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Abstract

During prolonged resource limitation, bacterial cells can persist in metabolically
active states of non-growth. These maintenance periods, such as those experienced in
stationary phase, can include upregulation of secondary metabolism and release of
exometabolites into the local environment. As resource limitation is common of many
environmental microbial habitats, we hypothesized that neighboring bacterial

populations employ exometabolites to compete or cooperate during maintenance, and
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that these exometabolite-facilitated interactions can drive community outcomes. Here,
we evaluated the consequences of exometabolite interactions over stationary phase
among three environmental strains: Burkholderia thailandensis E264, Chromobacterium
subtsugae ATCC 31532, and Pseudomonas syringae pv.tomato DC3000. We
assembled them into synthetic communities that only permitted chemical interactions.
We compared the responses (transcripts) and outputs (exometabolites) of each
member with and without neighbors. We found that transcriptional dynamics were
changed with different neighbors, and that some of these changes were coordinated
between members. The dominant competitor B. thailandensis consistently upregulated
biosynthetic gene clusters to produce bioactive exometabolites for both exploitative and
interference competition. These results demonstrate that competition strategies during
maintenance can contribute to community-level outcomes. It also suggests that the
traditional concept of defining competitiveness by growth outcomes may be narrow, and

that maintenance competition could be an additional or alternative measure.

Importance

Free-living microbial populations often persist and engage in environments that offer
few or inconsistently available resources. Thus, it is important to investigate microbial
interactions in this common and ecologically relevant condition of non-growth. This work
investigates the consequences of resource limitation for community metabolic output
and for population interactions in simple synthetic bacterial communities. Despite non-

growth, we observed active, exometabolite-mediated competition among the bacterial
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populations. Many of these interactions and produced exometabolites were dependent
on the community composition, but we also observed that one dominant competitor
consistently produced interfering exometabolites regardless. These results are
important for predicting and understanding microbial interactions in resource-limited

environments.

Introduction

Bacteria interact with other bacteria and their environment within complex, multi-
species communities. Bacterial interactions rely on the ability to sense and respond to
both biotic and abiotic stimuli [1, 2]. These stimuli include physical, chemical or
molecular cues, and can alter bacterial behaviors [3, 4], and ultimately, can also alter
community functioning [5, 6]. It is expected that interspecies interactions play an
important role in shaping microbial community dynamics [7]. However, multiple stimuli in
the environment make it difficult to disentangle the separate influences of abiotic versus
biotic stimuli on microbial community dynamics [8]. Therefore, efforts to characterize
and distinguish community responses to biotic stimuli, such as those that facilitate
interspecies interactions, will provide insights into the specific roles that microbial

interactions play in shaping their communities [9].

Interspecies interactions can be facilitated through small molecules [10].
Extracellular small molecules are collectively referred to as exometabolites [11, 12, 13].
Depending on the exometabolite produced, these molecules can mediate interspecies

interactions that range from competitive to cooperative [14]. Of these interaction types,
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competition has been shown to have a major influence in structuring microbial
communities [15, 16, 17]. Thus, competitive interactions that are mediated by
exometabolites are also expected to influence microbial community dynamics. In
addition, different types of exometabolites can be employed by bacteria to gain
advantage in both exploitative (e.g. nutrient scavenging) and interference (direct cell

damage) categories of competition.

Traditionally, competition has been viewed through the lens of resource
acquisition [18]. In previous studies, competitiveness is modeled with respect to yield
given resource consumption and growth [19, 20]. However, competition for survival or
maintenance may be just as important as competition for yield, especially during periods
of resource limitation [21, 22]. Competition during maintenance is likely common in
environments that experience relatively long periods of nutrient famine punctuated by
short periods of nutrient influx, for example such as in soils, sequencing batch reactors,
and the gut [23, 24, 25, 26]. The stationary phase of a bacterial growth curve falls within
this context of growth cessation, and pulses of nutrients may be transiently available as
cells die and lyse (necromass), while the total population size remains stagnant.
Stationary phase is often coordinated with a metabolic shift to secondary metabolism
[27, 28]. Therefore, an effective “maintenance” competitor may produce bioactive
exometabolites, like antibiotics, which are often produced because of secondary
metabolism. Bacteria can activate biosynthetic gene clusters (BSGCs) to produce
bioactive exometabolites [29]. The activation of BSGCs is closely tied to stress
responses, suggesting that bacteria can sense the stress of competition [30, 31]. While

it is known that certain exometabolites can trigger BSGC upregulation and, more
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generally alter transcription [32], there is much to understand about the outcomes of

interspecies interactions for BSGCs in multi-member microbial communities.

Here, we build on our previous research to understand how exometabolite-
mediated interactions among bacterial neighbors contribute to community outcomes in a
simple, three-member community (Table 1). These three members are commonly
associated with terrestrial environments (soils or plants) and were chosen because of
reported [33] and observed interspecies exometabolite interactions in the laboratory.
We used a synthetic community (SynCom) approach [34] by applying our previously
described transwell system [35], which allowed for evaluation of “community goods”
within a media reservoir that was shared among members. The members’ populations
were physically isolated by membrane filters at the bottom of each transwell, but could
interact chemically via the reservoir. In our prior work, we investigated each member’s
exometabolites and transcription over stationary phase, and the objective was to
understand monoculture responses (in minimal glucose media) before assembling the
more complex 2- and 3- member communities. We previously found that each member
in monoculture produced a variety of exometabolites in stationary phase, including
bioactive molecules involved in competition [36]. In this work, we build to 2- and 3-
member communities to ask: How do members interact via exometabolites in simple
communities during maintenance (stationary phase), and what are the competitive
strategies and outcomes of those interactions? What genetic pathways, molecules, and

members drive the responses?

We found that B. thailandensis had a major influence on the transcriptional

responses of both C. subtsugae and P. syringae, and that this influence could be
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attributed to an increase in both interference and exploitative competition strategies.
These findings show that diverse competitive strategies can be deployed even when
bacterial neighbors are surviving rather than exponentially growing. Therefore, we
suggest that contact-independent, exometabolite-mediated interference and exploitation
are important competitive strategies in resource-limited environments and support the

non-yield outcome of maintenance.

Materials and Methods

Bacterial strains and culture conditions

We selected three environmental bacterial strains for the SynCom experiments
that were originally isolated from various plant/soil habitats and that had prior evidence
of exometabolite interactions among them in the laboratory [Table 1; 33, 37-40]. Freezer
stocks of B. thailandensis, C. subtsugae, and P. syringae were plated on half-
concentration Trypticase soy agar (TSAS0) at 27°C for at least 24 h. Members were
inoculated in 7 ml of M9-0.2% glucose medium and grown for 16 h at 27°C, 200 rpm.
Cultures were then diluted into 50 ml M9-0.2% glucose medium such that exponential
growth phase was achieved after 10 h of incubation at 27°C, 200 rpm. Members were
diluted in 50 ml M9 glucose medium to target ODs (B. thailandensis 0.3 OD, C.
subtsugae: 0.035 OD, P. syringae 0.035 OD). The high initial OD for B. thailandensis
was necessary such that stationary phase would be achieved by all members within a 2
h window after 24 h incubation in the transwell plate. The glucose concentration in the

final dilution varied upon community membership- 0.067% for monocultures, 0.13% for
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pairwise cocultures, and 0.2% for the 3-member community. For each member, 48 ml of
diluted culture was transferred as 4 mL aliquots in 12, 5 mL Falcon tubes to more

efficiently prepare replicate transwell plates.

Synthetic community experiments

Transwell plate preparation was performed as previously described [35]. Briefly,
we used sterile filter plates with 0.22-um-pore polyvinylidene difluoride (PVDF) filter
bottoms (Millipore MAGVS2210). Prior to use, filter plates were washed three times with
sterile water using a vacuum apparatus (NucleoVac 96 vacuum manifold; Clontech
Laboratories). The filter of well H12 was removed with a sterile pipette tip and tweezer,
and 31 ml of M9 glucose medium was added to the reservoir through well H12. The
glucose concentration in the reservoir varied upon community membership- 0.067% for
monocultures, 0.13% for pairwise cocultures, and 0.2% for the 3-member community.
Glucose concentration was adjusted to plate occupancy (e.g., 3-member communities
had higher number of wells occupied than 2- or 1-member). Our aim was for each
member to achieve stationary phase at similar times across all conditions to compare
transcripts and exometabolites under similar growth trajectories. In other words,
available resources were standardized while keeping the well occupancy for each
member constant. With this design, transcripts and exometabolites in cocultures that
deviated from those in monocultures could be attributed to interspecies interactions and
not complicated by offset in member growth trajectories across the experimental

conditions.
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Each well was filled with 130 uL of culture or medium (prepared as described,
above; see methods section: Bacterial strains and culture conditions). For each plate, a
custom R script (RandomArray.R [see script at

https://github.com/ShadeLab/PAPER Chodkowski mSystems 2017/blob/master/R an

alysis/RandomArray.R]) was used to randomize community member placement in the

wells so that each member occupied a total of 31 wells per plate. In total, there were 7
community conditions- 3 monocultures, 3 pairwise cocultures, and the 3-member
community. Each member occupied 31 wells per plate regardless of experimental
condition. Thus, “baseline” exometabolites could be determined in the monocultures,
and then deviations in exometabolite abundance or detection in the cocultures could be
attributed to interspecies interactions. A time course was performed for each replicate.
The time course included an exponential phase time point (12.5 h) and 5 time points
assessed every 5 h over stationary phase (25 h — 45 h). Four biological replicates were
performed for each community condition for a total of 28 experiments. For each
experiment, 6 replicate filter plates were prepared for destructive sampling for a total of
168 transwell plates.

Filter plates were incubated at 27°C with gentle shaking (~0.32 rcf). For each
plate, a custom R script (RandomArray.R [see script at

https://github.com/ShadelLab/PAPER Chodkowski mSystems 2017/blob/master/R an

alysis/RandomArray.R]) was used to randomize wells for each organism assigned to

RNA extraction (16 wells) and flow cytometry (5 wells). The following procedure was
performed for each organism when a transwell plate was destructively sampled: i) wells

containing spent culture assigned to RNA extraction were pooled (~100 uL/well) into a
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1.7 mL microcentrifuge tube and flash frozen in liquid nitrogen and stored at -80 until
further processing. ii) 20 puL from wells assigned for flow cytometry were diluted into 180
ML Tris-buffered saline (TBS; 20 mM Tris, 0.8% NaCl [pH 7.4]). In community
memberships where P. syringae was arrayed with B. thailandensis, P. syringae had a
final dilution of 70-fold in TBS. In community memberships where P. syringae was
arrayed in monoculture or in coculture with C. subtsugae, P. syringae had a final dilution
of 900-fold in TBS. Final dilutions for B. thailandensis and C. subtsugae were 1 300-fold
and 1 540-fold, respectively. Each member was diluted differently to achieve a suitable
events/second range on the flow cytometer for accurate cell counting. Populations were
then stained and analyzed on the flow cytometer for live/dead counting (see
Supplementary Methods). iii) Spent medium (~31 ml) from the shared reservoir was
transferred to 50 mL conical tubes, flash-frozen in liquid nitrogen and stored at =80 °C

prior to metabolite extraction.

RNA-seq
RNA extraction, sequencing, quality control, and count matrix generation was performed

as previously published [36, see Supplementary Methods].

Transcriptomics
Quality filtering and differential gene expression analysis

Count matrices for each member were quality filtered in two steps: genes
containing 0 counts in all samples were removed, and genes with a transcript count of

<10 in more than 90% of samples were removed. DESeq2 [41] was used to extract size
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factor and dispersion estimates. These estimates were used as external input into
ImpulseDE2 for the analysis of differentially regulated genes [42]. ImpulseDE2
determines differential expression by comparing longitudinal count datasets. Case-
control (Cocultures-monoculture control) analyses were analyzed to identify genes with
differences in temporal regulation at an FDR-corrected threshold of 0.01. Genes that
passed the FDR threshold were further filtered for genes that had at least one time point
with a log2 fold-change (LFC) >= 1 or <= -1. Thus, we defined differentially expressed
genes (DEGs) as genes that met both the FDR-corrected and LFC thresholds. For each
member, differences in gene regulation between the three coculture conditions was
visualized with Venn diagrams using the VennDiagram package [43].

