

1 **Bioactive exometabolites drive maintenance competition in**
2 **simple bacterial communities**

3 John L. Chodkowski¹ and Ashley Shade^{2*}

4 ¹Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824,
5 USA

6 ²Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE
7 1418, VetAgro Sup, 69622 Villeurbanne, France

8 * Corresponding author and material requests. Email: ashley.shade@cnrs.fr; ORCID: 0000-0002-7189-
9 3067

10

11 **Competing Interests**

12 The authors declare no competing financial interests.

13

14 **Abstract**

15 During prolonged resource limitation, bacterial cells can persist in metabolically
16 active states of non-growth. These maintenance periods, such as those experienced in
17 stationary phase, can include upregulation of secondary metabolism and release of
18 exometabolites into the local environment. As resource limitation is common of many
19 environmental microbial habitats, we hypothesized that neighboring bacterial
20 populations employ exometabolites to compete or cooperate during maintenance, and

21 that these exometabolite-facilitated interactions can drive community outcomes. Here,
22 we evaluated the consequences of exometabolite interactions over stationary phase
23 among three environmental strains: *Burkholderia thailandensis* E264, *Chromobacterium*
24 *subtsugae* ATCC 31532, and *Pseudomonas syringae* pv.*tomato* DC3000. We
25 assembled them into synthetic communities that only permitted chemical interactions.
26 We compared the responses (transcripts) and outputs (exometabolites) of each
27 member with and without neighbors. We found that transcriptional dynamics were
28 changed with different neighbors, and that some of these changes were coordinated
29 between members. The dominant competitor *B. thailandensis* consistently upregulated
30 biosynthetic gene clusters to produce bioactive exometabolites for both exploitative and
31 interference competition. These results demonstrate that competition strategies during
32 maintenance can contribute to community-level outcomes. It also suggests that the
33 traditional concept of defining competitiveness by growth outcomes may be narrow, and
34 that maintenance competition could be an additional or alternative measure.

35

36 Importance

37 Free-living microbial populations often persist and engage in environments that offer
38 few or inconsistently available resources. Thus, it is important to investigate microbial
39 interactions in this common and ecologically relevant condition of non-growth. This work
40 investigates the consequences of resource limitation for community metabolic output
41 and for population interactions in simple synthetic bacterial communities. Despite non-
42 growth, we observed active, exometabolite-mediated competition among the bacterial

43 populations. Many of these interactions produced exometabolites were dependent
44 on the community composition, but we also observed that one dominant competitor
45 consistently produced interfering exometabolites regardless. These results are
46 important for predicting and understanding microbial interactions in resource-limited
47 environments.

48

49 Introduction

50 Bacteria interact with other bacteria and their environment within complex, multi-
51 species communities. Bacterial interactions rely on the ability to sense and respond to
52 both biotic and abiotic stimuli [1, 2]. These stimuli include physical, chemical or
53 molecular cues, and can alter bacterial behaviors [3, 4], and ultimately, can also alter
54 community functioning [5, 6]. It is expected that interspecies interactions play an
55 important role in shaping microbial community dynamics [7]. However, multiple stimuli in
56 the environment make it difficult to disentangle the separate influences of abiotic versus
57 biotic stimuli on microbial community dynamics [8]. Therefore, efforts to characterize
58 and distinguish community responses to biotic stimuli, such as those that facilitate
59 interspecies interactions, will provide insights into the specific roles that microbial
60 interactions play in shaping their communities [9].

61 Interspecies interactions can be facilitated through small molecules [10].
62 Extracellular small molecules are collectively referred to as exometabolites [11, 12, 13].
63 Depending on the exometabolite produced, these molecules can mediate interspecies
64 interactions that range from competitive to cooperative [14]. Of these interaction types,

65 competition has been shown to have a major influence in structuring microbial
66 communities [15, 16, 17]. Thus, competitive interactions that are mediated by
67 exometabolites are also expected to influence microbial community dynamics. In
68 addition, different types of exometabolites can be employed by bacteria to gain
69 advantage in both exploitative (e.g. nutrient scavenging) and interference (direct cell
70 damage) categories of competition.

71 Traditionally, competition has been viewed through the lens of resource
72 acquisition [18]. In previous studies, competitiveness is modeled with respect to yield
73 given resource consumption and growth [19, 20]. However, competition for *survival* or
74 *maintenance* may be just as important as competition for yield, especially during periods
75 of resource limitation [21, 22]. Competition during maintenance is likely common in
76 environments that experience relatively long periods of nutrient famine punctuated by
77 short periods of nutrient influx, for example such as in soils, sequencing batch reactors,
78 and the gut [23, 24, 25, 26]. The stationary phase of a bacterial growth curve falls within
79 this context of growth cessation, and pulses of nutrients may be transiently available as
80 cells die and lyse (necromass), while the total population size remains stagnant.

81 Stationary phase is often coordinated with a metabolic shift to secondary metabolism
82 [27, 28]. Therefore, an effective “maintenance” competitor may produce bioactive
83 exometabolites, like antibiotics, which are often produced because of secondary
84 metabolism. Bacteria can activate biosynthetic gene clusters (BSGCs) to produce
85 bioactive exometabolites [29]. The activation of BSGCs is closely tied to stress
86 responses, suggesting that bacteria can sense the stress of competition [30, 31]. While
87 it is known that certain exometabolites can trigger BSGC upregulation and, more

88 generally alter transcription [32], there is much to understand about the outcomes of
89 interspecies interactions for BSGCs in multi-member microbial communities.

90 Here, we build on our previous research to understand how exometabolite-
91 mediated interactions among bacterial neighbors contribute to community outcomes in a
92 simple, three-member community (Table 1). These three members are commonly
93 associated with terrestrial environments (soils or plants) and were chosen because of
94 reported [33] and observed interspecies exometabolite interactions in the laboratory.
95 We used a synthetic community (SynCom) approach [34] by applying our previously
96 described transwell system [35], which allowed for evaluation of “community goods”
97 within a media reservoir that was shared among members. The members’ populations
98 were physically isolated by membrane filters at the bottom of each transwell, but could
99 interact chemically via the reservoir. In our prior work, we investigated each member’s
100 exometabolites and transcription over stationary phase, and the objective was to
101 understand monoculture responses (in minimal glucose media) before assembling the
102 more complex 2- and 3- member communities. We previously found that each member
103 in monoculture produced a variety of exometabolites in stationary phase, including
104 bioactive molecules involved in competition [36]. In this work, we build to 2- and 3-
105 member communities to ask: How do members interact via exometabolites in simple
106 communities during maintenance (stationary phase), and what are the competitive
107 strategies and outcomes of those interactions? What genetic pathways, molecules, and
108 members drive the responses?

109 We found that *B. thailandensis* had a major influence on the transcriptional
110 responses of both *C. subtsugae* and *P. syringae*, and that this influence could be

111 attributed to an increase in both interference and exploitative competition strategies.
112 These findings show that diverse competitive strategies can be deployed even when
113 bacterial neighbors are surviving rather than exponentially growing. Therefore, we
114 suggest that contact-independent, exometabolite-mediated interference and exploitation
115 are important competitive strategies in resource-limited environments and support the
116 non-yield outcome of maintenance.

117

118 **Materials and Methods**

119 **Bacterial strains and culture conditions**

120 We selected three environmental bacterial strains for the SynCom experiments
121 that were originally isolated from various plant/soil habitats and that had prior evidence
122 of exometabolite interactions among them in the laboratory [Table 1; 33, 37-40]. Freezer
123 stocks of *B. thailandensis*, *C. subtsugae*, and *P. syringae* were plated on half-
124 concentration Trypticase soy agar (TSA50) at 27°C for at least 24 h. Members were
125 inoculated in 7 ml of M9–0.2% glucose medium and grown for 16 h at 27°C, 200 rpm.
126 Cultures were then diluted into 50 ml M9-0.2% glucose medium such that exponential
127 growth phase was achieved after 10 h of incubation at 27°C, 200 rpm. Members were
128 diluted in 50 ml M9 glucose medium to target ODs (*B. thailandensis* 0.3 OD, *C.*
129 *subtsugae*: 0.035 OD, *P. syringae* 0.035 OD). The high initial OD for *B. thailandensis*
130 was necessary such that stationary phase would be achieved by all members within a 2
131 h window after 24 h incubation in the transwell plate. The glucose concentration in the
132 final dilution varied upon community membership- 0.067% for monocultures, 0.13% for

133 pairwise cocultures, and 0.2% for the 3-member community. For each member, 48 ml of
134 diluted culture was transferred as 4 mL aliquots in 12, 5 mL Falcon tubes to more
135 efficiently prepare replicate transwell plates.

136

137 **Synthetic community experiments**

138 Transwell plate preparation was performed as previously described [35]. Briefly,
139 we used sterile filter plates with 0.22- μ m-pore polyvinylidene difluoride (PVDF) filter
140 bottoms (Millipore MAGVS2210). Prior to use, filter plates were washed three times with
141 sterile water using a vacuum apparatus (NucleoVac 96 vacuum manifold; Clontech
142 Laboratories). The filter of well H12 was removed with a sterile pipette tip and tweezer,
143 and 31 ml of M9 glucose medium was added to the reservoir through well H12. The
144 glucose concentration in the reservoir varied upon community membership- 0.067% for
145 monocultures, 0.13% for pairwise cocultures, and 0.2% for the 3-member community.
146 Glucose concentration was adjusted to plate occupancy (e.g., 3-member communities
147 had higher number of wells occupied than 2- or 1-member). Our aim was for each
148 member to achieve stationary phase at similar times across all conditions to compare
149 transcripts and exometabolites under similar growth trajectories. In other words,
150 available resources were standardized while keeping the well occupancy for each
151 member constant. With this design, transcripts and exometabolites in cocultures that
152 deviated from those in monocultures could be attributed to interspecies interactions and
153 not complicated by offset in member growth trajectories across the experimental
154 conditions.

155 Each well was filled with 130 μ L of culture or medium (prepared as described,
156 above; see methods section: Bacterial strains and culture conditions). For each plate, a
157 custom R script (RandomArray.R [see script at
158 https://github.com/ShadeLab/PAPER_Chodkowski_mSystems_2017/blob/master/R_analysis/RandomArray.R]) was used to randomize community member placement in the
159 wells so that each member occupied a total of 31 wells per plate. In total, there were 7
160 community conditions- 3 monocultures, 3 pairwise cocultures, and the 3-member
161 community. Each member occupied 31 wells per plate regardless of experimental
162 condition. Thus, “baseline” exometabolites could be determined in the monocultures,
163 and then deviations in exometabolite abundance or detection in the cocultures could be
164 attributed to interspecies interactions. A time course was performed for each replicate.
165 The time course included an exponential phase time point (12.5 h) and 5 time points
166 assessed every 5 h over stationary phase (25 h – 45 h). Four biological replicates were
167 performed for each community condition for a total of 28 experiments. For each
168 experiment, 6 replicate filter plates were prepared for destructive sampling for a total of
169 168 transwell plates.

171 Filter plates were incubated at 27°C with gentle shaking (~0.32 rcf). For each
172 plate, a custom R script (RandomArray.R [see script at
173 https://github.com/ShadeLab/PAPER_Chodkowski_mSystems_2017/blob/master/R_analysis/RandomArray.R]) was used to randomize wells for each organism assigned to
174 RNA extraction (16 wells) and flow cytometry (5 wells). The following procedure was
175 performed for each organism when a transwell plate was destructively sampled: i) wells
176 containing spent culture assigned to RNA extraction were pooled (~100 μ L/well) into a
177

178 1.7 mL microcentrifuge tube and flash frozen in liquid nitrogen and stored at -80 until
179 further processing. ii) 20 μ L from wells assigned for flow cytometry were diluted into 180
180 μ L Tris-buffered saline (TBS; 20 mM Tris, 0.8% NaCl [pH 7.4]). In community
181 memberships where *P. syringae* was arrayed with *B. thailandensis*, *P. syringae* had a
182 final dilution of 70-fold in TBS. In community memberships where *P. syringae* was
183 arrayed in monoculture or in coculture with *C. subtsugae*, *P. syringae* had a final dilution
184 of 900-fold in TBS. Final dilutions for *B. thailandensis* and *C. subtsugae* were 1 300-fold
185 and 1 540-fold, respectively. Each member was diluted differently to achieve a suitable
186 events/second range on the flow cytometer for accurate cell counting. Populations were
187 then stained and analyzed on the flow cytometer for live/dead counting (see
188 Supplementary Methods). iii) Spent medium (~31 ml) from the shared reservoir was
189 transferred to 50 mL conical tubes, flash-frozen in liquid nitrogen and stored at -80 °C
190 prior to metabolite extraction.

191

192 **RNA-seq**

193 RNA extraction, sequencing, quality control, and count matrix generation was performed
194 as previously published [36, see Supplementary Methods].

195

196 **Transcriptomics**

197 *Quality filtering and differential gene expression analysis*

198 Count matrices for each member were quality filtered in two steps: genes
199 containing 0 counts in all samples were removed, and genes with a transcript count of
200 ≤ 10 in more than 90% of samples were removed. DESeq2 [41] was used to extract size

201 factor and dispersion estimates. These estimates were used as external input into
202 ImpulseDE2 for the analysis of differentially regulated genes [42]. ImpulseDE2
203 determines differential expression by comparing longitudinal count datasets. Case-
204 control (Cocultures-monoculture control) analyses were analyzed to identify genes with
205 differences in temporal regulation at an FDR-corrected threshold of 0.01. Genes that
206 passed the FDR threshold were further filtered for genes that had at least one time point
207 with a log2 fold-change (LFC) ≥ 1 or ≤ -1 . Thus, we defined differentially expressed
208 genes (DEGs) as genes that met both the FDR-corrected and LFC thresholds. For each
209 member, differences in gene regulation between the three coculture conditions was
210 visualized with Venn diagrams using the VennDiagram package [43].

211 Differentially expressed genes were first determined by comparing each
212 coculture condition to the monoculture control and applying a LFC threshold (see
213 above). We then determined a second set of DEGs by comparing pairwise cocultures to
214 each other. ImpulseDE2 case-control analyses were performed as follows: *B.*
215 *thailandensis* coculture with *C. subtsugae* (case) compared to *B. thailandensis* coculture
216 with *P. syringae* (control), *C. subtsugae* coculture with *B. thailandensis* (case) compared
217 to *C. subtsugae* coculture with *P. syringae* (control), and *P. syringae* coculture with *B.*
218 *thailandensis* (case) compared to *P. syringae* coculture with *C. subtsugae* (control).
219 Genes that passed the FDR-corrected threshold of 0.01 based on ImpulseDE2 analysis
220 and had at least one time point with a LFC of ≥ 1 or ≤ -1 represented coculture
221 specific DEGs. The DEGs determined from monoculture comparisons and coculture
222 comparisons were then categorically grouped using Clusters of Orthologous Groups
223 (COG).

224

225 *COG analysis*

226 Protein fasta files were downloaded from NCBI and uploaded to eggNOG-
227 mapper v2 (<http://eggNOG-Mapper.embl.de/>) to obtain COGs. The DEGs determined
228 from ImpulseDE2 and LFC thresholds were categorized as upregulated or
229 downregulated based on temporal expression patterns. DEGs with consistent positive
230 LFC throughout all stationary phase time points were categorized as upregulated. DEGs
231 with consistent negative LFC throughout all stationary phase time points were
232 categorized as downregulated. These DEGs were then assigned to COGs, grouped
233 based on temporal up/downregulation patterns, and plotted using ggplot2 [44].

234

235 *Principal coordinates analysis and statistics*

236 Normalized gene matrices were extracted from DESeq2 and filtered to only
237 contain DEGs (coculture to monoculture comparisons) based on our previously
238 described definition. A variance-stabilizing transformation was performed on normalized
239 gene matrices using the rlog function in DESeq2. A distance matrix based on the Bray-
240 Curtis dissimilarity metric was then calculated on the variance-stabilized gene matrices
241 and principal coordinates analysis was performed using the R package vegan [45].
242 Principal coordinates were plotted using ggplot2. Coordinates of the first two PCoA axes
243 were used to perform PROTEST analysis using the PROTEST function in vegan.
244 Dissimilarity matrices were used to perform PERMANOVA and variation partitioning
245 using the adonis and varpart functions in vegan, respectively. The RVAideMemoire
246 package [46] was used to perform a post-hoc pairwise PERMANOVAs. Lastly,

247 distances were extracted from the Bray-Curtis dissimilarity matrix that compared each
248 coculture condition to the monoculture condition at each time point within each member.
249 These distances were used to produce time series distance plots.

250

251 *Biosynthetic gene cluster (BSGC) analysis*

252 NCBI accession numbers were uploaded to antiSMASH 6 beta bacterial version
253 [47] to identify genes involved in BSGCs using default parameters. Where possible,
254 literature-based evidence and BSGCs uploaded to MIBiG [48] were used to better
255 inform antiSMASH predictions. Log2 fold-changes (LFCs) were calculated for all
256 predicted biosynthetic genes within each predicted cluster by comparing coculture
257 expression to monoculture expression at each time point. Average LFCs were
258 calculated from all predicted biosynthetic genes within a predicted BSGC at each time
259 point. Temporal LFC trends were plotted using ggplot2. An upregulated BSGC was
260 defined as a BSGC that had at least two consecutive time points in stationary phase
261 with a LFC > 1.

262

263 *Network analysis*

264 Unweighted co-expression networks were created from quality filtered and
265 normalized expression data. Networks were generated for pairwise cocultures
266 containing *B. thailandensis*. First, data were quality filtered as previously described
267 (see methods section: *Quality filtering and differential gene expression analysis*). Then,
268 normalized expression data was extracted from DESeq2. Twenty-three and twenty-
269 four RNA-seq samples from each member were used for network analysis in the *B.*

270 *thailandensis*-*C. subtsugae* and *B. thailandensis*-*P. syringae* cocultures, respectively
271 (23/24 samples/member; 6 time points, 4 biological replicates). Only 23 samples were
272 used in the *B. thailandensis*-*C. subtsugae* network analysis because RNA-seq failed
273 for *C. subtsugae* at 45 h, biological replicate 2. Interspecies networks were then
274 inferred from the expression data using the context likelihood of relatedness [49]
275 algorithm within the R package Minet [50]. Gene matrices for each coculture pair were
276 concatenated to perform the following analysis. Briefly, the mutual information
277 coefficient was determined for each gene-pair. To ensure robust detection of co-
278 expressed genes, a resampling approach was used as previously described [51].
279 Then, a Z-score was computed on the mutual information matrix. A Z-score threshold
280 of 4.5 was used to determine an edge in the interspecies network. Interspecies
281 networks were uploaded into Cytoscape version 3.7.1. for visualization, topological
282 analysis, and enrichment analysis [52].

283 Gene annotation and gene ontology (GO) files were obtained for *B.*
284 *thailandensis*, *P. syringae*, and *C. subtsugae* for enrichment analyses. For *B.*
285 *thailandensis*, annotation and ontology files were downloaded from the Burkholderia
286 Genome Database (<https://www.burkholderia.com>). For *P. syringae*, annotation and
287 ontology files were downloaded from the Pseudomonas Genome Database
288 (<http://www.pseudomonas.com/strain/download>). Annotation and ontology files for *C.*
289 *subtsugae* were generated using Blast2GO version 5.2.5 [53]. InterProScan [54] with
290 default parameters were used to complement gene annotations from *C. subtsugae*. GO
291 terms were assigned using Blast2GO with default parameters. In addition, genes
292 involved in secondary metabolism were manually curated and added to these files as

293 individual GO terms. These genes were also used to update the GO term GO:0017000
294 (antibiotic biosynthetic process), composed of a collection of all the biosynthetic genes.
295 (see methods section: *Biosynthetic gene cluster (BGC) analysis*).

296 Topological analysis was performed as follows: Nodes were filtered from each
297 coculture network to only select genes from one member at a time. The GLay
298 community cluster function in Cytoscape was used to determine intra-member modules.
299 Functional enrichment analysis was then performed on the modules using the BiNGO
300 package [55] in Cytoscape.

301 To determine interspecies co-regulation patterns, we filtered network nodes that
302 contained an interspecies edge. Functional enrichment analysis was performed on the
303 collection of genes containing interspecies edges for each member using the BiNGO
304 package in Cytoscape. Then, we selected all genes contained within modules of interest
305 (e.g. *B. thailandensis* modules containing either thailandamide or malleilactone genes in
306 the *B. thailandensis*-*C. subtsugae* coculture network or *B. thailandensis*-*P. syringae*
307 coculture network, respectively) in Cytoscape. Node selection was extended by
308 selecting the first neighbors of the selected nodes. This resulted in interspecies edges.
309 The resultant nodes were transformed into a circular layout and exported for manual
310 edits in InkScape.. The biosynthetic gene cluster organization of thailandamide and
311 malleilactone were obtained from MIBig and drawn in InkScape.

312 Protein sequences from an interspecies gene of interest (CLV_2968) within a
313 network module that also contained thailandamide genes from the *B. thailandensis*-*C.*
314 *subtsugae* network and an interspecies gene of interest (PSPTO_1206) within a
315 network module that also contained malleilactone genes from the *B. thailandensis*-*P.*

316 *syringae* network were obtained. A protein blast for each protein was run against *B.*
317 *thailandensis* protein sequences. *B. thailandensis* locus tags were extracted from the
318 top blast hit from each run. Normalized transcript counts for these 4 genes of interest
319 were plotted in R. Time course gene trajectories were determined using a loess
320 smoothing function.

