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Development of an Intelligent Tutoring System that
Assesses Internal Visualization Skills in Engineering
Using Multimodal Triangulation

Hanall Sung, Martina A. Rau, and Barry D. Van Veen

Abstract—In many STEM domains, instruction on foundational
concepts heavily relies on visuals. Instructors often assume that
students can mentally visualize concepts, but students often struggle
with internal visualization skills—the ability to mentally visualize
information. In order to address this issue, we developed a formal as
well as an informal assessment of students’ internal visualization skills
in the context of engineering instruction. To validate the assessments,
we used data triangulation methods. We drew on data from two
separate studies conducted in a small-scale lab experiment and in a
larger-scale classroom context. Our studies demonstrate that an
intelligent tutoring system with interactive visual representations can
serve as an informal assessment of students’ internal visualization
skills, predicting their performance on a formal assessment of these
skills. Our study enriches methodological and theoretical
underpinnings in educational research and practices in multiple ways:
it contributes to (1) research methodologies by illustrating how
multimodal triangulation can be used for test development, (2) theories
of learning by offering pathways to assessing internal visualization
skills that are not directly observable, and (3) instructional practices in
STEM education by enabling instructors determine when and where
they should provide additional scaffoldings.
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1. INTRODUCTION

ANY concepts in science, technology, engineering,

and mathematics (STEM) domains involve
visuospatial information [1]. Thus, educational
technologies for STEM domains frequently introduce

foundational concepts through visual representations' such as
graphs, figures, and diagrams. The goal in using visuals is to
help students construct internal visual representations of the
concepts, enabling inference-making and problem-solving [2].
Instruction on more advanced concepts then often assumes that

! In this paper, we use the term visualization to describe a process,
whereas we use the term representation to describe a product.

students have internal visualization skills, which is the ability
to mentally store, manipulate, and integrate visual information
[3].

However, students often struggle with internal visualization
skills [3]-[5]. For example, when electrical engineering
instruction explains signals based on sinusoids, a fundamental
engineering concept, they typically use a variety of visuals that
depict basic concepts such as the amplitude, phase, and
frequency of a sinusoid. After introducing foundational
concepts through the wvisuals, instruction transitions to
providing equations that describe the sinusoids without their
accompanying visuals, presuming that students can internally
visualize these concepts. However, students often struggle to
internally manipulate and integrate concepts related to
sinusoids provided through visuals [6] and to transfer their
understanding of visual information to  symbolic
representations of more advanced concepts [7]. Consequently,
students’ difficulties with internal visualization can severely
impede their subsequent learning of more complex concepts
that are typically presented with minimal visual aids. While this
specific example is taken from the domain of electrical
engineering, the issue is broadly relevant because in many
STEM domains, concepts are first introduced visually and then
described by equations or other more abstract representations.

As the process of internal visualization is not directly
observable and occurs within students’ minds [3], it is
challenging to assess students’ internal visualization skills.
There is extensive evidence that students’ representational
gestures reflect their internal visualization and the mental
operations they use to manipulate internal representations [8]—
[11]. Representational gestures are hand movements that
“depict action, motion, or shape, or that indicate location or
trajectory” [8, p. 245]. Hence, we consider them a well-
established measure of internal visualization skills.

However, representational gestures are not a scalable method
to assess internal visualization skills because gesture analysis is
time consuming and complex. To our knowledge, there are no
scalable assessments of internal visualization skills. Yet,
scalable assessments are a prerequisite to providing
instructional support for internal visualization skills. Therefore,
the goal of this paper is to close this gap. We describe our use
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of data triangulation to develop assessments of students’
internal visualization skills. On the one hand, we examine the
utility of a potential informal assessment of internal
visualization skills through the use of log data generated by an
educational technology. Specifically, we draw on logs from an
intelligent tutoring system (ITS) in which students interact with
visual representations. Like many educational technologies, the
ITS provides instructional problems that require students to
engage with, manipulate, and interpret visual information. The
ITS systematically gathers log data that captures students’
problem-solving behaviors as they interact with visuals. It is an
open question whether log data describing interactions with
visuals can serve as an assessment of internal visualization
skills. On the other hand, we developed a formal assessment of
internal visualization skills that could be used as a diagnostic
tool to tailor subsequent instruction accordingly.

To validate the informal and formal assessments, we rely on
representational gestures, which—as mentioned—are an
established measure of internal visualization skills. Given that
gesture analysis is only feasible with small samples, Study 1
was a small-scale lab study that served as an initial inquiry into
the relationship between the two assessments with
representational gestures. Finding that representational gestures
correlate with both assessments, we then describe a larger-scale
classroom study that focused on the latter two assessments,
seeking to address the limitations of Study 1°s small sample size
and artificial lab context. We note that the main purpose of our
research is to demonstrate that a multi-modal approach that
combines small-scale lab and large-scale classroom methods is
useful for developing assessments for students' internal
visualization skills, which can be applied to the variety of
domains where internal visualization skills have an impact on
students’ academic success.

Overall, our work has broad applicability. While our studies
are situated in the context of engineering education, we
consider our approach of general relevance given the
widespread use of as well as students’ well-documented
difficulties with visuals in STEM domains. For example, in
chemistry, students cannot grasp the concept of an atom unless
they understand which aspects of a Bohr model are inadequate,
or what orbitals in orbital diagrams say about electron [13]. In
many other domains, such as physics, arrows can be used to
denote various types of information, which has to be understood
by students [14].

The main contribution of our work regards its
methodological approach. We illustrate how multimodal
triangulation can be used to create technology-supported,
scalable formative and summative assessment methods. Our
approach may be used to inform the development of internal
visualization skills assessments for other engineering topics and
in other STEM disciplines. A secondary contribution lies in our
contribution to instructional practices by revealing that scalable
assessments of internal visualization skills are feasible. Having
such scalable assessments are necessary, for instance, to
determine when students need additional scaffolding, which
could enhance instruction in many domains where students
often struggle with internal visualization skills. Further, given

that many educational technologies include visualizations, the
development of assessments of internal visualization skills is of
broad relevance to the field of educational software (e.g.,
intelligent tutors). Finally, our work contributes to future
research on educational technologies. By offering pathways to
assessing internal visualization skills within an educational
technology, future research can shed light into how students
acquire internal visualization skills alongside content
knowledge as they engage within digital learning tools.

II. THEORETICAL BACKGROUND

A. Internal Visualization Skills

Research suggests that when students encounter external
visual representations (e.g., static images such as graphs,
diagrams, charts; or dynamic representations, such as
animations), they construct internal representations in their
mind [15]. Internal visualization occurs when students
internally store, manipulate, and integrate visual information
depicting objects or concepts without viewing external visuals
[2], [3]- We use the term infernal visualization skills to describe
the ability to create mental representations of visual information
that accurately describe domain-relevant concepts. Because a
mental representation is always an abstraction of the original
object, it can never be 100% accurate. Further, different
individuals may have different mental representations. Finally,
mental representations—given that they are internal to the
student—cannot be directly observed, which may make it
difficult to determine their accuracy. For our study, we define
accuracy based on whether we see evidence that the student’s
mental representation contains the accurate, essential features
and relationships inherent in the visual information being
represented while learning domain-relevant concepts. In the
context of our work, the accuracy of the domain-relevant
concepts depicted in the visuals are well defined (e.g., the
period of a sinusoid is a concept that is defined as the distance
from peak to peak in a time-domain graph).

