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Abstract Background:

Disturbances alter the diversity and composition of microbial communities. Yet a generalized empirical

assessment of microbiome responses to disturbance across different environments is needed to
understand the factors driving microbiome recovery, and the role of the environment in driving these

patterns.
Results:

To this end, we combined null models with Bayesian generalized linear models to examine 86 time
series of disturbed mammalian, aquatic, and soil microbiomes up to 50 days following disturbance.
Overall, disturbances had the strongest effect on mammalian microbiomes, which lost taxa and later
recovered their richness, but not their composition. In contrast, following disturbance, aquatic
microbiomes tended away from their pre-disturbance composition over time. Surprisingly, across all
environments, we found no evidence of increased compositional dispersion (i.e., variance) following
disturbance, in contrast to the expectations of the Anna Karenina Principle.

Conclusions:

This is the first study to systematically compare secondary successional dynamics across disturbed
microbiomes, using a consistent temporal scale and modeling approach. Our findings show that the



recovery of microbiomes is environment-specific, and helps to reconcile existing, environment-specific
research into a unified perspective.
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Abstract

Background Disturbances alter the diversity and composition of microbial communities. Yet a generalized empirical
assessment of microbiome responses to disturbance across different environments is needed to understand the fac-
tors driving microbiome recovery, and the role of the environment in driving these patterns.

Results To this end, we combined null models with Bayesian generalized linear models to examine 86 time series

of disturbed mammalian, aquatic, and soil microbiomes up to 50 days following disturbance. Overall, disturbances
had the strongest effect on mammalian microbiomes, which lost taxa and later recovered their richness, but not their
composition. In contrast, following disturbance, aquatic microbiomes tended away from their pre-disturbance com-
position over time. Surprisingly, across all environments, we found no evidence of increased compositional dispersion

perspective.

(i.e. variance) following disturbance, in contrast to the expectations of the Anna Karenina Principle.

Conclusions This is the first study to systematically compare secondary successional dynamics across disturbed
microbiomes, using a consistent temporal scale and modeling approach. Our findings show that the recovery
of microbiomes is environment-specific, and helps to reconcile existing, environment-specific research into a unified

Keywords Community disturbance, Microbiome, Bacteria, Disturbance

Background

Bacterial communities are ubiquitous [1]; dynamic [2],
and sensitive to environmental change [3, 4]. A wide
range of literature explores microbiome responses to
rapid environmental change in different environments
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[3], consistently revealing that microbial communi-
ties are affected by disturbance, and generally do not
recover their pre-disturbance composition [5]. Histori-
cally, experimental procedures, designs, and hypoth-
eses regarding the recovery of microbiomes following
disturbance have developed in a largely field-specific
manner (e.g., medical microbiology, soil microbiology,
aquatic microbiology). Consequently, a comparison
of community disturbance responses across microbial
environments is lacking. Whether microbiomes from
different environments exhibit responses to disturbance,
and whether these responses are consistent with extant
conceptual frameworks [6, 7] is a major gap in knowl-
edge, especially considering growing anthropogenic pres-
sures on microbial systems (e.g., pollutants, antibiotics,
and climate extremes).

Properties of the microbial environment likely affect
the dominant responses of microbiomes to disturbance,
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but empirical comparisons of recovery across environ-
ments are scarce [4]. Different microbial habitats have
varying degrees of spatial and temporal heterogeneity,
microbial species pool sizes, connectivity, and resource
availability, all of which may affect community assembly
processes [6], and likely result in different disturbance
responses among environments. For example, animal
gut microbiomes have relatively low diversity [1] and are
dispersal-limited due to selective pressures associated
with host physiology that likely influence the recovery of
the resident microbial diversity. In contrast, soil micro-
biomes are extremely diverse, but poorly connected [8],
likely affecting recolonization following disturbance. The
lack of host-driven selection in these systems, combined
with high diversity may result in communities composed
of different taxon when compared to their pre-distur-
bance state.

Assessments of microbiome recovery often rely on
indicator measurements that are environment-specific
(e.g., host health in host-associated microbiomes or plant
productivity in soil microbiomes), hindering the com-
parison of microbial disturbance responses across envi-
ronments. By considering changes in diversity at multiple
spatial scales (i.e., within and among samples) and the
role of spatial connectivity in these responses, the meta-
community framework [9] can help to synthesize and
explicitly compare microbial community responses to
disturbance across environments, and in turn provide
new insights into the role of the environment in shap-
ing these responses [4]. To this end, publicly available
16S rRNA gene amplicon sequences can be leveraged to
assess bacterial community responses-as changes in bac-
terial richness (the number of taxa present in a sample)
and composition (variation in taxon relative abundance
between samples). Generally, we expect that across envi-
ronments, community richness will decrease (Fig. 1a), as
has been found across both aquatic and terrestrial eco-
systems [10] We also expect that community composi-
tion will change immediately after the disturbance, due
for example to differential mortality and an altered com-
petitive landscape [5]. However, environmental change
does not consistently result in decreased richness [11].
Additionally, in microbes, disturbances may involve
the addition of novel taxa (e.g., with sewage sludge
amendments to soil [12]), which may result in richness
increases. Over longer time scales following disturbance,
richness may either fail to fully recover (at least within
the period observed; e.g., [13]), recover fully [14], or even
be higher following disturbance [15].

