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Abstract—In many STEM domains, instruction on foundational 
concepts heavily relies on visuals. Instructors often assume that 
students can mentally visualize concepts, but students often struggle 
with internal visualization skills—the ability to mentally visualize 
information. In order to address this issue, we developed a formal as 
well as an informal assessment of students’ internal visualization skills 
in the context of engineering instruction. To validate the assessments, 
we used data triangulation methods. We drew on data from two 
separate studies conducted in a small-scale lab experiment and in a 
larger-scale classroom context. Our studies demonstrate that an 
intelligent tutoring system with interactive visual representations can 
serve as an informal assessment of students’ internal visualization 
skills, predicting their performance on a formal assessment of these 
skills. Our study enriches methodological and theoretical 
underpinnings in educational research and practices in multiple ways: 
it contributes to (1) research methodologies by illustrating how 
multimodal triangulation can be used for test development, (2) theories 
of learning by offering pathways to assessing internal visualization 
skills that are not directly observable, and (3) instructional practices in 
STEM education by enabling instructors determine when and where 
they should provide additional scaffoldings. 
 
Index Terms—Computer aided learning; Educational Technology; 
Engineering education, Human computer interaction; Intelligent 
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I. INTRODUCTION 
ANY concepts in science, technology, engineering, 
and mathematics (STEM) domains involve 
visuospatial information [1]. Thus, educational 

technologies for STEM domains frequently introduce 
foundational concepts through visual representations1 such as 
graphs, figures, and diagrams. The goal in using visuals is to 
help students construct internal visual representations of the 
concepts, enabling inference-making and problem-solving [2]. 
Instruction on more advanced concepts then often assumes that 
 
 

1 In this paper, we use the term visualization to describe a process, 
whereas we use the term representation to describe a product.   

students have internal visualization skills, which is the ability 
to mentally store, manipulate, and integrate visual information 
[3].  
However, students often struggle with internal visualization 

skills [3]–[5]. For example, when electrical engineering 
instruction explains signals based on sinusoids, a fundamental 
engineering concept, they typically use a variety of visuals that 
depict basic concepts such as the amplitude, phase, and 
frequency of a sinusoid. After introducing foundational 
concepts through the visuals, instruction transitions to 
providing equations that describe the sinusoids without their 
accompanying visuals, presuming that students can internally 
visualize these concepts. However, students often struggle to 
internally manipulate and integrate concepts related to 
sinusoids provided through visuals [6] and to transfer their 
understanding of visual information to symbolic 
representations of more advanced concepts [7]. Consequently, 
students’ difficulties with internal visualization can severely 
impede their subsequent learning of more complex concepts 
that are typically presented with minimal visual aids. While this 
specific example is taken from the domain of electrical 
engineering, the issue is broadly relevant because in many 
STEM domains, concepts are first introduced visually and then 
described by equations or other more abstract representations. 
As the process of internal visualization is not directly 

observable and occurs within students’ minds [3], it is 
challenging to assess students’ internal visualization skills. 
There is extensive evidence that students’ representational 
gestures reflect their internal visualization and the mental 
operations they use to manipulate internal representations [8]–
[11]. Representational gestures are hand movements that 
“depict action, motion, or shape, or that indicate location or 
trajectory” [8, p. 245]. Hence, we consider them a well-
established measure of internal visualization skills.  
However, representational gestures are not a scalable method 

to assess internal visualization skills because gesture analysis is 
time consuming and complex. To our knowledge, there are no 
scalable assessments of internal visualization skills. Yet, 
scalable assessments are a prerequisite to providing 
instructional support for internal visualization skills. Therefore, 
the goal of this paper is to close this gap. We describe our use 
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of data triangulation to develop assessments of students’ 
internal visualization skills. On the one hand, we examine the 
utility of a potential informal assessment of internal 
visualization skills through the use of log data generated by an 
educational technology. Specifically, we draw on logs from an 
intelligent tutoring system (ITS) in which students interact with 
visual representations. Like many educational technologies, the 
ITS provides instructional problems that require students to 
engage with, manipulate, and interpret visual information. The 
ITS systematically gathers log data that captures students’ 
problem-solving behaviors as they interact with visuals. It is an 
open question whether log data describing interactions with 
visuals can serve as an assessment of internal visualization 
skills. On the other hand, we developed a formal assessment of 
internal visualization skills that could be used as a diagnostic 
tool to tailor subsequent instruction accordingly.  
To validate the informal and formal assessments, we rely on 

representational gestures, which—as mentioned—are an 
established measure of internal visualization skills. Given that 
gesture analysis is only feasible with small samples, Study 1 
was a small-scale lab study that served as an initial inquiry into 
the relationship between the two assessments with 
representational gestures. Finding that representational gestures 
correlate with both assessments, we then describe a larger-scale 
classroom study that focused on the latter two assessments, 
seeking to address the limitations of Study 1’s small sample size 
and artificial lab context. We note that the main purpose of our 
research is to demonstrate that a multi-modal approach that 
combines small-scale lab and large-scale classroom methods is 
useful for developing assessments for students' internal 
visualization skills, which can be applied to the variety of 
domains where internal visualization skills have an impact on 
students’ academic success. 
Overall, our work has broad applicability. While our studies 

are situated in the context of engineering education, we 
consider our approach of general relevance given the 
widespread use of as well as students’ well-documented 
difficulties with visuals in STEM domains. For example, in 
chemistry, students cannot grasp the concept of an atom unless 
they understand which aspects of a Bohr model are inadequate, 
or what orbitals in orbital diagrams say about electron [13]. In 
many other domains, such as physics, arrows can be used to 
denote various types of information, which has to be understood 
by students [14].  
The main contribution of our work regards its 

methodological approach. We illustrate how multimodal 
triangulation can be used to create technology-supported, 
scalable formative and summative assessment methods. Our 
approach may be used to inform the development of internal 
visualization skills assessments for other engineering topics and 
in other STEM disciplines. A secondary contribution lies in our 
contribution to instructional practices by revealing that scalable 
assessments of internal visualization skills are feasible. Having 
such scalable assessments are necessary, for instance, to 
determine when students need additional scaffolding, which 
could enhance instruction in many domains where students 
often struggle with internal visualization skills. Further, given 

that many educational technologies include visualizations, the 
development of assessments of internal visualization skills is of 
broad relevance to the field of educational software (e.g., 
intelligent tutors). Finally, our work contributes to future 
research on educational technologies. By offering pathways to 
assessing internal visualization skills within an educational 
technology, future research can shed light into how students 
acquire internal visualization skills alongside content 
knowledge as they engage within digital learning tools.  