Internal visualization skills have been studied under different
names in various fields. In cognitive neuroscience, internal
visualization is referred to as visual mental imagery—a set of
internal representations that enable individuals to recall,
construct, and incorporate mental images in the absence of
input [16]. Other researchers focus on spatial visualization
ability, the ability to mentally imagine the movement of objects
[17], [18]. Accordingly, tasks to assess spatial visualization
ability involve imagining the result of spatial transformations,
such as folding a piece of paper or rotating an object [19].
Building on this research, we conceptualize internal
visualization skills as the ability to mentally recall visual
information from external information sources, organize the
information, activate related prior knowledge, and build
coherent and accurate internal representations [20].

Internal visualization skills are distinct from representational
competencies, which have received much attention in
educational psychology research (for an overview, see [21]).
Representational competencies describe the ability to extract
correct information from visual representations that are
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presented externally [21], [22]. By contrast, internal
visualization skills are at play even when external visual
representations are absent. As representational competencies
are recognized as crucial for effective learning with visuals,
these competencies may influence or relate to internal
visualization skills. However, there is limited existing research
that explores the intricate relationship between representational
competencies and internal visualization skills. While many
studies examined students’ ability to learn with external
representations such as a digital puzzle game [23], engineering
design tasks [8], and mechanical reasoning problems [10], we
are not aware of prior research that differentiates between
assessments where visual representations are present versus
absent. To our knowledge, there is no formal assessment that
evaluates students’ internal visualization skills when visuals are
not present.

Given that students often struggle to mentally store,
manipulate, and integrate the information conveyed by visuals
[3]-[5], it is critical to assess their internal visualization skills
to support their learning. Since internal visualization skills are
not directly observable, much research has investigated how to
infer them from observable indicators, such as gestures.

B. Representational Gestures

Gestures that “depict action, motion, or shape, or that
indicate location or trajectory” can be conceptualized as
representational gestures [8, p. 245]. Representational gestures
convey semantic content through visual similarity using hand
shape or motion [24] and represent perceptual features of
objects or concepts [10]. Previous literature related to speech-
accompanying  representational ~ gestures  documents
associations between gesture and internal visualization. People
more frequently produce co-speech representational gestures
when describing spatial transformations or communicating
their thought processes [25], [26]. For example, when students
verbally describe spatial problem-solving processes, such as the
arrangement of gears in a mechanical system, they
spontaneously produce hand movements to simulate the
rotation of gears (e.g., clockwise or counterclockwise rotation),
which are co-speech representational gestures [27]. These co-
speech representational gestures are often synchronized with
their speech (i.e., redundant gestures), enhancing the
comprehensibility of their explanations, but they may also
exhibit information that is complementary and not expressed in
speech (i.e., non-redundant gestures) [9]. Both gestures are
beneficial for acquiring a comprehensive understanding of the
internal cognitive processes.

Moreover, spatial skills may influence the frequency or types
of gestures. Hostetter and Alibali [28] found that participants
with low verbal skills and high spatial visualization skills
produced more representational gestures compared to
participants with high verbal skills and low spatial visualization
skills. On the other hand, Goksun and colleagues [29] found
that individuals with low spatial skills generated
representational gestures more frequently than those with high
spatial skills when conveying solely static information, but less
frequently when conveying dynamic information. As shown in

this prior research, representational gestures that provide a
valuable external manifestation of internal cognitive processes
can reveal students’ levels of spatial visualization skills and
different types of visuospatial information (e.g., static or
dynamic) they attempt to convey through gestures. Hence,
representational gestures, offering insights into students’
manipulation of mental images, can be considered a validated,
observable indicator of their internal visualization skills.

However, relying on gestures is not a scalable method for
assessing internal visualization skills of large numbers of
students. Gesture studies often require labor-intensive and time-
consuming manual analyses of video recordings or the use of
specialized motion sensing equipment that is difficult to deploy
at scale [30]. While some recent studies are beginning to use
sensor technology or Al-based machine learning algorithms for
automatic gesture (or body movement) detection and gesture
classification [31], these methods are too nascent to replace
contextualized and situated human observation and
interpretation of the meaning and function of gestures in a
certain context. Alternatively, another potential scalable
indicator is log data that tracks students’ problem-solving
behaviors.

C. Log data of Problem-solving Behaviors in Learning with
Visuals

Many studies have demonstrated the potential of using
students’ behavioral log data, encompassing timestamps and
interaction sequences during learning tasks, to later infer a
range of cognitive skills [32], [33]. For example, log data can
reveal where students struggle with their understanding during
the learning process [34] and require further scaffolding [35].
In a similar vein, Rau [13] used log data on problem-solving
steps where students interacted with visuals to examine
difficulties in working with the visuals. While Rau [13]
reported that log data of students’ problem-solving behaviors
during learning with visuals could be indicative of difficulties
in working on problems in which visuals were present, it is an
open question whether these log data can be also used to infer
students’ internal visualization skills, which presumes that
visuals are absent.

In sum, it remains an open question whether log data that
tracks students’ problem-solving behaviors while learning with
external visualizations can serve as an informal assessment of
internal visualization skills. If this were the case, log data
should predict students’ scores on a formal assessment of
internal visualization skills. While prior research has shown that
log data from ITSs can be used as informal assessments of
content knowledge that predicts performance on formal
assessments [36], [37], this question has not been examined in
the context of internal visualization.

III. THE CURRENT INVESTIGATION

In this paper, we use representational gestures as an
established, though not scalable measure of internal
visualization skills. We triangulate gesture data with log data
and test data to investigate the validity of informal and formal,
scalable assessments of internal visualization skills. The use of
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multiple measurements provides several advantages. It
mitigates the limitations of each measure and presents a more
holistic view of internal visualization skills. While
representational gestures offer a tangible and interpretable
dimension of internal visualization, informal assessment via log
data provides a more detailed and nuanced understanding of the
cognitive processes involved. Formal assessment via a test is
highly interpretable. However, each measure has its limitations;
representational gestures are not scalable, log data can be
difficult to interpret without context, and taking a test can take
up valuable instructional time. By incorporating these
measures, we aim to combine their advantages while mitigating
their drawbacks. Further, triangulating multiple measures
enhances the robustness of our findings while reducing the
potential for measurement bias.

A. Research Questions

We conducted two studies (summarized in Figure 1).
Systematically grounded in existing literature, our investigation
integrates multiple steps between formal and informal measures
to explore nuanced relationships, leveraging existing theoretical
and empirical knowledge in the field. Study 1 served as an
initial inquiry into the validity of our formal and informal
assessments of internal visualization skills. It examined the
relationship among students’ (1) representational gestures as a
validated measure with (2) log data of problem-solving
behaviors when working with visuals within an ITS, and (3)
verbal responses to a post-interview that constituted an early
version of our formal assessment of students’ internal
visualization skills. In line with most prior research, external
visuals were present during the post-interview in Study 1. Study
1 addressed the following research questions (RQs):

RQ1: How do representational gestures relate to the post-
interview assessment of internal visualization skills?