Community composition is often a more robust indica-
tor of biodiversity change than richness [11]. Composi-
tional changes can be assessed in terms of compositional
variation among local communities [16], or dispersion,
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and the extent to which the community recovers to its
pre-disturbance composition, or turnover (Fig. 1b). Fol-
lowing disturbance, dispersion can decrease, for exam-
ple, if a stressor is selective and leaves only tolerant taxa
to persist. Alternatively, dispersion can increase, for
example, if the stressor is non-selective, or more gener-
ally if taxa that persist following disturbance differ [17].
In microbiomes, the Anna Karenina Principle (AKP),
derived primarily from the observation of host-associ-
ated communities, posits that healthy microbiomes are
more stable, and thus less variable than disturbed ones
[18].

Given enough time, we expect the same taxa that dom-
inated prior to a disturbance to recover their original
abundances [4], especially in host-associated microbi-
omes, which can be modulated by the host [19]. How-
ever, under some circumstances (e.g., strong or long
disturbances, or invasion by novel taxa [20, 21]), it is
also possible that the disturbance could permanently
alter relative abundance patterns in the community [22,
23], resulting in communities that tend away from their
pre-disturbance composition over time. Across envi-
ronments, microbiomes have been shown to recover
towards (negative turnover, e.g., [14, 24]), or to drift away
from (positive turnover, e.g., [25], their pre-disturbance
compositions. Importantly, both changes in dispersion
and turnover can arise from changes in richness alone
and null models have been developed that allow for the
measurement of compositional change independent of
changes in community richness [26].

Meta-analyses focusing on the undisturbed temporal
dynamics of microbial communities have shown consist-
ent patterns across systems [2, 5, 27], but temporal dis-
turbance responses have received less attention [4]. To
this end, we performed a synthetic analysis of the time
series of disturbed aquatic, mammal-associated, and soil
microbiomes. Across environments, we compared the
initial response and subsequent recovery from distur-
bance in terms of community richness, dispersion, and
turnover, and used null models to disentangle whether
the observed changes in dispersion and turnover were
due to changes in richness. Given the rapid rates of com-
positional turnover in microbiomes [28], we focused
on 29 studies that repeatedly sampled the microbiomes
within 50 days post-disturbance.

Methods

Dataset selection

Using Google Scholar and Web of Science search engines
(a list of keywords is available as Supplementary Mate-
rials), we collated bacterial studies from systems where
an experimental disturbance was imposed, and 16S
rRNA gene amplicon sequencing datasets were available.
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Fig. 1 Microbial community dynamics after disturbance. The microbial community can be characterized in terms of its pre-disturbance state
(yellow), its immediate response (green), and its long-term response (blue). Community richness can be monitored over time (a). In multivariate
dissimilarity space (shown as ordinations in b and ¢, with samples as points), we can measure the dissimilarity between all experimental replicates
in a study to quantify variability (b left, dispersion),and the dissimilarity between undisturbed communities and recovering communities to quantify
overall changes in the community (b right, turnover). In b, gray dotted lines indicate pairwise comparisons included in each metric. Over time,
disturbed community dispersion can increase (c, left) or decrease (c, right), and the community can tend towards the pre-disturbance state
(negative turnover; ¢, top) or away from the pre-disturbance composition (positive turnover; ¢, bottom). For each set of samples, the centroid

is indicated by an asterisk. In a, b, and ¢, color indicates stages of recovery. In ¢, insets indicate how turnover (purple) and dispersion (red) are

visualized as change over time

Specifically, we chose studies that (1) were sequenced
in Illumina or IonTorrent platforms; (2) sequenced the
V3-V4 regions of the 16S rRNA gene; (3) were published
after 2014; (4) repeatedly sampled microbial communi-
ties following a discrete disturbance or environmental
change; (5) included samples from before the disturbance
(i.e., controls), at least one (replicated) sample within a
week after disturbance, and at least one (replicated) sam-
ple within a month after disturbance; and, (6) included
experimental triplicates (i.e., three samples per time
point). Criteria 1-3 ensured that the sequencing tech-
niques were comparable between studies, and reduced

the biases associated with sampling different regions of
the 16S rRNA gene [29]. Importantly, downstream analy-
ses adopted a synthetic framework (i.e., we reprocessed
sequences using a single approach described below),
and samples from different studies were not combined.
We applied criteria 4—6 to examine variation in rates of
compositional change across environments. Criterion 6
ensured that the variability of the microbiomes at each
time point could be measured. We defined a disturbance
causally, as a “discrete, rapid environmental change” [30].
We excluded datasets for which raw sequencing data
were not publicly available and stopped data collection

Journal : BMCTwo 40168

Article No : 1802
MS Code :

Dispatch : 28-3-2024 Pages : 14
O LE
M CP

O TYPESET
M DISK

160
161
162
163
164
165
166
167
168
169
170
171



172
173

Jurburg et al. Microbiome _##############HHHHARH_

in October 2020. In all, datasets from 29 studies matched
our criteria [14, 23, 31-54], see Table S1 for all datasets).