Differentially expressed genes were first determined by comparing each
coculture condition to the monoculture control and applying a LFC threshold (see
above). We then determined a second set of DEGs by comparing pairwise cocultures to
each other. ImpulseDE2 case-control analyses were performed as follows: B.
thailandensis coculture with C. subtsugae (case) compared to B. thailandensis coculture
with P. syringae (control), C. subtsugae coculture with B. thailandensis (case) compared
to C. subtsugae coculture with P. syringae (control), and P. syringae coculture with B.
thailandensis (case) compared to P. syringae coculture with C, subtsugae (control).
Genes that passed the FDR-corrected threshold of 0.01 based on ImpulseDEZ2 analysis
and had at least one time point with a LFC of >= 1 or <= -1 represented coculture
specific DEGs. The DEGs determined from monoculture comparisons and coculture
comparisons were then categorically grouped using Clusters of Orthologous Groups

(COG).

10
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COG analysis

Protein fasta files were downloaded from NCBI and uploaded to eggNOG-

mapper v2 (http://eggnog-mapper.embl.de/) to obtain COGs. The DEGs determined
from ImpulseDE2 and LFC thresholds were categorized as upregulated or
downregulated based on temporal expression patterns. DEGs with consistent positive
LFC throughout all stationary phase time points were categorized as upregulated. DEGs
with consistent negative LFC throughout all stationary phase time points were
categorized as downregulated. These DEGs were then assigned to COGs, grouped

based on temporal up/downregulation patterns, and plotted using ggplot2 [44].

Principal coordinates analysis and statistics

Normalized gene matrices were extracted from DESeq2 and filtered to only
contain DEGs (coculture to monoculture comparisons) based on our previously
described definition. A variance-stabilizing transformation was performed on normalized
gene matrices using the rlog function in DESeq2. A distance matrix based on the Bray-
Curtis dissimilarity metric was then calculated on the variance-stabilized gene matrices
and principal coordinates analysis was performed using the R package vegan [45].
Principal coordinates were plotted using ggplot2. Coordinates of the first two PCoA axes
were used to perform PROTEST analysis using the PROTEST function in vegan.
Dissimilarity matrices were used to perform PERMANOVA and variation partitioning
using the adonis and varpart functions in vegan, respectively. The RVAideMemoire

package [46] was used to perform a post-hoc pairwise PERMANOVAs. Lastly,

11
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distances were extracted from the Bray-Curtis dissimilarity matrix that compared each
coculture condition to the monoculture condition at each time point within each member.

These distances were used to produce time series distance plots.

Biosynthetic gene cluster (BSGC) analysis

NCBI accession numbers were uploaded to antiSMASH 6 beta bacterial version
[47] to identify genes involved in BSGCs using default parameters. Where possible,
literature-based evidence and BSGCs uploaded to MIBiG [48] were used to better
inform antiSMASH predictions. Log2 fold-changes (LFCs) were calculated for all
predicted biosynthetic genes within each predicted cluster by comparing coculture
expression to monoculture expression at each time point. Average LFCs were
calculated from all predicted biosynthetic genes within a predicted BSGC at each time
point. Temporal LFC trends were plotted using ggplot2. An upregulated BSGC was
defined as a BSGC that had at least two consecutive time points in stationary phase

with a LFC > 1.

Network analysis

Unweighted co-expression networks were created from quality filtered and
normalized expression data. Networks were generated for pairwise cocultures
containing B. thailandensis. First, data were quality filtered as previously described
(see methods section: Quality filtering and differential gene expression analysis). Then,
normalized expression data was extracted from DESeq2. Twenty-three and twenty-

four RNA-seq samples from each member were used for network analysis in the B.

12
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thailandensis-C. subtsugae and B. thailandensis-P.syringae cocultures, respectively
(23/24 samples/member; 6 time points, 4 biological replicates). Only 23 samples were
used in the B. thailandensis-C. subtsugae network analysis because RNA-seq failed
for C. subtsugae at 45 h, biological replicate 2. Interspecies networks were then
inferred from the expression data using the context likelihood of relatedness [49]
algorithm within the R package Minet [50]. Gene matrices for each coculture pair were
concatenated to perform the following analysis. Briefly, the mutual information
coefficient was determined for each gene-pair. To ensure robust detection of co-
expressed genes, a resampling approach was used as previously described [51].
Then, a Z-score was computed on the mutual information matrix. A Z-score threshold
of 4.5 was used to determine an edge in the interspecies network. Interspecies
networks were uploaded into Cytoscape version 3.7.1. for visualization, topological
analysis, and enrichment analysis [52].

Gene annotation and gene ontology (GO) files were obtained for B.
thailandensis, P. syringae, and C. subtsugae for enrichment analyses. For B.
thailandensis, annotation and ontology files were downloaded from the Burkholderia

Genome Database (https://www.burkholderia.com). For P. syringae, annotation and

ontology files were downloaded from the Pseudomonas Genome Database

(http://www.pseudomonas.com/strain/download). Annotation and ontology files for C.

subtsugae were generated using Blast2GO version 5.2.5 [53]. InterProScan [54] with
default parameters were used to complement gene annotations from C. subtsugae. GO
terms were assigned using Blast2GO with default parameters. In addition, genes

involved in secondary metabolism were manually curated and added to these files as

13
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individual GO terms. These genes were also used to update the GO term GO:0017000
(antibiotic biosynthetic process), composed of a collection of all the biosynthetic genes.
(see methods section: Biosynthetic gene cluster (BSGC) analysis).

Topological analysis was performed as follows: Nodes were filtered from each
coculture network to only select genes from one member at a time. The GLay
community cluster function in Cytoscape was used to determine intra-member modules.
Functional enrichment analysis was then performed on the modules using the BINGO
package [55] in Cytoscape.

To determine interspecies co-regulation patterns, we filtered network nodes that
contained an interspecies edge. Functional enrichment analysis was performed on the
collection of genes containing interspecies edges for each member using the BINGO
package in Cytoscape. Then, we selected all genes contained within modules of interest
(e.g. B. thailandensis modules containing either thailandamide or malleilactone genes in
the B. thailandensis-C. subtsugae coculture network or B. thailandensis-P. syringae
coculture network, respectively) in Cytoscape. Node selection was extended by
selecting the first neighbors of the selected nodes. This resulted in interspecies edges.
The resultant nodes were transformed into a circular layout and exported for manual
edits in InkScape.. The biosynthetic gene cluster organization of thailandamide and
malleilactone were obtained from MIBig and drawn in InkScape.

Protein sequences from an interspecies gene of interest (CLV_2968) within a
network module that also contained thailandamide genes from the B. thailandensis-C.
subtsugae network and an interspecies gene of interest (PSPTO_1206) within a

network module that also contained malleilactone genes from the B. thailandensis-P.

14
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syringae network were obtained. A protein blast for each protein was run against B.
thailandensis protein sequences. B. thailandensis locus tags were extracted from the
top blast hit from each run. Normalized transcript counts for these 4 genes of interest
were plotted in R. Time course gene trajectories were determined using a loess

smoothing function.

Metabolomics
LCMS, feature detection, and quality control

Standard operating protocols were performed at the Department of Energy Joint
Genome Institute as previously described [36]. MZmine 2 [56] was used for feature
detection and peak area integration as previously described [36]. Select exometabolites
were identified in MZmine 2 by manual observation of both MS and MS/MS data. We
extracted quantities of these identified exometabolites for ANOVA and Tukey HSD post-
hoc analysis in R. We filtered features in three steps to identify coculture-accumulated
exometabolites. The feature-filtering steps were performed as follows on a per-member
basis: (i) retain features where the maximum peak area abundance occurred in any of
the coculture communities ; (ii) a noise filter, the minimum peak area of a feature from a
replicate at any time point needed to be 3 times the maximum peak area of the same
feature in one of the external control replicates, was applied; (iii) coefficient of variation
(CV) values for each feature calculated between replicates at each time point needed to

be less than 20% across the time series.

15
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Four final feature data sets from polar and nonpolar analyses in both ionization modes
were analyzed in MetaboAnalyst 5.0 [57], as reported in our prior work [36, see
Supplementary Methods]. In addition, exometabolites categorized as primary
metabolites were identified according to Metabolomics Standards Initiative (MSI) level 1

criteria [58], as reported in our prior work [36, see Methods].

Principal coordinates analysis and statistics

A distance matrix based on the Bray-Curtis dissimilarity metric was used to
calculate dissimilarities between exometabolite profiles. Principal coordinates analysis
was performed using the R package vegan. Principal coordinates were plotted using
ggplot2. Coordinates of the first two PCoA axes were used to perform Protest analysis
using the protest function in vegan. Dissimilarity matrices were used to perform
PERMANOVA and variation partitioning using the adonis and varpart functions in
vegan, respectively. The RVAideMemoire package was used to perform a post-hoc
pairwise PERMANOVAs. Monoculture controls were removed to focus on coculture

trends.

Results

Overview

16
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Our major data types included both transcriptomics and metabolomics, and we
integrate these to interpret SynCom dynamics and interactions. Our longitudinal design
resulted in 288 RNAseq samples across the three members, and 168 community
metabolomics samples analyzed in each of four mass spectral modes (polar/nonpolar,
positive/negative modes = 672 total mass spectral profiles). After quality control, we
were left with 281 RNAseq and 605 total mass spectral profiles for the integrated
analyses

[https://github.com/ShadelLab/Paper Chodkowski 3member SynCom 2021/tree/maste

r’'SummaryOfSamples]. First, we present a summary of experiments and cell viability

(section 1). Then, we present results of general responses of transcription (section 2)
and exometabolomics (section 3), separately. Then, we integrate transcriptomic and
metabolomic efforts to determine the upregulation of biosynthetic gene clusters
(BSGCs) and identify exometabolites of interest from mass spectrometry (section 4).
Lastly, we then present a transcriptomics co-expression network to ask how the
upregulation of BSGCs influenced interspecies interactions through coordinated

longitudinal gene expression (section 5).

1. SynCom design/sampling scheme and membership cell viability

We had four replicate, independent timeseries for each of seven community
memberships (three of each monoculture, three of each pair in coculture, and the 3-
member community). We define membership as the specific strains present in a given
condition. Here, we focus on the multi-member analyses (2 and 3-member
combinations) to gain insights into community outcomes (Fig. 1A). The SynCom

transwell system isolated member populations among separate transwells but permitted
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exchange of their collective exometabolites via the plate’s shared media reservoir (Fig.
1B). We collected data (transcripts, metabolites, etc) over a timeseries that included one
exponential phase time point (12.5 h) followed by 5 stationary phase time points (25-45

h sampled at 5-hour intervals; Fig. 1C).

We observed relatively unchanged viability in B. thailandensis across all conditions
(Fig. S1; panels A-D). On the contrary, we observed a slight reduction (~2.1 log2 fold
change) in C. subtsugae live cell counts, and a drastic reduction (~4.7 log2 fold change)
in P. syringae live cell counts, when either member was cocultured with B. thailandensis
(Fig. 2; panels A vs C and panels D vs F, respectively). Reductions in cell viability of C.
subtsugae and P. syringae were also present in the 3-member community (Fig. S1;
panels E and F). C. subtsugae and P. syringae had minimal effects on each other (Fig.
2; panels B and E). Dead cell accumulation of P. syringae plateaued in coculture
conditions compared to monoculture, suggesting cell lysis (Fig. 2, panels D-F). We note
that one doubling occurred in B. thailandensis and P. syringae monocultures, and in C.
subtsugae in pairwise coculture with P. syringae. We elaborated on this finding as the

possibility of a reductive cell division in our previous manuscript [36].