RQ2: How does log data from the ITS capturing interactions
with visuals relate to representational gestures?

Study 2 examined the utility of log data from the ITS as an
informal assessment of internal visualization skills. Study 2 was
conducted in the context of a larger-scale classroom where—as
in most realistic educational settings—gesture analysis was not
feasible. It investigated the relationship between (1) students’
log data and (2) their responses to a formal post-assessment of
their internal visualization skills. To expand prior research,
external visuals were absent in the internal visual skills
assessment of Study 2. Study 2 investigated:

RQ3: How does log data capturing interactions with visuals
relate to the formal assessment of internal visualization skills?

I Study 1 I
RQ2: RQ1:
LD relates to RG IVS relate to RG

Log data (LD) | Representational ] N Internal visualization

gestures (RG) skills (IVS)

RQ3:
LD relates to IVS

Fig. 1. Research framework (Study 1 and Study 2)

Study 2

IV. study 1

A. Methods

1) Participants

For Study 1, we recruited 19 undergraduate students from a
large midwestern university in the United States. Students were
recruited through announcements in lectures and recruitment
posters. Students were awarded either course credit or $10 per
hour for their participation in the study, which lasted up to 3
hours. Five students were excluded from the final dataset
because they did not complete the post-intervention interviews.
As a result, our analyses included 14 students, seven of whom
were STEM majors while the remaining seven were non-STEM
majors. None of the students had taken college-level electrical
engineering courses relating to signals or signal processing,
which were the main topics covered in the problem-solving
activities in Study 1.

2) Materials
a) Intelligent Tutoring System

Our study was conducted in the context of Signals Tutor, an
ITS designed and developed by our research team. Signals
Tutor offers various interactive problem-solving activities,
encompassing multiple-choice options, text box insertions, and
interactive visual representations, and covers basic principles of
sinusoids using seasonal variations of daylight durations across
the globe as a concrete example. Prior to working with the
tutoring software, students watched a 10-minute introductory
video that provided fundamental background knowledge on
seasons and sinusoids. Students then engaged in problem-
solving activities with external visual representations using
Signals Tutor. Building on prior work [38], [39], Signals Tutor
provides problem-solving activities that support students’
ability to make sense of visual representations and to practice
perceptual fluency in extracting information from the visuals,
as detailed in the following. Signals Tutor is representative of
ITSs in that domain-relevant visualizations are commonly
integrated into various ITSs and other educational technologies.
The ITS is designed to assess students' responses, diagnose their
misconceptions, and offer targeted feedback and hints that are
tailored to the specific issues they are facing. These algorithms
use students’ problem-solving interactions to draw inferences
about the individual’s state of domain-specific knowledge as
potential misconceptions that the student may hold about the
visualizations, as described in our prior work [40], to guide
students toward the correct understanding of the concepts being
taught. All student interactions with these activities were
logged.

Signal Tutor's sense-making activities (Figure 2) aim to help
students conceptually explain which visual features map to one
another across visuals and how they represent domain-relevant
concepts. Sense-making activities provide prompts to reflect on
how a given concept is shown by specific features of each
visual. Students receive immediate error feedback and hints on
demand (see Figure 1). In addition, when students requested
hints, they received multiple levels of conceptual hints, adding
more scaffolding to solve the problems.
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Perceptual-fluency activities (Figure 3) expose students to
many simple classification problems that require rapid
translation across different visual representations in order to
help students efficiently translate among visuals. Students are
given one visual and asked to select one out of four other visuals
that shows the same construct (e.g., the same amplitude and
time shift of a sinusoid). The four answer choices contrast
visual features that could mislead students. Unlike sense-
making activities, perceptual-fluency activities provide only
correctness feedback, because conceptual feedback can
interfere with perceptual processing. Instead, to encourage
perceptual processing, students are asked to solve the problems
fast and intuitively.

Signals Tutor

B Here's a time-domain graph of a
sinusoid.

A Here'sa phase-domain graph of a
sinusoid.

d (extra hours.of daylight)
4

3

]

2 3 4 5 6 2 N4 & 8/ w0 1

d fextra hours

o daytght) t (months)

6 5 4 -3 2 o1 1

Lo oa ol

C

2 Select the same time (from question 1) on this time-
domain graph of the same location.

Let's make sense of how the two

representations show sinusoids.

Using the phase-domain graph above, identify a time
during spring when daylight is exactly 1 hour longer
than at the equator.

3 Daylight is also 1 hour longer than at the equator at
a time during the e - . Select that point on the
time-domain graph above.

Fig. 2. Example sense-making activity in Signals Tutor

Signals Tutor

Here's a phasor. Which cosine function represents that
phasor?

Solve this task fast and intuitively.

mental mappings between visuals and concepts, as well as the
mental translation between different visuals. All interview
questions required students to recall how domain-relevant
concepts were represented in external visuals. Further, some
interview questions required students to explain how certain
concepts or terms corresponded to specific features of the
visuals. Other interview questions asked students to mentally
translate one visual to another. In either case, every question
had a well-defined correct answer. This design allowed us to
evaluate students' responses based on their ability to accurately
describe domain-relevant concepts and corresponding
visuospatial information learned through the ITS. A detailed list
of the interview questions is shown in Appendix A.

? Receive on-demand hints
. '

Receive an error message if the
answer is incorrect

No, this is not correct. Hote t
specifies a time during the spring. The point you
have selected fs in the wrong season.

hat the question

-—

Construct a phase-domain

sinusoid visual based on a given
time-domain sinusoid visual

Identify important features to

represent a sinusoid in both time-
domain and phase-domain visuals

Receive error-specific feedback

(green highlight: correct, red: incorrect)

Receive the instruction to solve the

CONGRATULATIONS!

Please click the Done’ button in the lower right
comer of the page

problems fast and intuitively

Choose a time-domain graph

~
3
ot
&

[

representing the same sinusoid as
a given phase-domain graph

Receive immediate error feedback

Fig. 3. Example perceptual-fluency activity in Signals Tutor

b) Post-Interview Assessment

Following the ITS, students participated in pre-structured
post-interviews employing think aloud protocols, which aimed
to assess students’ ability to internally visualize the knowledge
gained from learning with visuals in Signals Tutor. The
interview questions were devised by a content expert in our
research team (third author). External visuals were often present
during the interviews to specify the contexts of the questions,
but the interview questions required students to mentally
manipulate the visuospatial information of concepts that were
not depicted in external visuals.