1JX0ll We grouped these time series into three environmental
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categories: aquatic, mammal-associated, and soil micro-
biomes (including rhizosphere microbiomes). To further
explore the role of disturbance type on the observed
phenomena, we categorized disturbances according to
their effect on the community as previously done in mac-
roecology [16]. Categories included mortality-induc-
ing treatments (e.g., heat, azoxystrobin, ciprofloxacin,
mechanical removal), mortality-inducing treatments
combined with a microbial invasion (e.g., cefuroxime
and Clostridium difficile), mortality-inducing treatments
combined with nutrient additions (e.g., heat and fertilizer
additions), drought, invasions (e.g., the addition of Pseu-
domonas or C. difficile), metal pollution (e.g., cadmium
additions), nutrient additions (nitrate, chitin, diesel),
nutrient additions including potential invasions (e.g., the
addition of wastewater, the addition of diesel and a bacte-
rial consortium), and PAH contamination.

Sequence reprocessing and functional inference

Raw 16S rRNA gene amplicon data and metadata were
obtained from the NCBI Sequence Read Archives with
the exception of two datasets, one of which came from
another database, and the other was obtained directly
from the authors (see Table S1 for accession numbers).
We reprocessed sequences in R 3.4.3 [55] using the
dada2 package [56], and a conservative approach. To
account for the different sequence qualities across data-
sets and to improve comparability in the reprocessed
data, each dataset was inspected and reprocessed sepa-
rately, and downstream statistical analyses accounted
for between-study differences. Prior to processing, we
visually inspected two samples per study with the plot-
QualityProfile to determine whether the reads had been
merged prior to archiving, and to confirm that primers
were not present. We only used forward reads because
reverse reads were not available for all studies. Follow-
ing inspection, we trimmed and truncated sequences on
a study-by-study basis (see Table S1 for trimming and
truncation lengths) to preserve a 90-bp segment, the
minimum recommended in the Earth Microbiome Pro-
ject protocols [1] (and the maximum allowed by studies
that used Illumina HiSeq machines). We acknowledge
that 90 bp is shorter than the length that is often used in
amplicon sequencing studies and that longer segments
would have detected higher microbial diversity; however,
our aim was to compare diversity patterns across studies,
for which short read lengths are suitable [57]. Similar to
downstream rarefaction, trimming all segments to the
same length ensured a comparable degree of biodiversity
detection across studies [57].
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We filtered, dereplicated, and chimera-checked each
read using standard workflow parameters [58]. While
we did not use taxonomic assignments in our analyses
or compare amplicon sequence variants (ASVs, 100%
sequence identity) across datasets, we assigned reads to
ASVs with the SILVA v.132 training set [59] to remove
non-bacterial ASVs. Unassigned, bacterial ASVs (i.e.,
those classified as Bacteria) were preserved. Details about
the percentage of reads lost at each step of sequence pro-
cessing, per study, are included in Fig. S1. As the samples
included in these studies had a wide range of sequencing
depths across samples (independent of the study envi-
ronment), we randomly subsampled each sample to 1500
reads per sample to obtaina similar degree of biodiversity
detection across studies. To ensure that our findings were
not affected by observation depth, we additionally ran all
analyses in parallel using the deepest possible observa-
tion depth (with a lower bound of 1500 reads per sample)
for each study (Table S1). As our findings were consistent
regardless of standardization (Fig. S2), we present only
the results from the global rarefaction (i.e., 1500 reads
per sample for all samples). To examine the completeness
of each sample relative to the total richness in a commu-
nity, we calculated sample completeness [60] using the
BetaC package [61]. On average, our samples represented
0.96+0.05 (mean+sd) of the community. We removed
any time points that had fewer than three experimen-
tal replicates for each time series. We coded time series
so that time (days) >0 occurred after disturbance, and
time <0 denoted the pre-disturbance community.

Calculation of richness and turnover metrics

To examine variation in diversity across environments we
calculated metrics that quantify diversity within samples
(richness), and variation in taxon composition between
samples (turnover). We calculated richness and turnover
metrics using the phyloseq package’s data structure [62].
We calculated species richness as the number of unique
ASVs per sample (Hill g=0), and Inverse Simpson’s index
(Hill g=2 [63]). We used Bray—Curtis dissimilarity to
quantify two aspects of compositional variation. First, to
describe the compositional variation between samples
collected at the same time point, we calculated disper-
sion as the pairwise Bray—Curtis dissimilarity between
all combinations of experimental replicates for each time
point within each time series. For studies that resam-
pled the same experimental unit (e.g., host organism or
microcosm) over time, we excluded pairwise compari-
sons between samples from the same experimental units.
Second, to quantify how composition changed follow-
ing disturbance, we calculated turnover using pairwise
dissimilarities between all control samples (i.e., pre-dis-
turbance) and all subsequent replicate samples at each
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time point following disturbance. Using this approach,
communities that recover their pre-disturbance state
will have a negative slope estimate through time, while
communities that become increasingly different from the
pre-disturbance community over time will have a positive
slope estimate (Fig. 1).