321

322

323 **Metabolomics**

324 *LCMS, feature detection, and quality control*

325 Standard operating protocols were performed at the Department of Energy Joint
326 Genome Institute as previously described [36]. MZmine 2 [56] was used for feature
327 detection and peak area integration as previously described [36]. Select exometabolites
328 were identified in MZmine 2 by manual observation of both MS and MS/MS data. We
329 extracted quantities of these identified exometabolites for ANOVA and Tukey HSD post-
330 hoc analysis in R. We filtered features in three steps to identify coculture-accumulated
331 exometabolites. The feature-filtering steps were performed as follows on a per-member
332 basis: (i) retain features where the maximum peak area abundance occurred in any of
333 the coculture communities ; (ii) a noise filter, the minimum peak area of a feature from a
334 replicate at any time point needed to be 3 times the maximum peak area of the same
335 feature in one of the external control replicates, was applied; (iii) coefficient of variation
336 (CV) values for each feature calculated between replicates at each time point needed to
337 be less than 20% across the time series.

338 Four final feature data sets from polar and nonpolar analyses in both ionization modes
339 were analyzed in MetaboAnalyst 5.0 [57], as reported in our prior work [36, see
340 Supplementary Methods]. In addition, exometabolites categorized as primary
341 metabolites were identified according to Metabolomics Standards Initiative (MSI) level 1
342 criteria [58], as reported in our prior work [36, see Methods].

343

344 *Principal coordinates analysis and statistics*

345 A distance matrix based on the Bray-Curtis dissimilarity metric was used to
346 calculate dissimilarities between exometabolite profiles. Principal coordinates analysis
347 was performed using the R package vegan. Principal coordinates were plotted using
348 ggplot2. Coordinates of the first two PCoA axes were used to perform Protest analysis
349 using the protest function in vegan. Dissimilarity matrices were used to perform
350 PERMANOVA and variation partitioning using the adonis and varpart functions in
351 vegan, respectively. The RVAideMemoire package was used to perform a post-hoc
352 pairwise PERMANOVAs. Monoculture controls were removed to focus on coculture
353 trends.

354

355

356

357

358 **Results**

359 ***Overview***

360 Our major data types included both transcriptomics and metabolomics, and we
361 integrate these to interpret SynCom dynamics and interactions. Our longitudinal design
362 resulted in 288 RNAseq samples across the three members, and 168 community
363 metabolomics samples analyzed in each of four mass spectral modes (polar/nonpolar,
364 positive/negative modes = 672 total mass spectral profiles). After quality control, we
365 were left with 281 RNAseq and 605 total mass spectral profiles for the integrated
366 analyses

367 [\[https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021/tree/master/SummaryOfSamples\]](https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021/tree/master/SummaryOfSamples). First, we present a summary of experiments and cell viability
368 (section 1). Then, we present results of general responses of transcription (section 2)
369 and exometabolomics (section 3), separately. Then, we integrate transcriptomic and
370 metabolomic efforts to determine the upregulation of biosynthetic gene clusters
371 (BSGCs) and identify exometabolites of interest from mass spectrometry (section 4).
372 Lastly, we then present a transcriptomics co-expression network to ask how the
373 upregulation of BSGCs influenced interspecies interactions through coordinated
374 longitudinal gene expression (section 5).

376 1. *SynCom design/sampling scheme and membership cell viability*

377 We had four replicate, independent timeseries for each of seven community
378 memberships (three of each monoculture, three of each pair in coculture, and the 3-
379 member community). We define membership as the specific strains present in a given
380 condition. Here, we focus on the multi-member analyses (2 and 3-member
381 combinations) to gain insights into community outcomes (Fig. 1A). The SynCom
382 transwell system isolated member populations among separate transwells but permitted

383 exchange of their collective exometabolites via the plate's shared media reservoir (Fig.
384 1B). We collected data (transcripts, metabolites, etc) over a timeseries that included one
385 exponential phase time point (12.5 h) followed by 5 stationary phase time points (25-45
386 h sampled at 5-hour intervals; Fig. 1C).

387 We observed relatively unchanged viability in *B. thailandensis* across all conditions
388 (Fig. S1; panels A-D). On the contrary, we observed a slight reduction (~2.1 log2 fold
389 change) in *C. subtsugae* live cell counts, and a drastic reduction (~4.7 log2 fold change)
390 in *P. syringae* live cell counts, when either member was cocultured with *B. thailandensis*
391 (Fig. 2; panels A vs C and panels D vs F, respectively). Reductions in cell viability of *C.*
392 *subtsugae* and *P. syringae* were also present in the 3-member community (Fig. S1;
393 panels E and F). *C. subtsugae* and *P. syringae* had minimal effects on each other (Fig.
394 2; panels B and E). Dead cell accumulation of *P. syringae* plateaued in coculture
395 conditions compared to monoculture, suggesting cell lysis (Fig. 2, panels D-F). We note
396 that one doubling occurred in *B. thailandensis* and *P. syringae* monocultures, and in *C.*
397 *subtsugae* in pairwise coculture with *P. syringae*. We elaborated on this finding as the
398 possibility of a reductive cell division in our previous manuscript [36].

399

400 2. *Stationary phase transcript dynamics of microbial community members*

401 Differentially expressed genes were determined by comparing time series
402 transcript trajectories applying an FDR and LFC threshold (see methods: *Quality*
403 *filtering and differential gene expression analysis*). First, we compared each coculture to
404 the monoculture control. A range of 153 to 276 genes were differentially expressed by
405 each member in coculture, irrespective of the identity of neighbors (Fig. S2). In addition,

406 each member also had differential gene expression that was unique to a particular
407 neighbor(s). Summarizing across all cocultures, 1089/5639 (19.3%) coding sequences
408 (CDSs), 1991/4393 CDSs (45.3%), and 3274/5576 CDSs (58.7%) DEGs were
409 determined for *B. thailandensis*, *C. subtsugae*, and *P. syringae*, respectively. Primary
410 drivers of transcriptional response patterns for each member were community
411 membership (PCoA axis 1) and time (PCoA axis 2) (Fig. 3, Table S1). Together, these
412 data suggest that there are both general and specific consequences of neighbors for the
413 transcriptional responses of these bacterial community members.

414 Temporal trajectories in member transcript profiles were generally reproducible
415 across replicates (PROTEST analyses, Table S2). Each member had a distinct
416 transcript profile ($0.480 \leq r^2 \leq 0.778$ by Adonis; P value, 0.001; all pairwise false
417 discovery rate [FDR]-adjusted P values, ≤ 0.01 except for two community memberships,
418 Table S3). For all ordinations, community membership had the most explanatory value
419 (Axis 1), followed by time (Axis 2), with the most variation explained by the interaction
420 between time and membership (Table S1). Membership alone accounted for 60.6% and
421 77.0% of the variation explained in *C. subtsugae* and *P. syringae* analyses, respectively
422 and 46.3% in the *B. thailandensis* analysis (Table S1).

423 When included in the community, *B. thailandensis* strongly determined the
424 transcript profiles of the other two members. For example, the inclusion of *B.*
425 *thailandensis* in a coculture differentiated transcript profiles for both *C. subtsugae* and
426 *P. syringae* (Fig. 3B & 3C, Figs. S3-S5). The transcript profile differences between
427 monoculture and coculture conditions are largest for *C. subtsugae* (Fig. S4) and *P.*
428 *syringae* (Fig. S5) when *B. thailandensis* is included in the coculture. Thus, *B.*

429 *thailandensis* appears to have had a dominating influence on the transcriptional
430 response of neighbors, and these responses were dynamic with respect to time.

431 We analyzed clusters of orthologous groups of proteins (COGs) to infer the
432 responses of members to their neighbors. Differentially expressed genes (DEGs) were
433 categorized as upregulated or downregulated based on temporal patterns and
434 representation in COGs (Fig. S6). We focused on the largest differences between total
435 DEGs upregulated and total DEGs downregulated within a COG, which provides
436 insights into broad biological processes affected by community membership. COGs with
437 large differences toward upregulation in *B. thailandensis* included cell motility [N],
438 secondary metabolites biosynthesis, transport, and catabolism [Q], and signal
439 transduction mechanisms [T] while COGs with large differences toward downregulation
440 included defense mechanisms [V], energy production and conversion [C], translation,
441 and ribosomal structure and biogenesis [J]. These results suggest that *B. thailandensis*
442 responds to neighbors via downregulation of growth and reproduction and upregulation
443 of secondary metabolism. We therefore hypothesized that *B. thailandensis* was
444 producing bioactive exometabolites against *C. subtsugae* and *P. syringae* to
445 competitively inhibit their growth.

446 Because of the strong transcript response of *C. subtsugae* and *P. syringae* when
447 neighbored with *B. thailandensis* (Fig. 3B & 3C), we focused on COGs within
448 community memberships with *B. thailandensis* (Fig. S6B & S6C, rows 2 & 3). The COG
449 with large differences toward upregulation in both *C. subtsugae* and *P. syringae* were
450 translation, ribosomal structure and biogenesis [J]. COG groups tending toward
451 downregulation in *C. subtsugae* and *P. syringae* were signal transduction mechanisms

452 [T] and secondary metabolites biosynthesis, transport, and catabolism [Q], respectively.
453 These results suggest that the presence of *B. thailandensis* alters its neighbor's ability
454 to respond to the environment and inhibits secondary metabolism. The effects of *B.*
455 *thailandensis* on *C. subtsugae* and *P. syringae* were also evident by mapping timeseries
456 LFCs onto KEGG pathways. Various enzymes involved in central metabolism, fatty acid
457 degradation, growth, transport, and response systems were upregulated when *B.*
458 *thailandensis* was grown with either or both members
459 (<https://figshare.com/s/b7f5e559a32cc5c8a61f>).

460 The above analyses focused on DEGs determined by comparing each coculture
461 to the monoculture control. However, we also wanted to understand differences
462 between pairs to determine if the alterations in transcripts were attributed to specific
463 memberships (aka interspecies interactions). A total of 436, 1 762, and 2 962 DEGs
464 were determined when comparing the pairs including *B. thailandensis*, the pairs
465 including *C. subtsugae* , and the pairs including *P. syringae*, respectively. We detected
466 member-specific effects on the COGs that were differentially expressed (Fig. S7).
467 These data suggest that there were transcriptional changes driven by particular
468 members and given their partner. Due to the physical separation of members in our
469 SynCom plate system, these member-specific interspecies interactions were very likely
470 exometabolite-mediated.

471

472 3. *Stationary phase exometabolite dynamics of microbial communities*

473 Because member populations are physically separated in the SynCom transwell
474 system but allowed to interact chemically, observed transcript responses in different

475 community memberships are inferred to result from exometabolite interactions. Spent
476 medium from the shared medium reservoir was collected from each transwell plate and
477 analyzed using mass spectrometry to detect exometabolites. Our previous manuscript
478 focused on exometabolite dynamics in monocultures [36]. Here, we focused our
479 analysis on those exometabolites that had maximum accumulation in a coculture (either
480 in pairs or in 3-member community). Consistent with the transcript analysis, we found
481 that both community membership and time explained the exometabolite dynamics, and
482 that the explanatory value of membership and time was maintained across all polarities
483 and ionization modes (Fig. 4, Table S4).

484 Temporal trajectories in exometabolite profiles were generally reproducible
485 across replicates with some exceptions (PROTEST analyses, Table S5, Supplementary
486 File 1). Exometabolite profiles were distinct by community membership ($0.475 \leq r^2 \leq$
487 0.662 by Adonis; P value, 0.001; all pairwise false discovery rate [FDR]-adjusted P
488 values, ≤ 0.01 except for two comparisons, Table S6), and also dynamic over time. As
489 observed for the member transcript profiles, the interaction between membership and
490 time had the highest explanatory value for the exometabolite data (Table S4).

491 We found that the *C. subtsugae*-*P. syringae* coculture exometabolite profiles
492 were consistently the most distinct from the other coculture memberships (Fig. 4),
493 supporting, again, that the inclusion of *B. thailandensis* was a major driver of
494 exometabolite dynamics, possibly because it provided the largest or most distinctive
495 contributions to the community exometabolite pool. Indeed, we observed that a majority
496 of the most abundant exometabolites were either detected uniquely in the *B.*
497 *thailandensis* monoculture or accumulated substantially in its included community

498 memberships (Fig. S8). Some exometabolites detected in *B. thailandensis*-inclusive
499 communities were not detected in its monocultures (Fig. S8D), suggesting that the
500 inclusion of neighbors contributed to the accumulation of these particular
501 exometabolites (e.g. upregulation of biosynthetic gene clusters or lysis products). *C.*
502 *subtsugae* and *P. syringae* contributed less to the 3-member community exometabolite
503 profile, as exometabolites detected in the *C. subtsugae*-*P. syringae* coculture were less
504 abundant and had lower accumulation over time in the 3-member community (Fig.
505 S8A). Together, these results suggest that *B. thailandensis* can suppress or overwhelm
506 expected outputs from neighbors.

507 Exometabolites categorized as primary metabolites were identified according to
508 Metabolomics Standards Initiative (MSI) level 1 criteria [58]. We identified primary
509 metabolites accumulated in the shared medium reservoir over time in each monoculture
510 (Fig. 5; [36]) to compare their dynamics in cocultures. These primary metabolites were
511 detected to decrease in concentration across coculture conditions, suggesting metabolic
512 inhibition or interspecies uptake. In addition, we also found a subset of primary
513 metabolites that accumulate substantially in exponential phase in monocultures (Fig.
514 S9). Taken together, each member contributed a unique set of primary metabolites to
515 the community exometabolite pool. The uptake and metabolism of these primary
516 metabolites by the non-producing members may directly affect the available pool of
517 exometabolites in cocultures, particularly with respect to exometabolites contributed
518 from secondary metabolism.

519 In summary, we observed both increased accumulation and unique production of
520 exometabolites in pairs and in the 3-member community, with *B. thailandensis*

521 contributing the most to the shared exometabolite pool as determined by comparisons
522 with its monoculture exometabolite profile. Related, the transcriptional responses of *C.*
523 *subtsugae* and *P. syringae* in the 3-member community is most like their respective
524 transcriptional response when neighbored with *B. thailandensis* alone, despite the
525 presence of the third neighbor.

526

527 4. *B. thailandensis* increases competition strategies in the presence of neighbors

528 Given the observed reduction in cell viability (Fig. 2) and that there have been
529 competitive interactions between *B. thailandensis* and *C. subtsugae* previously reported
530 [33], we hypothesized that *B thailandensis* was using competition strategies to influence
531 its neighbors via production of bioactive exometabolites. If true, we would expect
532 transcriptional upregulation in *B. thailandensis* biosynthetic gene clusters (BSGC) that
533 encode bioactive exometabolites. Indeed, when compared to the monoculture control,
534 we found evidence of upregulated BSGCs across various time points in stationary
535 phase in *B. thailandensis* cocultures (Fig. 6, Table S7). Some of these upregulation
536 patterns were associated to particular pairs of members and some upregulation patterns
537 were strongest in the full community (e.g. thailandamide). For example, *B. thailandensis*
538 upregulated an unidentified non-ribosomal peptide synthetase (NRPS) when paired with
539 *P. syringae*, but when paired with *C. subtsugae*, upregulated a different BSGC encoding
540 an unidentified beta-lactone. This suggests that *B. thailandensis* responded to
541 neighbors by upregulating genes involved in the production of bioactive compounds,
542 likely to gain a competitive advantage. However, not all BSGCs in *B. thailandensis* were
543 upregulated. Some BSGCs were unaltered or downregulated (Fig. S10). *C. subtsugae*

544 upregulated only 1 BSGC, an uncharacterized hybrid nonribosomal peptide synthetase-
545 type I polyketide synthase, in coculture with *B. thailandensis*, while *P. syringae* did not
546 upregulate any BSGC in any coculture (Figs. S11 & S12). Interspecies interactions led
547 to the upregulation of BSGCs in both *B. thailandensis* and *C. subtsugae* and three of
548 these BSGCs encode potentially novel bioactive exometabolites.

549 Because *B. thailandensis* upregulated the transcription of various BSGCs when
550 grown in cocultures, we asked if this led to the unique production of or increased
551 accumulation of secondary metabolites as compared to when it was grown in
552 monoculture. We identified 6 of the 11 exometabolites from the BSGCs in *B.*
553 *thailandensis* that were upregulated and quantified their abundances from mass
554 spectrometry data (Fig. 7, Supplementary File 2). We found that each identified
555 exometabolite differentially accumulated between community memberships containing
556 *B. thailandensis* (Table S8), particularly when comparing the *B. thailandensis*
557 monoculture to each coculture (Table S9). As expected, these identified exometabolites
558 were not detected in communities that did not include *B. thailandensis* (data not shown).
559 Bactobolin was the only identified exometabolite that accumulated in monoculture to
560 equivalent levels of accumulation in all coculture conditions. The other identified
561 secondary metabolites were not detected or did not accumulate in monoculture,
562 suggesting interspecies induction of secondary metabolism. Thus, in response to an
563 exometabolite from either *C. subtsugae* or *P. syringae*, *B. thailandensis* increased its
564 competitive strategies through the upregulation and production of many bioactive
565 exometabolites. Of these bioactive exometabolites, three are documented
566 antimicrobials [59, 60, 61], two are siderophores [62, 63], and one is a biosurfactant

567 [64]. We conclude that *B. thailandensis* produced bioactive exometabolites to
568 competitively interact using both interference and exploitative competition strategies
569 [65]. Given that *B. thailandensis* upregulated competitive strategies, and responded
570 more broadly in producing competition-supportive exometabolites when grown with
571 neighbors, we hypothesized that these bioactive exometabolites are responsible for the
572 altered transcriptional responses in *C. subtsugae* and *P. syringae*.

573 In our experimental design, we adjusted glucose concentration depending on
574 plate occupancy. Glucose concentration increased as plate occupancy increased (31
575 wells vs 62 wells vs 93 wells), but a member consistently occupied 31 wells across all
576 experimental conditions. One complication of this design is that population density and
577 resource concentration could contribute to differences in transcripts and exometabolites
578 in a member-agnostic manner. To address this, we performed additional SynCom
579 experiments to affirm confidence that some changes in transcripts and exometabolites
580 are attributable to exometabolite-mediated interspecies interactions. In these
581 experiments, we increased the plate occupancy of *B. thailandensis* in monoculture while
582 subsequently increasing resource concentration. Pairwise cocultures and the 3-member
583 community SynCom experiments were repeated as well (see Supplementary methods).
584 We calculated the relative gene expression of three genes in the thailandamide operon
585 (*thaF*, *thaK*, and *thaQ*) through RT-qPCR by comparing each experimental condition to
586 the monoculture control (*B. thailandensis*, 31 wells in M9-0.067% glucose). Decreased
587 gene expression was observed across all three genes as both plate occupancy and
588 resource concentration increased in *B. thailandensis* monocultures. In fact, *thaF*, *thaK*,
589 and *thaQ* gene expression was further reduced in the 93 well *B. thailandensis*

590 monoculture compared to the 62 well *B. thailandensis* monoculture, suggesting that the
591 thailandamide operon trended towards reduced expression as a function of *B.*
592 *thailandensis* plate occupancy in monoculture conditions. On the contrary, *thaF*, *thaK*,
593 and *thaQ* had increased expression in all coculture memberships, suggesting that
594 exometabolite interspecies interactions were responsible for the increased expression
595 of a BSGC in *B. thailandensis* (Table S10).

596

597 *5. Interspecies co-transcriptional networks reveal coordinated gene expression*
598 *related to competition*

599 We performed interspecies co-expression network analysis to infer interspecies
600 interactions. We used temporal profiles from transcriptional responses to generate co-
601 expression networks for *B. thailandensis*-*C. subtsugae* and *B. thailandensis*-*P. syringae*
602 cocultures, respectively (Table S11). As expected, the majority of nodes in the network
603 had intraspecies edges only, with interspecies edges comprising 1.85% and 1.90% of
604 the total edges in the *B. thailandensis*-*C. subtsugae* and *B. thailandensis*-*P. syringae*
605 networks, respectively. We explored interspecies edges for evidence of interspecies
606 transcriptional co-regulation.

607 We performed two analyses, module analysis and Gene Ontology (GO)
608 enrichment, to validate networks and infer interspecies interactions (Fig. S13). Module
609 analysis validated networks as intraspecies modules enriched for biological processes
610 (Supplementary File 3). To infer interspecies interactions, we filtered genes with
611 interspecies edges and performed enrichment analysis (Supplementary File 4). The top
612 enriched GO term for *B. thailandensis* when paired with *C. subtsugae* was antibiotic

613 synthesis of thailandamide, supporting the interpretation of interference competition.
614 Though the top enriched GO term in *B. thailandensis* when paired with *P. syringae* was
615 bacterial-type flagellum-dependent cell motility, antibiotic synthesis of malleilactone was
616 also enriched. Both thailandamide genes from the *B. thailandensis*-*C. subtsugae*
617 network (Fig. 8) and malleilactone genes from the *B. thailandensis*-*P. syringae* network
618 (Fig. S14) formed near-complete modules within their respective BSGCs. In addition,
619 genes that were part of the BSGC modules contained interspecies edges with both *C.*
620 *subtsugae* and *P. syringae*.