Specifically, interview questions were designed to stimulate
students’ verbal reasoning involved in the construction of

(green highlight: correct, red: incorrect)

v
Done

For example, one of the interview questions asked: “What
does one time period of the sinusoid mean in the phase-domain
graph?” (Question #5 in Appendix A; providing a sinusoid on
the time-domain (Panel A) and blank phase-domain graph
(Panel B), see Figure 4). As illustrated in Figure 4, in order to
provide the correct answer, students must (1) recall a concept
(i.e., one time period of the sinusoid) related to a visual (i.e., the
time-domain graph, Panel A), (2) understand that the same
concept can be represented differently in another visual (i.e., the
phase-domain graph, Panel B), and (3) integrate the two visuals
to transform one into the other (Panel C). This illustrates how
the interview questions required students to internally visualize
the concepts they had learned during the learning intervention.
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Students answered the interview questions verbally. If
students did not unpack the steps of their thought processes,
they received follow-up questions that probed for further
details. During the interviews, a researcher observed students’
verbal responses and co-speech gestures (if any) and
documented them in field notes as well as video recordings.
Students’ responses to the interview questions were examined
in two different ways: (1) verbal responses were evaluated
based on how accurately they recalled and supplied the
requested information and based on how promptly they
provided their answers; and (2) co-speech gestures were
evaluated based on what content-relevant information they
conveyed (detailed below).

serve as a standard for gesture coding, which means that if a
gesture does not fit into any of them, we did not code it.
During the coding process, two human coders independently
coded the interview data (N = 14) to identify whether students
produced any kinds of representational gestures (i.e.,
directional and rotational) in response to a single interview
question. Human coder 1 (first author) was the researcher who
observed the participants’ entire learning processes and posed
post-interview questions. As part of the training for gesture
coding, human coder 1 and human coder 2 (a research assistant)
went through all learning activities together, thereby both
shared a common understanding of how to capture the two
targeted types of representational gestures. The produced

- \ /
2 N\ //
N /
.3 N

4

A

A
'2)\\(53?!,/910”]2 % -5 -4 -3 -2 -

Fig. 4. An example of the visuals that accompanied Interview Question #5 (Panel A and Panel B) and the visual that students

were required to internally visualize (Panel C)

3) Procedure

The study took at most 3 hours per student. Students first
watched the 10-minute introductory video. Then, students
worked with Signals Tutor, consisting of sense-making and
perceptual-fluency activities, for up to 2.5 hours. Next, students
participated in the post-intervention interview. Finally, they
received either monetary compensation of up to $30 or a
certificate of research participation for extra credit in a course.

4) Measures
a) Gesture Coding

Alongside their verbal responses to the post-interviews,
students frequently produced co-speech representational
gestures. Representational gestures portrayed movement and/or
shape information of the time-domain and the phase-domain
graphs that were presented during the learning intervention. To
assess students’ internal visualization skills, we focused on
those dynamic representational gestures that reflected
visuospatial information provided during the learning
intervention. Thus, we coded two types of representational
gestures: (a) directional gestures depicted specific features or
changes of a sinusoid on a time-domain graph (e.g., amplitudes
or phase shifts) by moving hands upward and downward or by
shifting hands from left to right or vice versa, and (b) rotational
gestures depicted rotational movements of a phasor on a phase-
domain graph. For instance, if a student horizontally shifted
their hands from side to side as if illustrating the positive or
negative phase shift in a time-domain graph, the gesture was
identified as a directional gesture. On the other hand, if a
student drew a clockwise circle with their index finger to
represent the rotation of a vector in a phase-domain graph, the
gesture was identified as a rotational gesture. These categories

representational gestures were coded binarily (i.e., present or
absent) for each interview question, so that if either type of
representational gesture was present, it was counted as 1, and if
none was present, it was counted as 0. To avoid potential biases
in capturing the gestures, both human coders performed
independent coding, reconciled any differences by viewing the
corresponding segments of video recordings together, and
reached a consensus. Interrater reliability was high with
Cohen’s k= .92 [41].

b) Log Data of Problem-Solving Behaviors: Error Rates

and Hint Requests

We extracted time-stamped logs of problem-solving
interactions in Signals Tutor. The log data encompassed error
rates and hint requests associated with individual micro-steps
within problems presented in Signals Tutor. These micro-steps
were designed to be detailed and mixed in complexity,
including various types of problems such as multiple-choice
options, text box insertions, and interactive manipulation of
visual representations. The granularity of the data gave
comprehensive and fine-grained information about students'
cognitive processes at a micro-level while learning with visuals.
We computed error rates as the average number of incorrect
answers per problem-solving step. We also computed the
average number of hint requests per step. Due to the absence of
hint requests on perceptual-fluency activities, the total number
of hint requests made by students was limited to those made
during sense-making activities.

B. Results

We first conducted a qualitative analysis of how students’
production of representational gestures relates to their internal
visualization skills as assessed based on verbal responses

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 06,2024 at 10:06:41 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TLT.2024.3396393

during the interviews (RQ1). We then quantitatively analyzed
how students’ log data of problem-solving behaviors (i.e., error
rates and hint requests) during the learning process relate to
their production of representational gestures (RQ2).

1) Qualitative Analysis: Representational Gesture and
Internal Visualization Skills

To address RQ1 (how representational gestures relate to the
post-interview assessment of internal visualization skills), we
qualitatively analyzed the video recordings of interview data.
This served to explore the quality and profundity of students'
verbal responses to the post-interview questions and these
aspects relate to their use of representational gestures. Here, we
present two vignettes as representative examples illustrating
insights from our qualitative analysis.

For the first vignette, Figure 5 illustrates the case of Student
1 (henceforth S1), a student who produced many
representational gestures. S1 made multiple representational
gestures (N = 5). When responding to the question, “How can
we translate time axis on the time-domain graph to the phase-
domain graph?”’ (Question #2 in Appendix A), S1 first provided
the correct answer, stating “in this [phase-domain graph], x [x-
axis] is extra hours in daylight” (Line 1). S1 then described how
the daylight time changes appear on a time-domain graph (Line
2) while moving the right hand upward and downward
(directional gesture). This response indicates that S1 was able
to retain the concept (e.g., daylight time changes) that was
visually conveyed during the learning process and promptly
translate this information into different visuals (e.g., on a phase-
domain and a time-domain graph). Sl's response to the
subsequent query, which inquired about the time axis on the
time-domain graph, was again immediate and accurate (Line 5-
6).

Utterances

Li Time Speak

ne line er

1 03:16 Sl So, in this (phase-domain graph), x
- (x-axis) is extra hours in daylight,
03:30 which is basically time above or

below that 12 hours. So, at 12 hours,
since a day is 24 hours, it's half and
half, right?

2 03:30 SI So, when you have a 1 as your extra
- hour of daylight, that would be, you
03:39 have 13 hours of daylight and 11

hours of nighttime. So, that's what x
(x-axis) is.
3 03:39 Resea  X-axis is time-axis?
- rcher
03:40
4 0340 SI Yes.
03:41

7
5 03:41 Resea Okay. How about the time-domain
- rcher  graph?
03:47
6 03:48 Sl Um, in this one (time-domain
- graph), it is the y (y-axis). The extra
03:51 hours of daylight.