Because compositional changes can be due to changes
in richness alone, we used a null model to disentangle
compositional changes from changes in richness. We ran-
domly permuted abundance values within each sample
1000 times, preserving the number of taxa (i.e., richness)
for each sample, and recalculated turnover and disper-
sion metrics for each matrix to derive a null expectation
for each. For both metrics, Z-scores were calculated as

expected

observed _ .
S peted——» Where pePected i the mean of the resam-
ples, and oexpected j¢ the standard deviation. Z-scores are

a powerful method to explore dissimilarities as deviations
from a null expectation [64], perform particularly well
for long-tailed microbiome data, and are recommended
over subtraction-based dissimilarity partitioning meth-
ods [65]. Statistical analyses evaluated dissimilarity and
Z-score values in parallel. Significant (95% credible inter-
val) patterns observed in both dissimilarity and Z-score
data were attributed to changes in community richness;
while significant patterns observed only in the Z-score
data were attributed to changes in the relative abundance
of taxa within the community. We present models fit to
the raw dissimilarity metrics (i.e., Bray—Curtis) in the
main text, and report where they differed from analyses
of the Z-scores, which are presented in full in Figs. S6
and S9. All code for bioinformatics processing and null
models is available at https://github.com/drcarrot/Distu
rbanceSynthesis.

Statistical analyses

We fit generalized linear models to assess how richness,
dispersion, and turnover change in response to distur-
bances using Bayesian methods and the brms pack-
age [62], and detailed information about each model is
provided in the “Supplementary methods” section. We
performed all analyses at the ASV level. To quantify the
immediate response of richness and dispersion to distur-
bance, we used before-after analyses that compared data
from prior to the disturbance to samples taken <4 days
post-disturbance; to determine whether responses dif-
fered between environments (i.e., aquatic, mammal,
soil), we included an interaction between the before-
after and environment categorical covariates. Five stud-
ies were excluded from the before-after analyses due to
a lack of samples (Table S1). To quantify how richness
and dispersion changed through time following distur-
bance, we fit models to data from the first 50 days post-
disturbance only (i.e., pre-disturbance samples were not

Page 5 of 14

included). Finally, to examine how composition changed
from pre- to post-disturbance, we fit models to turno-
ver that quantified compositional changes between the
pre-disturbance controls and samples taken in the first
50 days post-disturbance. To determine whether changes
following disturbance differed between environments,
all-time series models included an interaction between
time and environment. Time (in days) was fit as a con-
tinuous covariate and was centered by subtracting the
mean duration from all observations prior to modeling.
We fit all models with the same, hierarchical grouping (or
random-effects) structure: to account for methodological
variation between studies, weincluded varying intercepts
for each study in all models; and, because many studies
included more than one disturbance type (e.g., [35]), we
included varying slopes and intercepts for time series
within studies (i.e., one time series per disturbance type).
Models fit species richness (i.e., the before-after and
time series models) assumed a negative-binomial error
distribution and a log-link function. In addition to the
parameters and the grouping structure described above,
the shape parameter of the negative-binomial distribu-
tion (that estimates aggregation) was also allowed to vary
among studies. Models fit raw values of dispersion and
turnover assumed Beta error, a logit-link function, and
the precision parameter was allowed to vary among stud-
ies. Models fit to Z-transformed dispersion and turnover
assumed Gaussian error, an identity link, and to account
for heteroskedasticity residual variation (i.e., the sigma
parameter) was modeled as a function of the environ-
ment and allowed to vary among studies. The modeled
responses and means per group, as well as the 95% CI,
are depicted together with the data where applicable. For
each comparison and for each environment, we identified
time series that exhibited an upward or downward trend
if the 97.5% CI did not overlap with zero, and neutral
otherwise.

For Bayesian inference and estimates of uncertainty, we
fit models using the Hamiltonian Monte Carlo (HMC)
sampler Stan [66], which was coded using the brms pack-
age [67]. We used weakly regularizing priors, and visual
inspection of the HMC chains showed excellent con-
vergence. All code for statistical analyses is available at
https://github.com/sablowes/microbiome-disturbance.

Results

Our final dataset included 2588 samples in 86-time series
from 29 studies (Table S1) belonging to soil micro- and
mesocosms (1=49), seawater mesocosms (#=16), and
mammalian microbiomes (n=21) that were sampled
multiple times within 50 days after disturbance (Fig. 2a).
Across all samples, we detected 56,480 ASVs. Sample
completeness was highest in mammalian microbiomes
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Fig. 2 Samples used in this meta-analysis. We selected a time series which had control samples and multiple samples after disturbance (a).

A vertical black line denotes a disturbance event in all cases; samples taken on the day of the disturbance (before or after) are shown along this
line. A vertical gray line indicates the fourth day after the disturbance. Studies which had not sampled the recovering microbiome within <4 days
after disturbance were excluded from assessments of the immediate impacts of disturbance on richness and dispersion. All samples were
standardized to 1500 observations per sample, and had an average sample completeness >90% (b). In b, the sample completeness for all samples
included in the synthesis is shown as a histogram. Sample completeness, or the proportion of the community that belongs to sampled taxa [60],

was estimated according to [61]

(0.98 +0.02; mean +sd), lowest and most variable in soil
microbiomes (0.93+0.06), and was significantly differ-
ent between environments (ANOVA, F=475.1, p<0.001,
Fig. 2b).