621 At least one gene from each of *B. thailandensis*'s upregulated BSGCs (Fig. 6)
622 had an interspecies edge, except for rhamnolipid. Our interpretation of this result is that,
623 generally, *B. thailandensis*'s upregulated BSGCs had co-expression patterns with genes
624 from the other members. In the thailandamide and malleilactone modules, some of
625 these interspecies genes were related to stress, transport, and iron-scavenging
626 (Supplementary File 5). The top GO term for both *C. subtsugae* and *P. syringae* genes
627 that had edges shared with *B. thailandensis* was bacterial-type flagellum-dependent
628 motility. Other notable enriched GO processes were efflux activity for *C. subtsugae* and
629 signal transduction for *P. syringae*. Specifically, a DNA starvation/stationary phase gene
630 (CLV04_2968, Fig. 8), *dspA*, was within the network module that also contained
631 thailandamide genes from the *B. thailandensis*-*C. subtsugae* network and a TonB-
632 dependent siderophore receptor gene (PSPTO_1206, Fig. S14) was within the network
633 module that also contained malleilactone genes from the *B. thailandensis*-*P. syringae*
634 network. Interestingly, both CLV04_2968 and PSPTO_1206 were DEGs and
635 downregulated when cocultured with *B. thailandensis* (Figs. S15A & S16A,

636 respectively). Additionally, the closest homolog for *dspA* in *B. thailandensis* was
637 unaltered (BTH_I1284, Supplementary File 6) when cocultured with *C. subtsugae* (Fig.
638 S15B) and the closest homolog to the TonB-dependent receptor in *B. thailandensis*
639 (BTH_I2415, Supplementary File 7) was a DEG and upregulated when cocultured with
640 *P. syringae* (Fig. S16B). Taken together, these co-expression networks revealed
641 interspecies coordinated expression patterns. Specifically, we detected interspecies co-
642 expression patterns related to antibiotic upregulation in *B. thailandensis*, suggesting *C.*
643 *subtsugae* and *P. syringae* were sensing and responding directly to these competition
644 strategies of *B. thailandensis*.

645

646 **Discussion**

647 Here, we used a synthetic community system to understand how
648 exometabolomic interactions determine members transcriptional responses and
649 exometabolite outputs. Our experiment used a systems approach to compare the seven
650 possible community memberships of three members, and their dynamics in member
651 transcripts and community exometabolites over stationary phase. Differential gene
652 expression across community memberships and over time show that the
653 exometabolites released by a member were sensed and responded to by its neighbors.
654 Furthermore, members' ouputs in monocultures changed because of coculturing, as
655 evidenced by differential exometabolite production. The largest transcriptional
656 alterations in *C. subtsugae* and *P. syringae* occurred when cocultured with *B.*
657 *thailandensis*. Global expression patterns in *C. subtsugae* and *P. syringae* when in the

658 3-member community still resembled expression patterns in pairwise cocultures with *B.*
659 *thailandensis*. These transcriptional alterations in *C. subtsugae* and *P. syringae* were
660 coordinated with increases in *B. thailandensis* competitive strategies (evaluated by
661 BSGC transcript upregulation and exometabolite abundance). That interactions within a
662 relatively simple community altered the transcriptional responses and exometabolite
663 outputs of each member is important because these kinds of alterations could, in turn,
664 drive changes in community structure and/or function in an environmental setting. For
665 example, it was shown that interspecies interactions more strongly influenced the
666 assembly of *C. elegans* gut communities than host-associated factors [66]. Therefore,
667 mechanistic and ecological characterization of interspecies interactions will inform as to
668 the principles that govern emergent properties of microbial communities.

669 Overall, competitive interactions predominated in this synthetic community. This
670 was first evidenced by reductions in viable cell counts in both *C. subtsugae* and *P.*
671 *syringae* when cocultured with *B. thailandensis*. Interestingly, *P. syringae* was the only
672 member to have an exponential increase in dead cell counts in monoculture. *P.*
673 *syringae* dead cell count accumulation ceased in coculture conditions. We attribute this
674 finding to the overall reduction of cell viability and/or lysis of dead cells when cocultured.

675 Our previous study found that, over stationary phase in monocultures, each
676 member released and accumulated at least one exometabolite documented to be
677 involved in either interference or exploitative competition [36]. This suggests that entry
678 into stationary phase primed members for competitive interactions, regardless of
679 heterospecific neighbors present. We interpret this strategy of preemptive aggression to
680 be especially advantageous to *B. thailandensis*, as it successfully used competitive

681 strategies against both *C. subtsugae* and *P. syringae*. *B. thailandensis*'s success was
682 supported by decreased viable *P. syringae* cells when cocultured with *B. thailandensis*.
683 Though *C. subtsugae* viable cell counts were not as affected directly by the coculture
684 with *B. thailandensis*, *B. thailandensis*-produced bactobolin [67] was detected in the
685 shared medium reservoir. Bactobolin is a bacteriostatic antibiotic previously shown to be
686 bioactive against *C. subtsugae* [33] through ribosome binding [59]. But, *C. subtsugae*
687 can resist bactobolin through upregulation of an RND-type efflux pump [68]. This finding
688 also is supported by our data, as all genes coding for the CdeAB-OprM RND-type efflux
689 system were DEGs and upregulated in *C. subtsugae* cocultures with *B. thailandensis*
690 (CLV04_2413-CLV04_2415).

691 When cocultured with *B. thailandensis*, we observed COG groups such as
692 translation, ribosomal structure and biogenesis [J] had large differences toward
693 upregulation in both *C. subtsugae* and *P. syringae*. At first glance, this seems at odds
694 with our interpretation of *B. thailandensis* competitiveness toward *C. subtsugae* and *P.*
695 *syringae*. In other words, how is *B. thailandensis* effectively competing via interference
696 competition if both *C. subtsugae* and *P. syringae* are upregulating machinery for
697 growth? There is both theoretical [69] and experimental [70] evidence that show how
698 cells treated with antibiotics stimulate ribosomal production to maintain a sufficient
699 number of active ribosomes. As previously mentioned, *B. thailandensis*-produced
700 bactobolin binds to the ribosome and can inhibit *C. subtsugae* [33, 59]. We also have
701 evidence that bactobolin inhibits *P. syringae* (data not shown). It could be that
702 bactobolin is stimulating ribosomal production in *C. subtsugae* and *P. syringae* as a
703 survival mechanism to maintain protein production by maintaining enough active

704 ribosomes. There also was evidence of *B. thailandensis* antibiotic efficacy against *C.*
705 *subtsugae* and *P. syringae*, including general loss of cell viability and upregulation of
706 various enzymes involved in central metabolism by both members when they were
707 cocultured with *B. thailandensis* (<https://figshare.com/s/b7f5e559a32cc5c8a61f>). These
708 patterns are consistent with antibiotic treatments in *Escherichia coli* and *Staphylococcus*
709 *aureus* where the upregulation of oxidative phosphorylation due to drug treatment
710 contributes to antibiotic efficacy [71, 72]. A barrage of *B. thailandensis*-produced
711 antibiotics (Figs. 6 & 7) likely drove the transcriptional patterns in *C. subtsugae* and *P.*
712 *syringae*.

713 Coculturing can induce secondary metabolism [73, 74, 75] because an
714 exometabolite produced by one microbe can prompt secondary metabolism in a
715 neighbor [31]. We found that coculturing led to the upregulation of numerous BSGCs in
716 *B. thailandensis*. These exometabolites included bactobolin, malleilactone [62, 76;
717 siderophore and cytotoxin], malleobactin [77, 78; siderophore], capistruin [79; lasso
718 peptide], thailandamide [80; polyketide], pyochelin [63; siderophore], rhamnolipids [64;
719 biosurfactants], and two uncharacterized BSGCs encoding nonribosomal peptide
720 synthetases. Of these exometabolites, bactobolin, capistruin, and thailandamide have
721 documented antimicrobial activities through translation inhibition [59], transcription
722 inhibition [60], and inhibition of fatty acid synthesis [61], respectively. For those
723 exometabolites we were able to identify with mass spectrometry, their accumulation in
724 cocultures was correlated with the upregulation of their BSGCs. Furthermore,
725 up/downregulated patterns across all *B. thailandensis* BSGCs was consistent with
726 ScmR global regulatory patterns of secondary metabolism [81].

727 We acknowledge that this study is limited in its ability to pinpoint the underlying
728 mechanisms driving the activation of secondary metabolism, particularly in *B.*
729 *thailandensis*. Aside from self-activating mechanisms documented in *B. thailandensis*
730 (e.g. quorum-sensing driven bactobolin production) and/or sensing antibiotics and
731 competitively responding [82], we note two major patterns in exometabolite production
732 in the monocultures that may have contributed to activation of secondary metabolism in
733 the cocultures. First, each member released and accumulated a unique set of primary
734 metabolites over their time series. These exometabolites had relatively reduced
735 concentrations in their coculture conditions. Second, because our experimental design
736 included a comparative time point taken during exponential growth, we also identified a
737 unique set of primary metabolites that had substantially accumulated by 12.5 h. Indeed,
738 primary metabolites [83] have been documented to induce secondary metabolism in *B.*
739 *thailandensis*. Thus, it is possible that the dynamics observed over stationary phase
740 could be attributed also to the uptake of exometabolites that were produced earlier in
741 exponential phase, or to the uptake of accumulated primary metabolites. Instead of
742 pinpointing single molecule elicitors of secondary metabolism, our systems-level
743 approach is better used to improve understanding of the environmental and ecological
744 factors that contribute to member or community success.

745 *C. subtsugae* can inhibit *B. thailandensis* [33] but we did not observe *B.*
746 *thailandensis* inhibition based on cell counts. However, we did find that in stationary
747 phase *C. subtsugae*-*B. thailandensis* cocultures, *C. subtsugae* upregulated an
748 uncharacterized hybrid nonribosomal peptide synthetase-type I polyketide synthase. *P.*
749 *syringae* was the least competitive of the three neighbors, as evidenced by a reduction

750 in live cell counts when cocultured with *B. thailandensis*. Also, *P. syringae* did not
751 increase competitive strategies when cocultured, as no BSGCs were upregulated
752 across all coculture conditions. In summary, though all three neighbors had potential to
753 use competitive strategies and maintained competitive strategies in monoculture [36], *B.*
754 *thailandensis* was most successful in cocultures over stationary phase through
755 increased production of exometabolites involved in interference and exploitative
756 competition strategies.

757 Given the upregulation of BSGCs in *B. thailandensis* and the strong
758 transcriptional responses of *C. subtsugae* and *P. syringae* to the presence of *B.*
759 *thailandensis*, we hypothesized that competitive exometabolites were contributing to
760 their community dynamics. Thus, we used a co-expression network analysis with our
761 longitudinal transcriptome series to infer interspecies interactions [84]. The use of this
762 approach was first demonstrated to infer coregulation between a phototroph-heterotroph
763 commensal pair [85]. Our network confirmed that *B. thailandensis* BSGCs had
764 coordinated gene expression patterns with both *C. subtsugae* and *P. syringae*.
765 Interspecies nodes in both networks contained various genes involved in the
766 upregulated *B. thailandensis* BSGCs. We focused on interspecies edges within
767 thailandamide nodes for the *B. thailandensis*-*C. subtsugae* network and interspecies
768 edges within malleilactone nodes for the *B. thailandensis*-*P. syringae* network because
769 these were significantly enriched as interspecies nodes. A *C. subtsugae* gene of
770 interest, CLV04_2968, was contained within the thailandamide cluster of interspecies
771 nodes. This gene codes for a DNA starvation/stationary phase protection protein and
772 had the highest homology to the Dps protein in *Escherichia coli* across all *C. subtsugae*

773 protein coding genes. Dps mediates tolerance to multiple stressors and *dps* knockouts
774 are more susceptible to thermal, oxidative, antibiotic, iron toxicity, osmotic, and
775 starvation stressors [86]. Interestingly, CLV04_2968 was downregulated when
776 cocultured with *B. thailandensis*, suggesting that *B. thailandensis* attenuates *C.*
777 *subtsugae* stress tolerance over stationary phase. While we observed a slight decrease
778 in viable *C. subtsugae* cells when cocultured with *B. thailandensis*, one may expect *C.*
779 *subtsugae* to have increased sensitivity to a subsequent stress [e.g. pH stress; 87]
780 resulting from CLV04_2968 downregulation in the presence of *B. thailandensis*.

781 In the *B. thailandensis*-*P. syringae* co-expression network, a *P. syringae* gene of
782 interest, PSPTO_1206, was contained within the malleilactone cluster of interspecies
783 nodes. PSPTO_1206 is annotated as a TonB-dependent siderophore receptor. A *P.*
784 *syringae* iron-acquisition receptor had coordinated expression with malleilactone, which
785 has been characterized as a siderophore with antimicrobial properties [62]. Interestingly,
786 this gene was downregulated when in coculture with *B. thailandensis*. In contrast, the
787 closest TonB-dependent siderophore receptor homolog to PSPTO_1206 in *B.*
788 *thailandensis*, BTH_I2415, was upregulated in coculture conditions with *P. syringae*. To
789 summarize, co-expression network analysis revealed interspecies coordinated gene
790 expression patterns. Though determining directionality was beyond the scope of this
791 analysis, we observed *B. thailandensis*-increased competition strategies were
792 coordinated with a potential decrease in competition strategies in *C. subtsugae* via
793 reduced stress tolerance and in *P. syringae* with reduced iron acquisition ability.

794 One feature of our study is that we adjusted glucose concentration depending on
795 plate occupancy. Glucose concentration increased as membership increased, but a

796 member consistently occupied 31 wells across all experimental conditions. One could
797 argue that resource concentration contributed to differences in transcripts and
798 exometabolites and not interspecies interactions. However, DEGs were present when
799 comparing pairwise coculture conditions and these were attributed to differences in
800 temporal regulation of COG categories (Fig. S7). More specifically, regarding BSGCs,
801 an unidentified NRPS was upregulated in *B. thailandensis* when cocultured with *P.*
802 *syringae* but not when cocultured with *C. subtsugae* (Fig. 6) and, an unidentified NRPS-
803 Type I polyketide synthase was upregulated in *C. subtsugae* when cocultured with *B.*
804 *thailandensis* but not when cocultured with *P. syringae* (Fig. S11). These differences
805 occurred in experimental conditions where the glucose concentration was the same.
806 Furthermore, we performed additional SynCom experiments where we increased the
807 plate occupancy of *B. thailandensis* in monoculture while subsequently increasing
808 resource concentration. Decreased gene expression was observed across all three RT-
809 qPCR tested thailandamide genes as both plate occupancy and resource concentration
810 increased in *B. thailandensis* monocultures. These same three genes had increased
811 gene expression across all cocultures. These findings show that some undefined
812 exometabolite interspecies interactions were responsible for the increased expression
813 of a BSGC in *B. thailandensis*. Overall, we acknowledge that resource concentration
814 and exometabolite output are intertwined, and subsequent work could test how initial
815 resource availability determines SynCom outcomes.

816 A major goal in microbial ecology is to predict community dynamics for purposes
817 of modulating and/or maintaining ecosystem function [88, 89]. At its core, microbial
818 functional properties emerge, in part, from the concerted interactions of multi-species

819 assemblages. The SynCom system provides a tractable experimental system to
820 understand the relationships between exometabolite interactions and environmental
821 stimuli to inform higher-order community interactions. Higher-order interactions are
822 those that are unexpected based on interactions observed in simpler situations (e.g., of
823 member pairs) [90, 91, 92]. Therefore, integrating different system variables, like
824 transcriptome and metabolome dynamics, within controlled microbial communities will
825 inform how unexpected phenomena arise and how they contribute to deviations in
826 predictive models of community outcomes.

827 Our results indicated that competition strategies were maintained despite
828 stagnant population growth. *B. thailandensis* upregulated various bioactive
829 exometabolites involved in both interference and exploitative competition when with
830 neighbors. An effective competitor is often defined as by its ability to outcompete
831 neighbors via growth advantage that stems from efficient nutrient uptake and/or
832 biomass conversion rates [93, 94]. We add to this that a competitor can also have a
833 fitness advantage through effective maintenance, which can similarly employ
834 interference or exploitative competitive strategies despite no net growth. Maintenance
835 may ensure survival in some environments that impose a stationary phase lifestyle,
836 where long periods of nutrient depletion are punctuated with short periods of nutrient
837 flux. In these scenarios, it warrants to understand how competitive strategies are
838 deployed in the interim of growth and the extent to which these interactions contribute to
839 long-term community outcomes. Though population levels remain constant, sub-
840 populations of growing cells have been observed in stationary phase [95], and
841 continued production of competitive exometabolites may serve as an advantageous

842 strategy to hinder growth of competitors. In addition, some antibiotics remain effective in
843 non-replicating bacteria [96]. The ability for continued maintenance via effective
844 competition strategies during stationary phase may provide spatiotemporal maintenance
845 of population levels before growth resumption [97]. Alternatively, both growth and non-
846 growth strategies may be occurring simultaneously (e.g. as can occur in biofilms). The
847 heterogeneity of biofilms may provide an environment where a bacterial population
848 contains both stationary cells in the center of the colony with growing cells at the
849 periphery of the colony that compete and alter developmental patterns of neighboring
850 populations [98, 99]. Thus, we expect that insights into the long-term consequences of
851 competition for microbial community outcomes will be gained by considering
852 competition in both active growth and maintenance scenarios.

853

854 **Code availability**

855 Computing code, workflows, and data sets are available at
856 [\[https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021\]](https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021). R
857 packages used during computing analyses included DEseq2 [41], ImpulseDE2 [42],
858 VennDiagram [43], ggplot2 [44], vegan 2.5-4 [45], RVAideMemoire [46], Minet [50],
859 rtracklayer [100], viridis [101], and helper functions [102, 103, 104, 105].

860

861 **Data availability**

862 Genomes for *B. thailandensis*, *C. subtsugae*, and *P. syringae* are available at the
863 National Center for Biotechnology Information (NCBI) under accession
864 numbers [NC_007651](https://www.ncbi.nlm.nih.gov/nuccore/NC_007651) (Chromosome I)/[NC_007650](https://www.ncbi.nlm.nih.gov/nuccore/NC_007650) (Chromosome

865 II), [NZ PKBZ01000001](#), and [NC_004578](#) (Chromosome)/[NC_004633](#) (Plasmid
866 A)/[NC_004632](#) (Plasmid B), respectively. An improved annotated draft genome of *C.*
867 *subtsugae* is available under NCBI BioProject accession
868 number [PRJNA402426](#) (GenBank accession number [PKBZ00000000](#)). Data for
869 resequencing efforts for *B. thailandensis* and *P. syringae* are under NCBI BioProject
870 accession numbers [PRJNA402425](#) and [PRJNA402424](#), respectively. Metabolomics
871 data and transcriptomics data are also available at the JGI Genome Portal [106] under
872 JGI proposal identifier 502921. MZmine XML parameter files for all analyses can be
873 viewed at and downloaded from GitHub (see Dataset 7
874 at [https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020/t](https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020/tree/main/Datasets)
875 [ree/master/Datasets](#)). Large data files (e.g., MZmine project files) are available upon
876 request. Supplementary files are also available on GitHub
877 ([https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021/tree/main/ma](https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021/tree/main/Supplemental_Files)
878 [Supplemental_Files](#)).

879

880 Acknowledgements

881 This material is based upon work supported by the National Science Foundation under
882 grant DEB 1749544 and by Michigan State University. In addition, metabolite analysis
883 and transcript sequencing were provided by a DOE-JGI Community Science Program
884 award (proposal identifier 502921). The work conducted by the U.S. Department of
885 Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported
886 under contract number DE-AC02-05CH11231. J.L.C. was supported by the Eleanor L.
887 Gilmore Fellowship from the Department of Microbiology and Molecular Genetics.

888 We thank Katherine B. Louie and Benjamin P. Bowen for support in mass spectral
889 analysis.

890

891 **Competing Interests**

892 The authors declare no competing financial interests.

893

894 **Author contributions**

895 J.L.C. and A.S. conceived of and designed the study. J.L.C. performed the research
896 and analyses. J.L.C. and A.S. wrote the manuscript.