II. THEORETICAL BACKGROUND 

A. Internal Visualization Skills 
Research suggests that when students encounter external 

visual representations (e.g., static images such as graphs, 
diagrams, charts; or dynamic representations, such as 
animations), they construct internal representations in their 
mind [15]. Internal visualization occurs when students 
internally store, manipulate, and integrate visual information 
depicting objects or concepts without viewing external visuals 
[2], [3]. We use the term internal visualization skills to describe 
the ability to create mental representations of visual information 
that accurately describe domain-relevant concepts. Because a 
mental representation is always an abstraction of the original 
object, it can never be 100% accurate. Further, different 
individuals may have different mental representations. Finally, 
mental representations—given that they are internal to the 
student—cannot be directly observed, which may make it 
difficult to determine their accuracy. For our study, we define 
accuracy based on whether we see evidence that the student’s 
mental representation contains the accurate, essential features 
and relationships inherent in the visual information being 
represented while learning domain-relevant concepts. In the 
context of our work, the accuracy of the domain-relevant 
concepts depicted in the visuals are well defined (e.g., the 
period of a sinusoid is a concept that is defined as the distance 
from peak to peak in a time-domain graph). 
Internal visualization skills have been studied under different 

names in various fields. In cognitive neuroscience, internal 
visualization is referred to as visual mental imagery—a set of 
internal representations that enable individuals to recall, 
construct, and incorporate mental images in the absence of 
input [16]. Other researchers focus on spatial visualization 
ability, the ability to mentally imagine the movement of objects 
[17], [18]. Accordingly, tasks to assess spatial visualization 
ability involve imagining the result of spatial transformations, 
such as folding a piece of paper or rotating an object [19]. 
Building on this research, we conceptualize internal 
visualization skills as the ability to mentally recall visual 
information from external information sources, organize the 
information, activate related prior knowledge, and build 
coherent and accurate internal representations [20].  
Internal visualization skills are distinct from representational 

competencies, which have received much attention in 
educational psychology research (for an overview, see [21]). 
Representational competencies describe the ability to extract 
correct information from visual representations that are 
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presented externally [21], [22]. By contrast, internal 
visualization skills are at play even when external visual 
representations are absent. As representational competencies 
are recognized as crucial for effective learning with visuals, 
these competencies may influence or relate to internal 
visualization skills. However, there is limited existing research 
that explores the intricate relationship between representational 
competencies and internal visualization skills. While many 
studies examined students’ ability to learn with external 
representations such as a digital puzzle game [23], engineering 
design tasks [8], and mechanical reasoning problems [10], we 
are not aware of prior research that differentiates between 
assessments where visual representations are present versus 
absent. To our knowledge, there is no formal assessment that 
evaluates students’ internal visualization skills when visuals are 
not present. 
Given that students often struggle to mentally store, 

manipulate, and integrate the information conveyed by visuals 
[3]–[5], it is critical to assess their internal visualization skills 
to support their learning. Since internal visualization skills are 
not directly observable, much research has investigated how to 
infer them from observable indicators, such as gestures. 

B. Representational Gestures 
Gestures that “depict action, motion, or shape, or that 

indicate location or trajectory” can be conceptualized as 
representational gestures [8, p. 245]. Representational gestures 
convey semantic content through visual similarity using hand 
shape or motion [24] and represent perceptual features of 
objects or concepts [10]. Previous literature related to speech-
accompanying representational gestures documents 
associations between gesture and internal visualization. People 
more frequently produce co-speech representational gestures 
when describing spatial transformations or communicating 
their thought processes [25], [26]. For example, when students 
verbally describe spatial problem-solving processes, such as the 
arrangement of gears in a mechanical system, they 
spontaneously produce hand movements to simulate the 
rotation of gears (e.g., clockwise or counterclockwise rotation), 
which are co-speech representational gestures [27]. These co-
speech representational gestures are often synchronized with 
their speech (i.e., redundant gestures), enhancing the 
comprehensibility of their explanations, but they may also 
exhibit information that is complementary and not expressed in 
speech (i.e., non-redundant gestures) [9]. Both gestures are 
beneficial for acquiring a comprehensive understanding of the 
internal cognitive processes.  
Moreover, spatial skills may influence the frequency or types 

of gestures. Hostetter and Alibali [28] found that participants 
with low verbal skills and high spatial visualization skills 
produced more representational gestures compared to 
participants with high verbal skills and low spatial visualization 
skills. On the other hand, Göksun and colleagues [29] found 
that individuals with low spatial skills generated 
representational gestures more frequently than those with high 
spatial skills when conveying solely static information, but less 
frequently when conveying dynamic information. As shown in 

this prior research, representational gestures that provide a 
valuable external manifestation of internal cognitive processes 
can reveal students’ levels of spatial visualization skills and 
different types of visuospatial information (e.g., static or 
dynamic) they attempt to convey through gestures. Hence, 
representational gestures, offering insights into students’ 
manipulation of mental images, can be considered a validated, 
observable indicator of their internal visualization skills. 
However, relying on gestures is not a scalable method for 

assessing internal visualization skills of large numbers of 
students. Gesture studies often require labor-intensive and time-
consuming manual analyses of video recordings or the use of 
specialized motion sensing equipment that is difficult to deploy 
at scale [30]. While some recent studies are beginning to use 
sensor technology or AI-based machine learning algorithms for 
automatic gesture (or body movement) detection and gesture 
classification [31], these methods are too nascent to replace 
contextualized and situated human observation and 
interpretation of the meaning and function of gestures in a 
certain context. Alternatively, another potential scalable 
indicator is log data that tracks students’ problem-solving 
behaviors. 

C. Log data of Problem-solving Behaviors in Learning with 
Visuals 
Many studies have demonstrated the potential of using 

students’ behavioral log data, encompassing timestamps and 
interaction sequences during learning tasks, to later infer a 
range of cognitive skills [32], [33]. For example, log data can 
reveal where students struggle with their understanding during 
the learning process [34] and require further scaffolding [35]. 
In a similar vein, Rau [13] used log data on problem-solving 
steps where students interacted with visuals to examine 
difficulties in working with the visuals. While Rau [13] 
reported that log data of students’ problem-solving behaviors 
during learning with visuals could be indicative of difficulties 
in working on problems in which visuals were present, it is an 
open question whether these log data can be also used to infer 
students’ internal visualization skills, which presumes that 
visuals are absent.  
In sum, it remains an open question whether log data that 

tracks students’ problem-solving behaviors while learning with 
external visualizations can serve as an informal assessment of 
internal visualization skills. If this were the case, log data 
should predict students’ scores on a formal assessment of 
internal visualization skills. While prior research has shown that 
log data from ITSs can be used as informal assessments of 
content knowledge that predicts performance on formal 
assessments [36], [37], this question has not been examined in 
the context of internal visualization.  

III. THE CURRENT INVESTIGATION  
In this paper, we use representational gestures as an 

established, though not scalable measure of internal 
visualization skills. We triangulate gesture data with log data 
and test data to investigate the validity of informal and formal, 
scalable assessments of internal visualization skills. The use of 
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multiple measurements provides several advantages. It 
mitigates the limitations of each measure and presents a more 
holistic view of internal visualization skills. While 
representational gestures offer a tangible and interpretable 
dimension of internal visualization, informal assessment via log 
data provides a more detailed and nuanced understanding of the 
cognitive processes involved. Formal assessment via a test is 
highly interpretable. However, each measure has its limitations; 
representational gestures are not scalable, log data can be 
difficult to interpret without context, and taking a test can take 
up valuable instructional time. By incorporating these 
measures, we aim to combine their advantages while mitigating 
their drawbacks. Further, triangulating multiple measures 
enhances the robustness of our findings while reducing the 
potential for measurement bias. 