Richness in disturbed and recovering microbiomes

Prior to disturbance, mean richness was highest in soil
microbiomes with 327 ASVs [95% CI 196-506], followed
by aquatic 184 [111-281], and mammalian 86 [51-133]
microbiomes (Fig. 3a). While all environments exhibited
decreases in microbiome richness following disturbance,
only the decrease in the mammalian microbiomes statis-
tically differed from zero, and all mammalian time series
(n=19 time series) exhibited a downward richness trend
(Table 1). This pattern was primarily driven by time series
which employed disturbances that likely caused mortal-
ity, or those that introduced an invasion, or a combina-
tion of both (Fig. S3). In contrast, all aquatic time series
(n=14) and most soil time series (n=20) with the excep-
tion of four exhibited neutral trends (Table 1).

On average, the post-disturbance richness in mam-
malian . microbiomes was approximately 43% of that
found pre-disturbance (Fig. 3a), and over time, rich-
ness increased consistently at a rate of approximately
2% (1-3%) per day (Fig. 3b), a phenomenon that was
observed across disturbance types and was present in all
mammal time series (n=19) except for one that exhibited
neutral trends. In general, the mammalian microbiomes
that lost the most richness after disturbance also recov-
ered this richness most rapidly over the following 50 days
(Fig. S4). In contrast, no overall patterns were observed
in the richness in aquatic and soil time series, although
they exhibited either neutral responses or (#=11 and
n=41 for aquatic and soil time series) or the continued

loss of richness over time (n=5 and n=6, respectively,
Table <S1). These results were consistent when alpha
diversity recovery was assessed as inverse Simpson’s

index (Fig. S5).

Dispersion and turnover

All microbial communities were under dispersed relative
to the null expectation, and 97% of Z-scores were nega-
tive. All of the lowest Z-score values (< —400) belonged
to mouse microbiomes, for which we detected fewer than
30 ASVs. On average, dispersion did not change imme-
diately after disturbance for any environment (Fig. 4a,
Table S2). However, we found a decrease through time
following the disturbance in dispersion values for mam-
malian microbiomes (Fig. 4b), though this pattern was
not present in the Z-scores (Fig. S6), indicating reduced
compositional variation was associated with a reduction
in richness, rather than changes in relative abundances.
The strongest responses were from microbiomes exposed
to invasion (n=1), mortality (#=10), or a mixture of
both (=8, Fig. S7). Most mammal time series (n=13)
exhibited a decreasing dispersion over time, while 7
exhibited neutral dynamics (Table 1). Similarly, soil time
series exhibited mostly decreasing (n=15) or neutral
(n=31) dispersion dynamics, with only one-time series
increasing in dispersion over time. In contrast, aquatic
time series exhibited either neutral (n=11) or increasing
(n=5) dispersion over time.

We found environment-specific turnover between
composition pre- and post-disturbance. On average,
mammalian microbiomes exhibited negative turnover,
and most time series (7 =14) tended to recover toward
their pre-disturbance composition (Fig. 5, Table 1).
This pattern was consistent across disturbance types
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Fig. 3 The effect of disturbance on microbiome richness, immediately (<4 days) after disturbance (a), and over 50 days of recovery (b). Richness
was calculated as the number of observed taxa in each sample:and is presented in a log,-transformed y-axis. Points represent samples and are
colored by study. In a, solid black points indicate the modeled mean across time series per environment with a 95% Cl indicated by error bars. In
b, thin regression lines for each time series are colored by study, and the solid black line shows the modeled mean response across time series
per environment. The 95% Cl is displayed as a gray-shaded area, and environments for which overall trends deviate from zero are indicated

with an asterisk (¥) on the bottom right corner

Table 1 Microbiome disturbance responses per environment

Aquatic Mammal Soil

!l - 1 | - 1 1 - 1
Immediate richness change 0 14 0 19 0 0 4 20 0
Temporal richness change 5 11 0 0 1 19 6 41 0
Immediate dispersion change 0 10 4 2 13 2 0 29 4
Temporal dispersion change 0 11 5 13 7 0 15 31 1
Turnover 0 0 16 14 6 0 2 29 16

For each comparison and for each environment, we identified time series that exhibited an upward or downward trend if the 97.5% Cl did not overlap with zero, and
neutral otherwise. Numbers indicate the numbers of time series responding according to a specific parameter (e.g., immediate richness change)

and was strongest for microbiomes subjected to inva-
sion (n=1), mortality (#=10), or a combination of
both (n=8, Fig. S8). Importantly, negative turnover
was not found when assessed with Z-scores (Fig. S9),
indicating that recovery occurred through an increase
in richness, not due to the recovery of relative abun-
dances. In contrast, following disturbance, aquatic

microbiomes exhibited positive turnover, tending away
from their pre-disturbance controls over time. This
pattern was present in all-time series (#=16), and
was consistent whether raw values (Fig. 5) or Z-scores
were modeled (Fig. S8), indicating that changes in the
identity and relative abundance of taxa, rather than
simply changes in the number of taxa in the system
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Fig. 5 The effect of disturbance on community recovery is environment-dependent. For each time series, recovery was calculated as the pairwise
dissimilarity between post-disturbance samples and pre-disturbance controls. Each point is a pairwise comparison, colored by study. Microbiomes
which recover their pre-disturbance state will exhibit negative slopes; microbiomes which continue to drift away from their pre-disturbance
composition over time will exhibit positive slopes. Thin regression lines for each time series are colored by study, and a solid black line indicates

the modeled mean response across time series per environment. The 95% Cl is displayed as a gray shaded area, and environments for which overall
trends deviate from zero are indicated with an asterisk (*) on the bottom right corner
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were responsible for this drift away from a pre-dis-
turbance composition. While all-time series followed
this response regardless of the type of disturbance,
PAH and metal-contaminated microbiomes (z=1 for
each) exhibited the strongest response (Fig. S8). Nota-
bly, while no consistent responses were found in soil,
most time series exhibited positive (#=16) or neutral
(n=29) turnover, with only two-time series tending
towards recovery (i.e., negative turnover).