897

898 **References**

- 899 1. Stock, A. M., Robinson, V. L., & Goudreau, P. N. (2000). Two-component signal transduction.
900 Annual Review of Biochemistry, 69, 183–215.
<https://doi.org/10.1146/annurev.biochem.69.1.183>
- 901 2. Browning, D. F., & Busby, S. J. W. (2004). The regulation of bacterial transcription initiation.
904 Nature Reviews Microbiology, 2(1), 57–65. <https://doi.org/10.1038/nrmicro787>
- 902 3. Pietschke, C., Treitz, C., Forêt, S., Schultze, A., Künzel, S., Tholey, A., ... Fraune, S. (2017).
903 Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in
904 bacterial symbionts. Proceedings of the National Academy of Sciences of the United States
905 of America, 114(40), E8488–E8497. <https://doi.org/10.1073/pnas.1706879114>
- 906 4. Garren, M., Son, K., Tout, J., Seymour, J. R., & Stocker, R. (2016). Temperature-induced
907 behavioral switches in a bacterial coral pathogen. ISME Journal, 10(6), 1363–1372.
<https://doi.org/10.1038/ismej.2015.216>
- 908 5. Kato, S., Haruta, S., Cui, Z. J., Ishii, M., & Igarashi, Y. (2005). Stable coexistence of five
909 bacterial strains as a cellulose-degrading community. Applied and Environmental
910 Microbiology, 71(11), 7099–7106. <https://doi.org/10.1128/AEM.71.11.7099-7106.2005>

919 6. Megan Steinweg, J., Dukes, J. S., Paul, E. A., & Wallenstein, M. D. (2013). Microbial responses
920 to multi-factor climate change: Effects on soil enzymes. *Frontiers in Microbiology*, 4, 146.
921 <https://doi.org/10.3389/fmicb.2013.00146>

922 7. Aziz, F. A. A., Suzuki, K., Ohtaki, A., Sagegami, K., Hirai, H., Seno, J., ... Futamata, H. (2015).
923 Interspecies interactions are an integral determinant of microbial community dynamics.
924 *Frontiers in Microbiology*, 6, 1148. <https://doi.org/10.3389/fmicb.2015.01148>

925 8. Orr, J. A., Vinebrooke, R. D., Jackson, M. C., Kroeker, K. J., Kordas, R. L., Mantyka-Pringle, C.,
926 ... Piggott, J. J. (2020). Towards a unified study of multiple stressors: Divisions and common
927 goals across research disciplines. *Proceedings of the Royal Society B: Biological Sciences*,
928 287(1926), 20200421. <https://doi.org/10.1098/rspb.2020.0421>

929 9. Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. F., & Handelsman, J. (2008). Rules of
930 engagement: Interspecies interactions that regulate microbial communities. *Annual Review of
931 Microbiology*, 62, 375–401. <https://doi.org/10.1146/annurev.micro.030608.101423>

932 10. Phelan, V. V., Liu, W.-T., Pogliano, K., & Dorrestein, P. C. (2011). Microbial metabolic exchange-
933 -the chemotype-to-phenotype link. *Nature Chemical Biology*, 8(1), 26–35.
934 <https://doi.org/10.1038/nchembio.739>

935 11. Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic
936 footprinting and systems biology: The medium is the message. *Nature Reviews Microbiology*,
937 3(7), 557–565. <https://doi.org/10.1038/nrmicro1177>

938 12. Pinu, F. R., & Villas-Boas, S. G. (2017). Extracellular microbial metabolomics: The state of the
939 art. *Metabolites*, 7(3), 43. <https://doi.org/10.3390/metabo7030043>

940 13. Silva, L. P., & Northen, T. R. (2015). Exometabolomics and MSI: Deconstructing how cells
941 interact to transform their small molecule environment. *Current Opinion in Biotechnology*, 34,
942 209–216. <https://doi.org/10.1016/j.copbio.2015.03.015>

943 14. Großkopf, T., & Soyer, O. S. (2014). Synthetic microbial communities. *Current Opinion in
944 Microbiology*, 18(1), 72–77. <https://doi.org/10.1016/j.mib.2014.02.002>

945 15. Foster, K. R., & Bell, T. (2012). Competition, not cooperation, dominates interactions among
946 culturable microbial species. *Current Biology*, 22(19), 1845–1850.
947 <https://doi.org/10.1016/j.cub.2012.08.005>

948 16. Coyte, K. Z., Schluter, J., & Foster, K. R. (2015). The ecology of the microbiome: Networks,
949 competition, and stability. *Science*, 350(6261), 663–666.
950 <https://doi.org/10.1126/science.aad2602>

951 17. Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition:
952 Surviving and thriving in the microbial jungle. *Nature Reviews Microbiology*, 8(1), 15–25.
953 <https://doi.org/10.1038/nrmicro2259>

954 18. Tilman, D. (1982). Resource Competition and Community Structure. Princeton, NJ, U.S.A.:
955 Princeton University Press.

956 19. Stewart, F. M., & Levin, B. R. (1973). Partitioning of Resources and the Outcome of Interspecific
957 Competition: A Model and Some General Considerations. *The American Naturalist*, 107(954),
958 171–198. <https://doi.org/10.1086/282825>

972

973 20. Smith, H. L. (2011). Bacterial competition in serial transfer culture. *Mathematical Biosciences*,
974 229(2), 149–159. <https://doi.org/10.1016/j.mbs.2010.12.001>

975

976 21. Pekkonen, M., Korhonen, J., & Laakso, J. T. (2011). Increased survival during famine improves
977 fitness of bacteria in a pulsed-resource environment. *Evolutionary Ecology Research* (Vol.
978 13). Evolutionary Ecology, Ltd.

979

980 22. Holt, R. D. (2008). Theoretical perspectives on resource pulses. *Ecology*, 89(3), 671–681.
981 <https://doi.org/10.1890/07-0348.1>

982

983 23. Schimel, J. P. (2018). Life in dry soils: Effects of drought on soil microbial communities and
984 processes. *Annual Review of Ecology, Evolution, and Systematics*, 49, 409–432.
985 <https://doi.org/10.1146/annurev-ecolsys-110617-062614>

986

987 24. Chiesa, S. C., Irvine, R. L., & Manning, J. F. (1985). Feast/famine growth environments and
988 activated sludge population selection. *Biotechnology and Bioengineering*, 27(5), 562–568.
989 <https://doi.org/10.1002/bit.260270503>

990

991 25. Fetissov, S. O. (2017). Role of the gut microbiota in host appetite control: Bacterial growth to
992 animal feeding behaviour. *Nature Reviews Endocrinology*, 13(1), 11–25.
993 <https://doi.org/10.1038/nrendo.2016.150>

994

995 26. Hiltunen, T., Laakso, J., Kaitala, V., Suomalainen, L. R., & Pekkonen, M. (2008). Temporal
996 variability in detritus resource maintains diversity of bacterial communities. *Acta Oecologica*,
997 33(3), 291–299. <https://doi.org/10.1016/j.actao.2007.12.002>

998

999 27. Navarro Llorens, J. M., Tormo, A., & Martínez-García, E. (2010). Stationary phase in gram-
1000 negative bacteria. *FEMS Microbiology Reviews*, 34(4), 476–495.
1001 <https://doi.org/10.1111/j.1574-6976.2010.00213.x>

1002

1003 28. Čihák, M., Kameník, Z., Šmídová, K., Bergman, N., Benada, O., Kofronová, O., ... Bobek, J.
1004 (2017). Secondary metabolites produced during the germination of *Streptomyces coelicolor*.
1005 *Frontiers in Microbiology*, 8, 2495. <https://doi.org/10.3389/fmicb.2017.02495>

1006

1007 29. Medema, M. H., Kottmann, R., Yilmaz, P., Cummings, M., Biggins, J. B., Blin, K., ... Glöckner, F.
1008 O. (2015). Minimum Information about a Biosynthetic Gene cluster. *Nature Chemical Biology*,
1009 11(9), 625–631. <https://doi.org/10.1038/nchembio.1890>

1010

1011 30. Cornforth, D. M., & Foster, K. R. (2013). Competition sensing: The social side of bacterial stress
1012 responses. *Nature Reviews Microbiology*, 11(4), 285–293.
1013 <https://doi.org/10.1038/nrmicro2977>

1014

1015 31. Okada, B. K., & Seyedsayamdst, M. R. (2017). Antibiotic dialogues: Induction of silent
1016 biosynthetic gene clusters by exogenous small molecules. *FEMS Microbiology Reviews*,
1017 41(1), 19–33. <https://doi.org/10.1093/femsre/fuw035>

1018

1019 32. Goh, E. B., Yim, G., Tsui, W., McClure, J. A., Surette, M. G., & Davies, J. (2002). Transcriptional
1020 modulation of bacterial gene expression by subinhibitory concentrations of antibiotics.
1021 *Proceedings of the National Academy of Sciences of the United States of America*, 99(26),
1022 17025–17030. <https://doi.org/10.1073/pnas.252607699>

1023

1024 33. Chandler, J. R., Heilmann, S., Mittler, J. E., & Greenberg, E. P. (2012). Acyl-homoserine
1025 lactone-dependent eavesdropping promotes competition in a laboratory co-culture model.
1026 *ISME Journal*, 6(12), 2219–2228. <https://doi.org/10.1038/ismej.2012.69>

1027 34. De Roy, K., Marzorati, M., Van den Abbeele, P., Van de Wiele, T., & Boon, N. (2014). Synthetic
1028 microbial ecosystems: an exciting tool to understand and apply microbial communities.
1029 *Environmental Microbiology*, 16(6), 1472–1481. <https://doi.org/10.1111/1462-2920.12343>

1030 35. Chodkowski, J. L., & Shade, A. (2017). A Synthetic Community System for Probing Microbial
1031 Interactions Driven by Exometabolites. *MSystems*, 2(6), e00129-17.
1032 <https://doi.org/10.1128/msystems.00129-17>

1033 36. Chodkowski, J. L., & Shade, A. (2020). Exometabolite Dynamics over Stationary Phase Reveal
1034 Strain-Specific Responses. *MSystems*, 5(6), e00493-20.
1035 <https://doi.org/10.1128/msystems.00493-20>

1036 37. Brett, P. J., DeShazer, D., & Woods, D. E. (1998). *Burkholderia thailandensis* sp. nov., a
1037 *Burkholderia pseudomallei*-like species. *International Journal of Systematic Bacteriology*, 48
1038 Pt 1(1), 317–320. <https://doi.org/10.1099/00207713-48-1-317>

1039 38. Wells, J. S., Trejo, W. H., Principe, P. A., Bush, K., Georgopapadakou, N., Bonner, D. P., &
1040 Sykes, R. B. (1982). SQ 26,180, a novel monobactam. I Taxonomy, fermentation and
1041 biological properties. *The Journal of Antibiotics*, 35(2), 184–188.
1042 <https://doi.org/10.7164/ANTIBIOTICS.35.184>

1043 39. Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L., ... Collmer, A.
1044 (2003). The complete genome sequence of the *Arabidopsis* and tomato pathogen
1045 *Pseudomonas syringae* pv. *tomato* DC3000. *Proceedings of the National Academy of
1046 Sciences*, 100(18), 10181–10186. <https://doi.org/10.1073/PNAS.1731982100>

1047 40. Harrison, A. M., & Soby, S. D. (2020). Reclassification of *Chromobacterium violaceum* ATCC
1048 31532 and its quorum biosensor mutant CV026 to *Chromobacterium subtsugae*. *AMB
1049 Express*, 10(1), 202. <https://doi.org/10.1186/S13568-020-01140-1>

1050 41. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion
1051 for RNA-seq data with DESeq2. *Genome Biology*, 15, 550. [https://doi.org/10.1186/s13059-014-0550-8](https://doi.org/10.1186/s13059-
1052 014-0550-8)

1053 42. Fischer, D. S., Theis, F. J., & Yosef, N. (2018). Impulse model-based differential expression
1054 analysis of time course sequencing data. *Nucleic Acids Research*, 46(20), 119.
1055 <https://doi.org/10.1093/nar/gky675>

1056 43. Chen, H. (2018). *VennDiagram*: Generate High-Resolution Venn and Euler Plots. R package
1057 version 1.6.20.

1058 44. Wickham, H. (2016). *ggplot2*: Elegant Graphics for Data Analysis. Springer-Verlag New York.

1059 45. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... Wagner, H.
1060 (2019). *vegan*: Community Ecology Package. R package version 2.5-4.

1061 46. Herve M. (2020). *RVAideMemoire*: testing and plotting procedures for biostatistics. R Packag
1062 version 09-77.

1063 47. R Core Team. (2020). *R: A Language and Environment for Statistical Computing*. R Foundation for
1064 Statistical Computing, Vienna, Austria.

1065 48. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1066 49. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1067 50. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1068 51. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1069 52. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1070 53. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1071 54. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1072 55. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1073 56. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1074 57. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1075 58. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1076 59. R Core Team. (2020). *tidyverse*:易用的R包。R包。

1077 47. Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, M. H., &
 1078 Weber, T. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities.
 1079 *Nucleic Acids Research*, 49(W1), W29–W35. <https://doi.org/10.1093/NAR/GKAB335>

1080 48. Kautsar, S. A., Blin, K., Shaw, S., Navarro-Muñoz, J. C., Terlouw, B. R., van der Hooft, J. J. J.,
 1081 ... Medema, M. H. (2020). MIBiG 2.0: a repository for biosynthetic gene clusters of known
 1082 function. *Nucleic Acids Research*, 48(D1), D454–D458. <https://doi.org/10.1093/NAR/GKZ882>

1083 49. Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., ... Gardner, T. S.
 1084 (2007). Large-scale mapping and validation of *Escherichia coli* transcriptional regulation from
 1085 a compendium of expression profiles. *PLoS Biology*, 5(1), e8.
 1086 <https://doi.org/10.1371/journal.pbio.0050008>

1087 50. Meyer, P. E., Lafitte, F., & Bontempi, G. (2008). Minet: A r/bioconductor package for inferring
 1088 large transcriptional networks using mutual information. *BMC Bioinformatics*, 9(1), 461.
 1089 <https://doi.org/10.1186/1471-2105-9-461>

1090 51. McClure, R. S., Overall, C. C., Mcdermott, J. E., Hill, E. A., Markillie, L. M., Mccue, L. A., ...
 1091 Beliaev, A. S. (2016). Network analysis of transcriptomics expands regulatory landscapes in
 1092 *Synechococcus* sp. PCC 7002. *Nucleic Acids Research*, 44(18), 8810–8825.
 1093 <https://doi.org/10.1093/nar/gkw737>

1094 52. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., ... Ideker, T. (2003).
 1095 Cytoscape: A software Environment for integrated models of biomolecular interaction
 1096 networks. *Genome Research*, 13(11), 2498–2504. <https://doi.org/10.1101/gr.1239303>

1097 53. Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., ...
 1098 Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO
 1099 suite. *Nucleic Acids Research*, 36(10), 3420–3435. <https://doi.org/10.1093/nar/gkn176>

1100 54. Zdobnov, E. M., & Apweiler, R. (2001). InterProScan - An integration platform for the signature-
 1101 recognition methods in InterPro. *Bioinformatics*, 17(9), 847–848.
 1102 <https://doi.org/10.1093/bioinformatics/17.9.847>

1103 55. Maere, S., Heymans, K., & Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess
 1104 overrepresentation of gene ontology categories in biological networks. *Bioinformatics*
 1105 (Oxford, England), 21(16), 3448–3449. <https://doi.org/10.1093/BIOINFORMATICS/BTI551>

1106 56. Pluskal, T., Castillo, S., Villar-Briones, A., & Orešić, M. (2010). MZmine 2: Modular framework
 1107 for processing, visualizing, and analyzing mass spectrometry-based molecular profile data.
 1108 *BMC Bioinformatics*, 11, 395. <https://doi.org/10.1186/1471-2105-11-395>

1109 57. Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., ... Xia, J. (2021).
 1110 MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. *Nucleic
 1111 Acids Research*, (1), gkab382. <https://doi.org/10.1093/nar/gkab382>

1112 58. Schymanski, E.L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H.P., & Hollender, J.
 1113 (2014). Identifying small molecules via high resolution mass spectrometry: communicating
 1114 confidence. *Environmental Science & Technology*, 48, 2097–2098.
 1115 <https://doi.org/10.1021/es5002105>

1116 59. Amunts, A., Fiedorczuk, K., Truong, T. T., Chandler, J., Peter Greenberg, E., & Ramakrishnan,
 1117 V. (2015). Bactobolin A binds to a site on the 70S ribosome distinct from previously seen

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130 antibiotics. *Journal of Molecular Biology*, 427(4), 753–755.
1131 <https://doi.org/10.1016/j.jmb.2014.12.018>

1132

1133 60. Kuznedelov, K., Semenova, E., Knappe, T. A., Mukhamedyarov, D., Srivastava, A., Chatterjee,
1134 S., ... Severinov, K. (2011). The antibacterial threaded-lasso peptide capistruin inhibits
1135 bacterial RNA polymerase. *Journal of Molecular Biology*, 412(5), 842–848.
1136 <https://doi.org/10.1016/j.jmb.2011.02.060>

1137

1138 61. Wozniak, C. E., Lin, Z., Schmidt, E. W., Hughes, K. T., & Liou, T. G. (2018). Thailandamide, a
1139 fatty acid synthesis antibiotic that is coexpressed with a resistant target gene. *Antimicrobial
1140 Agents and Chemotherapy*, 62(9), e00463-18. <https://doi.org/10.1128/AAC.00463-18>

1141

1142 62. Biggins, J. B., Ternei, M. A., & Brady, S. F. (2012). Malleilactone, a polyketide synthase-derived
1143 virulence factor encoded by the cryptic secondary metabolome of *Burkholderia pseudomallei*
1144 group pathogens. *Journal of the American Chemical Society*, 134(32), 13192–13195.
1145 <https://doi.org/10.1021/ja3052156>

1146

1147 63. Butt, A. T., & Thomas, M. S. (2017). Iron acquisition mechanisms and their role in the virulence
1148 of *Burkholderia* species. *Frontiers in Cellular and Infection Microbiology*, 7, 460.
1149 <https://doi.org/10.3389/fcimb.2017.00460>

1150

1151 64. Dubeau, D., Déziel, E., Woods, D. E., & Lépine, F. (2009). *Burkholderia thailandensis* harbors
1152 two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. *BMC
1153 Microbiology*, 9(1), 1–12. <https://doi.org/10.1186/1471-2180-9-263>

1154

1155 65. Ghoul, M., & Mitri, S. (2016). The Ecology and Evolution of Microbial Competition. *Trends in
1156 Microbiology*, 24(10), 833–845. <https://doi.org/10.1016/j.tim.2016.06.011>

1157

1158

1159 66. Ortiz, A., Vega, N. M., Ratzke, C., & Gore, J. (2021). Interspecies bacterial competition regulates
1160 community assembly in the *C. elegans* intestine. *ISME J*, 1–15.
1161 <https://doi.org/10.1038/s41396-021-00910-4>

1162

1163 67. Duerkop, B. A., Varga, J., Chandler, J. R., Peterson, S. B., Herman, J. P., Churchill, M. E. A., ...
1164 Greenberg, E. P. (2009). Quorum-sensing control of antibiotic synthesis in *Burkholderia
1165 thailandensis*. *Journal of Bacteriology*, 191(12), 3909–3918.
1166 <https://doi.org/10.1128/JB.00200-09>

1167

1168 68. Evans, K. C., Benomar, S., Camuy-Vélez, L. A., Nasseri, E. B., Wang, X., Neuenschwander, B., &
1169 Chandler, J. R. (2018). Quorum-sensing control of antibiotic resistance stabilizes cooperation
1170 in *Chromobacterium subtsugae*. *ISME J*, 12(5), 1263–1272. <https://doi.org/10.1038/s41396-018-0047-7>

1171

1172

1173 69. Maitra, A., & Dill, K. A. (2016). Modeling the Overproduction of Ribosomes when Antibacterial
1174 Drugs Act on Cells. *Biophysical Journal*, 110(3), 743–748.
1175 <https://doi.org/10.1016/J.BPJ.2015.12.016>

1176

1177 70. Dennis, P. P. (1976). Effects of chloramphenicol on the transcriptional activities of ribosomal
1178 RNA and ribosomal protein genes in *Escherichia coli*. *Journal of Molecular Biology*, 108(3),
1179 535–546. [https://doi.org/10.1016/S0022-2836\(76\)80135-0](https://doi.org/10.1016/S0022-2836(76)80135-0)

1180

1181 71. Dwyer, D. J., Kohanski, M. A., Hayete, B., & Collins, J. J. (2007). Gyrase inhibitors induce an
1182 oxidative damage cellular death pathway in *Escherichia coli*. *Molecular systems biology*, 3,
1183 91. <https://doi.org/10.1038/msb4100135>

1184 72. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common
1185 mechanism of cellular death induced by bactericidal antibiotics. *Cell*, 130(5), 797–810.
1186 <https://doi.org/10.1016/j.cell.2007.06.049>

1187 73. Pettit, R. K. (2009). Mixed fermentation for natural product drug discovery. *Applied Microbiology*
1188 and Biotechnology

1189 83(1), 19–25. <https://doi.org/10.1007/s00253-009-1916-9>

1190 74. Netzker, T., Fischer, J., Weber, J., Mattern, D. J., König, C. C., Valiante, V., ... Brakhage, A. A.
1191 (2015). Microbial communication leading to the activation of silent fungal secondary
1192 metabolite gene clusters. *Frontiers in Microbiology*. Frontiers Media S.A.
1193 <https://doi.org/10.3389/fmicb.2015.00299>

1194 75. Zhu, H., Sandiford, S. K., & Van Wezel, G. P. (2014). Triggers and cues that activate antibiotic
1195 production by actinomycetes. *Journal of Industrial Microbiology and Biotechnology*, 41(2),
1196 371–386. <https://doi.org/10.1007/s10295-013-1309>