A. Research Questions 
We conducted two studies (summarized in Figure 1). 

Systematically grounded in existing literature, our investigation 
integrates multiple steps between formal and informal measures 
to explore nuanced relationships, leveraging existing theoretical 
and empirical knowledge in the field. Study 1 served as an 
initial inquiry into the validity of our formal and informal 
assessments of internal visualization skills. It examined the 
relationship among students’ (1) representational gestures as a 
validated measure with (2) log data of problem-solving 
behaviors when working with visuals within an ITS, and (3) 
verbal responses to a post-interview that constituted an early 
version of our formal assessment of students’ internal 
visualization skills. In line with most prior research, external 
visuals were present during the post-interview in Study 1. Study 
1 addressed the following research questions (RQs):  
RQ1: How do representational gestures relate to the post-

interview assessment of internal visualization skills? 
RQ2: How does log data from the ITS capturing interactions 

with visuals relate to representational gestures? 
Study 2 examined the utility of log data from the ITS as an 

informal assessment of internal visualization skills. Study 2 was 
conducted in the context of a larger-scale classroom where—as 
in most realistic educational settings—gesture analysis was not 
feasible. It investigated the relationship between (1) students’ 
log data and (2) their responses to a formal post-assessment of 
their internal visualization skills. To expand prior research, 
external visuals were absent in the internal visual skills 
assessment of Study 2. Study 2 investigated:  
RQ3: How does log data capturing interactions with visuals 

relate to the formal assessment of internal visualization skills? 
 

IV. study 1 

A. Methods 
1) Participants 
For Study 1, we recruited 19 undergraduate students from a 

large midwestern university in the United States. Students were 
recruited through announcements in lectures and recruitment 
posters. Students were awarded either course credit or $10 per 
hour for their participation in the study, which lasted up to 3 
hours. Five students were excluded from the final dataset 
because they did not complete the post-intervention interviews. 
As a result, our analyses included 14 students, seven of whom 
were STEM majors while the remaining seven were non-STEM 
majors. None of the students had taken college-level electrical 
engineering courses relating to signals or signal processing, 
which were the main topics covered in the problem-solving 
activities in Study 1. 
2) Materials 
a) Intelligent Tutoring System 

Our study was conducted in the context of Signals Tutor, an 
ITS designed and developed by our research team. Signals 
Tutor offers various interactive problem-solving activities, 
encompassing multiple-choice options, text box insertions, and 
interactive visual representations, and covers basic principles of 
sinusoids using seasonal variations of daylight durations across 
the globe as a concrete example. Prior to working with the 
tutoring software, students watched a 10-minute introductory 
video that provided fundamental background knowledge on 
seasons and sinusoids. Students then engaged in problem-
solving activities with external visual representations using 
Signals Tutor. Building on prior work [38], [39], Signals Tutor 
provides problem-solving activities that support students’ 
ability to make sense of visual representations and to practice 
perceptual fluency in extracting information from the visuals, 
as detailed in the following. Signals Tutor is representative of 
ITSs in that domain-relevant visualizations are commonly 
integrated into various ITSs and other educational technologies. 
The ITS is designed to assess students' responses, diagnose their 
misconceptions, and offer targeted feedback and hints that are 
tailored to the specific issues they are facing. These algorithms 
use students’ problem-solving interactions to draw inferences 
about the individual’s state of domain-specific knowledge as 
potential misconceptions that the student may hold about the 
visualizations, as described in our prior work [40], to guide 
students toward the correct understanding of the concepts being 
taught. All student interactions with these activities were 
logged. 
Signal Tutor's sense-making activities (Figure 2) aim to help 

students conceptually explain which visual features map to one 
another across visuals and how they represent domain-relevant 
concepts. Sense-making activities provide prompts to reflect on 
how a given concept is shown by specific features of each 
visual. Students receive immediate error feedback and hints on 
demand (see Figure 1). In addition, when students requested 
hints, they received multiple levels of conceptual hints, adding 
more scaffolding to solve the problems.  Fig. 1. Research framework (Study 1 and Study 2) 
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Perceptual-fluency activities (Figure 3) expose students to 
many simple classification problems that require rapid 
translation across different visual representations in order to 
help students efficiently translate among visuals. Students are 
given one visual and asked to select one out of four other visuals 
that shows the same construct (e.g., the same amplitude and 
time shift of a sinusoid). The four answer choices contrast 
visual features that could mislead students. Unlike sense-
making activities, perceptual-fluency activities provide only 
correctness feedback, because conceptual feedback can 
interfere with perceptual processing. Instead, to encourage 
perceptual processing, students are asked to solve the problems 
fast and intuitively.  

b) Post-Interview Assessment  
Following the ITS, students participated in pre-structured 

post-interviews employing think aloud protocols, which aimed 
to assess students’ ability to internally visualize the knowledge 
gained from learning with visuals in Signals Tutor. The 
interview questions were devised by a content expert in our 
research team (third author). External visuals were often present 
during the interviews to specify the contexts of the questions, 
but the interview questions required students to mentally 
manipulate the visuospatial information of concepts that were 
not depicted in external visuals.  
Specifically, interview questions were designed to stimulate 

students’ verbal reasoning involved in the construction of 

mental mappings between visuals and concepts, as well as the 
mental translation between different visuals. All interview 
questions required students to recall how domain-relevant 
concepts were represented in external visuals. Further, some 
interview questions required students to explain how certain 
concepts or terms corresponded to specific features of the 
visuals. Other interview questions asked students to mentally 
translate one visual to another. In either case, every question 
had a well-defined correct answer. This design allowed us to 
evaluate students' responses based on their ability to accurately 
describe domain-relevant concepts and corresponding 
visuospatial information learned through the ITS. A detailed list 
of the interview questions is shown in Appendix A.  

For example, one of the interview questions asked: “What 
does one time period of the sinusoid mean in the phase-domain 
graph?” (Question #5 in Appendix A; providing a sinusoid on 
the time-domain (Panel A) and blank phase-domain graph 
(Panel B), see Figure 4). As illustrated in Figure 4, in order to 
provide the correct answer, students must (1) recall a concept 
(i.e., one time period of the sinusoid) related to a visual (i.e., the 
time-domain graph, Panel A), (2) understand that the same 
concept can be represented differently in another visual (i.e., the 
phase-domain graph, Panel B), and (3) integrate the two visuals 
to transform one into the other (Panel C). This illustrates how 
the interview questions required students to internally visualize 
the concepts they had learned during the learning intervention. 

Fig. 2. Example sense-making activity in Signals Tutor 

Fig. 3. Example perceptual-fluency activity in Signals Tutor 
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Students answered the interview questions verbally. If 
students did not unpack the steps of their thought processes, 
they received follow-up questions that probed for further 
details. During the interviews, a researcher observed students’ 
verbal responses and co-speech gestures (if any) and 
documented them in field notes as well as video recordings. 
Students’ responses to the interview questions were examined 
in two different ways: (1) verbal responses were evaluated 
based on how accurately they recalled and supplied the 
requested information and based on how promptly they 
provided their answers; and (2) co-speech gestures were 
evaluated based on what content-relevant information they 
conveyed (detailed below). 