Finally, to examine the relationship between the
immediate disturbance responses (i.e., the strength
of the disturbance) and compositional changes over
time subsequent to the disturbance, we plotted rates
of temporal turnover as a function of the magnitude
of the immediate (<4 days after disturbance) changes
in richness (Fig. 6). This relationship was environ-
ment-dependent. Aquatic microbiomes predominantly
exhibited no immediate richness responses to distur-
bance and positive turnover thereafter (i.e., compo-
sition moved away from pre-disturbance controls);
mammalian microbiomes exhibited an immediate
loss of richness and a negative turnover (i.e., recovery
toward pre-disturbance composition); and soil micro-
biomes exhibited very weak or no responses in terms
of both immediate richness responses and turnover
following the disturbance (Fig. 6). This pattern was
consistent, but weaker when turnover Z-scores were
modeled, especially for mammalian microbiomes (Fig.
S10).
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Discussion

We synthesized metabarcoding data to show how micro-
bial community responses to disturbance vary across
three environments at time scales that are relevant to
microbiome turnover rates and bacterial life histories [28,
68]. We focused on the richness, dispersion, and turno-
ver of microbiomes recovering from 86 different dis-
turbances in three different environments, and further
partitioned the latter two into shifts caused by changes
in richness or in the relative distribution of taxa in order
to shed light on the ecological processes driving micro-
bial recovery. We found environment-specific responses:
aquatic microbiomes tended away from their pre-distur-
bance composition following disturbance, while mam-
malian microbiomes tended to recover towards their
pre-disturbance state. Soil microbiomes exhibited no
clear patterns. Furthermore, we found no indication that
disturbances increased dispersion in any environment,
in contrast with the Anna Karenina Principle (AKP), and
instead found the opposite pattern, especially in mam-
malian microbiomes. These findings highlight consistent
response patterns within environments and consistent
differences between environments.

Contrary to our expectation, we only found modest
losses in richness following disturbance. On average,
only mammalian microbiomes experienced statistically
significant richness loss. This loss likely underscores the
efficacy of antibiotics, which were used in 76% of mam-
malian microbiome time series, often in combination

<«-richness lost

richness gained—>

0.2
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A @ Aquatic
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£ ® Mammal
C
011 g Soil
2 |§
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Immediate richness response [log(S)]
Fig. 6 Relationships between the immediate effect of a disturbance on richness and a microbiome’s long-term recovery of composition vary
among environments. Each point is a time series, colored by its environment. Immediate richness responses were calculated as the before-after
effect of disturbance on log-transformed community richness (Fig. 3a). Turnover rates were calculated as the modeled slope estimates
of logit-transformed turnover over time. Error bars show the 95% Cl for both metrics. Large points indicate the mean responses per environment

Journal : BMCTwo 40168

Article No : 1802
MS Code :

Dispatch : 28-3-2024 Pages : 14
O LE O TYPESET
M Cp M DISK

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517



518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

Jurburg et al. Microbiome _##############HHAHHHH_

with an invader such as C. difficile [23, 35] Disturbances
in soil and aquatic environments in our study were domi-
nated by nutrient additions (e.g., inorganic nitrogen and
phosphorus inputs in aquatic microbiomes, [49] or humic
acid amendments in soil, [45]), which are not directly
expected to decrease richness. Surprisingly, we did not
record any instance of a nutrient addition increasing
richness in these systems, but this may be because all the
experimental systems selected in the meta-analysis were
partially closed to dispersal from the local environment
(e.g., microcosms and mesocosm).

Despite their strong initial response to disturbance,
mammalian microbiomes exhibited a clear and rapid
trend toward recovery over time. Our null model analyses
showed that richness changes were largely responsible for
the decreases in community dispersion (i.e., more similar
taxa composition) and negative turnover following the
disturbance, suggesting that in mammals, disturbance
generally resulted in the loss of specific taxa followed by
a rapid recolonization by these taxa. Given the absence
of this pattern in soil or aquatic microbiota, our find-
ings suggest role of the host in modulating and perhaps
accelerating the recovery of the resident microbiota. Host
behaviors such as eating [69] and socializing [70] may
function as mechanisms of active dispersal, and together
with the immune system may act as a selective pressure
[19], resulting in recovered microbiomes that resem-
ble the undisturbed communities. Several studies have
demonstrated the high variability in host responses to
disturbance [71] and the dependence of these responses
on the environment [72]; however, by comparing these
responses with those found in other environments, we
found that host-associated microbiomes exhibited the
strongest and most consistent responses to disturbance.

Surprisingly, aquatic microbiomes tended to become
more dissimilar from their pre-disturbance compositions
over time. This pattern may be due to the high connec-
tivity and constant mixing of resources (i.e., nutrients)
in aquatic microbiomes [73]. Due to the different experi-
mental designs included in this synthesis, it was not
possible to determine whether the communities were
generally drifting towards a specific composition (i.e., an
alternative stable state [74]).