1197 76. Truong, T. T., Seyedsayamdst, M., Greenberg, E. P., & Chandler, J. R. (2015). A *Burkholderia*
1198 *thailandensis* acyl-homoserine lactone-independent orphan LuxR homolog that activates
1199 production of the cytotoxin malleilactone. *Journal of Bacteriology*, 197(21), 3456–3462.
1200 <https://doi.org/10.1128/JB.00425-15>

1201 77. Alice, A. F., López, C. S., Lowe, C. A., Ledesma, M. A., & Crosa, J. H. (2006). Genetic and
1202 transcriptional analysis of the siderophore malleobactin biosynthesis and transport genes in
1203 the human pathogen *Burkholderia pseudomallei* K96243. *Journal of Bacteriology*, 188(4),
1204 1551–1566. <https://doi.org/10.1128/JB.188.4.1551-1566.2006>

1205 78. Gupta, A., Bedre, R., Thapa, S. S., Sabrin, A., Wang, G., Dassanayake, M., & Grove, A. (2017).
1206 Global Awakening of Cryptic Biosynthetic Gene Clusters in *Burkholderia thailandensis*. *ACS*
1207 *Chemical Biology*, 12(12), 3012–3021. <https://doi.org/10.1021/acschembio.7b00681>

1208 79. Knappe, T. A., Linne, U., Zirah, S., Rebuffat, S., Xie, X., & Marahiel, M. A. (2008). Isolation and
1209 structural characterization of capistruin, a lasso peptide predicted from the genome sequence
1210 of *Burkholderia thailandensis* E264. *Journal of the American Chemical Society*, 130(34),
1211 11446–11454. <https://doi.org/10.1021/ja802966g>

1212 80. Ishida, K., Lincke, T., Behnken, S., & Hertweck, C. (2010). Induced biosynthesis of cryptic
1213 polyketide metabolites in a *Burkholderia thailandensis* quorum sensing mutant. *Journal of the*
1214 *American Chemical Society*, 132(40), 13966–13968. <https://doi.org/10.1021/ja105003g>

1215 81. Mao, D., Bushin, L. B., Moon, K., Wu, Y., & Seyedsayamdst, M. R. (2017). Discovery of *scmR*
1216 as a global regulator of secondary metabolism and virulence in *Burkholderia thailandensis*
1217 E264. *Proceedings of the National Academy of Sciences of the United States of America*,
1218 114(14), E2920–E2928. <https://doi.org/10.1073/pnas.1619529114>

1219 82. Okada, B. K., Wu, Y., Mao, D., Bushin, L. B., & Seyedsayamdst, M. R. (2016). Mapping the
1220 Trimethoprim-Induced Secondary Metabolome of *Burkholderia thailandensis*. *ACS Chemical*
1221 *Biology*, 11(8), 2124–2130. <https://doi.org/10.1021/acschembio.6b00447>

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

1233 83. Li, A., Mao, D., Yoshimura, A., Rosen, P. C., Martin, W. L., Gallant, É., ... Seyedsayamdst, M.
 1234 R. (2020). Multi-omic analyses provide links between low-dose antibiotic treatment and
 1235 induction of secondary metabolism in *Burkholderia thailandensis*. *mBio*, 11(1), e03210-19.
 1236 <https://doi.org/10.1128/mBio.03210-19>

1237 84. McClure, R. S. (2019). Toward a Better Understanding of Species Interactions through Network
 1238 Biology. *MSystems*, 4(3), e00114-19. <https://doi.org/10.1128/msystems.00114-19>

1239 85. McClure, R. S., Overall, C. C., Hill, E. A., Song, H.-S., Charania, M., Bernstein, H. C., ... Beliaev,
 1240 A. S. (2018). Species-specific transcriptomic network inference of interspecies interactions.
 1241 *ISME J*, 12(8), 2011–2023. <https://doi.org/10.1038/s41396-018-0145-6>

1242 86. Karas, V. O., Westerlaken, I., & Meyer, A. S. (2015). The DNA-binding protein from starved cells
 1243 (Dps) utilizes dual functions to defend cells against multiple stresses. *Journal of Bacteriology*,
 1244 197(19), 3206–3215. <https://doi.org/10.1128/JB.00475-15>

1245 87. Nair, S., & Finkel, S. E. (2004). Dps protects cells against multiple stresses during stationary
 1246 phase. *Journal of Bacteriology*, 186(13), 4192–4198. <https://doi.org/10.1128/JB.186.13.4192-4198.2004>

1247 88. Antwis, R. E., Griffiths, S. M., Harrison, X. A., Aranega-Bou, P., Arce, A., Bettridge, A. S., ...
 1248 Sutherland, W. J. (2017). Fifty important research questions in microbial ecology. *FEMS
 1249 Microbiology Ecology*, 93(5), fix044. <https://doi.org/10.1093/femsec/fix044>

1250 89. Konopka, A. (2009). What is microbial community ecology. *ISME J*, 3(11), 1223–1230.
 1251 <https://doi.org/10.1038/ismej.2009.88>

1252 90. Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F., & Sanchez, A. (2019). High-
 1253 order interactions distort the functional landscape of microbial consortia. *PLoS Biology*,
 1254 17(12), e3000550. <https://doi.org/10.1371/journal.pbio.3000550>

1255 91. Mickalide, H., & Kuehn, S. (2019). Higher-Order Interaction between Species Inhibits Bacterial
 1256 Invasion of a Phototroph-Predator Microbial Community. *Cell Systems*, 9(6), 521–533.e10.
 1257 <https://doi.org/10.1016/j.cels.2019.11.004>

1258 92. D'hoe, K., Vet, S., Faust, K., Moens, F., Falony, G., Gonze, D., ... Raes, J. (2018). Integrated
 1259 culturing, modeling and transcriptomics uncovers complex interactions and emergent
 1260 behavior in a three-species synthetic gut community. *ELife*, 7, e37090.
 1261 <https://doi.org/10.7554/ELife.37090>

1262 93. Miller, T. E., Burns, J. H., Munguia, P., Walters, E. L., Kneitel, J. M., Richards, P. M., ... Buckley,
 1263 H. L. (2005). A critical review of twenty years' use of the resource-ratio theory. *American
 1264 Naturalist*, 165(4), 439–448. <https://doi.org/10.1086/428681>

1265 94. De Jong, H., Casagranda, S., Giordano, N., Cinquemani, E., Ropers, D., Geiselmann, J., &
 1266 Gouzé, J. L. (2017). Mathematical modelling of microbes: Metabolism, gene expression and
 1267 growth. *Journal of the Royal Society Interface*, 14(136), 20170502.
 1268 <https://doi.org/10.1098/rsif.2017.0502>

1269 95. Jöers, A., Liske, E., & Tenson, T. (2020). Dividing subpopulation of *Escherichia coli* in stationary
 1270 phase. *Research in Microbiology*, 171(3–4), 153–157.
 1271 <https://doi.org/10.1016/j.resmic.2020.02.002>

1286

1287 96. McCall, I. C., Shah, N., Govindan, A., Baquero, F., & Levin, B. R. (2019). Antibiotic killing of
1288 diversely generated populations of nonreplicating bacteria. *Antimicrobial Agents and*
1289 *Chemotherapy*, 63(7), e02360-18. <https://doi.org/10.1128/AAC.02360-18>

1290

1291 97. Chesson, P. L. (1983). Coexistence of Competitors in a Stochastic Environment: The Storage
1292 Effect. *Lecture Notes in Biomathematics*, 52, 188–198. https://doi.org/10.1007/978-3-642-87893-0_25

1293

1294 98. Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. *Nature Reviews
1295 Microbiology* 2008 6:3, 6(3), 199–210. <https://doi.org/10.1038/nrmicro1838>

1296

1297 99. Traxler, M. F., Seyedsayamdst, M. R., Clardy, J., & Kolter, R. (2012). Interspecies modulation
1298 of bacterial development through iron competition and siderophore piracy. *Molecular
1299 Microbiology*, 86(3), 628. <https://doi.org/10.1111/MMI.12008>

1300

1301 100. Lawrence, M., Gentleman, R., & Carey, V. (2009). rtracklayer: An R package for interfacing with
1302 genome browsers. *Bioinformatics*, 25(14), 1841–1842.
<https://doi.org/10.1093/bioinformatics/btp328>

1303

1304

1305 101. Garnier, S., Ross, N., Rudis, R., Camargo, P. A., Sciaiani, M., & Scherer, C. (2021). viridis -
1306 Colorblind-Friendly Color Maps for R, R package, <https://sjmgarnier.github.io/viridis/>.
<https://doi.org/10.5281/zenodo.4679424>

1307

1308

1309 102. Wickham, H. (2007). Reshaping data with the reshape package. *Journal of Statistical Software*,
1310 21(12), 1–20. <https://doi.org/10.18637/jss.v021.i12>

1311

1312

1313 103. Wickham, H. (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R
1314 package version 1.4.0.

1315

1316 104. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., ... Yutani, H.
1317 (2019). Welcome to the Tidyverse. *Journal of Open Source Software*, 4(43), 1686.
<https://doi.org/10.21105/joss.01686>

1318

1319

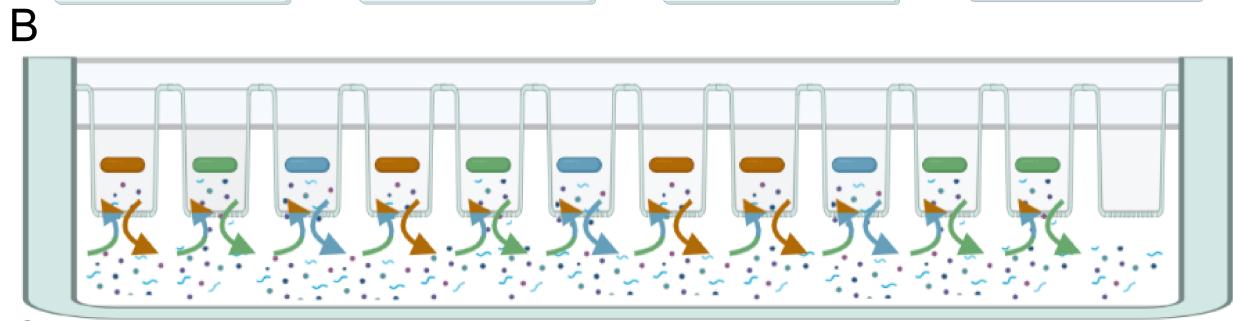
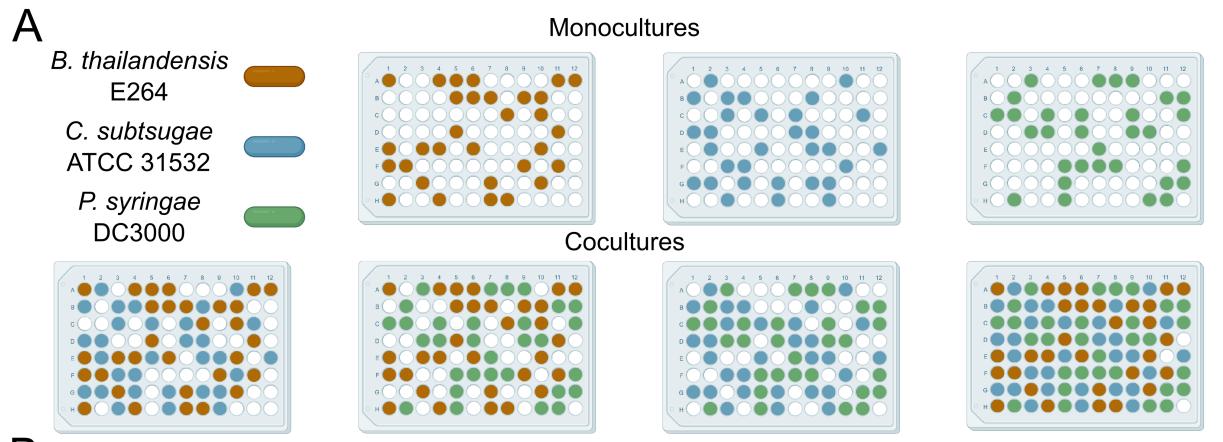
1320 105. Wickham, H., François, R., Henry, L., & Müller, K. (2019). dplyr: A Grammar of Data
1321 Manipulation. R package version 0.8.3.

1322

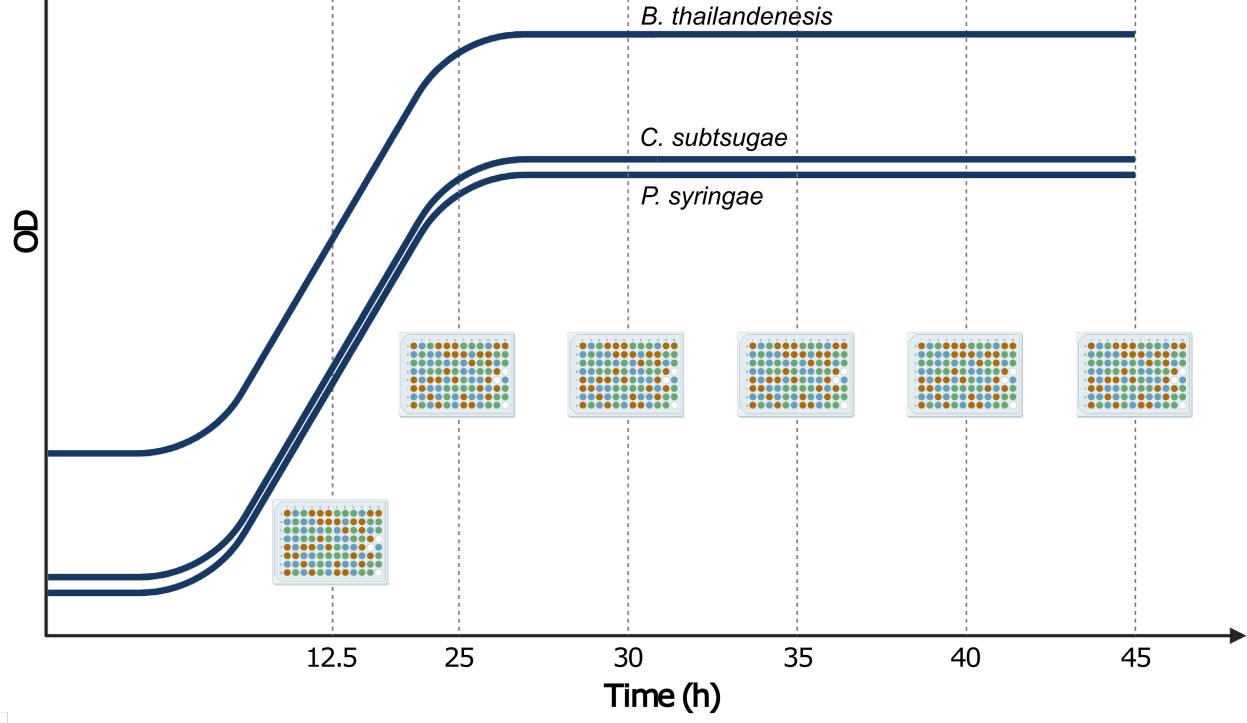
1323 106. Nordberg, H., Cantor, M., Dusheyko, S., Hua, S., Poliakov, A., Shabalov, I., ... Dubchak, I.
1324 (2014). The genome portal of the Department of Energy Joint Genome Institute: 2014
1325 updates. *Nucleic Acids Research*, 42, D26-31. <https://doi.org/10.1093/nar/gkt1069>

1326

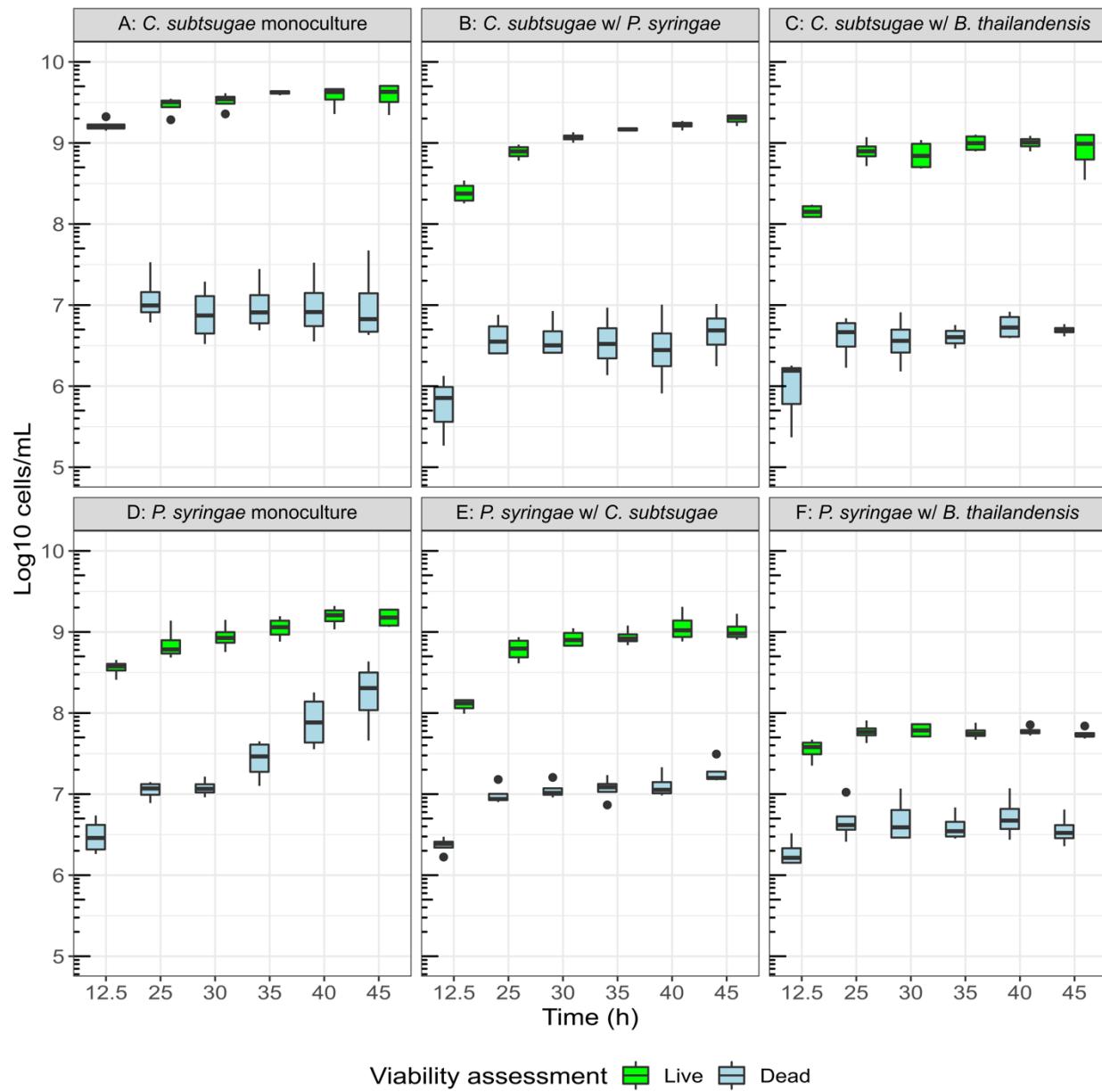
1327



1328

1329

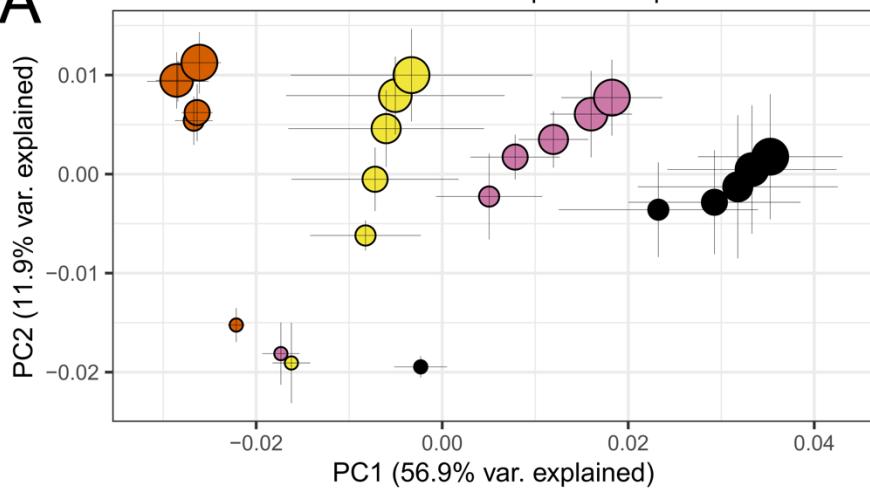
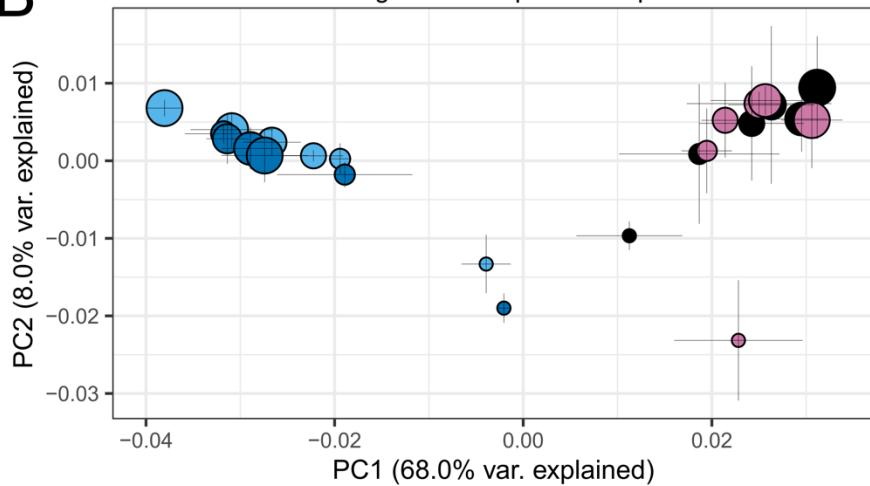
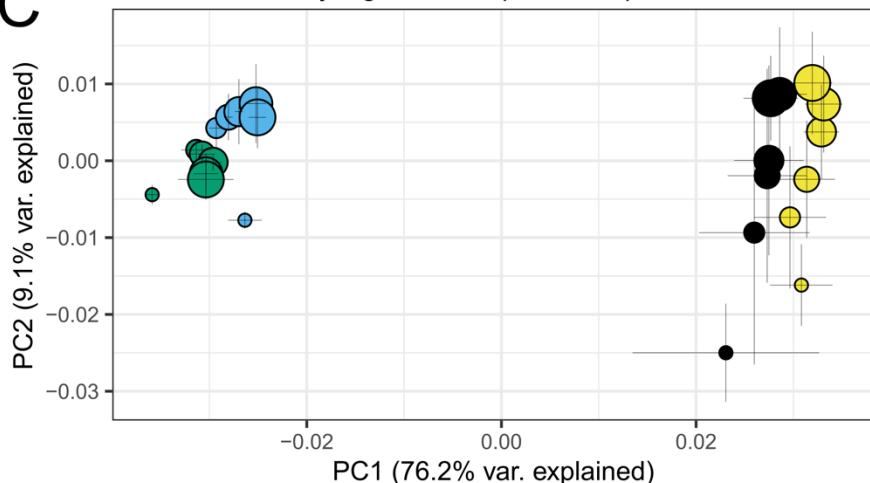

1330

1331 **Figure legends**


1332 **Figure 1. Experimental design and destructive sampling procedure of transwell**
1333 **plates.** There were seven conditions, six time points/condition, and four independent
1334 replicates/condition (168 total transwell plates). Each member occupied 31
1335 wells/condition to maintain member-specific population density across all conditions (A).
1336 The SynCom transwell plate maintains physical separation of members in individual
1337 wells while permitting exometabolite exchange through a 0.22- μ m-pore filter bottom.
1338 Exometabolite exchange occurs via a bottom-fitted shared medium reservoir (B; [35]).
1339 Six replicate transwell plates were prepared for a time course experiment. The time
1340 course experiment included one exponential phase time point and five stationary phase
1341 time points. At specified time points, a transwell plate was destructively sampled (C).
1342 Note that all members were diluted to different starting ODs to allow for all members to
1343 achieve stationary phase within a two-hour window of each other. This figure was
1344 created with BioRender.com.