3) Procedure 
The study took at most 3 hours per student. Students first 

watched the 10-minute introductory video. Then, students 
worked with Signals Tutor, consisting of sense-making and 
perceptual-fluency activities, for up to 2.5 hours. Next, students 
participated in the post-intervention interview. Finally, they 
received either monetary compensation of up to $30 or a 
certificate of research participation for extra credit in a course. 
4) Measures 
a) Gesture Coding 

Alongside their verbal responses to the post-interviews, 
students frequently produced co-speech representational 
gestures. Representational gestures portrayed movement and/or 
shape information of the time-domain and the phase-domain 
graphs that were presented during the learning intervention. To 
assess students’ internal visualization skills, we focused on 
those dynamic representational gestures that reflected 
visuospatial information provided during the learning 
intervention. Thus, we coded two types of representational 
gestures: (a) directional gestures depicted specific features or 
changes of a sinusoid on a time-domain graph (e.g., amplitudes 
or phase shifts) by moving hands upward and downward or by 
shifting hands from left to right or vice versa, and (b) rotational 
gestures depicted rotational movements of a phasor on a phase-
domain graph. For instance, if a student horizontally shifted 
their hands from side to side as if illustrating the positive or 
negative phase shift in a time-domain graph, the gesture was 
identified as a directional gesture. On the other hand, if a 
student drew a clockwise circle with their index finger to 
represent the rotation of a vector in a phase-domain graph, the 
gesture was identified as a rotational gesture. These categories 

serve as a standard for gesture coding, which means that if a 
gesture does not fit into any of them, we did not code it.   
During the coding process, two human coders independently 

coded the interview data (N = 14) to identify whether students 
produced any kinds of representational gestures (i.e., 
directional and rotational) in response to a single interview 
question. Human coder 1 (first author) was the researcher who 
observed the participants’ entire learning processes and posed 
post-interview questions. As part of the training for gesture 
coding, human coder 1 and human coder 2 (a research assistant) 
went through all learning activities together, thereby both 
shared a common understanding of how to capture the two 
targeted types of representational gestures. The produced 

representational gestures were coded binarily (i.e., present or 
absent) for each interview question, so that if either type of 
representational gesture was present, it was counted as 1, and if 
none was present, it was counted as 0. To avoid potential biases 
in capturing the gestures, both human coders performed 
independent coding, reconciled any differences by viewing the 
corresponding segments of video recordings together, and 
reached a consensus. Interrater reliability was high with 
Cohen’s k = .92 [41].  
b) Log Data of Problem-Solving Behaviors: Error Rates 

and Hint Requests 
We extracted time-stamped logs of problem-solving 

interactions in Signals Tutor. The log data encompassed error 
rates and hint requests associated with individual micro-steps 
within problems presented in Signals Tutor. These micro-steps 
were designed to be detailed and mixed in complexity, 
including various types of problems such as multiple-choice 
options, text box insertions, and interactive manipulation of 
visual representations. The granularity of the data gave 
comprehensive and fine-grained information about students' 
cognitive processes at a micro-level while learning with visuals. 
We computed error rates as the average number of incorrect 
answers per problem-solving step. We also computed the 
average number of hint requests per step. Due to the absence of 
hint requests on perceptual-fluency activities, the total number 
of hint requests made by students was limited to those made 
during sense-making activities. 

B. Results 
We first conducted a qualitative analysis of how students’ 

production of representational gestures relates to their internal 
visualization skills as assessed based on verbal responses 

Fig. 4. An example of the visuals that accompanied Interview Question #5 (Panel A and Panel B) and the visual that students 
were required to internally visualize (Panel C) 

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TLT.2024.3396393

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 06,2024 at 10:06:41 UTC from IEEE Xplore.  Restrictions apply. 



7 
 

during the interviews (RQ1). We then quantitatively analyzed 
how students’ log data of problem-solving behaviors (i.e., error 
rates and hint requests) during the learning process relate to 
their production of representational gestures (RQ2).  
1) Qualitative Analysis: Representational Gesture and 

Internal Visualization Skills 
To address RQ1 (how representational gestures relate to the 

post-interview assessment of internal visualization skills), we 
qualitatively analyzed the video recordings of interview data. 
This served to explore the quality and profundity of students' 
verbal responses to the post-interview questions and these 
aspects relate to their use of representational gestures. Here, we 
present two vignettes as representative examples illustrating 
insights from our qualitative analysis.   
For the first vignette, Figure 5 illustrates the case of Student 

1 (henceforth S1), a student who produced many 
representational gestures. S1 made multiple representational 
gestures (N = 5). When responding to the question, “How can 
we translate time axis on the time-domain graph to the phase-
domain graph?” (Question #2 in Appendix A), S1 first provided 
the correct answer, stating “in this [phase-domain graph], x [x-
axis] is extra hours in daylight” (Line 1). S1 then described how 
the daylight time changes appear on a time-domain graph (Line 
2) while moving the right hand upward and downward 
(directional gesture). This response indicates that S1 was able 
to retain the concept (e.g., daylight time changes) that was 
visually conveyed during the learning process and promptly 
translate this information into different visuals (e.g., on a phase-
domain and a time-domain graph). S1's response to the 
subsequent query, which inquired about the time axis on the 
time-domain graph, was again immediate and accurate (Line 5-
6).  

 
Li
ne 

Time
line 

Speak
er 

Utterances 

1 03:16 
- 
03:30 

S1 So, in this (phase-domain graph), x 
(x-axis) is extra hours in daylight, 
which is basically time above or 
below that 12 hours. So, at 12 hours, 
since a day is 24 hours, it's half and 
half, right? 

2 03:30 
- 
03:39 

S1 So, when you have a 1 as your extra 
hour of daylight, that would be, you 
have 13 hours of daylight and 11 
hours of nighttime. So, that's what x 
(x-axis) is. 

3 03:39 
- 
03:40 

Resea
rcher 

X-axis is time-axis? 

4 03:40 
- 
03:41 

S1 Yes. 

5 03:41 
- 
03:47 

Resea
rcher 

Okay. How about the time-domain 
graph? 

6 03:48 
- 
03:51 

S1 Um, in this one (time-domain 
graph), it is the y (y-axis). The extra 
hours of daylight. 