2. Stationary phase transcript dynamics of microbial community members
Differentially expressed genes were determined by comparing time series
transcript trajectories applying an FDR and LFC threshold (see methods: Quality
filtering and differential gene expression analysis). First, we compared each coculture to
the monoculture control. A range of 153 to 276 genes were differentially expressed by

each member in coculture, irrespective of the identity of neighbors (Fig. S2). In addition,
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each member also had differential gene expression that was unique to a particular
neighbor(s). Summarizing across all cocultures, 1089/5639 (19.3%) coding sequences
(CDSs), 1991/4393 CDSs (45.3%), and 3274/5576 CDSs (58.7%) DEGs were
determined for B. thailandensis, C. subtsugae, and P. syringae, respectively. Primary
drivers of transcriptional response patterns for each member were community
membership (PCoA axis 1) and time (PCoA axis 2) (Fig. 3, Table S1). Together, these
data suggest that there are both general and specific consequences of neighbors for the
transcriptional responses of these bacterial community members.

Temporal trajectories in member transcript profiles were generally reproducible
across replicates (PROTEST analyses, Table S2). Each member had a distinct
transcript profile (0.480 <r2 < 0.778 by Adonis; P value, 0.001; all pairwise false
discovery rate [FDR]-adjusted P values, <0.01 except for two community memberships,
Table S3). For all ordinations, community membership had the most explanatory value
(Axis 1), followed by time (Axis 2), with the most variation explained by the interaction
between time and membership (Table S1). Membership alone accounted for 60.6% and
77.0% of the variation explained in C. subtsugae and P. syringae analyses, respectively

and 46.3% in the B. thailandensis analysis (Table S1).

When included in the community, B. thailandensis strongly determined the
transcript profiles of the other two members. For example, the inclusion of B.
thailandensis in a coculture differentiated transcript profiles for both C. subtsugae and
P. syringae (Fig. 3B & 3C, Figs. S3-S5). The transcript profile differences between
monoculture and coculture conditions are largest for C. subtsugae (Fig. S4) and P.

syringae (Fig. S5) when B. thailandensis is included in the coculture. Thus, B.
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thailandensis appears to have had a dominating influence on the transcriptional

response of neighbors, and these responses were dynamic with respect to time.

We analyzed clusters of orthologous groups of proteins (COGs) to infer the
responses of members to their neighbors. Differentially expressed genes (DEGs) were
categorized as upregulated or downregulated based on temporal patterns and
representation in COGs (Fig. S6). We focused on the largest differences between total
DEGs upregulated and total DEGs downregulated within a COG, which provides
insights into broad biological processes affected by community membership. COGs with
large differences toward upregulation in B. thailandensis included cell motility [N],
secondary metabolites biosynthesis, transport, and catabolism [Q], and signal
transduction mechanisms [T] while COGs with large differences toward downregulation
included defense mechanisms [V], energy production and conversion [C], translation,
and ribosomal structure and biogenesis [J]. These results suggest that B. thailandensis
responds to neighbors via downregulation of growth and reproduction and upregulation
of secondary metabolism. We therefore hypothesized that B. thailandensis was
producing bioactive exometabolites against C. subtsugae and P. syringae to

competitively inhibit their growth.

Because of the strong transcript response of C. subtsugae and P. syringae when
neighbored with B. thailandensis (Fig. 3B & 3C), we focused on COGs within
community memberships with B. thailandensis (Fig. S6B & S6C, rows 2 & 3). The COG
with large differences toward upregulation in both C. subtsugae and P. syringae were
translation, ribosomal structure and biogenesis [J]. COG groups tending toward

downregulation in C. subtsugae and P. syringae were signal transduction mechanisms
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[T] and secondary metabolites biosynthesis, transport, and catabolism [Q], respectively.
These results suggest that the presence of B. thailandensis alters its neighbor’s ability
to respond to the environment and inhibits secondary metabolism. The effects of B.
thailandensis on C. subtsugae and P. syringae were also evident by mapping timeseries
LFCs onto KEGG pathways. Various enzymes involved in central metabolism, fatty acid
degradation, growth, transport, and response systems were upregulated when B.
thailandensis was grown with either or both members

(https://figshare.com/s/b7f5e559a32cc5c8a61f).

The above analyses focused on DEGs determined by comparing each coculture
to the monoculture control. However, we also wanted to understand differences
between pairs to determine if the alterations in transcripts were attributed to specific
memberships (aka interspecies interactions). A total of 436, 1 762, and 2 962 DEGs
were determined when comparing the pairs including B. thailandensis, the pairs
including C. subtsugae , and the pairs including P. syringae, respectively. We detected
member-specific effects on the COGs that were differentially expressed (Fig. S7).
These data suggest that there were transcriptional changes driven by particular
members and given their partner. Due to the physical separation of members in our
SynCom plate system, these member-specific interspecies interactions were very likely

exometabolite-mediated.

3. Stationary phase exometabolite dynamics of microbial communities
Because member populations are physically separated in the SynCom transwell

system but allowed to interact chemically, observed transcript responses in different
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community memberships are inferred to result from exometabolite interactions. Spent
medium from the shared medium reservoir was collected from each transwell plate and
analyzed using mass spectrometry to detect exometabolites. Our previous manuscript
focused on exometabolite dynamics in monocultures [36]. Here, we focused our
analysis on those exometabolites that had maximum accumulation in a coculture (either
in pairs or in 3-member community). Consistent with the transcript analysis, we found
that both community membership and time explained the exometabolite dynamics, and
that the explanatory value of membership and time was maintained across all polarities

and ionization modes (Fig. 4, Table S4).

Temporal trajectories in exometabolite profiles were generally reproducible
across replicates with some exceptions (PROTEST analyses, Table S5, Supplementary
File 1). Exometabolite profiles were distinct by community membership (0.475<r2 <
0.662 by Adonis; P value, 0.001; all pairwise false discovery rate [FDR]-adjusted P
values, <0.01 except for two comparisons, Table S6), and also dynamic over time. As
observed for the member transcript profiles, the interaction between membership and

time had the highest explanatory value for the exometabolite data (Table S4).

We found that the C. subtsugae-P. syringae coculture exometabolite profiles
were consistently the most distinct from the other coculture memberships (Fig. 4),
supporting, again, that the inclusion of B. thailandensis was a major driver of
exometabolite dynamics, possibly because it provided the largest or most distinctive
contributions to the community exometabolite pool. Indeed, we observed that a majority
of the most abundant exometabolites were either detected uniquely in the B.

thailandensis monoculture or accumulated substantially in its included community
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memberships (Fig. S8). Some exometabolites detected in B. thailandensis-inclusive
communities were not detected in its monocultures (Fig. S8D), suggesting that the
inclusion of neighbors contributed to the accumulation of these particular
exometabolites (e.g. upregulation of biosynthetic gene clusters or lysis products). C.
subtsugae and P. syringae contributed less to the 3-member community exometabolite
profile, as exometabolites detected in the C. subtsugae-P. syringae coculture were less
abundant and had lower accumulation over time in the 3-member community (Fig.
S8A). Together, these results suggest that B. thailandensis can suppress or overwhelm

expected outputs from neighbors.

Exometabolites categorized as primary metabolites were identified according to
Metabolomics Standards Initiative (MSI) level 1 criteria [58]. We identified primary
metabolites accumulated in the shared medium reservoir over time in each monoculture
(Fig. 5; [36]) to compare their dynamics in cocultures. These primary metabolites were
detected to decrease in concentration across coculture conditions, suggesting metabolic
inhibition or interspecies uptake. In addition, we also found a subset of primary
metabolites that accumulate substantially in exponential phase in monocultures (Fig.
S9). Taken together, each member contributed a unique set of primary metabolites to
the community exometabolite pool. The uptake and metabolism of these primary
metabolites by the non-producing members may directly affect the available pool of
exometabolites in cocultures, particularly with respect to exometabolites contributed

from secondary metabolism.

In summary, we observed both increased accumulation and unique production of

exometabolites in pairs and in the 3-member community, with B. thailandensis
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contributing the most to the shared exometabolite pool as determined by comparisons
with its monoculture exometabolite profile. Related, the transcriptional responses of C.
subtsugae and P. syringae in the 3-member community is most like their respective
transcriptional response when neighbored with B. thailandensis alone, despite the

presence of the third neighbor.

4. B. thailandensis increases competition strategies in the presence of neighbors
Given the observed reduction in cell viability (Fig. 2) and that there have been

competitive interactions between B. thailandensis and C. subtsugae previously reported
[33], we hypothesized that B thailandensis was using competition strategies to influence
its neighbors via production of bioactive exometabolites. If true, we would expect
transcriptional upregulation in B. thailandensis biosynthetic gene clusters (BSGC) that
encode bioactive exometabolites. Indeed, when compared to the monoculture control,
we found evidence of upregulated BSGCs across various time points in stationary
phase in B. thailandensis cocultures (Fig. 6, Table S7). Some of these upregulation
patterns were associated to particular pairs of members and some upregulation patterns
were strongest in the full community (e.g. thailandamide). For example, B. thailandensis
upregulated an unidentified non-ribosomal peptide synthetase (NRPS) when paired with
P. syringae, but when paired with C. subtsugae, upregulated a different BSGC encoding
an unidentified beta-lactone. This suggests that B. thailandensis responded to
neighbors by upregulating genes involved in the production of bioactive compounds,
likely to gain a competitive advantage. However, not all BSGCs in B. thailandensis were

upregulated. Some BSGCs were unaltered or downregulated (Fig. S10). C. subtsugae
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upregulated only 1 BSGC, an uncharacterized hybrid nonribosomal peptide synthetase-
type | polyketide synthase, in coculture with B. thailandensis, while P. syringae did not
upregulate any BSGC in any coculture (Figs. S11 & S12). Interspecies interactions led
to the upregulation of BSGCs in both B. thailandensis and C. subtsugae and three of

these BSGCs encode potentially novel bioactive exometabolites.

Because B. thailandensis upregulated the transcription of various BSGCs when
grown in cocultures, we asked if this led to the unique production of or increased
accumulation of secondary metabolites as compared to when it was grown in
monoculture. We identified 6 of the 11 exometabolites from the BSGCs in B.
thailandensis that were upregulated and quantified their abundances from mass
spectrometry data (Fig. 7, Supplementary File 2). We found that each identified
exometabolite differentially accumulated between community memberships containing
B. thailandensis (Table S8), particularly when comparing the B. thailandensis
monoculture to each coculture (Table S9). As expected, these identified exometabolites
were not detected in communities that did not include B. thailandensis (data not shown).
Bactobolin was the only identified exometabolite that accumulated in monoculture to
equivalent levels of accumulation in all coculture conditions. The other identified
secondary metabolites were not detected or did not accumulate in monoculture,
suggesting interspecies induction of secondary metabolism. Thus, in response to an
exometabolite from either C. subtsugae or P. syringae, B. thailandensis increased its
competitive strategies through the upregulation and production of many bioactive
exometabolites. Of these bioactive exometabolites, three are documented

antimicrobials [59, 60, 61], two are siderophores [62, 63], and one is a biosurfactant
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[64]. We conclude that B. thailandensis produced bioactive exometabolites to
competitively interact using both interference and exploitative competition strategies
[65]. Given that B. thailandensis upregulated competitive strategies, and responded
more broadly in producing competition-supportive exometabolites when grown with
neighbors, we hypothesized that these bioactive exometabolites are responsible for the

altered transcriptional responses in C. subtsugae and P. syringae.