In contrast, in the highly heterogeneous soil environ-
ment, microbiomes did not exhibit strong responses to
disturbance. Nevertheless, similarities with the other
environments were present: in all environments, we
recorded no instances of soil microbiomes increasing
in richness immediately following disturbance. Like
in aquatic microbiomes, we also found no instances
of soil microbiomes recovering their richness over
time following disturbance, or of dispersion decreas-
ing immediately after disturbance. We also found that
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a substantial portion of the soil time series tended away
from their pre-disturbance state. As in mammalian
microbiomes, we found several instances of microbi-
ome turnover tending towards decreased dispersion
over time.

In the above cases, most time series in soil exhibited
neutral responses (i.e., no detectable trend), however.
This pattern could be due to the extreme diversity and
heterogeneity found in this system [75], or due to tech-
nical limitations of this study. Nevertheless, standardiz-
ing the data to the maximum depth for each time series
yielded identical results, suggesting that higher resolu-
tion may be necessary to capture community recovery in
soils and disentangle the role of rare taxa from stochas-
ticity. The conservative approaches we employed for the
selection, processing, and analysis of the data aimed to
facilitate cross-study comparisons, but limited the con-
tribution of rare taxa (i.e., those with low relative abun-
dance) in our analyses of diversity change. Recognizing
these limitations, we focused on the dominant taxa, using
abundance-weighted metrics (Bray—Curtis). This likely
impacted our analysis of soil most strongly, as soil micro-
biomes had the highest overall richness and lowest sam-
ple completeness estimates, and rare taxa are important
sources of variation in soil microbiomes [76, 77].

It is likely that our sample size (7 =286 time series) and
statistical methods (applied to standardize and enable
direct comparison across habitats) have together pro-
vided a broader analysis than was previously achieved
from habitat-specific studies. We found no indication
that dispersion increases immediately or over time fol-
lowing disturbance, in any environment, in direct con-
trast with the AKP. The AKP proposes that dysbiotic
microbiomes exhibit an increased host-to-host variation
[18]. Importantly, our synthesis did not include measures
of dysbiosis, as these were not consistently available and
the definition of dysbiosis can vary widely. Instead, we
compared the microbiomes to their pre-disturbance state
and found that disturbance does not consistently increase
dispersion, at least in the dominant portion of the com-
munity. While changes in dispersion are often reported
in the microbial literature [78-80], dispersion is generally
measured as pairwise Bray—Curtis dissimilarity among
experimental or field replicates, and confounds changes
in richness with compositional changes [26, 81]. We
found that, in general, when dispersion decreased (i.e., in
mammals), it was due to decreasing species richness in
the community, not due to changes in the relative abun-
dance of community members. We also found that in the
absence of a host, soil and aquatic microbiomes tended
to shift away from their pre-disturbance conformation,
suggesting that environmental microbiomes are less
prone to recovery than mammalian ones. Taken together,
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this synthesis sheds light on similarities across environ-
ments and highlights the role of the host in microbiome
recovery.

Conclusion

Our work highlights the need to reconsider the defini-
tion of disturbance in the microbiome [82]. We included
a wide range of disturbances, and categorized them
according to a framework that considered the direct
effect of the disturbance on the microbial community and
that largely echoes similar categorizations in macroecol-
ogy (e.g., [10, 16]). For example, when sterilized, organic
amendments represent a novel source of resources, but
when applied unsterilized, they also potentially include
an invasive community, a scenario that deviates from the
classic invasion literature [83]. Furthermore, selective
disturbances (e.g., antibiotics) remove similar taxa across
experimental replicates, resulting in the homogenization
of microbiomes, and decreasing dispersion [47]. In con-
trast, disturbances that affect taxa randomly could lead
to the microbiomes becoming more dissimilar, increas-
ing the influence of ecological drift, and consequently,
compositional dispersion. The duration of disturbances
also varied, especially relative to bacterial life histories
and ecologies [28]. Pulse disturbances which last multiple
days may encompass multiple life cycles for many micro-
bial taxa. Similarly, disturbances which may be consid-
ered long-term changes for macro-organisms (i.e., oil
pollution), may represent short-term resource pulses for
oil-degrading bacteria. In a world in which microbiomes
are exposed to increasing disturbance pressures, develop-
ing a set of descriptors for disturbances based on their
effect on the microbiome’s niche space and competitive
landscape is urgently needed.