Fig. 5. Vignette 1: An excerpt of S1’s responses in the post-
intervention interview 

By contrast, for the second vignette, Figure 6 illustrates the 
case of Student 2 (henceforth S2), a student who produced few 
representational gestures. S2 made only two representational 
gestures during the interviews. When responding to similar 
interview question requiring mental translation between two 
distinct visuals (e.g., “What does the time period of the sinusoid 
mean in the phase-domain graph?”, Question #5 in Appendix 
A), S2 was not able to instantly understand what the question 
meant, saying “Time period? [Paused for 5 seconds] I'm 
confused. What do you mean?” In order to clarify, the 
researcher parsed the question into a series of sub-questions. 
For instance, the researcher asked, “First, here [points at time-
domain graph], what’s the time period?”, and S2 responded “12 
months.” The researcher replied: “12 months, okay. Can you 
draw it [points at the time-domain graph]?” Then, S2 drew the 
correct cosine graph on the time-domain graph with their index 
finger. S2’s verbal responses to these sub-questions revealed 
that S2 remembered the concepts associated with one visual 
(i.e., a time-domain graph) but struggled to independently link 
the visual information with comparable terms. S2’s struggled 
were deteriorating when the researcher subsequently 
questioned the translation between two visuals (“How can we 
represent the time period of the sinusoid in this domain [point 
at a phase-domain graph]?”). Since the given interview question 
provided a blank phase-domain graph (Appendix A), S2 needed 
to internally visualize the visuospatial information of the 
concept to answer this question. In response to the interviewer’s 
query, S2 hesitatingly replied, “How would you present it? 
Hmm, I don’t know. [Paused for 6 seconds]”, and then supplied 
the incorrect answer.  
Figure 6 displays S2’s reflection after discovering the correct 

answer to the aforementioned interview question with the 
researchers’ assistance. This example reveals that S2 had 
several difficulties with internal visualization. One difficulty 
was that S2 did not recognize the rotational property of the 
phasor on the phase-domain graph (“I thought, more like, it is 
just like a point and go for there, I just never thought to go all 
the way around”, Line 1-2). While describing this, S2 produced 
a rotational gesture for the first and only time during the 
interview. Moreover, S2’s difficulties in understanding the 
phase-domain graph impeded S2’s ability to establish the 
conceptual linkage between the phase-domain and the time-
domain graphs (“I never relate this circle (a phasor 
representation on the phase-domain graph) to this (a cosine 
graph on the time-domain graph”, Line 3). S2 explicitly 
acknowledged their unawareness of the connection between 
two visuals by stating, “Now I do see it, but at that time, I 
wasn't, I thought that there are two separate things.” (Line 4) 
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Li
ne 

Time
line 

Spe
aker 

Utterances 

1 12:00 
- 
12:10 

S2 I guess I never ever thought to… 
Hmm, interesting.   

2 12:11 
- 
12:24 

S2 I just never had a thought to go it as a 
circle, I guess. Because I thought, 
more like, it is just like a point and go 
for there, I just never thought to go all 
the way around. 

   … 
3 12:41 

- 
12:45 

S2 I don't see like. I see the circle, but I 
never relate this circle (a phasor 
representation on the phase-domain 
graph) to this (a cosine graph on the 
time-domain graph). 

   … 
4 12:58 

- 
13:07 

S2 Now I do see it, but at that time, I 
wasn't, I thought that there are two 
separate things. 

Fig. 6. Vignette 2: An excerpt of S2’s responses in the post-
intervention interview 

Overall, we found that students who produced several 
representational gestures, like S1, also provided verbal 
responses that were characterized by the ability to accurately 
recall the visual information of linked concepts and to explain 
quickly how distinct visuals are related. These students were 
able to autonomously explain their answer without the need for 
further scaffolding, and they typically provided answers in a 
short amount of time. In contrast, students who produced few 
or no representational gestures, like S2, appeared to struggle to 
recollect how certain terms or concepts related to visuals and to 
establish connections across visuals. These students frequently 
asked for clarification of the interview question, stating, “I’m 
confused, what do you mean?” or took considerable amount of 
time to respond, or gave up and muttered “I don’t know.” 
Thus, students who produced multiple representational 

gestures during the post-intervention interviews seemed to 
exhibit high visual internalization skills; they were capable of 
accurately and swiftly articulating the retained visuospatial 
information mapping with related concepts as well as grasping 
the conceptual connection between different visuals, whereas 
students who produced few or no representational gestures 
during the interviews seemed to have more difficulties doing 
so. This speaks to the validity of the informal and formal 
assessments. 
2) Quantitative Analysis: Representational Gestures 

and Log data of Problem-Solving Behaviors 
To investigate RQ2 (how log data from the ITS capturing 

interactions with visuals relates to representational gestures), 
we examined whether the number of representational gestures 

students produced during the post-interviews is associated with 
their error rates and hint requests during sense-making and 
perceptual-fluency activities. As shown in Table 1, students' 
problem-solving behaviors captured during the learning process 
within the context of the ITS exhibited considerable variability. 
Using these variables, we computed three different simple 
regression models and two hierarchical regression models. 
Table 2 provides the results from the linear regression analyses. 

TABLE 1 
Descriptive summary of the variables utilized for 

quantitative analysis in Study 1 
 

(N = 14) 
Variables Mean SD Min Max 

Number of 
representational gestures 3.29 2.40 0 8 

Error rates during sense-
making activities 0.42 0.27 0.15 1.18 

Error rates during 
perceptual-fluency 
activities 

0.40 0.24 0.08 1.07 

Total hint requests 43.29 57.33 3 225 
Note. Dependent variable: Number of representational gestures 

TABLE 2 
Summary of linear regression models 

(N = 14) 
Model Predictor variables β SE t p 
1 Intercept  1.05 5.26 0.00 
 Error rates during 

sense-making activities 
-0.58 2.12 -2.48 0.03* 

2 Intercept  0.93 6.61 0.00 
 Error rates during 

perceptual-fluency 
activities 

-0.72 2.01 -3.56 0.00** 

3 Intercept  0.69 6.28 0.00** 
 Total hint requests -0.58 0.01 -2.47 0.03* 
4A Intercept  0.99 6.20 0.00** 
 Error rates during 

sense-making activities 0.71 3.52 0.18 0.86 

 Error rates during 
perceptual-fluency 

activities 
-0.78 3.87 -2.00 0.07 

4B Intercept  1.40 4.45 0.00** 
 Error rates during 

sense-making activities 0.03 4.61 0.06 0.95 

 Error rates during 
perceptual-fluency 

activities 
-0.80 4.42 -1.8 0.10 

 Total hint requests 0.07 0.02 0.13 0.90 
Note. * p < .05, ** p < .01 
Dependent variable: Number of representational gestures 
Model 1: F (1,13) = 6.16, p < .05, R2 = 0.34, R2Adjusted = 0.28 
Model 2: F (1,13) = 12.66, p < .01, R2 = 0.51, R2Adjusted = 0.47 
Model 3: F (1,13) = 6.10, p < .05, R2 = 0.34, R2Adjusted = 0.28 
Model 4A: F (2,12) = 5.84, p > .05, R2 = 0.52, R2Adjusted = 0.43 
Model 4B: F (3,10) = 3.55, p > .05, R2 = 0.52, R2Adjusted = 0.37 
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The error rates during sense-making activities (Model 1, t = 

-2.48, p < .05) and perceptual-fluency activities (Model 2, t = -
3.56, p < .01) had statistically significant predictive power on 
the number of representational gestures, with 28% and 47% of 
the model explanation, respectively (Model 1: R2Adjusted = 0.28, 
Model 2: R2Adjusted = 0.47). Students who had higher error rates 
during sense-making and perceptual-fluency activities 
produced significantly fewer representational gestures during 
the post-interviews.  
Similar to Models 1 and 2, Model 3 indicated that the total 

hint requests during the sense-making activities had statistically 
significant predictive power on the number of representational 
gestures (Model 3, t = -2.47, p < .05), explaining 28% of the 
variance (R2Adjusted = 0.28). Students who requested more hints 
during the sense-making activities produced significantly fewer 
representational gestures during the post-interviews.  
Following the single-variable models, hierarchical regression 

models were created by successively adding the second-highest 
and third-highest predictive variables to the best single-variable 
model (Model 2) in order to test for a substantial increase in 
model explanation. The results showed that, when combined, 
none of the variables in Model 4A and Model 4B had 
statistically significant predictive power on the number of 
representational gestures, and there was no significant added 
value to the model explanation (Model 4A: R2Adjusted = 0.43, 
Model 4B: R2Adjusted = 0.37) compared to Model 2, which best 
explained the variance (R2Adjusted = 0.47).  
Thus, error rates computed based on log data from an ITS 

where students interacted with visuals were significant 
predictors of representational gestures. This speaks to the 
validity of this measure as an assessment of internal 
visualization skills. 