In our experimental design, we adjusted glucose concentration depending on
plate occupancy. Glucose concentration increased as plate occupancy increased (31
wells vs 62 wells vs 93 wells), but a member consistently occupied 31 wells across all
experimental conditions. One complication of this design is that population density and
resource concentration could contribute to differences in transcripts and exometabolites
in a member-agnostic manner. To address this, we performed additional SynCom
experiments to affirm confidence that some changes in transcripts and exometabolites
are attributable to exometabolite-mediated interspecies interactions. In these
experiments, we increased the plate occupancy of B. thailandensis in monoculture while
subsequently increasing resource concentration. Pairwise cocultures and the 3-member
community SynCom experiments were repeated as well (see Supplementary methods).
We calculated the relative gene expression of three genes in the thailandamide operon
(thaF, thaK, and thaQ) through RT-qPCR by comparing each experimental condition to
the monoculture control (B. thailandensis, 31 wells in M9-0.067% glucose). Decreased
gene expression was observed across all three genes as both plate occupancy and
resource concentration increased in B. thailandensis monocultures. In fact, thaF, thaK,

and thaQ gene expression was further reduced in the 93 well B. thailandensis
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monoculture compared to the 62 well B. thailandensis monoculture, suggesting that the
thailandamide operon trended towards reduced expression as a function of B.
thailandensis plate occupancy in monoculture conditions. On the contrary, thaF, thaK,
and thaQ had increased expression in all coculture memberships, suggesting that
exometabolite interspecies interactions were responsible for the increased expression

of a BSGC in B. thailandensis (Table S10).

5. Interspecies co-transcriptional networks reveal coordinated gene expression

related to competition

We performed interspecies co-expression network analysis to infer interspecies
interactions. We used temporal profiles from transcriptional responses to generate co-
expression networks for B. thailandensis-C. subtsugae and B. thailandensis-P. syringae
cocultures, respectively (Table S11). As expected, the majority of nodes in the network
had intraspecies edges only, with interspecies edges comprising 1.85% and 1.90% of
the total edges in the B. thailandensis-C. subtsugae and B. thailandensis-P. syringae
networks, respectively. We explored interspecies edges for evidence of interspecies

transcriptional co-regulation.

We performed two analyses, module analysis and Gene Ontology (GO)
enrichment, to validate networks and infer interspecies interactions (Fig. S13). Module
analysis validated networks as intraspecies modules enriched for biological processes
(Supplementary File 3). To infer interspecies interactions, we filtered genes with
interspecies edges and performed enrichment analysis (Supplementary File 4). The top

enriched GO term for B. thailandensis when paired with C. subtsugae was antibiotic
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synthesis of thailandamide, supporting the interpretation of interference competition.
Though the top enriched GO term in B. thailandensis when paired with P. syringae was
bacterial-type flagellum-dependent cell motility, antibiotic synthesis of malleilactone was
also enriched. Both thailandamide genes from the B. thailandensis-C. subtsugae
network (Fig. 8) and malleilactone genes from the B. thailandensis-P. syringae network
(Fig. S14) formed near-complete modules within their respective BSGCs. In addition,
genes that were part of the BSGC modules contained interspecies edges with both C.

subtsugae and P. syringae.

At least one gene from each of B. thailandensis’s upregulated BSGCs (Fig. 6)
had an interspecies edge, except for rhamnolipid. Our interpretation of this result is that,
generally, B. thailandensis’s upregulated BSGCs had co-expression patterns with genes
from the other members. In the thailandamide and malleilactone modules, some of
these interspecies genes were related to stress, transport, and iron-scavenging
(Supplementary File 5). The top GO term for both C. subtsugae and P. syringae genes
that had edges shared with B. thailandensis was bacterial-type flagellum-dependent
motility. Other notable enriched GO processes were efflux activity for C. subtsugae and
signal transduction for P. syringae. Specifically, a DNA starvation/stationary phase gene
(CLV04_2968, Fig. 8), dspA, was within the network module that also contained
thailandamide genes from the B. thailandensis-C. subtsugae network and a TonB-
dependent siderophore receptor gene (PSPTO_1206, Fig. S14) was within the network
module that also contained malleilactone genes from the B. thailandensis-P. syringae
network. Interestingly, both CLV04_ 2968 and PSPTO_1206 were DEGs and

downregulated when cocultured with B. thailandensis (Figs. S15A & S16A,
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respectively). Additionally, the closest homolog for dspA in B. thailandensis was
unaltered (BTH_11284, Supplementary File 6) when cocultured with C. subtsugae (Fig.
S15B) and the closest homolog to the TonB-dependent receptor in B. thailandensis
(BTH_I12415, Supplementary File 7) was a DEG and upregulated when cocultured with
P. syrinage (Fig. S16B). Taken together, these co-expression networks revealed
interspecies coordinated expression patterns. Specifically, we detected interspecies co-
expression patterns related to antibiotic upregulation in B. thailandensis, suggesting C.
subtsugae and P. syringae were sensing and responding directly to these competition

strategies of B. thailandensis.

Discussion

Here, we used a synthetic community system to understand how
exometabolomic interactions determine members transcriptional responses and
exometabolite outputs. Our experiment used a systems approach to compare the seven
possible community memberships of three members, and their dynamics in member
transcripts and community exometabolites over stationary phase. Differential gene
expression across community memberships and over time show that the
exometabolites released by a member were sensed and responded to by its neighbors.
Furthermore, members’ ouputs in monocultures changed because of coculturing, as
evidenced by differential exometabolite production. The largest transcriptional
alterations in C. subtsugae and P. syringae occurred when cocultured with B.

thailandensis. Global expression patterns in C. subtsugae and P. syringae when in the
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3-member community still resembled expression patterns in pairwise cocultures with B.
thailandensis. These transcriptional alterations in C. subtsugae and P. syringae were
coordinated with increases in B. thailandensis competitive strategies (evaluated by
BSGC transcript upregulation and exometabolite abundance). That interactions within a
relatively simple community altered the transcriptional responses and exometabolite
outputs of each member is important because these kinds of alterations could, in turn,
drive changes in community structure and/or function in an environmental setting. For
example, it was shown that interspecies interactions more strongly influenced the
assembly of C. elegans gut communities than host-associated factors [66]. Therefore,
mechanistic and ecological characterization of interspecies interactions will inform as to

the principles that govern emergent properties of microbial communities.

Overall, competitive interactions predominated in this synthetic community. This
was first evidenced by reductions in viable cell counts in both C. subtsugae and P.
syringae when cocultured with B. thailandensis. Interestingly, P .syringae was the only
member to have an exponential increase in dead cell counts in monoculture. P.
syringae dead cell count accumulation ceased in coculture conditions. We attribute this

finding to the overall reduction of cell viability and/or lysis of dead cells when cocultured.

Our previous study found that, over stationary phase in monocultures, each
member released and accumulated at least one exometabolite documented to be
involved in either interference or exploitative competition [36]. This suggests that entry
into stationary phase primed members for competitive interactions, regardless of
heterospecific neighbors present. We interpret this strategy of preemptive aggression to

be especially advantageous to B. thailandensis, as it successfully used competitive
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strategies against both C. subtsugae and P. syringae. B. thailandensis’s success was
supported by decreased viable P. syringae cells when cocultured with B. thailandensis.
Though C. subtsugae viable cell counts were not as affected directly by the coculture
with B. thailandensis, B. thailandensis-produced bactobolin [67] was detected in the
shared medium reservoir. Bactobolin is a bacteriostatic antibiotic previously shown to be
bioactive against C. subtsugae [33] through ribosome binding [59]. But, C. subtsugae
can resist bactobolin through upregulation of an RND-type efflux pump [68]. This finding
also is supported by our data, as all genes coding for the CdeAB-OprM RND-type efflux
system were DEGs and upregulated in C. subtsugae cocultures with B. thailandensis

(CLV04_2413-CLV04 2415).

When cocultured with B. thailandensis, we observed COG groups such as
translation, ribosomal structure and biogenesis [J] had large differences toward
upregulation in both C. subtsugae and P. syringae. At first glance, this seems at odds
with our interpretation of B. thailandensis competitiveness toward C. subtsugae and P.
syringae. In other words, how is B. thailandensis effectively competing via interference
competition if both C. subtsugae and P. syringae are upregulating machinery for
growth? There is both theoretical [69] and experimental [70] evidence that show how
cells treated with antibiotics stimulate ribosomal production to maintain a sufficient
number of active ribosomes. As previously mentioned, B. thailandensis-produced
bactobolin binds to the ribosome and can inhibit C. subtsugae [33, 59]. We also have
evidence that bactobolin inhibits P. syringae (data not shown). It could be that
bactobolin is stimulating ribosomal production in C. subtsugae and P. syringae as a

survival mechanism to maintain protein production by maintaining enough active
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ribosomes. There also was evidence of B. thailandensis antibiotic efficacy against C.
subtsugae and P. syringae, including general loss of cell viability and upregulation of
various enzymes involved in central metabolism by both members when they were
cocultured with B. thailandensis (https://figshare.com/s/b7f5e559a32cc5c8a61f). These
patterns are consistent with antibiotic treatments in Escherichia coli and Staphylococcus
aureus where the upregulation of oxidative phosphorylation due to drug treatment
contributes to antibiotic efficacy [71, 72]. A barrage of B. thailandensis-produced
antibiotics (Figs. 6 & 7) likely drove the transcriptional patterns in C. subtsugae and P.

syringae.

Coculturing can induce secondary metabolism [73, 74, 75] because an
exometabolite produced by one microbe can prompt secondary metabolism in a
neighbor [31]. We found that coculturing led to the upregulation of numerous BSGCs in
B. thailandensis. These exometabolites included bactobolin, malleilactone [62, 76;
siderophore and cytotoxin], malleobactin [77, 78; siderophore], capistruin [79; lasso
peptide], thailandamide [80; polyketide], pyochelin [63; siderophore], rhamnolipids [64;
biosurfactants], and two uncharacterized BSGCs encoding nonribosomal peptide
synthetases. Of these exometabolites, bactobolin, capistruin, and thailandamide have
documented antimicrobial activities through translation inhibition [59], transcription
inhibition [60], and inhibition of fatty acid synthesis [61], respectively. For those
exometabolites we were able to identify with mass spectrometry, their accumulation in
cocultures was correlated with the upregulation of their BSGCs. Furthermore,
up/downregulated patterns across all B. thailandensis BSGCs was consistent with

ScmR global regulatory patterns of secondary metabolism [81].
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We acknowledge that this study is limited in its ability to pinpoint the underlying
mechanisms driving the activation of secondary metabolism, particularly in B.
thailandensis. Aside from self-activating mechanisms documented in B. thailandensis
(e.g. quorum-sensing driven bactobolin production) and/or sensing antibiotics and
competitively responding [82], we note two major patterns in exometabolite production
in the monocultures that may have contributed to activation of secondary metabolism in
the cocultures. First, each member released and accumulated a unique set of primary
metabolites over their time series. These exometabolites had relatively reduced
concentrations in their coculture conditions. Second, because our experimental design
included a comparative time point taken during exponential growth, we also identified a
unique set of primary metabolites that had substantially accumulated by 12.5 h. Indeed,
primary metabolites [83] have been documented to induce secondary metabolism in B.
thailandensis. Thus, it is possible that the dynamics observed over stationary phase
could be attributed also to the uptake of exometabolites that were produced earlier in
exponential phase, or to the uptake of accumulated primary metabolites. Instead of
pinpointing single molecule elicitors of secondary metabolism, our systems-level
approach is better used to improve understanding of the environmental and ecological

factors that contribute to member or community success.

C. subtsugae can inhibit B. thailandensis [33] but we did not observe B.
thailandensis inhibition based on cell counts. However, we did find that in stationary
phase C. subtsugae-B. thailandensis cocultures, C. subtsugae upregulated an
uncharacterized hybrid nonribosomal peptide synthetase-type | polyketide synthase. P.

syringae was the least competitive of the three neighbors, as evidenced by a reduction
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in live cell counts when cocultured with B. thailandensis. Also, P. syringae did not
increase competitive strategies when cocultured, as no BSGCs were upregulated
across all coculture conditions. In summary, though all three neighbors had potential to
use competitive strategies and maintained competitive strategies in monoculture [36], B.
thailandensis was most successful in cocultures over stationary phase through
increased production of exometabolites involved in interference and exploitative

competition strategies.