C Destructive time series example

1347 **Figure 2. Loss of cell viability in *B. thailandensis* cocultures.** Live (green) and dead
1348 (blue) flow cytometry cell counts for *C. subtsugae* (Top row, panels A-C) and *P.*
1349 *syringae* (Bottom row, panels D-F) from Syto9- and propidium iodide-stained cells (n = 4
1350 to 5 technical replicates/time point/community membership/transwell plate and n = 4
1351 independent replicates/time point/community membership). Cell counts are from
1352 monocultures (panels A & D), cocultures with *P. syringae* (panel B) or *C. subtsugae*
1353 (panel E), and cocultures with *B. thailandensis* (panels C & F). The bottom and top of
1354 the box are the first (Q1) and third (Q3) quartiles, respectively, and the line inside the
1355 box is the median. The whiskers extend from their respective hinges to the largest value
1356 (top), and smallest value (bottom) was no further away than 1.5 \times the interquartile range.
1357 Points represent outliers that are less than 1.5 \times the interquartile range of Q1 or greater
1358 than 1.5 \times the interquartile range of Q3.

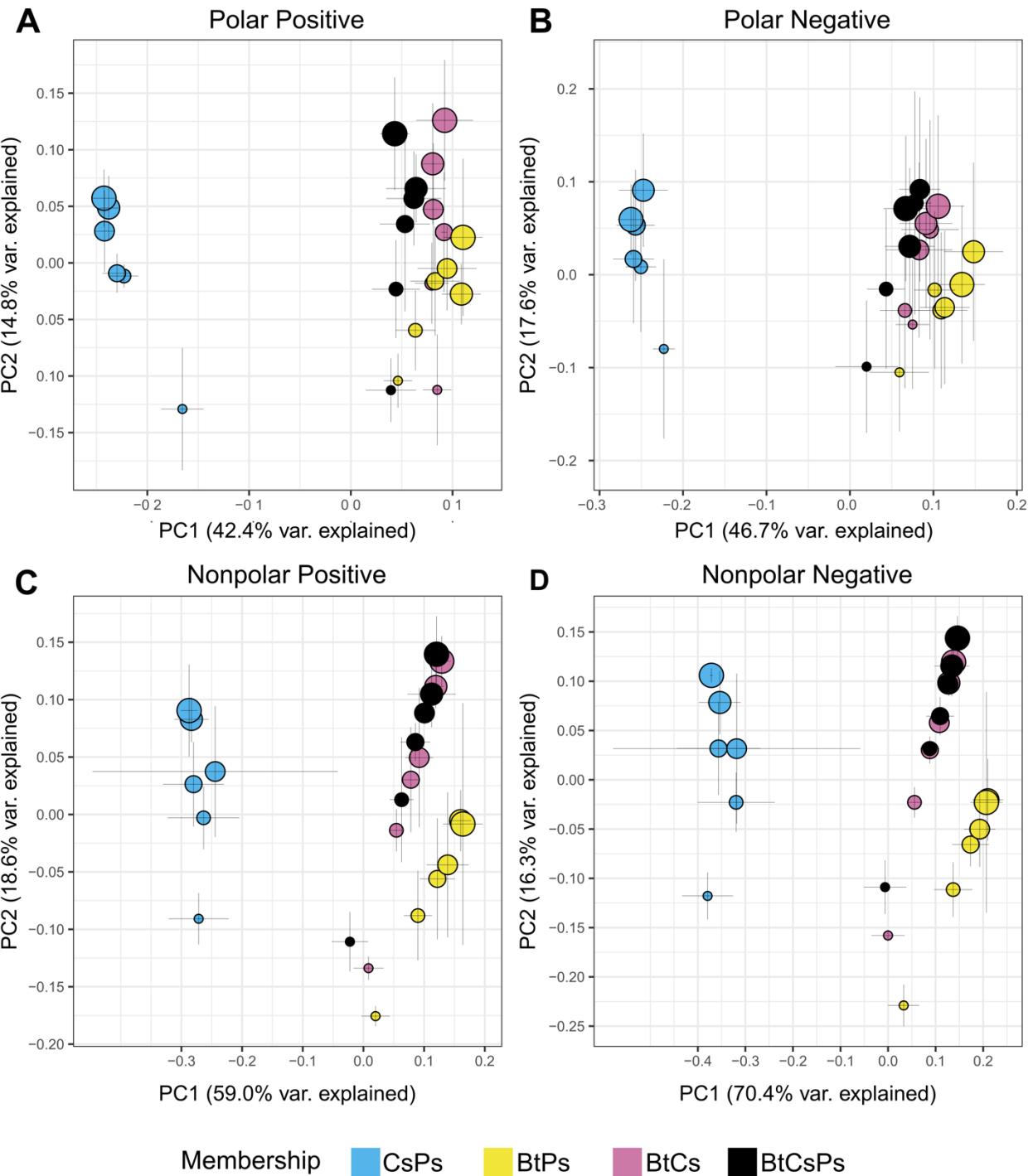




1359

1360

1361

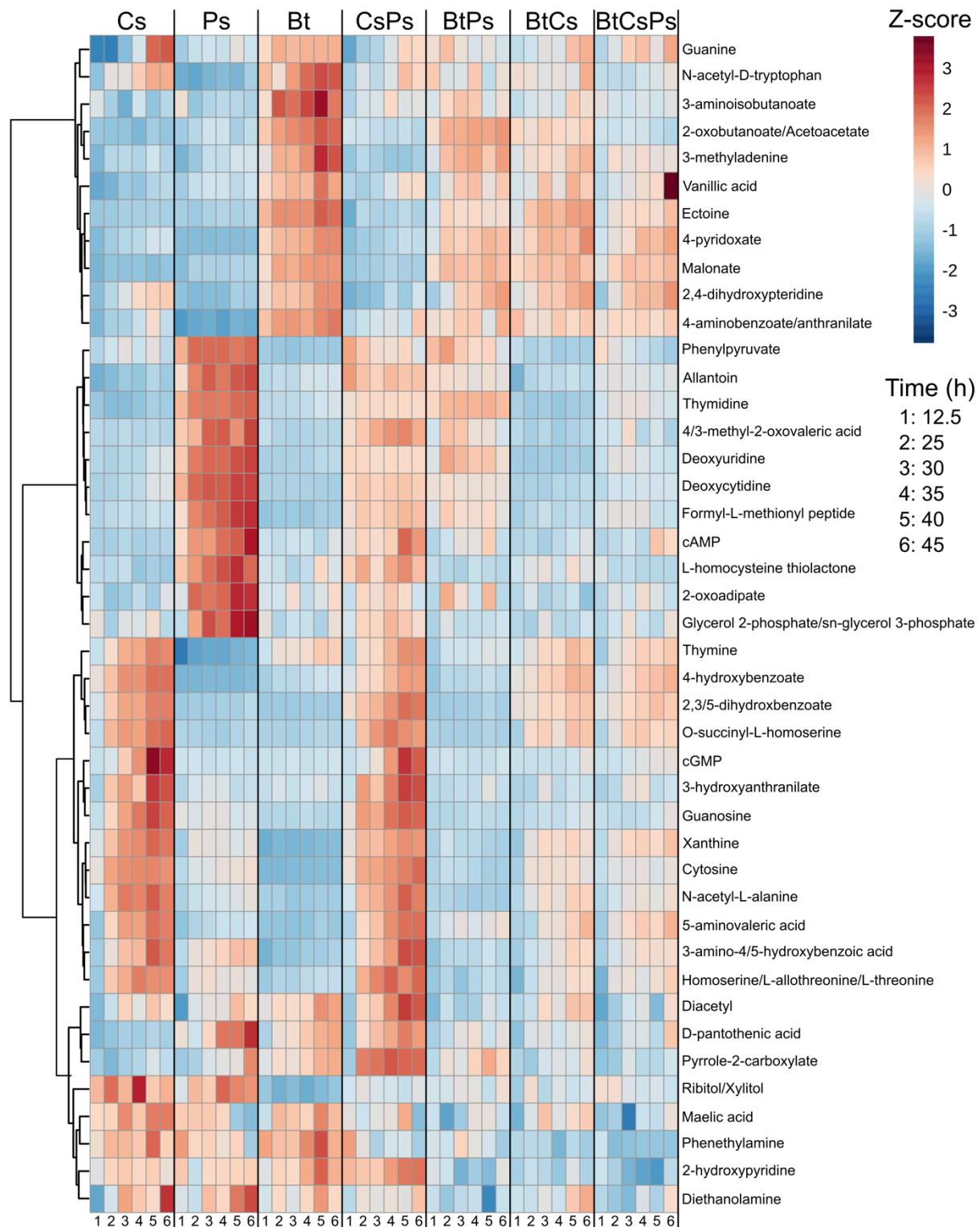
1362 **Figure 3. Transcriptional responses are driven by community membership and**
1363 **time.** Shown are principal coordinates analysis (PCoA) plots for *B. thailandensis* (A), *C.*
1364 *subtsugae* (B), and *P. syringae* (C). Each PCoA sub-panel presents the time series of
1365 transcriptional patterns of the focal member given each of its 4 growth conditions (one
1366 monoculture condition, two pairs, and one three-member). Each point represents a
1367 mean transcript profile for a community member given a particular condition (indicated
1368 by symbol color) and sampled at a given time point over exponential and stationary
1369 phases (in hours since inoculation, h, indicated by symbol size, n = 3 to 4 replicates per
1370 time point/community membership). The Bray-Curtis distance metric was used to
1371 calculate dissimilarities between transcript profiles. Error bars are 1 standard deviation
1372 around the mean axis scores. Note that transcriptional responses are driven by
1373 community membership on PCoA axis 1 and time on PCoA axis 2 across all plots.


A*B. thailandensis* transcriptional responses**B***C. subtsugae* transcriptional responses**C***P. syringae* transcriptional responses

Membership Bt Cs Ps CsPs BtPs BtCs BtCsPs

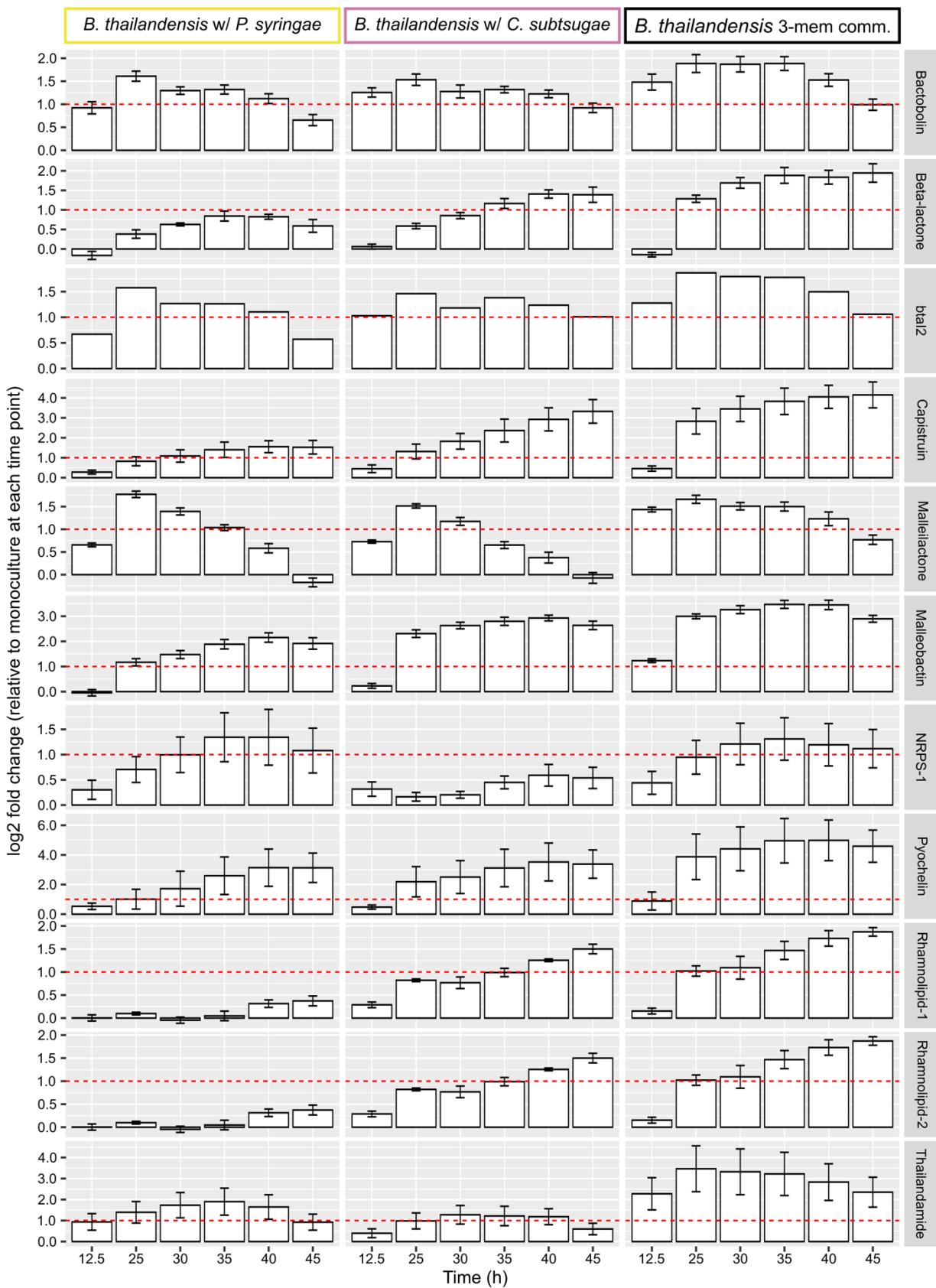
Time (h) ○ 12.5 ○ 25 ○ 30 ○ 35 ○ 40 ○ 45

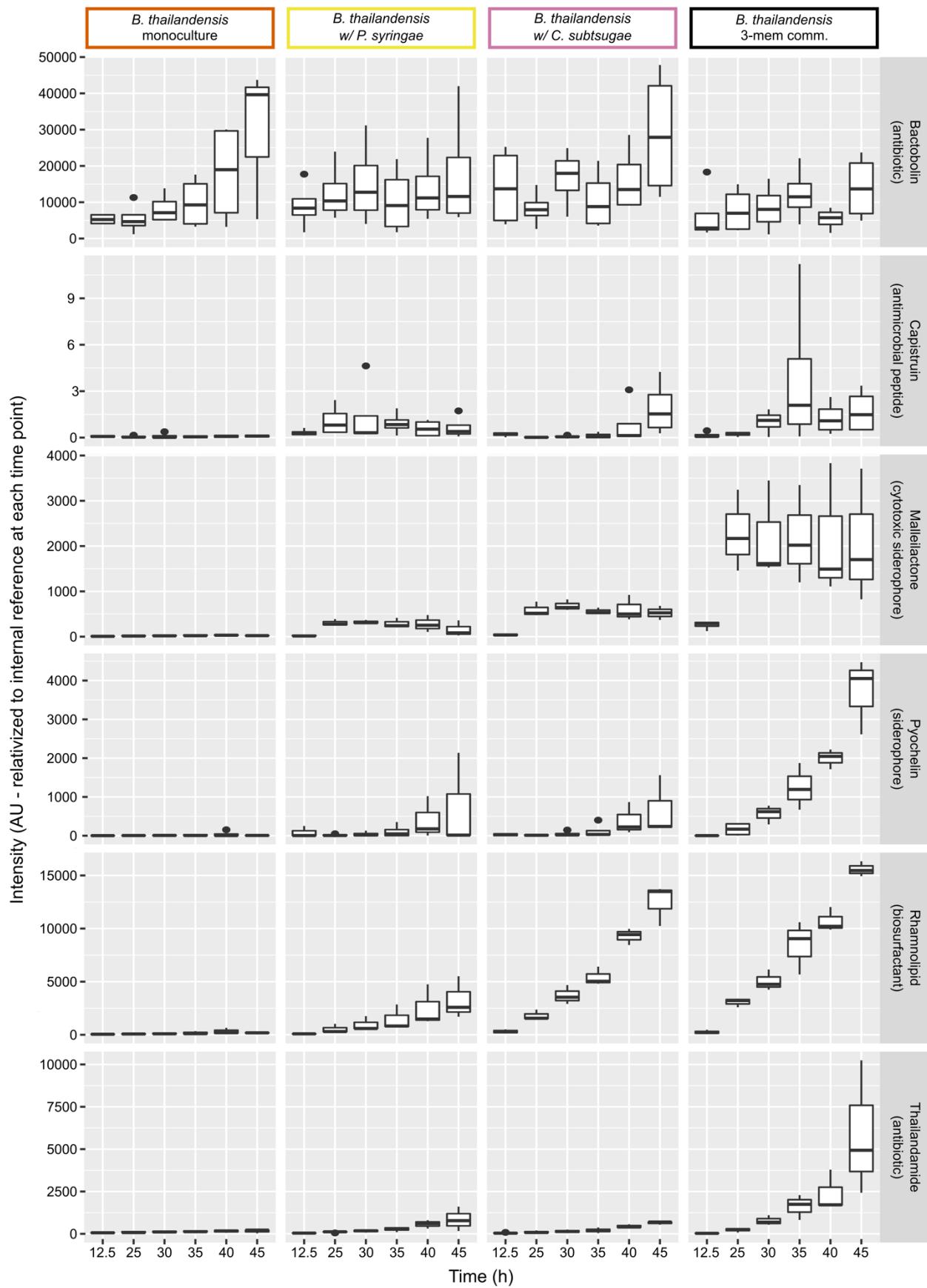
1375 **Figure 4. Bacterial community exometabolite profiles differ by community**


1376 **membership and time.** Shown are PCoA plots for exometabolite profiles from the
1377 following mass spectrometry modes: polar positive (A), polar negative (B), nonpolar
1378 positive (C), and nonpolar negative (D). Each point represents the mean exometabolite
1379 profile (relative contributions by peak area) given a particular community membership
1380 (indicated by symbol color) at a particular time point (indicated by symbol size). The
1381 Bray-Curtis distance metric was used to calculate dissimilarities between exometabolite
1382 profiles. Error bars are 1 standard deviation around the mean axis scores ($n = 2$ to 4
1383 replicates). Bt is *B. thailandensis*, Cs is *C. subtsugae*, and Ps is *P. syringae*.