Fig. 5. Vignette 1: An excerpt of S1’s responses in the post-
intervention interview

By contrast, for the second vignette, Figure 6 illustrates the
case of Student 2 (henceforth S2), a student who produced few
representational gestures. S2 made only two representational
gestures during the interviews. When responding to similar
interview question requiring mental translation between two
distinct visuals (e.g., “What does the time period of the sinusoid
mean in the phase-domain graph?”, Question #5 in Appendix
A), S2 was not able to instantly understand what the question
meant, saying “Time period? [Paused for 5 seconds] I'm
confused. What do you mean?” In order to clarify, the
researcher parsed the question into a series of sub-questions.
For instance, the researcher asked, “First, here [points at time-
domain graph], what’s the time period?”, and S2 responded “12
months.” The researcher replied: “12 months, okay. Can you
draw it [points at the time-domain graph]?” Then, S2 drew the
correct cosine graph on the time-domain graph with their index
finger. S2’s verbal responses to these sub-questions revealed
that S2 remembered the concepts associated with one visual
(i.e., a time-domain graph) but struggled to independently link
the visual information with comparable terms. S2’s struggled
were deteriorating when the researcher subsequently
questioned the translation between two visuals (“How can we
represent the time period of the sinusoid in this domain [point
at a phase-domain graph]?”). Since the given interview question
provided a blank phase-domain graph (Appendix A), S2 needed
to internally visualize the visuospatial information of the
concept to answer this question. In response to the interviewer’s
query, S2 hesitatingly replied, “How would you present it?
Hmm, I don’t know. [Paused for 6 seconds]”, and then supplied
the incorrect answer.

Figure 6 displays S2’s reflection after discovering the correct
answer to the aforementioned interview question with the
researchers’ assistance. This example reveals that S2 had
several difficulties with internal visualization. One difficulty
was that S2 did not recognize the rotational property of the
phasor on the phase-domain graph (“I thought, more like, it is
just like a point and go for there, I just never thought to go all
the way around”, Line 1-2). While describing this, S2 produced
a rotational gesture for the first and only time during the
interview. Moreover, S2’s difficulties in understanding the
phase-domain graph impeded S2’s ability to establish the
conceptual linkage between the phase-domain and the time-
domain graphs (“I never relate this circle (a phasor
representation on the phase-domain graph) to this (a cosine
graph on the time-domain graph”, Line 3). S2 explicitly
acknowledged their unawareness of the connection between
two visuals by stating, “Now I do see it, but at that time, |
wasn't, | thought that there are two separate things.” (Line 4)
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Li Time Spe Utterances
ne line aker
1 12:00 S2 I guess I never ever thought to...
- Hmm, interesting.
12:10
2 12:11  S2 I just never had a thought to go it as a
- circle, I guess. Because I thought,
12:24 more like, it is just like a point and go
for there, I just never thought to go all
the way around.
3 12:41 S2 I don't see like. I see the circle, but I
- never relate this circle (a phasor
12:45 representation on the phase-domain
graph) to this (a cosine graph on the
time-domain graph).
4 12:58 S2 Now I do see it, but at that time, [
- wasn't, I thought that there are two
13:07 separate things.

Fig. 6. Vignette 2: An excerpt of S2’s responses in the post-
intervention interview

Overall, we found that students who produced several
representational gestures, like S1, also provided verbal
responses that were characterized by the ability to accurately
recall the visual information of linked concepts and to explain
quickly how distinct visuals are related. These students were
able to autonomously explain their answer without the need for
further scaffolding, and they typically provided answers in a
short amount of time. In contrast, students who produced few
or no representational gestures, like S2, appeared to struggle to
recollect how certain terms or concepts related to visuals and to
establish connections across visuals. These students frequently
asked for clarification of the interview question, stating, “I’m
confused, what do you mean?” or took considerable amount of
time to respond, or gave up and muttered “I don’t know.”

Thus, students who produced multiple representational
gestures during the post-intervention interviews seemed to
exhibit high visual internalization skills; they were capable of
accurately and swiftly articulating the retained visuospatial
information mapping with related concepts as well as grasping
the conceptual connection between different visuals, whereas
students who produced few or no representational gestures
during the interviews seemed to have more difficulties doing
so. This speaks to the validity of the informal and formal
assessments.

2) Quantitative Analysis: Representational Gestures
and Log data of Problem-Solving Behaviors
To investigate RQ2 (how log data from the ITS capturing
interactions with visuals relates to representational gestures),
we examined whether the number of representational gestures

students produced during the post-interviews is associated with
their error rates and hint requests during sense-making and
perceptual-fluency activities. As shown in Table 1, students'
problem-solving behaviors captured during the learning process
within the context of the ITS exhibited considerable variability.
Using these variables, we computed three different simple
regression models and two hierarchical regression models.
Table 2 provides the results from the linear regression analyses.

TABLE 1
Descriptive summary of the variables utilized for
quantitative analysis in Study 1

(N=14)
Mean SD Min Max

3.29 2.40 0 8

Variables
Number of
representational gestures
Error rates during sense-

. o 0.42 027 015 1.18
making activities
Error rates during
perceptual-fluency 0.40 024 0.08 1.07
activities
Total hint requests 43.29 57.33 3 225

Note. Dependent variable: Number of representational gestures

TABLE 2
Summary of linear regression models
(N=14)
Model Predictor variables p SE t p
1 Intercept 1.05 526 0.00
Error rates during  -0.58 2.12 -2.48 0.03*
sense-making activities
2 Intercept 093 6.61 0.00
Error rates during  -0.72 2.01 -3.56 0.00**
perceptual-fluency
activities
3 Intercept 0.69 6.28 0.00**
Total hint requests ~ -0.58 0.01 -2.47 0.03*
4A Intercept 0.99 6.20 0.00**
Errorrates during 71 357 013 0.6
sense-making activities
Error rates during
perceptual-fluency  -0.78 3.87 -2.00 0.07
activities
4B Intercept 1.40 445 0.00**
Erorratesduring 53 461 006 0.95
sense-making activities
Error rates during
perceptual-fluency -0.80 442 -1.8  0.10
activities
Total hint requests ~ 0.07  0.02  0.13  0.90

Note. * p <.05, ** p <.01

Dependent variable: Number of representational gestures
Model 1: F (1,13) = 6.16, p < .05, R? = 0.34, R’ agjusted = 0.28
Model 2: F (1,13) = 12.66, p < .01, R> = 0.51, R?adjusiea = 0.47
Model 3: F (1,13) = 6.10, p < .05, R? = 0.34, R’ agjusted = 0.28
Model 4A: F (2,12) = 5.84, p > .05, R = 0.52, R’ adjusied = 0.43
Model 4B: F (3,10) = 3.55, p > .05, R? = 0.52, R?aqjusted = 0.37
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The error rates during sense-making activities (Model 1, ¢ =
-2.48, p < .05) and perceptual-fluency activities (Model 2, ¢ = -
3.56, p < .01) had statistically significant predictive power on
the number of representational gestures, with 28% and 47% of
the model explanation, respectively (Model 1: R%4gjusiea= 0.28,
Model 2: R?4gjusiea= 0.47). Students who had higher error rates
during sense-making and perceptual-fluency activities
produced significantly fewer representational gestures during
the post-interviews.