Given the upregulation of BSGCs in B. thailandensis and the strong
transcriptional responses of C. subtsugae and P. syringae to the presence of B.
thailandensis, we hypothesized that competitive exometabolites were contributing to
their community dynamics. Thus, we used a co-expression network analysis with our
longitudinal transcriptome series to infer interspecies interactions [84]. The use of this
approach was first demonstrated to infer coregulation between a phototroph-heterotroph
commensal pair [85]. Our network confirmed that B. thailandensis BSGCs had
coordinated gene expression patterns with both C. subtsugae and P. syringae.
Interspecies nodes in both networks contained various genes involved in the
upregulated B. thailandensis BSGCs. We focused on interspecies edges within
thailandamide nodes for the B. thailandensis-C. subtsugae network and interspecies
edges within malleilactone nodes for the B. thailandensis-P. syringae network because
these were significantly enriched as interspecies nodes. A C. subtsugae gene of
interest, CLV04_2968, was contained within the thailandamide cluster of interspecies
nodes. This gene codes for a DNA starvation/stationary phase protection protein and

had the highest homology to the Dps protein in Escherichia coli across all C. subtsugae
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protein coding genes. Dps mediates tolerance to multiple stressors and dps knockouts
are more susceptible to thermal, oxidative, antibiotic, iron toxicity, osmotic, and
starvation stressors [86]. Interestingly, CLV04 2968 was downregulated when
cocultured with B. thailandensis, suggesting that B. thailandensis attenuates C.
subtsugae stress tolerance over stationary phase. While we observed a slight decrease
in viable C. subtsugae cells when cocultured with B. thailandensis, one may expect C.
subtsugae to have increased sensitivity to a subsequent stress [e.g. pH stress; 87]

resulting from CLV04 2968 downregulation in the presence of B. thailandensis.

In the B. thailandensis-P. syringae co-expression network, a P. syringae gene of
interest, PSPTO_1206, was contained within the malleilactone cluster of interspecies
nodes. PSPTO_1206 is annotated as a TonB-dependent siderophore receptor. A P.
syringae iron-acquistion receptor had coordinated expression with malleilactone, which
has been characterized as a siderophore with antimicrobial properties [62]. Interestingly,
this gene was downregulated when in coculture with B. thailandensis. In contrast, the
closest TonB-dependent siderophore receptor homolog to PSPTO_1206 in B.
thailandensis, BTH_12415, was upregulated in coculture conditions with P. syringae. To
summarize, co-expression network analysis revealed interspecies coordinated gene
expression patterns. Though determining directionality was beyond the scope of this
analysis, we observed B. thailandensis-increased competition strategies were
coordinated with a potential decrease in competition strategies in C. subtsugae via

reduced stress tolerance and in P. syringae with reduced iron acquisition ability.

One feature of our study is that we adjusted glucose concentration depending on

plate occupancy. Glucose concentration increased as membership increased, but a
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member consistently occupied 31 wells across all experimental conditions. One could
argue that resource concentration contributed to differences in transcripts and
exometabolites and not interspecies interactions. However, DEGs were present when
comparing pairwise coculture conditions and these were attributed to differences in
temporal regulation of COG categories (Fig. S7). More specifically, regarding BSGCs,
an unidentified NRPS was upregulated in B. thailandensis when cocultured with P.
syringae but not when cocultured with C. subtsugae (Fig. 6) and, an unidentified NRPS-
Type | polyketide synthase was upregulated in C. subtsugae when cocultured with B.
thailandensis but not when cocultured with P. syringae (Fig. S11). These differences
occurred in experimental conditions where the glucose concentration was the same.
Furthermore, we performed additional SynCom experiments where we increased the
plate occupancy of B. thailandensis in monoculture while subsequently increasing
resource concentration. Decreased gene expression was observed across all three RT-
gPCR tested thailandamide genes as both plate occupancy and resource concentration
increased in B. thailandensis monocultures. These same three genes had increased
gene expression across all cocultures. These findings show that some undefined
exometabolite interspecies interactions were responsible for the increased expression
of a BSGC in B. thailandensis. Overall, we acknowledge that resource concentration
and exometabolite output are intertwined, and subsequent work could test how initial

resource availability determines SynCom outcomes.

A major goal in microbial ecology is to predict community dynamics for purposes
of modulating and/or maintaining ecosystem function [88, 89]. At its core, microbial

functional properties emerge, in part, from the concerted interactions of multi-species
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assemblages. The SynCom system provides a tractable experimental system to
understand the relationships between exometabolite interactions and environmental
stimuli to inform higher-order community interactions. Higher-order interactions are
those that are unexpected based on interactions observed in simpler situations (e.g., of
member pairs) [90, 91, 92]. Therefore, integrating different system variables, like
transcriptome and metabolome dynamics, within controlled microbial communities will
inform how unexpected phenomena arise and how they contribute to deviations in

predictive models of community outcomes.

Our results indicated that competition strategies were maintained despite
stagnant population growth. B. thailandensis upregulated various bioactive
exometabolites involved in both interference and exploitative competition when with
neighbors. An effective competitor is often defined as by its ability to outcompete
neighbors via growth advantage that stems from efficient nutrient uptake and/or
biomass conversion rates [93, 94]. We add to this that a competitor can also have a
fithess advantage through effective maintenance, which can similarly employ
interference or exploitative competitive strategies despite no net growth. Maintenance
may ensure survival in some environments that impose a stationary phase lifestyle,
where long periods of nutrient depletion are punctuated with short periods of nutrient
flux. In these scenarios, it warrants to understand how competitive strategies are
deployed in the interim of growth and the extent to which these interactions contribute to
long-term community outcomes. Though population levels remain constant, sub-
populations of growing cells have been observed in stationary phase [95], and

continued production of competitive exometabolites may serve as an advantageous
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strategy to hinder growth of competitors. In addition, some antibiotics remain effective in
non-replicating bacteria [96]. The ability for continued maintenance via effective
competition strategies during stationary phase may provide spatiotemporal maintenance
of population levels before growth resumption [97]. Alternatively, both growth and non-
growth strategies may be occurring simultaneously (e.g. as can occur in biofilms). The
heterogeneity of biofilms may provide an environment where a bacterial population
contains both stationary cells in the center of the colony with growing cells at the
periphery of the colony that compete and alter developmental patterns of neighboring
populations [98, 99]. Thus, we expect that insights into the long-term consequences of
competition for microbial community outcomes will be gained by considering

competition in both active growth and maintenance scenarios.

Code availability
Computing code, workflows, and data sets are available at

[https://github.com/ShadelLab/Paper Chodkowski 3member SynCom 2021]. R

packages used during computing analyses included DEseq2 [41], ImpulseDE2 [42],
VennDiagram [43], ggplot2 [44], vegan 2.5-4 [45], RVAideMemoire [46], Minet [50],

rtracklayer [100], viridis [101], and helper functions [102, 103, 104, 105].

Data availability
Genomes for B. thailandensis, C. subtsugae, and P. syringae are available at the
National Center for Biotechnology Information (NCBI) under accession

numbers NC_ 007651 (Chromosome I)/NC_007650 (Chromosome
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1), NZ_PKBZ01000001, and NC_004578 (Chromosome)/NC_004633 (Plasmid

A)/NC 004632 (Plasmid B), respectively. An improved annotated draft genome of C.

subtsugae is available under NCBI BioProject accession

number PRINA402426 (GenBank accession number PKBZ00000000). Data for
resequencing efforts for B. thailandensis and P. syringae are under NCBI BioProject

accession numbers PRIJNA402425 and PRJNA402424, respectively. Metabolomics

data and transcriptomics data are also available at the JGI Genome Portal [106] under
JGI proposal identifier 502921. MZmine XML parameter files for all analyses can be
viewed at and downloaded from GitHub (see Dataset 7

at https://github.com/ShadelLab/Paper Chodkowski MonocultureExometabolites 2020/t

ree/master/Datasets). Large data files (e.g., MZmine project files) are available upon

request. Supplementary files are also available on GitHub

(https://qgithub.com/ShadelLab/Paper Chodkowski 3member SynCom 2021/tree/maste

r/Supplemental_Files).
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Figure 1. Experimental design and destructive sampling procedure of transwell
plates. There were seven conditions, six time points/condition, and four independent
replicates/condition (168 total transwell plates). Each member occupied 31
wells/condition to maintain member-specific population density across all conditions (A).
The SynCom transwell plate maintains physical separation of members in individual
wells while permitting exometabolite exchange through a 0.22-pm-pore filter bottom.
Exometabolite exchange occurs via a bottom-fitted shared medium reservoir (B; [35]).
Six replicate transwell plates were prepared for a time course experiment. The time
course experiment included one exponential phase time point and five stationary phase
time points. At specified time points, a transwell plate was destructively sampled (C).
Note that all members were diluted to different starting ODs to allow for all members to
achieve stationary phase within a two-hour window of each other. This figure was

created with BioRender.com.
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Figure 2. Loss of cell viability in B. thailandensis cocultures. Live (green) and dead
(blue) flow cytometry cell counts for C. subtsugae (Top row, panels A-C) and P.
syringae (Bottom row, panels D-F) from Syto9- and propidium iodide-stained cells (n = 4
to 5 technical replicates/time point/community membership/transwell plate and n = 4
independent replicates/time point/community membership). Cell counts are from
monocultures (panels A & D), cocultures with P. syringae (panel B) or C. subtsugae
(panel E), and cocultures with B. thailandensis (panels C & F). The bottom and top of
the box are the first (Q1) and third (Q3) quartiles, respectively, and the line inside the
box is the median. The whiskers extend from their respective hinges to the largest value
(top), and smallest value (bottom) was no further away than 1.5x the interquartile range.
Points represent outliers that are less than 1.5x the interquartile range of Q1 or greater

than 1.5x the interquartile range of Q3.
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Figure 3. Transcriptional responses are driven by community membership and
time. Shown are principal coordinates analysis (PCoA) plots for B. thailandensis (A), C.
subtsugae (B), and P. syringae (C). Each PCoA sub-panel presents the time series of
transcriptional patterns of the focal member given each of its 4 growth conditions (one
monoculture condition, two pairs, and one three-member). Each point represents a
mean transcript profile for a community member given a particular condition (indicated
by symbol color) and sampled at a given time point over exponential and stationary
phases (in hours since inoculation, h, indicated by symbol size, n = 3 to 4 replicates per
time point/community membership). The Bray-Curtis distance metric was used to
calculate dissimilarities between transcript profiles. Error bars are 1 standard deviation
around the mean axis scores. Note that transcriptional responses are driven by

community membership on PCoA axis 1 and time on PCoA axis 2 across all plots.
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Figure 4. Bacterial community exometabolite profiles differ by community
membership and time. Shown are PCoA plots for exometabolite profiles from the
following mass spectrometry modes: polar positive (A), polar negative (B), nonpolar
positive (C), and nonpolar negative (D). Each point represents the mean exometabolite
profile (relative contributions by peak area) given a particular community membership
(indicated by symbol color) at a particular time point (indicated by symbol size). The
Bray-Curtis distance metric was used to calculate dissimilarities between exometabolite
profiles. Error bars are 1 standard deviation around the mean axis scores (n =2 to 4

replicates). Bt is B. thailandensis, Cs is C. subtsugae, and Ps is P. syringae.
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Figure 5. Primary metabolites accumulated in monocultures have altered
dynamics in cocultures. A heat map of identified, primary metabolites is shown for C.
subtsugae monoculture (Cs), P. syringae monoculture (Ps), B. thailandensis
monoculture (Bt), C. subtsugae-P. syringae coculture (CsPs), B. thailandensis-P.
syringae coculture (BtPs), B. thailandensis-C. subtsugae coculture (BtCs), and the 3-
member community (BtCsPs), where samples are in columns and exometabolites are in
rows. These exometabolites were filtered based on their time series accumulation in
monocultures (See supplementary methods for details). Data for each sample are the
averages from independent time point replicates (n =3 to 4). Euclidean distance was
calculated from Z-scored mass spectral profiles. Features with similar dynamics were