1384

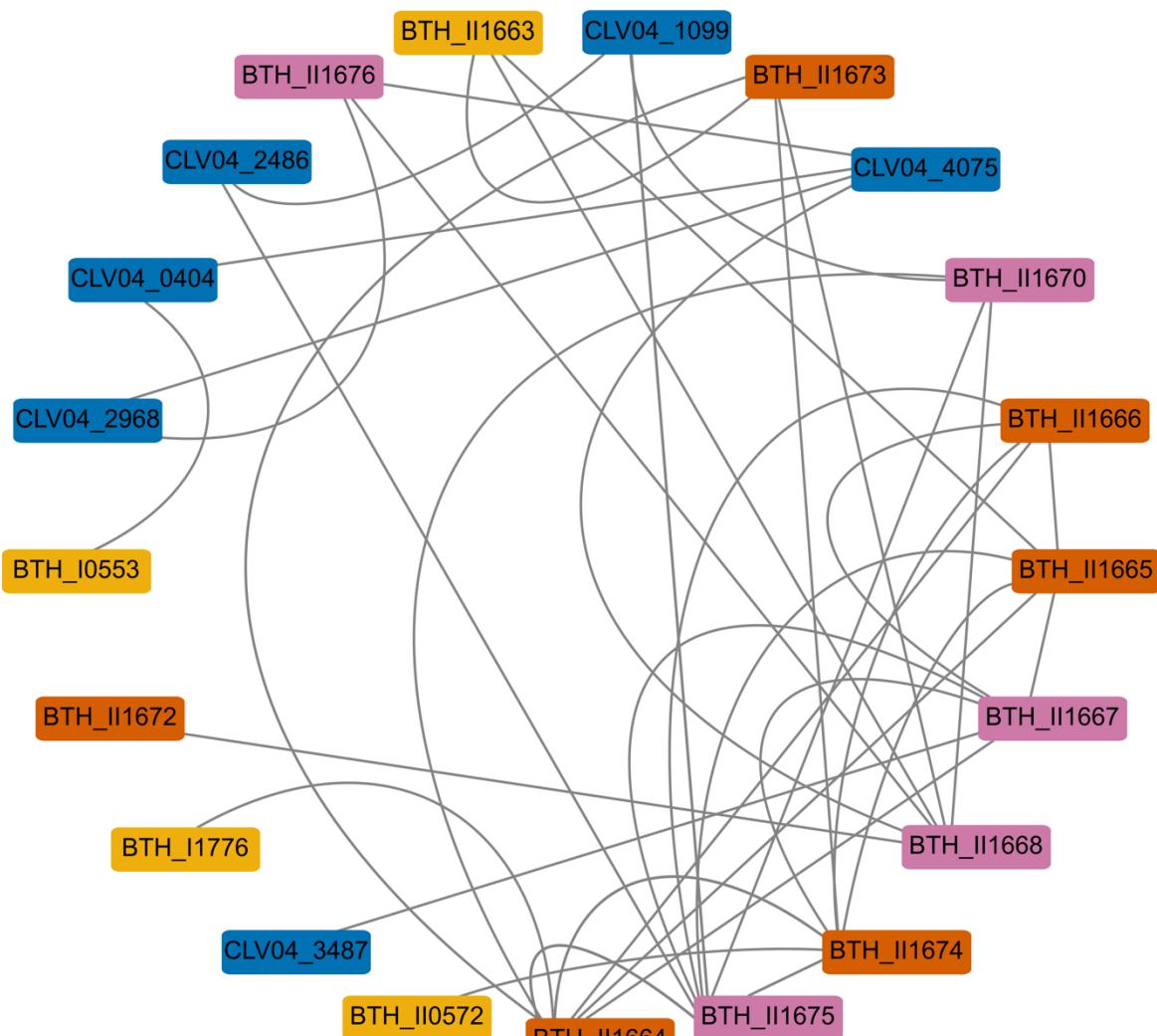
1385


1386 **Figure 5. Primary metabolites accumulated in monocultures have altered**
1387 **dynamics in cocultures.** A heat map of identified, primary metabolites is shown for *C.*
1388 *subtsugae* monoculture (Cs), *P. syringae* monoculture (Ps), *B. thailandensis*
1389 monoculture (Bt), *C. subtsugae*-*P. syringae* coculture (CsPs), *B. thailandensis*-*P.*
1390 *syringae* coculture (BtPs), *B. thailandensis*-*C. subtsugae* coculture (BtCs), and the 3-
1391 member community (BtCsPs), where samples are in columns and exometabolites are in
1392 rows. These exometabolites were filtered based on their time series accumulation in
1393 monocultures (See supplementary methods for details). Data for each sample are the
1394 averages from independent time point replicates (n = 3 to 4). Euclidean distance was
1395 calculated from Z-scored mass spectral profiles. Features with similar dynamics were
1396 clustered by Ward's method.


1397

1398

1399 **Figure 6. *B. thailandensis* upregulates biosynthetic gene clusters (BSGC) in**
1400 **cocultures.** Columns represent community membership for *B. thailandensis* cocultures
1401 and rows represent BSGCs in *B. thailandensis* that were determined to be upregulated
1402 compared to the monoculture control. Genes part of a BSGC were curated from
1403 antiSMASH predictions and literature-based evidence. Within each BSGC at each time
1404 point, the log2 fold-change (LFC) was calculated by comparing gene counts from a
1405 coculture to the monoculture control ($n = 3$ to 4 LFC calculations/community
1406 membership/time point). Log2 fold-changes were then averaged from all biosynthetic
1407 genes within the BSGC at each time point. Error bars indicate standard deviations. We
1408 defined an upregulated BSGC as a BSGC that had at least two consecutive stationary
1409 phase time points with a LFCs > 1 (indicated by the horizontal red dashed line). Note
1410 that plots for each BSGC have separate scales for the Y-axis.



1412 **Figure 7. Coculture upregulation of BSGCs from *B. thailandensis* translates to**
1413 **temporally accumulated secondary metabolites.** Columns represent community
1414 membership and rows represent identified secondary metabolites in *B. thailandensis*.
1415 Known bioactive secondary metabolites produced by *B. thailandensis* were identified in
1416 MZmine 2 through the observation of MS and MS/MS data. The accumulation of each
1417 exometabolite was quantified through time (n = 2 to 4 integrated peak areas per time
1418 point). The bottom and top of the box are the first (Q1) and third (Q3) quartiles,
1419 respectively, and the line inside the box is the median. The whiskers extend from their
1420 respective hinges to the largest value (top), and smallest value (bottom) was no further
1421 away than 1.5× the interquartile range. Points represent outliers that are less than 1.5x
1422 the interquartile range of Q1 or greater than 1.5x the interquartile range of Q3.

1424 **Figure 8. *B. thailandensis* genes involved in thailandamide production are co-**
1425 **expressed with *C. subtsugae* genes.** A network module containing the thailandamide
1426 BSGC is shown (A). The network module nodes are color coded by according to the
1427 following criteria: thailandamide biosynthetic genes that had interspecies edges
1428 (magenta), thailandamide biosynthetic genes that did not have interspecies edges
1429 (orange), other *B. thailandensis* genes that were not part of the BSGC (yellow), and
1430 genes that were from *C. subtsugae* (blue). The chromosomal organization of the
1431 thailandamide BSGC is shown below the network module (B). The same colors are
1432 applied to the BSGC operon. The operon also depicts genes that were not detected
1433 within the interspecies network, shown in gray. Asterisks indicate core biosynthetic
1434 genes in the BSGCs, as predicted from antiSMASH. The table (C) shows upregulated
1435 *B. thailandensis* BSGCs (Fig. 6) and whether interspecies edges were detected (check
1436 is yes, x is no).

A

B

C

	<i>B. thailandensis-C. subtsugae</i> interspecies network	<i>B. thailandensis-P. syringae</i> interspecies network
Bactobolin	✓	✓
Beta-lactone	✓	✗
Capistruin	✓	✓
Malleilactone	✓	✓
Malleobactin	✓	✓
NRPS-1	✗	✓
Pyochelin	✓	✓
Rhamnolipid	✗	✗
Thailandamide	✓	✓

1437

1438

1 Supplemental Materials for

2 Bioactive exometabolites drive maintenance competition in simple bacterial
3 communities.

4 Chodkowski JL and A Shade.

5 Code and data:

6 https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021

7

8 **Supplementary Methods**

9

10 This supplementary information contains expanded Materials and Methods.

11

12 **RNA-seq**

13 *RNA extraction*

14 RNA was extracted using the E.Z.N.A. Bacterial RNA kit (Omega Bio-tek, Inc.).

15 An in-tube DNase I (Ambion, Inc AM2222, 2U) digestion was performed to remove DNA

16 from RNA samples. RNA samples were purified and concentrated using the Qiagen

17 RNAeasy MinElute Clean up Kit (Qiagen, Inc). Ten random samples were chosen to

18 assess RNA integrity (RIN > 7) on an Agilent 2100 Bioanalyzer. Standard operating

19 protocols were performed at the Department of Energy Joint Genome Institute as

20 previously described [1].

21

22 *RNA sample prep, sequencing, QC, read preprocessing, and filtering*

23 Standard operating protocols were performed at the Department of Energy Joint

24 Genome Institute as previously described [1].

25

26 *Pseudoalignment and counting*

27 Reads from each library were pseudoaligned to the transcriptome of each

28 member with kallisto [2]. Raw counts from each library were combined into a gene count

29 matrix for each member. The gene count matrix was used for downstream analyses.

30

31

32 *KEGG pathway analysis*

33 Log-2 fold changes (LFC) were extracted from DESeq analysis by comparing
34 each condition at each time point to the exponential-phase time point (12.5 h) in
35 monoculture. We then mapped longitudinal LFCs onto KEGG pathways for each strain
36 using the pathview package in R. First, K numbers were assigned to genes for both *C.*
37 *subtsugae* and *P. syringae* using BlastKOALA (version 2.2). K numbers were not
38 assigned to *B. thailandensis* because KEGG identifiers were available. KEGG identifiers
39 for *B. thailandensis* and K numbers assigned to *C. subtsugae* and *P. syringae* were
40 used to map longitudinal LFCs onto KEGG pathways. Pathways of interest were
41 uploaded to FigShare.

42

43 **Flow cytometry**

44 Diluted cultures were stained with the Thermo Scientific LIVE/DEAD BacLight
45 bacterial viability kit at final concentrations of 1.5 μ M Syto9 (live stain) and 2.5 μ M
46 propidium iodide (dead stain). Two hundred microliters of stained cultures were
47 transferred to a 96-well microtiter U-bottom microplate (Thermo Scientific). Twenty
48 microliters of sample were analyzed on a BD Accuri C6 flow cytometer (BD
49 Biosciences) at a fluidics rate of 66 μ l/min and a threshold of 500 on an FL2 gate. The
50 instrument contained the following optical filters: FL1-533, 30 nm; FL2-585, 40 nm; and
51 FL3, 670-nm longpass. The counting accuracy of the flow cytometer was checked with
52 green fluorescent protein beads (Thermo Scientific). Data were analyzed using BD
53 Accuri C6 software version 1.0.264.21 (BD Biosciences).

54

55 **Metabolomics**

56 *Normalization and heatmap analysis*

57 Features were normalized by an ITSD reference feature (see Dataset 5
58 at [https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020/t
59 ree/master/Datasets](https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020/tree/master/Datasets)) and cube root transformed. Reference features for polar analyses
60 in positive ($[^{13}\text{C}, ^{15}\text{N}]\text{proline}$) and negative ($[^{13}\text{C}, ^{15}\text{N}]\text{alanine}$) modes were determined by
61 the ITSD with the lowest CV value across all samples. The reference feature for
62 nonpolar data sets was the ITSD ABMBA. Heat maps were generated in MetaboAnalyst
63 using Ward's clustering algorithm with Euclidean distances from Z-scored data. Data for
64 each sample are the averages from independent time point replicates (n = 2 to 4). The
65 heatmaps were exported and edited in InkScape for labelling purposes. The normalized
66 and transformed data sets were exported from MetaboAnalyst to generate principal-
67 coordinate analysis (PCoA) plots in R (see main methods).

68

69 *Selection of Metabolomics Standards Initiative (MSI) level 1 primary metabolites for
70 heatmap analysis*

71 DOE-JGI provided a feature table containing MSI level 1 identified primary
72 metabolites from their in-house curated reference database. The metabolites were only
73 identified from polar positive and polar negative analyses. The m/z and retention times
74 (RT) provided by DOE-JGI were used to identify these metabolites from our feature
75 table after MZmine 2 analysis. Internal standards, $[^{13}\text{C}, ^{15}\text{N}]\text{proline}$ and $[^{13}\text{C}, ^{15}\text{N}]\text{alanine}$
76 were added to the polar positive feature table and polar negative feature table,
77 respectively. Each feature table, containing all 7 conditions, was uploaded to

78 MetaboAnalyst. Features were normalized by ITSD and cube root transformed. Each
79 feature table was exported and combined. Then, the feature table was split by each
80 member, meaning 3 feature tables were created containing 4 conditions each (1
81 monoculture, 2 pairwise cocultures, and 1, 3-member community). These normalized
82 and log transformed feature tables were re-uploaded to MetaboAnalyst for heatmap
83 analysis.

84 Heat maps were generated in MetaboAnalyst using Ward's clustering algorithm with
85 Euclidean distances from Z-scored data. The dendograms from each analysis were
86 manually inspected to select clusters of primary metabolites that met the following
87 criteria for each member: 1) accumulated over the time series in monoculture or 2)
88 accumulated substantially in the exponential phase time point in monoculture compared
89 to the stationary phase time points in monoculture. Primary metabolites that met criteria
90 1 were filtered from the normalized and log transformed MSI level 1 feature table and
91 primary metabolites that met criteria 2 were filtered from the normalized and log
92 transformed MSI level 1 feature table, separately. These filtered feature tables,
93 containing all 7 conditions, were re-uploaded to MetaboAnalyst for heatmap analysis.
94 Heat maps were generated in MetaboAnalyst using Ward's clustering algorithm with
95 Euclidean distances from Z-scored data. The heatmaps were exported and edited in
96 InkScape for labeling purposes.

97

98

99 **Effects of plate occupancy and resource concentration on gene expression**

100 *SynCom experiments*

101 We designed an additional experiment to determine whether the observed
102 dynamics in exometabolites and transcription could be attributed solely to population
103 density given resource availability, rather than to interspecies interactions. Additional
104 SynCom experiments (6 conditions, 3 replicates/condition), were prepared as described
105 (see methods section: Bacterial strains and culture conditions and Synthetic Community
106 Experiments). The conditions varied based on plate occupancy (# of wells occupied by
107 each member) and resources (% glucose) in the transwell plate. The conditions were as
108 follows: *B. thailandensis* (31 wells) in M9-0.067% glucose, *B. thailandensis* (62 wells) in
109 M9-0.13% glucose, *B. thailandensis* (93 wells) in M9-0.2% glucose, *B. thailandensis*-*C.*
110 *subtsugae* (31 wells/member) in M9-0.13% glucose, *B. thailandensis*-*P. syringae* (31
111 wells/member) in M9-0.13% glucose, and *B. thailandensis*-*C. subtsugae*-*P. syringae*
112 (31 wells/member) in M9-0.2% glucose. Plates were destructed after 45 h incubation
113 and the following procedures were performed: 1) Wells containing spent culture from
114 each member were separately pooled into 15 mL conical tubes, flash frozen in liquid
115 nitrogen, and stored at -80 until further processing. 2) Spent medium (~31 ml) from the
116 shared reservoir was transferred to 50 mL conical tubes, flash-frozen in liquid nitrogen
117 and stored at -80 °C.

118

119 *RNA extraction, QC, and cDNA synthesis*

120 RNA was extracted using the E.Z.N.A. Bacterial RNA kit (Omega Bio-tek, Inc.).
121 An in-tube DNase I (Ambion, Inc. AM2222, 2U) digestion was performed to remove
122 DNA from RNA samples. RNA samples were purified and concentrated using the
123 Qiagen RNAeasy MinElute Clean up Kit (Qiagen, Inc.). RNA samples were quantified

124 on a Qubit using the RNA High Sensitivity Assay Kit (Thermo Fisher Scientific, Inc.).
125 RNA samples were then sent to the RTSF Genomics Core at Michigan State University
126 for high sensitivity RNA ScreenTape analysis on an Agilent 4200 TapeStation.
127 TapeStation analysis confirmed successful digestion of DNA. Total RNA (150
128 ng/sample) was synthesized to cDNA using the Invitrogen SuperScript III First-Strand
129 Synthesis kit (Thermo Fisher Scientific, Inc.). cDNA samples were quantified by Qubit in
130 preparation of target genes for RT-qPCR.

131 Three genes from the *B. thailandensis* thailandamide operon were targeted for
132 relative quantification normalized to the *rpoD* reference gene. Primers used for RT-
133 qPCR are shown in Table S12. We first confirmed amplification of intended targets.
134 Each of these genes were amplified from *B. thailandensis* gDNA (100 ng) using the
135 Phusion High-Fidelity DNA Polymerase (New England Biolabs, Inc.) with the following
136 conditions: 98 °C (30 s), 30 cycles of 98 °C (10 s), 59 °C (10 s), and 72 °C (10 s), and a
137 final extension at 72 °C (5 min). PCR products were run on gel (100 V for 50 min) and
138 gel extracted and purified using the Wizard SV Gel and PCR Clean-Up System
139 (Promega Corporation). PCR amplified and purified products of *rpoD*, *thaF*, *thaK*, and
140 *thaQ* were sent to the RTSF Genomics Core at Michigan State University for Sanger
141 sequencing.

142 RT-qPCR assays were performed using the SsoAdvanced Universal SYBR
143 Green Supermix (Bio-Rad Laboratories, Inc.). SYBR reactions were placed into Hard-
144 Shell PCR Plates 96-well, thin wall (Bio-Rad Laboratories, Inc. HSP9601) and analyzed
145 using a CFX Connect Real-Time System (Bio-Rad Laboratories, Inc.). First, the
146 dynamic range of each primer set was determined by making a 10-fold dilution series

147 from 10 ng-0.1 pg of cDNA. The following mixture was used for each RT-qPCR assay:
148 10 μ L SsoAdvanced universal SYBR Green supermix (2x), 0.5 μ L each of forward and
149 reverse primers, 1 μ L water, and 8 μ L cDNA sample (6 serially diluted samples
150 concentrated between 1.25E-5 and 1.25 ng/uL). The RT-qPCR reaction was run with
151 the following conditions: 95 °C (3 min), 40 cycles of 95 °C (10 s), 59 °C (10 s), and 72
152 °C (10 s). Following the last extension step, the melt curve was run with the following
153 conditions: 95 °C (10 s), then 65 °C to 95 °C in 0.5 °C increments. Each primer set had
154 a 5-fold dynamic range (10 ng-10 pg) with efficiencies between 90-110% (Table S13)
155 The Δ slope between the reference gene and each target gene were all \leq 0.1, confirming
156 that relative gene expression math models were a viable option for comparing gene
157 expression across conditions.