C. Discussion 
By triangulating findings from the qualitative and 

quantitative analysis, we examined the potential of two types of 
assessments of students’ internal visualization skills. The 
qualitative findings relating to RQ1 revealed that students’ 
production of representational gestures, a validated although 
not scalable measure of internal visualization skills, was 
associated with higher-quality verbal responses to the post-
interviews, an early version of our formal internal visualization 
skills assessment. Students who produced multiple 
representational gestures exhibited superior visual 
internalization skills in their verbal responses to the interview 
questions compared to those who produced few or no 
representational gestures during the interviews. When verbally 
responding to the interview questions, students who generated 
multiple representational gestures were capable of correct recall 
of the visuospatial information pertaining to visuals and quick 
translation among the visuals, whereas those who generated few 
or no representational gestures struggled to do so. Considering 
that representational gestures are an empirically validated and 
established indicator of internal visualization [28], [29], the 
association between students’ representational gestures and 
verbal responses to the interview questions suggests that the 

early interview version of our formal internal visualization 
skills assessment indeed assesses what it intends to assess. 
The quantitative findings relating to RQ2 indicated that 

students’ log data of interactions with visuals in the ITS were 
associated with their production of representational gestures. 
The better students’ problem-solving performance, the more 
representational gestures they produced during the post-
interviews. That is, students who had lower error rates and 
asked for fewer hints throughout the sense-making and 
perceptual-fluency activities of the ITS were more likely to 
produce more representational gestures during the interviews, 
implying better internal visualization skills. These statistically 
significant relationships provide empirical support for the 
theoretical underpinnings, enhancing the validity of our 
approach. This finding implies that students’ log data from an 
ITS with external visual representation has the potential to serve 
as an informal assessment of their internal visualization skills.  
However, Study 1 has several limitations. First, Study 1 had 

a small sample size. While the focused nature of our 
investigation, coupled with the qualitative nature of the study, 
allowed for an in-depth exploration of students' internal 
visualization skills, the small sample size means that Study 1 
had relatively low statistical power. Further, the small sample 
size implies that our results may not generalize to a broader 
population. Therefore, future research should be replicated with 
a larger sample size to validate and extend our findings. Second, 
Study 1 was conducted in a lab setting. Students’ problem-
solving behaviors can differ between the lab and classroom 
setting. Third, students’ internal visualization skills were 
qualitatively assessed via verbal responses to interview 
questions instead of using a test, which required substantial 
human input. Fourth, half of the participants were 
undergraduate STEM majors, whereas the other half were non-
STEM majors. Students may have diverse prior knowledge, 
spatial abilities, and motivations to learn scientific knowledge, 
depending on their majors. Therefore, it would be helpful to 
examine internal visualization skills with students enrolled in 
an engineering course because they would likely be motivated 
to learn the targeted knowledge and likely have similar prior 
knowledge. Lastly, in keeping with prior research, students’ 
internal visualization skills were assessed when external visuals 
were present. However, this makes it difficult to distinguish 
whether students’ ability to retrieve visual information relied 
solely on internal visualization or on the given external visuals. 
Therefore, it would be desirable to create an assessment of 
internal visualization skills that does not present external 
visuals.  

V. STUDY 2 
Study 2 was designed to address several limitations of Study 

1. First, to address limitations resulting from the small sample 
size of Study 1, Study 2 included a larger sample of students. 
Second, to address limitations resulting from Study 1 being 
conducted in a lab context, we situated Study 2 in a large-scale 
classroom setting of an introductory undergraduate engineering 
course on signal processing, offering a real-world educational 
setting aimed.  
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At the same time, to ensure continuity from Study 1 to Study 
2, both studies employed the same ITS. This has the advantage 
that we were able to collect the same log data measures of 
students’ interactions with visual elements embedded within the 
ITS. Additionally, we turned the interview questions from 
Study 1 into a scalable test in Study 2. Given that Study 1 had 
validated these measures through gesture analysis, this 
approach allowed us to leverage the qualitative richness derived 
from Study 1, increasing the validity of the measures used in 
Study 2. 
In sum, building on Study 1, Study 2 aims to deepen our 

understanding of the scalable measures we started to explore in 
Study 1. 

A. Methods 
1) Participants 
Participants in Study 2 were 141 undergraduate students who 

were enrolled in an introductory electrical engineering course 
titled “Signals, Information, and Computation” at a large 
midwestern university in the United States. Signals Tutor was 
incorporated into the course materials. Accordingly, students’ 
participation was graded as a course assignment; completion of 
all activities in Signals Tutor resulted in full credit, otherwise, 
no credit was given. After excluding the students who did not 
complete all activities in Signals Tutor (30 students) and who 
dropped the course (2 students), our analyses included a total of 
109 students. 
2) Materials 
a) Post-Intervention: Internal Visualization Skills Test 

To develop the interview questions from Study 1 into a 
formal assessment, our research team, which included a content 
expert in electrical engineering (third author), used a multi-step 
iterative design process. This process resulted in design 
principles that are embodied by the resulting test items. First, 
we minimized the use of visuals when developing the test items 
since the presence of external visuals may have impact on 
students’ internal recollection of visuospatial information [16]. 
As a result, two thirds of the test items were comprised solely 
of symbolic representations (e.g., equations). While the 
remaining one third of the items included external visuals, these 
visuals were only presented to prompt students to select the 
corresponding visuals they mentally manipulated or to translate 
one visual to another. Secondly, each test item was designed to 
involve little computational effort to motivate students to 
prioritize visualization strategies over computational strategies. 
For example, we purposefully chose numbers that are easier to 
compute if simulated visually in space, as opposed to 
computing these numbers formulaically, which is technically 
doable but substantially more complicated and time-consuming 
due to the large number of decimals involved (e.g., 7/4π or 
5/4π). Lastly, we included test items requiring the translation 
between one visual to another to evaluate whether students can 
transfer visuospatial information between visuals [21]. We 
engaged in several rounds of iterative design where we applied 
these principles and then reviewed and discussed their 
implementation. This resulted in a set of multiple-choice test 
items (21 items) in a formal assessment of students’ internal 

visualization skills (an exemplary test item is shown in 
Appendix B).  
Students had to take the internal visualization skills test as an 

assignment and received course credit based only on their 
completion, regardless of their scores. Students were not 
allowed to use a calculator during the test. The reliability for the 
internal visualization skills assessment was high with 
Cronbach’s α = .79. 
3) Measures 
We extracted time-stamped logs of problem-solving 

interactions in Signals Tutor in the same way as in Study 1. 
Additionally, we computed students’ scores on the internal 
visualization skills assessment as the average number of correct 
responses. 
4) Procedures 
During the electrical engineering course, students 

individually completed four sections of the instructional 
activities supplied in Signals Tutor as either in-class activities 
(Weeks 1, 2, 4) or as homework (Week 5). In Week 5, students 
were instructed to complete the last section of Signals Tutor and 
the internal visualization skills test as a homework assignment.  