clustered by Ward’s method.
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Figure 6. B. thailandensis upregulates biosynthetic gene clusters (BSGC) in
cocultures. Columns represent community membership for B. thailandensis cocultures
and rows represent BSGCs in B. thailandensis that were determined to be upregulated
compared to the monoculture control. Genes part of a BSGC were curated from
antiSMASH predictions and literature-based evidence. Within each BSGC at each time
point, the log2 fold-change (LFC) was calculated by comparing gene counts from a
coculture to the monoculture control (n = 3 to 4 LFC calculations/community
membership/time point). Log2 fold-changes were then averaged from all biosynthetic
genes within the BSGC at each time point. Error bars indicate standard deviations. We
defined an upregulated BSGC as a BSGC that had at least two consecutive stationary
phase time points with a LFCs > 1 (indicated by the horizontal red dashed line). Note

that plots for each BSGC have separate scales for the Y-axis.
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Figure 7. Coculture upregulation of BSGCs from B. thailandensis translates to
temporally accumulated secondary metabolites. Columns represent community
membership and rows represent identified secondary metabolites in B. thailandensis.
Known bioactive secondary metabolites produced by B. thailandensis were identified in
MZmine 2 through the observation of MS and MS/MS data. The accumulation of each
exometabolite was quantified through time (n = 2 to 4 integrated peak areas per time
point). The bottom and top of the box are the first (Q1) and third (Q3) quartiles,
respectively, and the line inside the box is the median. The whiskers extend from their
respective hinges to the largest value (top), and smallest value (bottom) was no further
away than 1.5x the interquartile range. Points represent outliers that are less than 1.5x

the interquartile range of Q1 or greater than 1.5x the interquartile range of Q3.
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Chodkowski & Shade: Exometabolite-driven maintenance competition in bacteria

Figure 8. B. thailandensis genes involved in thailandamide production are co-
expressed with C. subtsugae genes. A network module containing the thailandamide
BSGC is shown (A). The network module nodes are color coded by according to the
following criteria: thailandamide biosynthetic genes that had interspecies edges
(magenta), thailandamide biosynthetic genes that did not have interspecies edges
(orange), other B. thailandensis genes that were not part of the BSGC (yellow), and
genes that were from C. subtsugae (blue). The chromosomal organization of the
thailandamide BSGC is shown below the network module (B). The same colors are
applied to the BSGC operon. The operon also depicts genes that were not detected
within the interspecies network, shown in gray. Asterisks indicate core biosynthetic
genes in the BSGCs, as predicted from antiSMASH. The table (C) shows upregulated
B. thailandensis BSGCs (Fig. 6) and whether interspecies edges were detected (check

is yes, X is no).
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B. thailandensis-C. subtsugae B. thailandensis-P. syringae
interspecies network interspecies network

Bactobolin v v

Beta-lactone v x

Capistruin v v

Malleilactone v v

Mallecbactin v v

NRPS-1 x v

Pyochelin v v

Rhamnolipid x x

Thailandamide v v
1437
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Supplementary Methods

This supplementary information contains expanded Materials and Methods.

RNA-seq
RNA extraction

RNA was extracted using the E.Z.N.A. Bacterial RNA kit (Omega Bio-tek, Inc.).
An in-tube DNase | (Ambion, Inc AM2222, 2U) digestion was performed to remove DNA
from RNA samples. RNA samples were purified and concentrated using the Qiagen
RNAeasy MinElute Clean up Kit (Qiagen, Inc). Ten random samples were chosen to
assess RNA integrity (RIN > 7) on an Agilent 2100 Bioanalyzer. Standard operating
protocols were performed at the Department of Energy Joint Genome Institute as

previously described [1].

RNA sample prep, sequencing, QC, read preprocessing, and filtering
Standard operating protocols were performed at the Department of Energy Joint

Genome Institute as previously described [1].

Pseudoalignment and counting
Reads from each library were pseudoaligned to the transcriptome of each
member with kallisto [2]. Raw counts from each library were combined into a gene count

matrix for each member. The gene count matrix was used for downstream analyses.
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KEGG pathway analysis

Log-2 fold changes (LFC) were extracted from DESeq analysis by comparing
each condition at each time point to the exponential-phase time point (12.5 h) in
monoculture. We then mapped longitudinal LFCs onto KEGG pathways for each strain
using the pathview package in R. First, K numbers were assigned to genes for both C.
subtsugae and P. syringae using BlastKOALA (version 2.2). K numbers were not
assigned to B. thailandensis because KEGG identifiers were available. KEGG identifiers
for B. thailandensis and K numbers assigned to C. subtsugae and P. syringae were
used to map longitudinal LFCs onto KEGG pathways. Pathways of interest were

uploaded to FigShare.

Flow cytometry

Diluted cultures were stained with the Thermo Scientific LIVE/DEAD BacLight
bacterial viability kit at final concentrations of 1.5 yM Syto9 (live stain) and 2.5 yM
propidium iodide (dead stain). Two hundred microliters of stained cultures were
transferred to a 96-well microtiter U-bottom microplate (Thermo Scientific). Twenty
microliters of sample were analyzed on a BD Accuri C6 flow cytometer (BD
Biosciences) at a fluidics rate of 66 yl/min and a threshold of 500 on an FL2 gate. The
instrument contained the following optical filters: FL1-533, 30 nm; FL2-585, 40 nm; and
FL3, 670-nm longpass. The counting accuracy of the flow cytometer was checked with
green fluorescent protein beads (Thermo Scientific). Data were analyzed using BD

Accuri C6 software version 1.0.264.21 (BD Biosciences).
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Metabolomics
Normalization and heatmap analysis
Features were normalized by an ITSD reference feature (see Dataset 5

at https://github.com/ShadelLab/Paper Chodkowski MonocultureExometabolites 2020/t

ree/master/Datasets) and cube root transformed. Reference features for polar analyses

in positive (['*C,"*N]proline) and negative (['3C,'*N]alanine) modes were determined by
the ITSD with the lowest CV value across all samples. The reference feature for
nonpolar data sets was the ITSD ABMBA. Heat maps were generated in MetaboAnalyst
using Ward’s clustering algorithm with Euclidean distances from Z-scored data. Data for
each sample are the averages from independent time point replicates (n=2 to 4). The
heatmaps were exported and edited in InkScape for labelling purposes. The normalized
and transformed data sets were exported from MetaboAnalyst to generate principal-

coordinate analysis (PCoA) plots in R (see main methods).

Selection of Metabolomics Standards Initiative (MSI) level 1 primary metabolites for
heatmap analysis

DOE-JGI provided a feature table containing MSI level 1 identified primary
metabolites from their in-house curated reference database. The metabolites were only
identified from polar positive and polar negative analyses. The m/z and retention times
(RT) provided by DOE-JGI were used to identify these metabolites from our feature
table after MZmine 2 analysis. Internal standards, ['*C,"N]proline and ['*C,"*N]alanine
were added to the polar positive feature table and polar negative feature table,

respectively. Each feature table, containing all 7 conditions, was uploaded to
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MetaboAnalyst. Features were normalized by ITSD and cube root transformed. Each
feature table was exported and combined. Then, the feature table was split by each
member, meaning 3 feature tables were created containing 4 conditions each (1
monoculture, 2 pairwise cocultures, and 1, 3-member community). These normalized
and log transformed feature tables were re-uploaded to MetaboAnalyst for heatmap
analysis.

Heat maps were generated in MetaboAnalyst using Ward’s clustering algorithm with
Euclidean distances from Z-scored data. The dendrograms from each analysis were
manually inspected to select clusters of primary metabolites that met the following
criteria for each member: 1) accumulated over the time series in monoculture or 2)
accumulated substantially in the exponential phase time point in monoculture compared
to the stationary phase time points in monoculture. Primary metabolites that met criteria
1 were filtered from the normalized and log transformed MSI level 1 feature table and
primary metabolites that met criteria 2 were filtered from the normalized and log
transformed MSI level 1 feature table, separately. These filtered feature tables,
containing all 7 conditions, were re-uploaded to MetaboAnalyst for heatmap analysis.
Heat maps were generated in MetaboAnalyst using Ward’s clustering algorithm with
Euclidean distances from Z-scored data. The heatmaps were exported and edited in

InkScape for labeling purposes.

Effects of plate occupancy and resource concentration on gene expression

SynCom experiments
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We designed an additional experiment to determine whether the observed
dynamics in exometabolites and transcription could be attributed solely to population
density given resource availability, rather than to interspecies interactions. Additional
SynCom experiments (6 conditions, 3 replicates/condition), were prepared as described
(see methods section: Bacterial strains and culture conditions and Synthetic Community
Experiments). The conditions varied based on plate occupancy (# of wells occupied by
each member) and resources (% glucose) in the transwell plate. The conditions were as
follows: B. thailandensis (31 wells) in M9-0.067% glucose, B. thailandensis (62 wells) in
M9-0.13% glucose, B. thailandensis (93 wells) in M9-0.2% glucose, B. thailandensis-C.
subtsugae (31 wells/member) in M9-0.13% glucose, B. thailandensis- P. syringae (31
wells/member) in M9-0.13% glucose, and B. thailandensis-C. subtsugae- P. syringae
(31 wells/member) in M9-0.2% glucose. Plates were destructed after 45 h incubation
and the following procedures were performed: 1) Wells containing spent culture from
each member were separately pooled into 15 mL conical tubes, flash frozen in liquid
nitrogen, and stored at -80 until further processing. 2) Spent medium (~31 ml) from the
shared reservoir was transferred to 50 mL conical tubes, flash-frozen in liquid nitrogen

and stored at —80 °C.

RNA extraction, QC, and cDNA synthesis

RNA was extracted using the E.Z.N.A. Bacterial RNA kit (Omega Bio-tek, Inc.).
An in-tube DNase | (Ambion, Inc. AM2222, 2U) digestion was performed to remove
DNA from RNA samples. RNA samples were purified and concentrated using the

Qiagen RNAeasy MinElute Clean up Kit (Qiagen, Inc.). RNA samples were quantified
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on a Qubit using the RNA High Sensitivity Assay Kit (Thermo Fisher Scientific, Inc.).
RNA samples were then sent to the RTSF Genomics Core at Michigan State University
for high sensitivity RNA ScreenTape analysis on an Agilent 4200 TapeStation.
TapeStation analysis confirmed successful digestion of DNA. Total RNA (150
ng/sample) was synthesized to cDNA using the Invitrogen SuperScript Ill First-Strand
Synthesis kit (Thermo Fisher Scientific, Inc.). cDNA samples were quantified by Qubit in
preparation of target genes for RT-qPCR.

Three genes from the B. thailandensis thailandamide operon were targeted for
relative quantification normalized to the rpoD reference gene. Primers used for RT-
gPCR are shown in Table S12. We first confirmed amplification of intended targets.
Each of these genes were amplified from B. thailandensis gDNA (100 ng) using the
Phusion High-Fidelity DNA Polymerase (New England Biolabs, Inc.) with the following
conditions: 98 °C (30 s), 30 cycles of 98 °C (10 s), 59 °C (10 s), and 72°C (10 s), and a
final extension at 72 °C (5 min). PCR products were run on gel (100 V for 50 min) and
gel extracted and purified using the Wizard SV Gel and PCR Clean-Up System
(Promega Corporation). PCR amplified and purified products of rpoD, thaF, thaK, and
thaQ were sent to the RTSF Genomics Core at Michigan State University for Sanger
sequencing.