Similar to Models 1 and 2, Model 3 indicated that the total
hint requests during the sense-making activities had statistically
significant predictive power on the number of representational
gestures (Model 3, t = -2.47, p < .05), explaining 28% of the
variance (R%4qjusiea= 0.28). Students who requested more hints
during the sense-making activities produced significantly fewer
representational gestures during the post-interviews.

Following the single-variable models, hierarchical regression
models were created by successively adding the second-highest
and third-highest predictive variables to the best single-variable
model (Model 2) in order to test for a substantial increase in
model explanation. The results showed that, when combined,
none of the variables in Model 4A and Model 4B had
statistically significant predictive power on the number of
representational gestures, and there was no significant added
value to the model explanation (Model 4A: R4gjusiea = 0.43,
Model 4B: R%4gjusea= 0.37) compared to Model 2, which best
explained the variance (R’ 4gjusiea= 0.47).

Thus, error rates computed based on log data from an ITS
where students interacted with visuals were significant
predictors of representational gestures. This speaks to the
validity of this measure as an assessment of internal
visualization skills.

C. Discussion

By triangulating findings from the qualitative and
quantitative analysis, we examined the potential of two types of
assessments of students’ internal visualization skills. The
qualitative findings relating to RQ1 revealed that students’
production of representational gestures, a validated although
not scalable measure of internal visualization skills, was
associated with higher-quality verbal responses to the post-
interviews, an early version of our formal internal visualization
skills assessment. Students who produced multiple
representational ~ gestures  exhibited  superior  visual
internalization skills in their verbal responses to the interview
questions compared to those who produced few or no
representational gestures during the interviews. When verbally
responding to the interview questions, students who generated
multiple representational gestures were capable of correct recall
of the visuospatial information pertaining to visuals and quick
translation among the visuals, whereas those who generated few
or no representational gestures struggled to do so. Considering
that representational gestures are an empirically validated and
established indicator of internal visualization [28], [29], the
association between students’ representational gestures and
verbal responses to the interview questions suggests that the

early interview version of our formal internal visualization
skills assessment indeed assesses what it intends to assess.

The quantitative findings relating to RQ2 indicated that
students’ log data of interactions with visuals in the ITS were
associated with their production of representational gestures.
The better students’ problem-solving performance, the more
representational gestures they produced during the post-
interviews. That is, students who had lower error rates and
asked for fewer hints throughout the sense-making and
perceptual-fluency activities of the ITS were more likely to
produce more representational gestures during the interviews,
implying better internal visualization skills. These statistically
significant relationships provide empirical support for the
theoretical underpinnings, enhancing the validity of our
approach. This finding implies that students’ log data from an
ITS with external visual representation has the potential to serve
as an informal assessment of their internal visualization skills.

However, Study 1 has several limitations. First, Study 1 had
a small sample size. While the focused nature of our
investigation, coupled with the qualitative nature of the study,
allowed for an in-depth exploration of students' internal
visualization skills, the small sample size means that Study 1
had relatively low statistical power. Further, the small sample
size implies that our results may not generalize to a broader
population. Therefore, future research should be replicated with
a larger sample size to validate and extend our findings. Second,
Study 1 was conducted in a lab setting. Students’ problem-
solving behaviors can differ between the lab and classroom
setting. Third, students’ internal visualization skills were
qualitatively assessed via verbal responses to interview
questions instead of using a test, which required substantial
human input. Fourth, half of the participants were
undergraduate STEM majors, whereas the other half were non-
STEM majors. Students may have diverse prior knowledge,
spatial abilities, and motivations to learn scientific knowledge,
depending on their majors. Therefore, it would be helpful to
examine internal visualization skills with students enrolled in
an engineering course because they would likely be motivated
to learn the targeted knowledge and likely have similar prior
knowledge. Lastly, in keeping with prior research, students’
internal visualization skills were assessed when external visuals
were present. However, this makes it difficult to distinguish
whether students’ ability to retrieve visual information relied
solely on internal visualization or on the given external visuals.
Therefore, it would be desirable to create an assessment of
internal visualization skills that does not present external
visuals.

V. STUDY 2

Study 2 was designed to address several limitations of Study
1. First, to address limitations resulting from the small sample
size of Study 1, Study 2 included a larger sample of students.
Second, to address limitations resulting from Study 1 being
conducted in a lab context, we situated Study 2 in a large-scale
classroom setting of an introductory undergraduate engineering
course on signal processing, offering a real-world educational
setting aimed.
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At the same time, to ensure continuity from Study 1 to Study
2, both studies employed the same ITS. This has the advantage
that we were able to collect the same log data measures of
students’ interactions with visual elements embedded within the
ITS. Additionally, we turned the interview questions from
Study 1 into a scalable test in Study 2. Given that Study 1 had
validated these measures through gesture analysis, this
approach allowed us to leverage the qualitative richness derived
from Study 1, increasing the validity of the measures used in
Study 2.

In sum, building on Study 1, Study 2 aims to deepen our
understanding of the scalable measures we started to explore in
Study 1.

A. Methods

1) Participants

Participants in Study 2 were 141 undergraduate students who
were enrolled in an introductory electrical engineering course
titled “Signals, Information, and Computation” at a large
midwestern university in the United States. Signals Tutor was
incorporated into the course materials. Accordingly, students’
participation was graded as a course assignment; completion of
all activities in Signals Tutor resulted in full credit, otherwise,
no credit was given. After excluding the students who did not
complete all activities in Signals Tutor (30 students) and who
dropped the course (2 students), our analyses included a total of
109 students.

2) Materials
a) Post-Intervention: Internal Visualization Skills Test

To develop the interview questions from Study 1 into a
formal assessment, our research team, which included a content
expert in electrical engineering (third author), used a multi-step
iterative design process. This process resulted in design
principles that are embodied by the resulting test items. First,
we minimized the use of visuals when developing the test items
since the presence of external visuals may have impact on
students’ internal recollection of visuospatial information [16].
As a result, two thirds of the test items were comprised solely
of symbolic representations (e.g., equations). While the
remaining one third of the items included external visuals, these
visuals were only presented to prompt students to select the
corresponding visuals they mentally manipulated or to translate
one visual to another. Secondly, each test item was designed to
involve little computational effort to motivate students to
prioritize visualization strategies over computational strategies.
For example, we purposefully chose numbers that are easier to
compute if simulated visually in space, as opposed to
computing these numbers formulaically, which is technically
doable but substantially more complicated and time-consuming
due to the large number of decimals involved (e.g., 7/4m or
5/4m). Lastly, we included test items requiring the translation
between one visual to another to evaluate whether students can
transfer visuospatial information between visuals [21]. We
engaged in several rounds of iterative design where we applied
these principles and then reviewed and discussed their
implementation. This resulted in a set of multiple-choice test
items (21 items) in a formal assessment of students’ internal
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visualization skills (an exemplary test item is shown in
Appendix B).

Students had to take the internal visualization skills test as an
assignment and received course credit based only on their
completion, regardless of their scores. Students were not
allowed to use a calculator during the test. The reliability for the
internal visualization skills assessment was high with
Cronbach’s o =.79.