B. Results 
To address RQ3 (how log data capturing interactions with 

visuals relates to the formal assessment of internal visualization 
skills), we adapted the statistical models developed in Study 1 
using the measures listed in Table 3.  

TABLE 3 
Descriptive summary of the variables utilized in Study 2 

(N = 109) 
Variables Mean SD Min Max 

Internal visualization 
skills test scores 17.28 3.41 7 21 

Error rates during 
sense-making 
activities 

0.30 0.22 0.08 1.46 

Error rates during 
perceptual-fluency 

activities 
0.31 0.27 0.03 1.42 

Total hint requests 9.84 20.53 0 123 
Note. Dependent variable: Internal visualization skills test scores 
 
Table 4 summarizes the results from the linear regression 

analyses. We found that students’ error rates during sense-
making (Model 1, t = -4.93, p < .01) and perceptual-fluency 
activities (Model 2, t = -4.58, p < .01) were statistically 
significant predictors of their performance on the internal 
visualization skills test, with 18% and 16% of the model 
explanation, respectively (Model 1: R2Adjusted = 0.18, Model 2: 
R2Adjusted = 0.16). Students with lower error rates on sense-
making and perceptual-fluency activities achieved significantly 
higher scores on the internal visualization skills test. In addition 
to the error rates, the total number of hints requested during 
sense-making activities (Model 3, t = -3.29, p < .01) was also a 
statistically significant predictor of their performance on the 
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internal visualization skills test, explaining 8% of the variance 
(R2Adjusted = 0.08). Students who requested fewer hints 
performed significantly better on the internal visualization 
skills test.  
In Model 4A, which added the second-highest predictive 

variable to the best single-variable model (Model 1), both the 
error rates during the sense-making activities and perceptual-
fluency activities showed statistically significant predictive 
power on the internal visualization skills test scores, with 3.5% 
increase in model explanations (Model 4A: R2Adjusted = 0.21). In 
Model 4B, which included all predictive variables, the error 
rates during the sense-making activities were the sole 
statistically significant predictor of test scores, accounting for 
21% of the variance, which was the highest model explanation 
compared to the others with an increase of 1.2% over Model 4A 
(Model 4B: R2Adjusted = 0.21).  

TABLE 4 
Summary of linear regression models in Study 2 

(N = 108) 
Model Predictor variables β SE t p 
1 Intercept  0.50 38.51 0.00** 
 Error rates during 

sense-making activities -0.43 1.35 -4.93 0.00** 

2 Intercept  0.47 40.68 0.00** 
 Error rates during 

perceptual-fluency 
activities 

-0.41 1.13 -4.58 0.00** 

3 Intercept  0.35 51.25 0.00** 
 Total hint requests -0.30 0.02 -3.29 0.00** 
4A Intercept  0.51 38.33 0.00** 
 Error rates during 

sense-making activities -0.29 1.64 -2.77 0.01* 

 Error rates during 
perceptual-fluency 

activities 
-0.23 1.35 -2.19 0.03* 

4B Intercept  0.51 38.20 0.00** 
Error rates during 

sense-making activities -0.26 1.67 -2.45 0.02* 

Error rates during 
perceptual-fluency 

activities 
-1.87 1.38 -1.87 0.07 

Total hint requests -1.31 0.02 -1.31 0.20 
Note. * p < .05, ** p < .01 
Dependent variable: Internal visualization skills test scores 
Model 1: F (1,107) = 24.30, p < .01, R2 = 0.19, R2Adjusted = 0.18 
Model 2: F (1,107) = 20.99, p < .01, R2 = 0.16, R2Adjusted = 0.16 
Model 3: F (1,107) = 10.84, p < .01, R2 = 0.09, R2Adjusted = 0.08 
Model 4A: F (2,106) = 14.92, p < .01, R2 = 0.22, R2Adjusted = 0.21 
Model 4B: F (3,105) = 10.63, p < .01, R2 = 0.23, R2Adjusted = 0.21 

C. Discussion 
The results suggest that students’ log data from the ITS is a 

useful indicator of performance on the formal assessment 
(RQ3). Students with lower error rates across the sense-making 
and perceptual-fluency activities and fewer hint requests tended 
to have higher scores on the internal visualization skills test. 
This aligns with the quantitative findings of Study 1, which 

demonstrated the predictive power of students’ log data on their 
production of representational gestures, a validated measure for 
internal visualization skills (RQ2). Compared to Study 1, Study 
2 has higher statistical power to support this claim. Further, 
Study 2 has higher external validity since the learning 
intervention was implemented in an actual classroom setting.  
More specifically, our results show that, among log data of 

students’ problem-solving behaviors, error rates during sense-
making activities showed the highest predictive power of 
students’ internal visualization skills when all variables were 
incorporated in a single model. Recall that sense-making 
competencies describe the ability to understand how visual 
features correspond to domain-relevant concepts and to link 
multiple visuals based on their conceptual cohesion [38]. Our 
findings suggest that sense-making competencies, exhibited 
while students work with external visuals, may be a strong 
predictor of internal visualization skills, exhibited when 
external visuals are absent. Altogether, our findings suggest that 
log data from an ITS with interactive visuals can serve as an 
informal assessment of internal visualization skills. 
Still, Study 2 has several limitations that should be addressed 

in future research. First, students received no pre- and post-
intervention knowledge tests. Although all students were 
students enrolled in one basic electrical engineering course, 
their prior knowledge could vary. Future research should 
include pre-tests to examine correlations with internal 
visualization skills. Further, it would be interesting to determine 
to what extent internal visualization skills correlate with content 
knowledge gains that could be assessed via post-tests. Second, 
we did not observe students while they took the internal 
visualization skills assessment. While students were instructed 
not to use additional equipment, such as a calculator, we do not 
know if students complied. Third, our study used frequency-
based log data of students’ problem-solving behaviors. Future 
research should broaden its analytic scope to incorporate time-
based log data of problem-solving behaviors (e.g., the duration 
of time it took to solve each problem) or deepen analysis into 
identifying when and where students made errors and asked for 
hints. This would enable us to investigate whether time-based 
analytics could deepen our understanding of students’ 
difficulties with internal visualization during the learning 
process and may yield insights into how to provide additional 
scaffolding. Fourth, the development of the new test did not 
involve a stringent validation process. As the purpose of our 
study was to showcase that it is possible to assess students' 
internal visualization skills using a combination of formal and 
informal assessments, we do not propose the developed test as 
a definitive measure. Finally, our internal visualization skills 
assessment focuses on a specific engineering concept related to 
sinusoids. Internal visualization skills are always bound to 
specific visuals and associated concepts, and although 
knowledge of sinusoids is a fundamental concept in 
engineering with extensive applicability to electrical 
engineering, computer engineering, and biomedical 
engineering because they allow representing signals and 
describe many natural and technical phenomena [7]. 
Nevertheless, future research should expand our work to other 
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STEM domains to investigate the generalizability of our 
findings. 