RT-gPCR assays were performed using the SsoAdvanced Universal SYBR
Green Supermix (Bio-Rad Laboratories, Inc.). SYBR reactions were placed into Hard-
Shell PCR Plates 96-well, thin wall (Bio-Rad Laboratories, Inc. HSP9601) and analyzed
using a CFX Connect Real-Time System (Bio-Rad Laboratories, Inc.). First, the

dynamic range of each primer set was determined by making a 10-fold dilution series
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from 10 ng-0.1 pg of cDNA. The following mixture was used for each RT-qPCR assay:
10 uL SsoAdvanced universal SYBR Green supermix (2x), 0.5 uL each of forward and
reverse primers, 1 yL water, and 8 yL cDNA sample (6 serially diluted samples
concentrated between 1.25E-5 and 1.25 ng/uL). The RT-gPCR reaction was run with
the following conditions: 95 °C (3 min), 40 cycles of 95 °C (10 s), 59 °C (10 s), and 72
°C (10 s). Following the last extension step, the melt curve was run with the following
conditions: 95 °C (10 s), then 65 °C to 95 °C in 0.5 °C increments. Each primer set had
a 5-fold dynamic range (10 ng-10 pg) with efficiencies between 90-110% (Table S13)
The Aslope between the reference gene and each target gene were all 0.1, confirming
that relative gene expression math models were a viable option for comparing gene
expression across conditions.

cDNA concentrations across all conditions were diluted to a stock concentration
of 0.0125 ng/uL. RT-gPCR reactions and conditions were prepared and run as
previously described. Controls for the assay included a gDNA positive control, a no
template negative control, and a no amplification (no-RT) negative control. The Livak
method (222C1) was used to calculate relative gene expression in each test condition
compared to the reference condition (B. thailandensis, 31 wells in M9-0.067% glucose)

where target genes were thaF, thaK, and thaQ and the reference gene was rpoD.
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Supplementary Files/Datasets
Supplementary File 1: Pairwise PROTEST analyses comparing the reproducibility of
exometabolome profiles across biological replicate time series. Coordinates of the first

two PCoA axes were used to perform PROTEST analysis in vegan. File type: .xlsx

Supplementary File 2: Identification of B. thailandensis bioactive exometabolites of

interest through observation of mass spectrometry data. File type: .xlIsx

Supplementary File 3: Genes part of the interspecies network, their corresponding

modules, and GO enrichment analysis of modules. File type: .xIsx

Supplementary File 4. GO enrichment analysis on genes with interspecies edges from

network analysis. File type: .xlsx

Supplementary File 5: Gene annotations for C. subtsugae and P. syringae that
contained interspecies edges with B. thailandensis thailandamide and malleilactone

biosynthetic genes, respectively. File type: .xlsx

Supplementary File 6: Protein alignment of the DNA starvation/stationary phase
protein from C. subtsugae and the closest homolog in B. thailandensis. File type: .txt
Supplementary File 7: Protein alignment of the TonB-dependent siderophore receptor
family protein from P. syringae and the closest homolog in B. thailandensis. File type:

Axt



198

199
200

10



201

11



202

203
204
205
206
207
208
209

Log10 cells/mL

10

A: B. thailandensis monoculture

B: B. thailandensis w/ C. subtsugae

C: B. thailandensis w/ P. syringae

-
13
2!

1+

11—
1+
o -
-
—1

-

1
i
4
-

ey
I+

1
iy
—I1
Ie
1

m

o+

: |
I
-

)
1 3

ey
o
I
o+
—T+—

I+

D: B. thailandensis 3-mem comm.

E: C. subtsugae 3-mem comm.

F: P. syringae 3-mem comm.

S

ﬁ—' RN ALY DRI LA IR RALL IR R |

I+
I+
=}
I+
I

:|$$

gy
i
+
alll

Y-

B EE & &

o
e I+

—I+
—T—
—T1t

Ji

125 25 30 35 40 45

125 25 30 35 40 45
Time (h)

125 25 30 35 40 45

Viability assessment E3 Live E3 Dead

Figure S1. Cell viability of SynCom members. Live (green) and dead (blue) flow cytometry cell counts
for B. thailandensis in monoculture and pairwise cocultures (Top row, panels A-C) and for each member
in the 3-member community (Bottom row, panel D; B. thailandensis, panel E; C. subtsugae, panel F; P.
syringae). Cells were stained with Syto9- and propdium iodide (n = 4 to 5 wells/time point/community
membsership/transwell plate and n=4 independent replicates/time point/community membership). The
bottom and top of the box are the first (Q1) and third (Q3) quartiles, respectively, and the line inside the
box is the median. The whiskers extend from their respective hinges to the largest value (top), and
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smallest value (bottom) was no further away than 1.5x the interquartile range. Points represent outliers
that are less than 1.5x the interquartile range of Q1 or greater than 1.5x the interquartile range of Q3.
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219

Figure S2. Differential gene expression patterns across community memberships. Venn diagram
plots of differentially expressed genes in A) B. thailandensis B) C. subtsugae and C) P. syringae.

Differential gene expression was determined using ImpulseDE2 comparing longitudinal gene expression
to a monoculture control (FDR-corrected cutoff of 0.01). Bt- B. thailandensis, Cs- C.subtsugae, and Ps —

P. syringae.

15



220

221
222
223
224
225
226
227
228

229
230

B. thailandensis w/ B. thailandensis w/ B. thailandensis in
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Figure S3. B. thailandensis RNA-seq transcript dissimilarity through time. Bray-Curtis dissimilarities
were calculated for each coculture condition compared to the monoculture condition at each time point
(n= 3-4 replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3)
quartiles, respectively, and the line inside the box is the median. The whiskers extend from their
respective hinges to the largest value (top), and smallest value (bottom) was no further away than 1.5x
the interquartile range. Points represent outliers that are less than 1.5x the interquartile range of Q1 or
greater than 1.5x the interquartile range of Q3.
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Figure S4. C. subtsugae RNA-seq transcript dissimilarity through time. Bray-Curtis dissimilarities
were calculated for each coculture condition compared to the monoculture condition at each time point
(n= 3-4 replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3)
quartiles, respectively, and the line inside the box is the median. The whiskers extend from their
respective hinges to the largest value (top), and smallest value (bottom) was no further away than 1.5x
the interquartile range. Points represent outliers that are less than 1.5x the interquartile range of Q1 or
greater than 1.5x the interquartile range of Q3.
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Figure S5. P. syringae RNA-seq transcript dissimilarity through time. Bray-Curtis dissimilarities were
calculated for each coculture condition compared to the monoculture condition at each time point (n= 3-4
replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3) quartiles,
respectively, and the line inside the box is the median. The whiskers extend from their respective hinges
to the largest value (top), and smallest value (bottom) was no further away than 1.5% the interquartile
range. Points represent outliers that are less than 1.5x the interquartile range of Q1 or greater than 1.5x
the interquartile range of Q3.
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255 Figure S6. Patterns of transcriptional regulation reveal biological responses of community

256 members to different community memberships. Differentially expressed genes categorized by COG
257  categories in A) B. thailandensis B) C. subtsugae and C) P. syringae. These DEGs were determined by
258  comparing each coculture conditions to the monoculture control. COG categories include: [C] Energy

259  production and conversion, [D] Cell cycle control, cell division, chromosome partitioning, [E] Amino acid
260 transport and metabolism, [F] Nucleotide transport and metabolism, [G] Carbohydrate transport and

261 metabolism, [H] Coenzyme transport and metabolism, [I] Lipid transport and metabolism, [J] Translation,
262 ribosomal structure and biogenesis, [K] Transcription, [L] Replication, recombination and repair, [M] Cell
263  wall/membrane/envelope biogenesis, [N] Cell maotility, [O] Post-translational modification, protein turnover,
264  and chaperones, [P] Inorganic ion transport and metabolism, [Q] Secondary metabolites biosynthesis,
265  transport, and catabolism, [S] Function unknown, [T] Signal transduction mechanisms, [U] Intracellular
266  trafficking, secretion, and vesicular transport, and [V] Defense mechanisms. Community memberships are
267  as follows: B. thailandensis-P. syringae coculture (BtPs/PsBt), B. thailandensis-C. subtsugae coculture
268 (BtCs/CsBt), C. subtsugae-P. syringae coculture (CsPs/PsCs), and the 3-member community

269 (BtCsPs/CsPsBt/PsBtCs).
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Figure S7. Patterns of transcriptional regulation reveal pairwise coculture-specific differences.
Differentially expressed genes categorized by COG categories in A) B. thailandensis B) C. subtsugae and
C) P. syringae. These DEGs were determined by comparing gene expression between pairwise
cocultures for each member. Analyses were as follows: BtCs-BtPs; B. thailandensis coculture with C.
subtsugae (case) was compared to B. thailandensis coculture with P. syringae (control), CsBt-CsPs; C.
subtsugae coculture with B. thailandensis (case) was compared to C. subtsugae coculture with P.
syringae (control), and PsBt-PsCs; P. syringae coculture with B. thailandensis (case) was compared to P.
syringae coculture with C, subtsugae (control). COG categories are labeled in the Figure S6 legend.
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Figure S8. Exometabolites have membership-specific production and temporal accumulation. A

heat map of coculture accumulated exometabolites is shown for polar positive (A), polar negative (B),

nonpolar positive (C), and nonpolar negative (D) modes, for C. subtsugae monoculture (Cs), P. syringae
monoculture (Ps), B. thailandensis monoculture (Bt), C. subtsugae-P. syringae coculture (CsPs), B.
thailandensis-P. syringae coculture (BtPs), B. thailandensis-C. subtsugae coculture (BtCs), and the 3-
member community (BtCsPs), where samples are in columns and exometabolites are in rows. Data for
each sample are the averages from independent time point replicates (n =2 to 4). Euclidean distance was
calculated from Z-scored mass spectral profiles. Features with similar dynamics were clustered by Ward’s

method.
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Figure S9. Identified exometabolites with exponential phase accumulation. A heat map of
exometabolite dynamics is shown for identified metabolites with exponential phase accumulation (time
point 12.5 h) determined from C. subtsugae monoculture (Cs), P. syringae monoculture (Ps), and B.
thailandensis monoculture (Bt), Temporal dynamics for these exometabolites were then plotted for C.
subtsugae-P. syringae coculture (CsPs), B. thailandensis-P. syringae coculture (BtPs), B. thailandensis-
C. subtsugae coculture (BtCs), and the 3-member community (BtCsPs), where samples are in columns
and exometabolites are in rows. Data for each sample are the averages from independent time point
replicates (n =2 to 4). Euclidean distance was calculated from Z-scored mass spectral profiles. Features
with similar dynamics were clustered by Ward’s method.
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Figure S10. BSGC downregulated or unaltered in B. thailandensis.
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320