3) Measures

We extracted time-stamped logs of problem-solving
interactions in Signals Tutor in the same way as in Study 1.
Additionally, we computed students’ scores on the internal
visualization skills assessment as the average number of correct
responses.

4) Procedures

During the electrical engineering course, students
individually completed four sections of the instructional
activities supplied in Signals Tutor as either in-class activities
(Weeks 1, 2, 4) or as homework (Week 5). In Week 5, students
were instructed to complete the last section of Signals Tutor and
the internal visualization skills test as a homework assignment.

B. Results

To address RQ3 (how log data capturing interactions with
visuals relates to the formal assessment of internal visualization
skills), we adapted the statistical models developed in Study 1
using the measures listed in Table 3.

TABLE 3
Descriptive summary of the variables utilized in Study 2
(N=109)
Variables Mean SD Min Max
Internal visualization 17.28 341 7 71

skills test scores
Error rates during

sense-making 0.30 0.22  0.08 1.46
activities
Error rates during
perceptual-fluency 0.31 0.27  0.03 1.42
activities
Total hint requests 9.84 20.53 0 123

Note. Dependent variable: Internal visualization skills test scores

Table 4 summarizes the results from the linear regression
analyses. We found that students’ error rates during sense-
making (Model 1, ¢ = -4.93, p < .01) and perceptual-fluency
activities (Model 2, t = -4.58, p < .01) were statistically
significant predictors of their performance on the internal
visualization skills test, with 18% and 16% of the model
explanation, respectively (Model 1: R%4gjusied = 0.18, Model 2:
R4gjusiea = 0.16). Students with lower error rates on sense-
making and perceptual-fluency activities achieved significantly
higher scores on the internal visualization skills test. In addition
to the error rates, the total number of hints requested during
sense-making activities (Model 3, t=-3.29, p < .01) was also a
statistically significant predictor of their performance on the
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internal visualization skills test, explaining 8% of the variance
(R’4djusea = 0.08). Students who requested fewer hints
performed significantly better on the internal visualization
skills test.

In Model 4A, which added the second-highest predictive
variable to the best single-variable model (Model 1), both the
error rates during the sense-making activities and perceptual-
fluency activities showed statistically significant predictive
power on the internal visualization skills test scores, with 3.5%
increase in model explanations (Model 4A: R 4gjusied= 0.21). In
Model 4B, which included all predictive variables, the error
rates during the sense-making activities were the sole
statistically significant predictor of test scores, accounting for
21% of the variance, which was the highest model explanation
compared to the others with an increase of 1.2% over Model 4A
(Model 4B: R adjustea= 0.21).

TABLE 4
Summary of linear regression models in Study 2
(N=108)
Model Predictor variables g SE t p
1 Intercept 0.50 38.51 0.00**
Errorrates during 45 1 35 493 0,00%*
sense-making activities
2 Intercept 0.47 40.68 0.00**
Error rates during
perceptual-fluency -0.41 1.13 -4.58 0.00**
activities
3 Intercept 0.35 51.25 0.00**
Total hint requests  -0.30 0.02  -3.29 0.00**
4A Intercept 0.51 38.33 0.00**
Emorrates during. 591 64 277 0.01%
sense-making activities
Error rates during
perceptual-fluency -0.23 135 -2.19 0.03*
activities
4B Intercept 0.51 38.20 0.00**
Emorrates during. 56 1 67 245 0.02%
sense-making activities
Error rates during
perceptual-fluency -1.87 138 -1.87 0.07
activities
Total hint requests  -1.31 0.02 -1.31 0.20

Note. *p < .05, **p < .01

Dependent variable: Internal visualization skills test scores
Model 1: F(1)107) = 24.30,p < .01, RZZ 0.19, RzAd,m;gd: 0.18
Model 2: F(1)107) = 20.99,p < .01, RZZ 0.16, RzAd,m;gd: 0.16
Model 3: F(1)107) = 10.84,p < .01, RZZ 0.09, RzAd,m;gd: 0.08
Model 4AI F (2,106) = 14.92,p < .01, R2 = 0.22, RZAd/'LLY[gd: 0.21
Model 4BZ F (3,105) = 10.63,p < .01, R2 = 0.23, RzAd,m;gd: 0.21

C. Discussion

The results suggest that students’ log data from the ITS is a
useful indicator of performance on the formal assessment
(RQ3). Students with lower error rates across the sense-making
and perceptual-fluency activities and fewer hint requests tended
to have higher scores on the internal visualization skills test.
This aligns with the quantitative findings of Study 1, which
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demonstrated the predictive power of students’ log data on their
production of representational gestures, a validated measure for
internal visualization skills (RQ2). Compared to Study 1, Study
2 has higher statistical power to support this claim. Further,
Study 2 has higher external wvalidity since the learning
intervention was implemented in an actual classroom setting.

More specifically, our results show that, among log data of
students’ problem-solving behaviors, error rates during sense-
making activities showed the highest predictive power of
students’ internal visualization skills when all variables were
incorporated in a single model. Recall that sense-making
competencies describe the ability to understand how visual
features correspond to domain-relevant concepts and to link
multiple visuals based on their conceptual cohesion [38]. Our
findings suggest that sense-making competencies, exhibited
while students work with external visuals, may be a strong
predictor of internal visualization skills, exhibited when
external visuals are absent. Altogether, our findings suggest that
log data from an ITS with interactive visuals can serve as an
informal assessment of internal visualization skills.

Still, Study 2 has several limitations that should be addressed
in future research. First, students received no pre- and post-
intervention knowledge tests. Although all students were
students enrolled in one basic electrical engineering course,
their prior knowledge could vary. Future research should
include pre-tests to examine correlations with internal
visualization skills. Further, it would be interesting to determine
to what extent internal visualization skills correlate with content
knowledge gains that could be assessed via post-tests. Second,
we did not observe students while they took the internal
visualization skills assessment. While students were instructed
not to use additional equipment, such as a calculator, we do not
know if students complied. Third, our study used frequency-
based log data of students’ problem-solving behaviors. Future
research should broaden its analytic scope to incorporate time-
based log data of problem-solving behaviors (e.g., the duration
of time it took to solve each problem) or deepen analysis into
identifying when and where students made errors and asked for
hints. This would enable us to investigate whether time-based
analytics could deepen our understanding of students’
difficulties with internal visualization during the learning
process and may yield insights into how to provide additional
scaffolding. Fourth, the development of the new test did not
involve a stringent validation process. As the purpose of our
study was to showcase that it is possible to assess students'
internal visualization skills using a combination of formal and
informal assessments, we do not propose the developed test as
a definitive measure. Finally, our internal visualization skills
assessment focuses on a specific engineering concept related to
sinusoids. Internal visualization skills are always bound to
specific visuals and associated concepts, and although
knowledge of sinusoids is a fundamental concept in
engineering with extensive applicability to electrical
engineering, computer engineering, and biomedical
engineering because they allow representing signals and
describe many natural and technical phenomena [7].
Nevertheless, future research should expand our work to other
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STEM domains to investigate the generalizability of our
findings.