VI. GENERAL DISCUSSION AND CONCLUSION 
Overall, our studies demonstrate the utility of multimodal 

data triangulation for the development of an assessment of 
internal visualization skills. Our approach explored 
associations and patterns among representational gestures, 
interview data, log data, and test data. Further, because the only 
established measure of internal visualization skills is not 
scalable, we combined a small-scale lab study (Study 1) and 
a larger-scale classroom study (Study 2) to verify the 
association among the three measures. 
Our study illustrates that it is possible to assess students' 

internal visualization skills using both formal and informal 
assessments. We provide empirical evidence that log data from 
an ITS can serve as an informal assessment of students’ internal 
visualization skills. At the same time, we present a new formal 
assessment of internal visualization skills. Our findings 
demonstrated the validity of the formal assessment, which 
focused on situations in which students are required to 
internally conceptualize visual information and retrieve that 
information to provide reasoning and solve problems. We 
found the informal and formal assessments correlated with 
representational gestures (Study 1) as well as with each 
other (Study 2).  
Demonstrating the feasibility of developing assessments of 

internal visualization skills is important because these skills are 
essential in many STEM domains. Any domain where 
visualizations play a role in early instruction but are later faded 
out—for instance in favor of mathematical formulas as is 
common in engineering and mathematics—internal 
visualization skills play a critical role in students’ ongoing 
learning. Our research contributes to the broader understanding 
these internal visualization skills, which are not directly 
observable and occur within students’ minds, as well as the 
complex interplay between internal visualization skills and 
problem-solving behaviors. The nuanced exploration of these 
relationships and the development of scalable assessments pave 
the way for future research endeavors aimed at enabling 
researchers and content developers to evaluate and support 
internal visualization skills through instructional interventions 
and educational technologies.  
Our research shows how multimodal triangulation can be 

used for the development of informal and formal assessments 
of internal visualization skills. In doing so, we demonstrate the 
utility of multimodal triangulation methods to examine 
relationships between informal and formal measures. In the 
growing line of educational research employing multimodal 
data to understand learning processes and outcomes, such as 
multimodal learning analytics (MMLA), triangulation is a 
common strategy for integrating these diverse data streams. By 
triangulating how one type of data (often machine-detected data) 
relates to other data (human-annotated data), researchers 
endeavor to establish the validity of the potential proxies 
employed to infer students' cognitive skills [42] or constructs 
[43]. Our work extends conventional triangulation practices by 

incorporating a multifaceted array of cross-validation—
ranging from human-annotated data to log data, progressing 
from a small-scale lab setting to a larger-scale classroom setting, 
and transitioning from informal measures during the learning 
process to formal measures for assessing learning outcomes. 
These multi-tiered cross validations not only demonstrate that 
the informal and formal measures we suggested indeed assess 
what they intend to assess, but also exemplify the adaptable 
utility of multimodal triangulation, thereby contributing to the 
growth of the MMLA field by fostering the assurance of 
indicator validity. This approach can be applied to the many 
learning contexts and STEM domains where internal 
visualization skills are important for student success. 
This contribution is relevant to many stakeholders in the field 

of learning technologies. First, it may help designers of 
educational technologies to improve the effectiveness of digital 
learning tools. By offering an informal assessment (e.g., log 
data) of internal visualization skills, our research can help 
identify “trouble spots” where students struggle with internal 
visualization and to determine when scaffolding is needed. The 
use of log data as an informal assessment is a first step to 
designing educational technologies that provide timely 
interventions and tailored support during the learning process 
in order to improve students’ internal visualization skills, which 
are essential for many STEM disciplines. Given that informal 
measures of internal visualization skills are highly scalable 
because they do not require precious classroom time, our 
research is an important contribution towards helping design 
educational technologies that support students’ acquisition of 
internal visualization skills relating to visuals of important 
domain-relevant concepts such as sinusoids.   
Second, our approach is relevant to instructors and 

instructional designers more broadly. By contributing a formal 
assessment of internal visualization skills, we offer a tool to 
summatively evaluate how accurately students can mentally 
represent the visual information they have learned and how well 
they are prepared for subsequent instruction on more 
complex, advanced concepts that are typically presented as 
symbolic representations with limited visual aids. This is 
useful for both designers of educational technologies to 
evaluate their effectiveness and for instructors who want 
to better support their students’ learning.  
Further, our work yields novel opportunities for educational 

researchers. Internal visualization skills are of high interest to 
researchers who examine how students mentally represent 
information. Yet, this research lacks a scalable means to assess 
these unobservable skills. Potentially as a consequence of this 
difficulty, prior research has not sufficiently distinguished 
between situations when students when external visuals are 
present versus absent regarding assessments of internal 
visualization skills. To our knowledge, related research 
typically focuses on situations where external visuals are 
present [8], [10], [23] even though this may confound the 
source of students’ mental retention of visual information. An 
advantage of our formal internal visualization skills assessment 
is that it minimizes the impact of external visuals on students’ 
internal visualization of concepts. This consideration is 
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important to accurately evaluate students’ ability to internally 
conceptualize and manipulate the information. 
Finally, we believe that our work has is broadly 

applicable to many STEM fields. Our studies were situated 
in engineering instruction on sinusoids, which are a 
fundamental engineering concept with broad applications 
to electrical engineering, computer engineering, and 
biomedical engineering [7]. Yet, internal visualization skills 
play a fundamental role in many other STEM fields, such as 
chemistry [13] or physics [14]. Thus, supporting internal 
visualization skills is key to students’ success in many domains. 

APPENDIX A 
An example of provided visuals that accompanied the 
following interview question (#5).  

 
Interview questions 
1-1. How did you figure out the vector corresponds to the winter 

solstice? 
1-2. Why does the spring equinox correspond to the vector lying 

along negative y-axis instead of positive y-axis? 
2. How can we translate the time axis on the time-domain graph to 

the phasor graph? 
3. What does the phase shift mean on the phase-domain graph? 
4. Why does the phasor corresponding to the equinoxes lie on the y-

axis? 
5. What does one time period of the sinusoid mean in the phase 

domain graph? 
6. We showed that the frequency of the sinusoid that represents 

hours of daylight relative to the equator on the Earth is larger than 
that on Mars. Equivalently, the time period of the sinusoid 
corresponding to Earth is larger than that of the sinusoid 
corresponding to Mars. What does this mean in the phase-domain 
graph? 

7. How would you measure the magnitude of a phasor if it did not 
lie on the x-axis or y-axis? 

8. How do you measure a phase to be negative? 
9. Can you make connections between the two: Amplitude and the 

initial phase? 

APPENDIX B 
An exemplary test item. 
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