321

each BSGC were determined with antiSMASH and evidence from literature. At each time point, the
average log2 fold-change (LFC) was determined across all biosynthetic genes for each BSGC. The

horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales for

the Y-axis.
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Figure S11. Patterns of transcriptional regulation for BSGC in C. subtsugae. Biosynthetic genes
involved in each BSGC were determined with antiSMASH and evidence from literature. At each time
point, the average log2 fold-change (LFC) was determined across all biosynthetic genes for each BSGC.
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The horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales

for the Y-axis.
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Figure S12. Patterns of transcriptional regulation for BSGC in P. syringae. Biosynthetic genes
involved in each BSGC were determined with antiSMASH and evidence from literature. At each time
point, the average log2 fold-change (LFC) was determined across all biosynthetic genes for each BSGC.
The horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales
for the Y-axis.
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Figure $13. Flow diagram for interspecies co-expression network analysis. An interspecies
coexpression network was created based on transcript counts from B. thailandensis-C. subtsugae and B.
thailandensis-P. syringae cocultures. All genes that passed initial quality filtering were included in the
analysis to generate networks. Unweighted gene coexpression networks were generated with a Z-score
cutoff of 4.5. Intraspecies genes were used to identify network modules. Gene ontology enrichment
analysis was performed on nodes with interspecies edges.
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Figure S14. B. thailandensis genes involved in malleilactone production are detected as
interspecies edges in the B. thailandensis-P. syringae coexpression network and biosynthetic
genes organize into network modules. A network module containing the malleilactone BSGC is shown.
The network module nodes are color coded by B. thailandensis gene type (BSGC or not) and type of
connections (interspecies or not): malleilactone biosynthetic genes that had interspecies edges
(magenta), malleilactone biosynthetic genes that did not have interspecies edges (orange), or other
genes that were not part of the BSGC (yellow); as well as genes that were from P. syringae (green). The
chromosomal organization of the malleilactone BSGC is shown below the network module. The same
colors are applied to the BSGC operons. Asterisks indicate core biosynthetic genes in the BSGCs, as
predicted from antiSMASH.
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Figure S15. The DNA starvation/stationary phase protection gene, dpsA, in downregulated in C.
subtsugae when cocultured with B. thailandensis while unaltered in B. thailandensis. Transcript
abundance trajectories of dpsA are plotted for C. subtsugae (A) and B. thailandensis (B). Time course
scatter plots were smooth curve fitted by loess (n=3-4 replicates/condition/time point). Community
memberships are as follows: B. thailandensis monoculture (Bt; orange), C. subtsugae monoculture (Cs;
blue), C. subtsugae-P. syringae coculture (CsPs; light blue), B. thailandensis-P. syringae coculture (BtPs;
yellow), B. thailandensis-C. subtsugae coculture (BtCs; purple), and the 3-member community (BtCsPs;
black).
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Figure S16. The gene encoding a TonB-dependent siderophore receptor is downregulated in P.
syringae when cocultured with B. thailandensis while upregulated in B. thailandensis. Transcript
abundance trajectories of fonB are plotted for P. syringae (A) and B. thailandensis (B). Time course
scatter plots were smooth curve fitted by loess (n = 3-4 replicates/condition/time point). Community
memberships are as follows: B. thailandensis monoculture (Bt; orange), P. syringae monoculture (Ps;
green), C. subtsugae-P. syringae coculture (CsPs; light blue), B. thailandensis-P. syringae coculture
(BtPs; yellow), B. thailandensis-C. subtsugae coculture (BtCs; purple), and the 3-member community
(BtCsPs; black).
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Supplementary Table S1. Percent variation explained on the effect of membership,

time, and their interaction on transcriptomic profiles.

Membership Time Membership x Time
B. thailandensis 46.26 13.24 63.11
C. subtsugae 60.60 3.88 68.29
P. syringae 77.03 0.00 81.40
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Supplementary Table S2. Summary of Protest analyses comparing transcriptional

profiles through time across independent replicates. Coordinates of the first two PCA
axes were used to perform Protest analyses. Ranges reflect separate Protest analyses
performed between all replicates in a community membership. Values in parenthesis
represent the median P value.

m12 R P
B. thailandensis
Monoculture 0.048 — 0.820 0.424 - 0.976 0.010 - 0.867 (0.200)
P. syringae coculture 0.018 —0.049 0.975 - 0.991 0.001 - 0.001 (0.001)
C. subtsugae coculture 0.010-0.112 0.943 - 0.995 0.001 - 0.003 (0.001)
3-member 0.013-0.162 0.916 — 0.994 0.001 —0.006 (0.001)
C. subtsugae
Monoculture 0.011 -0.140 0.927 - 0.995 0.004 - 0.067 (0.039)
P. syringae coculture 0.045 -0.206 0.891 -0.977 0.003 —0.042 (0.008)
B. thailandensis coculture 0.091-0.182 0.905 - 0.954 0.001 -0.108 (0.019)
3-member 0.190 - 0.543 0.676 —0.900 0.001 —0.208 (0.013)
P. syringae
Monoculture 0.178 —0.538 0.680 — 0.907 0.008 —0.136 (0.054)
C. subtsugae coculture 0.035-0.251 0.865 —0.982 0.001 —0.083 (0.021)
B. thailandensis coculture 0.021 -0.290 0.843 - 0.990 0.001 —0.001 (0.001)
3-member 0.034 — 0.687 0.560 — 0.983 0.007 —0.317 (0.038)
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Supplementary Table S3. PERMANOVA results calculated on independently

replicated time series within members across all community memberships.

PERMANOVA results are presented as P values, R? values, and pseudo-F statistic

results in the first row. Post-hoc pairwise PERMANOVA results are presented below the

first row.
B. thailandensis C. subtsugae P. syringae
adonis P =0.001, P =0.001, P =0.001,
R?=0.480, R?=0.619, R?=0.778,
F = 27.686 F=47.15 F=107.21
Monoculture vs
B. thailandensis coculture ) 0.002 0.001
Monoculture vs 0.001 ) 0.001
C. subtsugae coculture
Monoculture vs 0.001 0.010 )
P. syringae coculture
Monoculture vs 0.001 0.002 0.001
3-member
B. thailandensis coculture vs
- - 0.001
C. subtsugae coculture
B. thailandensis coculture vs
, - 0.002 -
P. syringae coculture
C. subtsugae coculture vs
; 0.001 - -
P. syringae coculture
B. thailandensis coculture vs _ 0.248 0.068
3-member
C. ésubtsugae coculture vs 0.001 ) 0.001
-member
P. syringae coculture vs 0.001 0.002 )

3-member
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400

401

402

403

Supplementary Table S4. Percent variation explained on the effect of membership,

time, and their interaction on exometabolite profiles.

Membership Time Membership x Time
Polar Positive 45.76 7.26 55.89
Polar Negative 51.61 412 58.83
Nonpolar Positive 56.92 9.49 71.88
Nonpolar Negative 64.77 7.94 79.38
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404

405

406

407

408

409

410

Supplementary Table S5. Summary of Protest analyses comparing exometabolite

composition through time across independent replicates. Coordinates of the first two

PCoA axes were used to perform Protest analyses. Ranges reflect separate Protest

analyses performed for each polarity (polar/nonpolar) and ionization mode

(positive/negative).

m12 R P
C. subtsugae-P. syringae coculture 0.022 - 0.906 0.307 —0.989 0.001 —0.849 (0.025)
B. thailandensis-P. syringae coculture 0.015-0.592 0.638 — 0.992 0.001 — 0.667 (0.050)
B. thailandensis-C. subtsugae coculture  0.003 — 0.456 0.738 — 0.995 0.001 —0.250 (0.003)
3-member community 0.021 — 0.556 0.667 — 0.990 0.001 - 0.133 (0.003)
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411

412

413

414

415

416

Supplementary Table 6. PERMANOVA results calculated on independently replicated

time series across coculture community memberships. PERMANOVA results are

presented as P values, R? values, and pseudo-F statistic results in the first row. Post-

hoc pairwise PERMANOVA results are presented below the first row.

Polar Polar Nonpolar Nonpolar
Positive Negative Positive Negative
P=0.001, P=0.001, P=0.001 P =0.001,
adonis R?2=0.475 R2?=0.531, R?=0.585 R?=0.662,
F=27711 F=34773 F=37.549 F =45.743
B. thailandensis-C. sut?tsugae coculture vs 0.001 0.001 0.001 0.001
C. subtsugae-P. syringae coculture
B. tha:laqdens:s—Q. subtsqgae coculture vs 0.001 0.001 0.001 0.001
B. thailandensis- P. syringae coculture
B. thailandensis- P. syringae coculture vs 0.001 0.001 0.001 0.001
C. subtsugae-P. syringae coculture
3-member community vs 0.001 0.001 0.001 0.001
C. subtsugae-P. syringae coculture
3-member community vs
B. thailandensis- P. syringae coculture 0.001 0.001 0.001 0.001
3-member community vs 0.002 0.008 0.019 0.025

B. thailandensis-C. subtsugae coculture
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417  Supplementary Table S7. Number of predicted biosynthetic gene clusters (BSGCs,

418 first row) followed by the quantity of upregulated BSGCs in cocultures.
B. thailandensis C. subtsugae P. syringae

Predicted BSGCs 28 14 10
C. subtsugae-P. syringae coculture - 0 0
B. thailandensis-P. syringae coculture 8 - 0
B. thailandensis-C. subtsugae coculture 10 1 -
3-member community 11 1 0

419

420
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421  Supplementary Table S8. One-way ANOVA? comparing the quantitation of identified
422  secondary metabolites between community memberships with B. thailandensis
423  membership.

Df (between) Df (within)  Fvalue p
Bactobolin 6 160 392.10 <2e-16
Capistruin 6 160 77.83 <2e-16
Melleilactone 6 121 150.10 <2e-16
Rhamnolipid® 6 136 39.34 <2e-16
Thailandamide 6 121 61.02 <2e-16
Pyochelin 6 136 105.20 <2e-16

424 *Formula: aov(formula = log(Value) ~ Membership, data = .)
425  PRhamnolipid congener Rha-Rha-C14-C14

426



427
428
429

430

431

Supplementary Table S9. TukeyHSD post-hoc results comparing quantitation of
identified secondary metabolites between community memberships with B.
thailandensis membership. Values represent the adjusted P-value.

Bactobolin

Capistruin

Melleilactone Rhamnolipid?

Thailandamide

Pyochelin

Monoculture vs
P. syringae
coculture
Monoculture vs
C. subtsugae
coculture
Monoculture vs
3-member

C. subtsugae
coculture vs

P. syringae
coculture

P. syringae
coculture vs
3-member

C. subtsugae
coculture vs
3-member

8.41E-01

3.54E-01

8.27E-01

8.38E-01

3.28E-01

6.08E-02

8.00E-07

8.45E-02

5.00E-07

6.48E-03

9.99E-01

4.20E-03

?Rhamnolipid congener Rha-Rha-C14-C14

4.00E-07

< 1.00E-07

< 1.00E-07

5.45E-02

1.00E-07

1.76E-03

2.26E-01

2.53E-02

1.00E-05

7.68E-01

6.50E-03

7.76E-02

1.25E-04

< 1.00E-07

< 1.00E-07

9.27E-03

4.32E-03

9.97E-1

4.85E-01

8.55E-01

7.13E-04

9.11E-01

4.24E-02

6.20E-03
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433

434

435

436

Supplementary Table S10. Relative gene expression of genes in the thailandamide
operon across different SynCom conditions. B. thailandensis (31 wells) in M9-0.067%

glucose was the control condition and rpoD was the reference gene.

thaF thak thaQ
Bt (62 wells) 0.523 0.550 0.650
Bt (93 wells) 0.303 0.138 0.188
Bt-Ps (31 wells/member) 1.311 1.675 2.163
Bt-Cv (31 wells/member) 2.375 2.304 1.05
Bt-Cv-Ps (31 wells/member) 2.048 2433 1.742
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437  Supplementary Table S11. Network summary results from interspecies coexpression

438  networks.

Network B. thailandensis-C. subtsugae B. thailandensis-P. syringae
Member B. thailandensis C. subtsugae B. thailandensis P. syringae
Total nodes 2701 2043 3254 3478
Nodes with only 2418 1814 2749 2996
intraspecies
edges
Nodes with 283 229 505 482
interspecies
edges
Total edges 9382 7240 15801 23319
Intraspecies 9074 6932 15056 22574
edges
Interspecies 308 745
edges
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442

443

444

Supplementary Table S12. Primers used for RT-gPCR analysis of genes in the

thailandamide operon.

Primer Sequence (5’ > 3’) Product size (bps) Reference
ACCGTCGTGGCTACAAATTC
rpoD F
3]
117
TCGTCTCGATCATGTGAACC
oD R
thaF F CATGCACGCGTTTCTGTTTC
113 This study
thaF F TCGTAGCCCAAGATCTCGTT
thaK_F GGTATTGAGGCCATGAACGT
104 This study
thaK_F CATCAGCAGATTCGCGAAAC
thaQ _F GAACGCGTCGAAGGATTTTC
115 This study
thaQ F ATTCGTTCGGGTACTTCTGC
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445

446

447

448

449

Supplementary Table S13. RT-gPCR efficiencies of reference and target genes for

relative expression analysis of genes in the thailandamide operon.

Gene Slope R? Efficiency (%)
rpoB -3.424 0.999 102.6

thaF -3.204 0.996 105.2

thaK -3.358 0.995 98.5

thaQ -3.305 0.997 100.7
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