Our study reconciles several hypotheses that have
been proposed for microbiomes, with different hypoth-
eses supported in different. environments. First, we find
strong support for the tendency to drift away from the
pre-disturbance state in aquatic systems, and mild sup-
port in soil systems [74]. Second, we find a strong ten-
dency towards recovery in mammalian microbiomes,
characterized by the loss of specific taxa during distur-
bance and their return thereafter. Third, we find little
general evidence for changes in compositional disper-
sion (after accounting for changes in richness) following
disturbance, in contrast to the AKP. Our work focused
on community-level responses to disturbances across
microbiomes, but did not delve into the responses of spe-
cific taxa due to the differences in sequencing techniques
(and especially primer choice among studies [84]. Future
work may focus on smaller subsets of data that use con-
sistent techniques to identify responsive taxa. Our results
highlight how richness alone does not capture complex
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microbiome dynamics, similar to findings in ecology [11].
Further work is needed to distinguish the consequences
of selective versus non-selective disturbances (e.g., those
that impact certain populations versus those that indis-
criminately impact all populations) on microbiome
responses. Overall, this work provides a new empirical
perspective on the dynamics and generalities of microbi-
ome disturbance responses that are supported by directly
comparable metrics, equivalent temporal scales among
datasets, and a consistent modeling approach. It suggests
that with comparisons of standardized diversity meas-
ures, responses that were previously believed to be appli-
cable to all microbiomes (i.e;; the AKP) are not present
and that the environment (especially the host) is a key
determinant of the microbiome of both the response to,
and recovery from, disturbance.

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/540168-024-01802-3.

Additional file 1: Supplementary methods. Literature Search. Table S1.
Accession numbers and links to all sequences reused in this work and
their processing parameters. Table S2. Slope estimates for models com-
paring immediate changes in dispersion following disturbance, calculated
on Bray—Curtis values and null model outputs. Figure S1. Proportion

of reads preserved after quality filtering (a), chimera checking (b), and
selection of bacterial reads (c). All data is presented as a proportion of
the number of reads originally recovered from public databases, and pre-
sented per study. Studies are labeled with their corresponding DOIs, and
additional per-study information is found in Table S1. Figure S2. Models
fit to data standardized across studies and to data standardized within
studies yield very similar parameter estimates. Each panel shows the fixed
effect estimates for models fit to (a) richness before-after disturbance,

(b) richness change through time following disturbance, (c) dispersion
before-after disturbance, (d) dispersion (z-score) before-after disturbance,
(e) dispersion change through time following disturbance, (f) dispersion
(z-score) change through time following disturbance, (g) turnover change
through time following disturbance, and (h) turnover (z-score) change
through time following disturbance. Rarefaction performed within time
series selected the deepest possible observation depth for each time
series or 1500 reads per sample and only mildly increased coverage

from 0.96+0.05 to 0.98 +0.04. Importantly, sampling depth and sample
richness were not correlated. Figure S3. Posterior distributions of the
immediate response in richness to disturbance, separated by disturbance
type and microbial realm. For each category, n indicates the number of
time series included in each category. The dashed line indicates an effect
size of 0. Solid lines indicate the mean for the realm, and the shaded area
indicates the 95% Cl. Figure S4. The immediate effect of a disturbance
on richness was only related to the rate of recovery of richness in mam-
mals. Each point is a time series, faceted by environment. Immediate
richness responses were estimated as the effect of disturbance on log-
scale community richness (Fig. 3a). Richness response to treatment was
calculated as the slope estimates of richness over time. Error bars show
the 95% Cl for both metrics. Large circles indicate the mean response per
environment. Figure S5. Slope and interval estimate of richness (Hill g,
purple) and inverse Simpson’s index (Hill g, blue) immediately follow-
ing disturbance (a) and over time (b). Error bars represent 95% credible
intervals. Figure S6. The effect of disturbance on microbiome dispersion,
immediately (<4 days) after disturbance (a), and over 50 days of recovery
(b). Dispersion was calculated as the pairwise Bray—Curtis distance
between replicates for each time point within each time series, and each
circle is a Z-score of a pairwise comparison, colored by study. In g, solid
black circles indicate the mean across time series per environment with
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a 95% Cl indicated by error bars. In b, regression lines for each time series
are colored by study, and the solid black line shows the mean response
across time series per environment. The 95% Cl of the overall response in
each environment is displayed as a grey shaded area, and environments
for which overall trends deviate from zero are indicated with an asterisk (*)
on the bottom right corner. Figure S7. Posterior distribution of temporal
response of dispersion to disturbance, separated by disturbance type and
microbial realm. For each category, n indicates the number of time series
included in each category. The dashed line indicates an effect size of 0.
Solid lines indicate the mean for the realm, and the shaded area indicates
the 95% Cl. Figure S8. Posterior distribution of temporal response of
turnover to disturbance, separated by disturbance type and microbial
realm. For each category, n indicates the number of time series included
in each category. The dashed line indicates an effect size of 0. Solid lines
indicate the mean for the realm, and the shaded area indicates the 95%
Cl. Figure S9. The effect of disturbance on turnover. For each time series,
recovery was calculated as the pairwise distance between post-distur-
bance samples and pre-disturbance controls. Each point is a Z-score of

a pairwise comparison, colored by study. Regression lines for each time
series are colored by study, and a solid black line indicates the mean
response across time series per environment. The 95% Cl is displayed as

a grey shaded area, and environments for which overall trends deviate
from zero are indicated with an asterisk (*) on the bottom right corner.
Figure S$10. Relationships between the immediate effect of a disturbance
on richness and a microbiome’s long-term recovery of composition vary
among environments. Each point is a time series, colored by its environ-
ment. Immediate richness responses were calculated as the before-after
effect of disturbance on log-transformed community richness (Fig. 3a).
Turnover rates were calculated as the slope estimates of logit-transformed
turnover Z-scores over time. Error bars show the 95% Cl for both metrics.
Large points indicate the mean responses per environment.
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