VI. GENERAL DISCUSSION AND CONCLUSION

Overall, our studies demonstrate the utility of multimodal
data triangulation for the development of an assessment of
internal  visualization skills. Our approach explored
associations and patterns among representational gestures,
interview data, log data, and test data. Further, because the only
established measure of internal visualization skills is not
scalable, we combined a small-scale lab study (Study 1) and
a larger-scale classroom study (Study 2) to verify the
association among the three measures.

Our study illustrates that it is possible to assess students'
internal visualization skills using both formal and informal
assessments. We provide empirical evidence that log data from
an ITS can serve as an informal assessment of students’ internal
visualization skills. At the same time, we present a new formal
assessment of internal visualization skills. Our findings
demonstrated the validity of the formal assessment, which
focused on situations in which students are required to
internally conceptualize visual information and retrieve that
information to provide reasoning and solve problems. We
found the informal and formal assessments correlated with
representational gestures (Study 1) as well as with each
other (Study 2).

Demonstrating the feasibility of developing assessments of
internal visualization skills is important because these skills are
essential in many STEM domains. Any domain where
visualizations play a role in early instruction but are later faded
out—for instance in favor of mathematical formulas as is
common in engineering and mathematics—internal
visualization skills play a critical role in students’ ongoing
learning. Our research contributes to the broader understanding
these internal visualization skills, which are not directly
observable and occur within students’ minds, as well as the
complex interplay between internal visualization skills and
problem-solving behaviors. The nuanced exploration of these
relationships and the development of scalable assessments pave
the way for future research endeavors aimed at enabling
researchers and content developers to evaluate and support
internal visualization skills through instructional interventions
and educational technologies.

Our research shows how multimodal triangulation can be
used for the development of informal and formal assessments
of internal visualization skills. In doing so, we demonstrate the
utility of multimodal triangulation methods to examine
relationships between informal and formal measures. In the
growing line of educational research employing multimodal
data to understand learning processes and outcomes, such as
multimodal learning analytics (MMLA), triangulation is a
common strategy for integrating these diverse data streams. By
triangulating how one type of data (often machine-detected data)
relates to other data (human-annotated data), researchers
endeavor to establish the validity of the potential proxies
employed to infer students' cognitive skills [42] or constructs
[43]. Our work extends conventional triangulation practices by
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incorporating a multifaceted array of cross-validation—
ranging from human-annotated data to log data, progressing
from a small-scale lab setting to a larger-scale classroom setting,
and transitioning from informal measures during the learning
process to formal measures for assessing learning outcomes.
These multi-tiered cross validations not only demonstrate that
the informal and formal measures we suggested indeed assess
what they intend to assess, but also exemplify the adaptable
utility of multimodal triangulation, thereby contributing to the
growth of the MMLA field by fostering the assurance of
indicator validity. This approach can be applied to the many
learning contexts and STEM domains where internal
visualization skills are important for student success.

This contribution is relevant to many stakeholders in the field
of learning technologies. First, it may help designers of
educational technologies to improve the effectiveness of digital
learning tools. By offering an informal assessment (e.g., log
data) of internal visualization skills, our research can help
identify “trouble spots” where students struggle with internal
visualization and to determine when scaffolding is needed. The
use of log data as an informal assessment is a first step to
designing educational technologies that provide timely
interventions and tailored support during the learning process
in order to improve students’ internal visualization skills, which
are essential for many STEM disciplines. Given that informal
measures of internal visualization skills are highly scalable
because they do not require precious classroom time, our
research is an important contribution towards helping design
educational technologies that support students’ acquisition of
internal visualization skills relating to visuals of important
domain-relevant concepts such as sinusoids.

Second, our approach is relevant to instructors and
instructional designers more broadly. By contributing a formal
assessment of internal visualization skills, we offer a tool to
summatively evaluate how accurately students can mentally
represent the visual information they have learned and how well
they are prepared for subsequent instruction on more
complex, advanced concepts that are typically presented as
symbolic representations with limited visual aids. This is
useful for both designers of educational technologies to
evaluate their effectiveness and for instructors who want
to better support their students’ learning.

Further, our work yields novel opportunities for educational
researchers. Internal visualization skills are of high interest to
researchers who examine how students mentally represent
information. Yet, this research lacks a scalable means to assess
these unobservable skills. Potentially as a consequence of this
difficulty, prior research has not sufficiently distinguished
between situations when students when external visuals are
present versus absent regarding assessments of internal
visualization skills. To our knowledge, related research
typically focuses on situations where external visuals are
present [8], [10], [23] even though this may confound the
source of students’ mental retention of visual information. An
advantage of our formal internal visualization skills assessment
is that it minimizes the impact of external visuals on students’
internal visualization of concepts. This consideration is
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important to accurately evaluate students’ ability to internally
conceptualize and manipulate the information.

Finally, we believe that our work has is broadly
applicable to many STEM fields. Our studies were situated
in engineering instruction on sinusoids, which are a
fundamental engineering concept with broad applications
to electrical engineering, computer engineering, and
biomedical engineering [7]. Yet, internal visualization skills
play a fundamental role in many other STEM fields, such as
chemistry [13] or physics [14]. Thus, supporting internal
visualization skills is key to students’ success in many domains.

APPENDIX A

An example of provided visuals that accompanied the
following interview question (#5).

Signals Tutor
A Here's a time-domain graph of a B Here's a phase-domain graph of a ?
sinusoid. sinusoid Hint

€ Let's use mathematics to make sense 2 | Using thetime-domin graph, select the equinores.
‘Then, do the same for the phase-domain graph.
of these graphs!
1 Earth complete one orbit around the Sunin 365.25 3 Since ayear has sbout 65.25 days, | cayspass
days. The f per day betueer und your ansver o three 4
(round toth sures). _ouay: Jenific Done

Interview questions

1-1. How did you figure out the vector corresponds to the winter

solstice?

1-2. Why does the spring equinox correspond to the vector lying

along negative y-axis instead of positive y-axis?

2.  How can we translate the time axis on the time-domain graph to
the phasor graph?

3. What does the phase shift mean on the phase-domain graph?

4.  Why does the phasor corresponding to the equinoxes lie on the y-
axis?

5. What does one time period of the sinusoid mean in the phase
domain graph?

6. We showed that the frequency of the sinusoid that represents
hours of daylight relative to the equator on the Earth is larger than
that on Mars. Equivalently, the time period of the sinusoid
corresponding to Earth is larger than that of the sinusoid
corresponding to Mars. What does this mean in the phase-domain
graph?

7.  How would you measure the magnitude of a phasor if it did not

lie on the x-axis or y-axis?

How do you measure a phase to be negative?

9. Can you make connections between the two: Amplitude and the
initial phase?

*®

APPENDIX B

An exemplary test item.

Solve the following sum of complex numbers as fast as possible without using a calculator:

Sexp(j) + Bexpli¥) + 5expli) + Sexp(iT) + Texp(jx)

3v2 +5v2j 3v2 - 5v2j 0

Done
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