon P with N vertices [S]. Such an
arc is determined by its endpoints if we agree that the arcs (a,b) that connect a boundary point
a to a boundary point b go counterclockwise around the puncture, see Figure 16 for an example,
and the arcs that go from a boundary point a to the puncture p come in pairs, a plain arc (a,p)
and a notched arc (a,p)”.

The cluster-tilting object T corresponds to the triangulation consisting of the N plain arcs (a,p)
that are incident to the puncture, and by [BMR], the module category mod B is equivalent to the
category of all arcs that are not in 7.

Moreover the algebra B is self-injective and therefore every B-module is a syzygy. Thus the
stable category CMP B is equal to the stable module category. In the geometric model, the
projective modules correspond to the notched arcs (a,p)” incident to the puncture p. Thus the
stable category CMP B corresponds to the category of all arcs (a,b) where a,b are boundary
vertices in P. We denote this set of arcs by ArcsgP. Thus

ArcsgP ={(a,b) |1 <a,b< N, a+b, a+1%b (mod N)}.

The irreducible morphisms are given by pivots and the Auslander-Reiten quiver is illustrated in
Figure 17 in the case N =5.

Let S be the polygon with 2N vertices labeled 1*,17,2%,27,...,n*, n™ in counterclockwise order
around the boundary, see Figure 16. Then there is a bijection

x:Arcsp P —> Diag(S)

(a,d) —  (a=,b%).
Indeed, x is well-defined, since (a™,b%) is a 2-diagonal, y is clearly injective, and if (a™,b%) is a
2-diagonal in S, then b > a+1 and hence there exists an arc (a,b) € Arcsy P and thus x is surjective.
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FIGURE 16. The the arcs (1,3) and (3,1) in the punctured 5-gon P and their
images (17,3%) and (37,1%) under the bijection x the the 10-gon S.

(5,4) (1,5) (2,1) (3,2) (4,3) (5,4)

~N N N NN TN ST
(1,4) (2,5) (3,1) (4,2) (5,3)
N N

(1,3) (2,4) (3,5) (4,1) (5,2) (1,3)

F1GURE 17. The Auslander-Reiten quiver of CMP B in terms of the arcs that
start and end at the boundary in a punctured 5-gon (top) and the Auslander-
Reiten quiver of Diag(S) (bottom).

Furthermore, the map ¢ induces an isomorphism between the Auslander-Reiten quivers of

CMP B and Diag(S). This completes the proof. O
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