158 cDNA concentrations across all conditions were diluted to a stock concentration
159 of 0.0125 ng/uL. RT-qPCR reactions and conditions were prepared and run as
160 previously described. Controls for the assay included a gDNA positive control, a no
161 template negative control, and a no amplification (no-RT) negative control. The Livak
162 method ($2^{-\Delta\Delta C_T}$) was used to calculate relative gene expression in each test condition
163 compared to the reference condition (*B. thailandensis*, 31 wells in M9-0.067% glucose)
164 where target genes were *thaF*, *thaK*, and *thaQ* and the reference gene was *rpoD*.
165

166 **References**

- 167 1. Chodkowski, J. L., & Shade, A. (2020). Exometabolite Dynamics over Stationary Phase Reveal
168 Strain-Specific Responses. *MSystems*, 5(6), e00493-20.
169 <https://doi.org/10.1128/msystems.00493-20>
- 170 2. Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq
171 quantification. *Nature Biotechnology*, 34, 525–527. <https://doi.org/10.1038/nbt.3519>

174 3. Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM. (2016).
175 Characterising rhamnolipid production in *Burkholderia thailandensis* E264, a non-pathogenic
176 producer. *Appl Microbiol Biotechnol.*, 100(18), 7945-56. <https://doi.org/10.1007/s00253-016-7564-y>
177
178

179

180 **Supplementary Files/Datasets**

181 **Supplementary File 1:** Pairwise PROTEST analyses comparing the reproducibility of
182 exometabolome profiles across biological replicate time series. Coordinates of the first
183 two PCoA axes were used to perform PROTEST analysis in vegan. File type: .xlsx

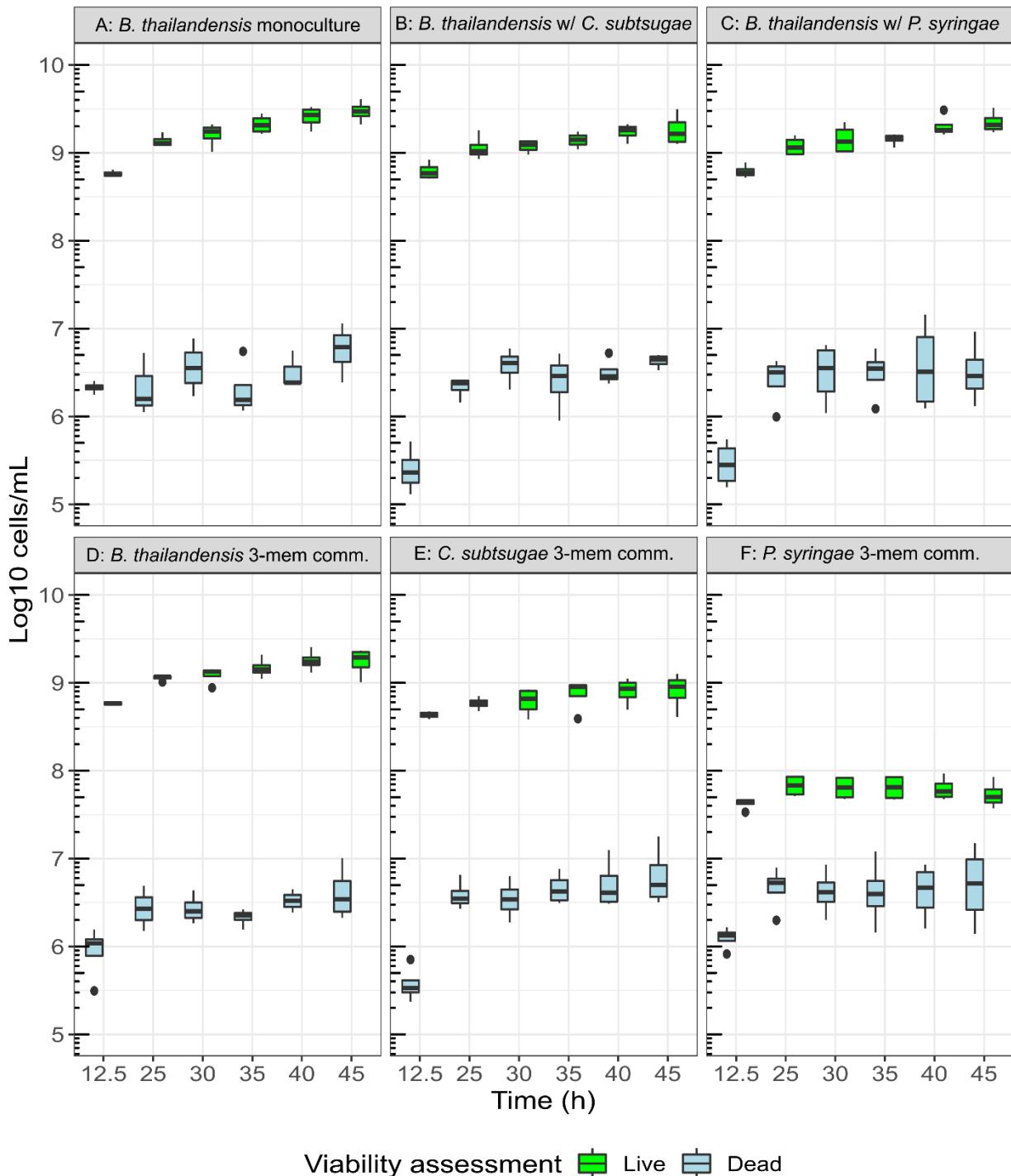
184 **Supplementary File 2:** Identification of *B. thailandensis* bioactive exometabolites of
185 interest through observation of mass spectrometry data. File type: .xlsx

186 **Supplementary File 3:** Genes part of the interspecies network, their corresponding
187 modules, and GO enrichment analysis of modules. File type: .xlsx

188 **Supplementary File 4:** GO enrichment analysis on genes with interspecies edges from
189 network analysis. File type: .xlsx

190 **Supplementary File 5:** Gene annotations for *C. subtsugae* and *P. syringae* that
191 contained interspecies edges with *B. thailandensis* thailandamide and malleilactone
192 biosynthetic genes, respectively. File type: .xlsx

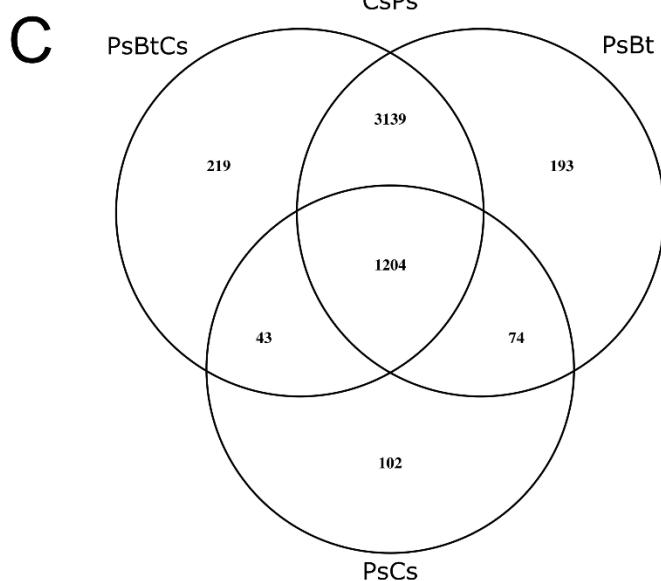
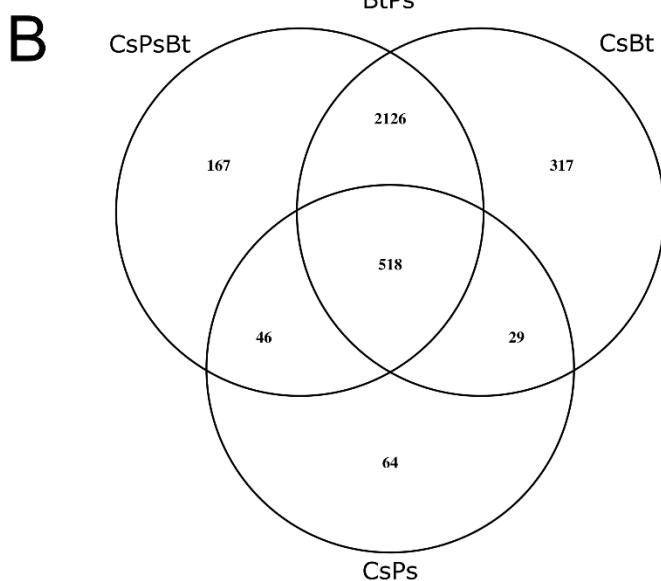
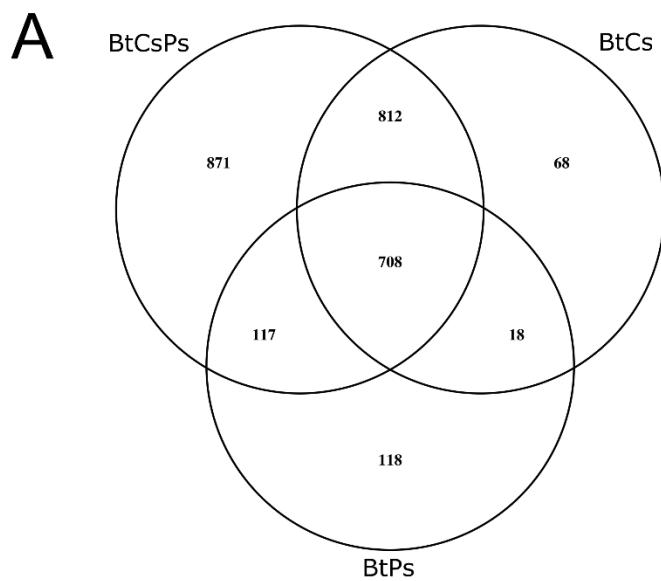
193 **Supplementary File 6:** Protein alignment of the DNA starvation/stationary phase
194 protein from *C. subtsugae* and the closest homolog in *B. thailandensis*. File type: .txt


195 **Supplementary File 7:** Protein alignment of the TonB-dependent siderophore receptor
196 family protein from *P. syringae* and the closest homolog in *B. thailandensis*. File type:
197 .txt

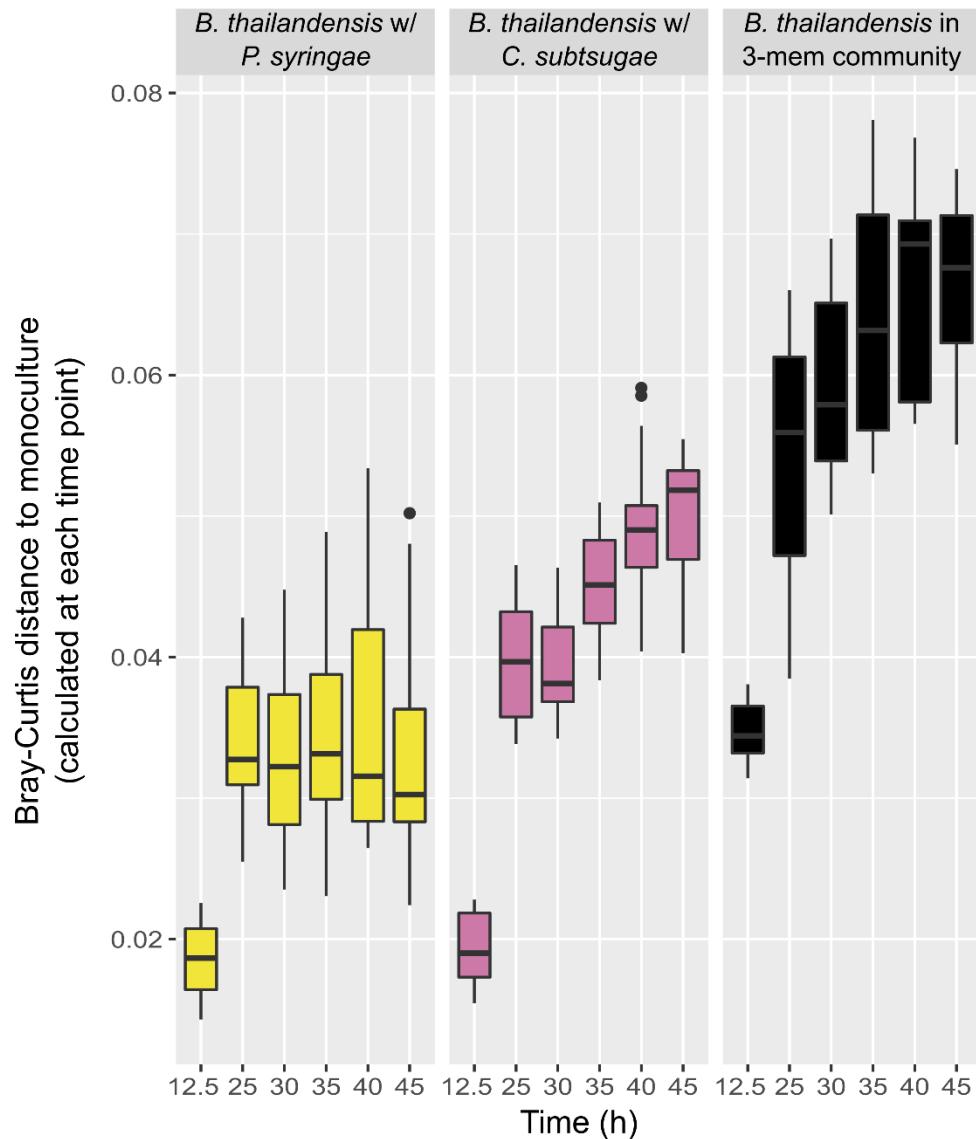
198

199

200

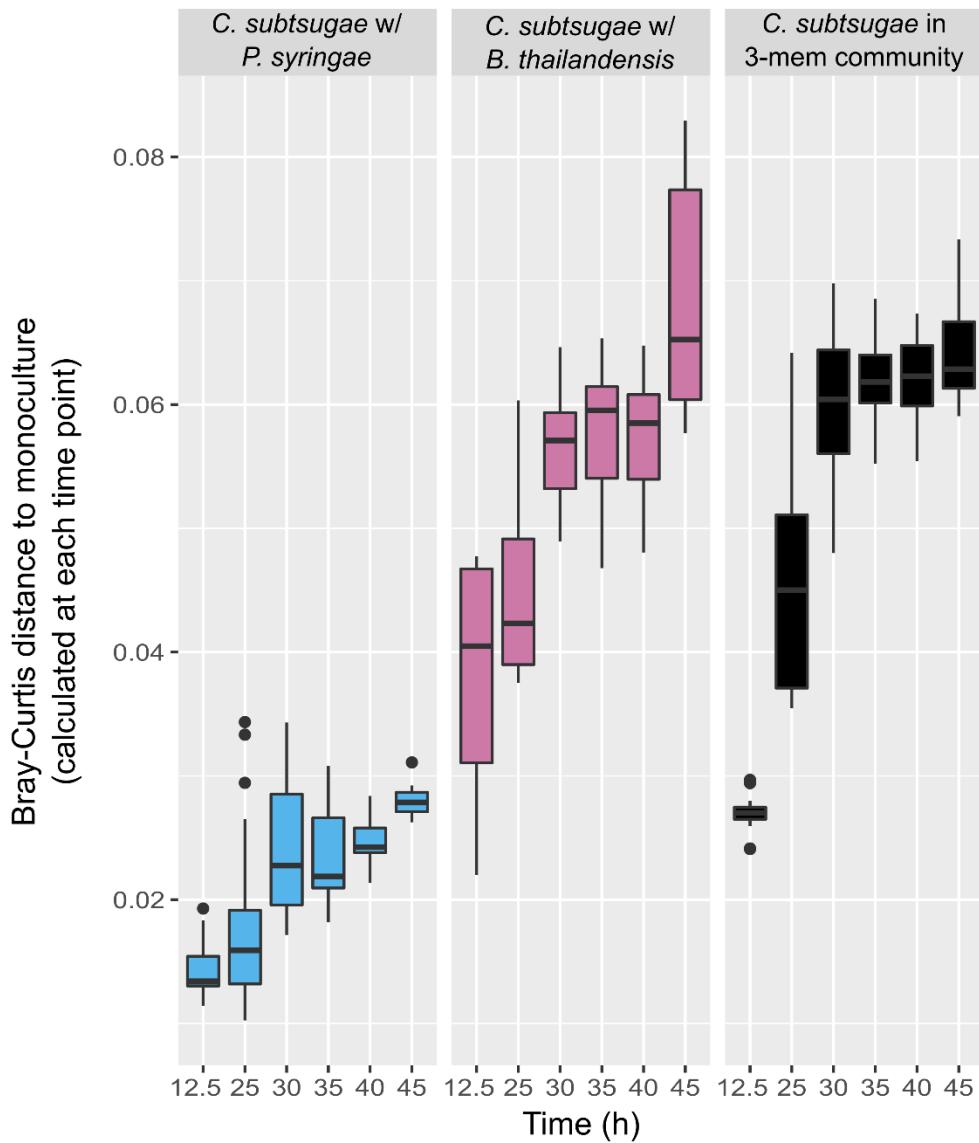
202


203 **Figure S1. Cell viability of SynCom members.** Live (green) and dead (blue) flow cytometry cell counts
 204 for *B. thailandensis* in monoculture and pairwise cocultures (Top row, panels A-C) and for each member
 205 in the 3-member community (Bottom row, panel D; *B. thailandensis*, panel E; *C. subtsugae*, panel F; *P.*
 206 *syringae*). Cells were stained with Syto9- and propidium iodide (n = 4 to 5 wells/time point/community
 207 membership/transwell plate and n=4 independent replicates/time point/community membership). The
 208 bottom and top of the box are the first (Q1) and third (Q3) quartiles, respectively, and the line inside the
 209 box is the median. The whiskers extend from their respective hinges to the largest value (top), and

210 smallest value (bottom) was no further away than 1.5x the interquartile range. Points represent outliers
211 that are less than 1.5x the interquartile range of Q1 or greater than 1.5x the interquartile range of Q3.
212

214 **Figure S2. Differential gene expression patterns across community memberships.** Venn diagram
215 plots of differentially expressed genes in A) *B. thailandensis* B) *C. subtsugae* and C) *P. syringae*.
216 Differential gene expression was determined using ImpulseDE2 comparing longitudinal gene expression
217 to a monoculture control (FDR-corrected cutoff of 0.01). Bt- *B. thailandensis*, Cs- *C. subtsugae*, and Ps –
218 *P. syringae*.

219


220

221 **Figure S3. *B. thailandensis* RNA-seq transcript dissimilarity through time.** Bray-Curtis dissimilarities
222 were calculated for each coculture condition compared to the monoculture condition at each time point
223 ($n=3-4$ replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3)
224 quartiles, respectively, and the line inside the box is the median. The whiskers extend from their
225 respective hinges to the largest value (top), and smallest value (bottom) was no further away than $1.5 \times$
226 the interquartile range. Points represent outliers that are less than $1.5 \times$ the interquartile range of Q1 or
227 greater than $1.5 \times$ the interquartile range of Q3.

228

229

230

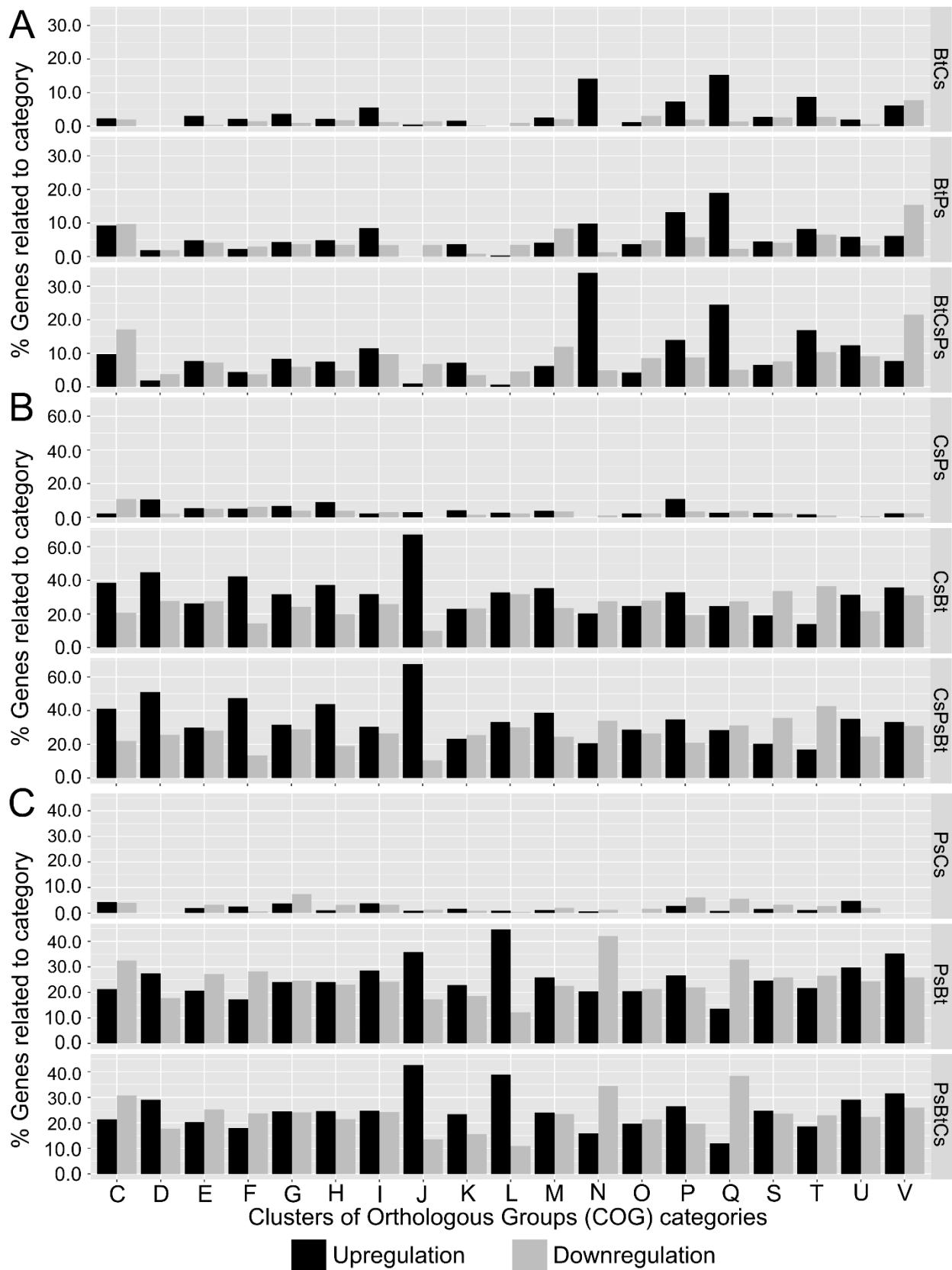
231

232 **Figure S4. *C. subtsugae* RNA-seq transcript dissimilarity through time.** Bray-Curtis dissimilarities
 233 were calculated for each coculture condition compared to the monoculture condition at each time point
 234 ($n=3-4$ replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3)
 235 quartiles, respectively, and the line inside the box is the median. The whiskers extend from their
 236 respective hinges to the largest value (top), and smallest value (bottom) was no further away than $1.5 \times$
 237 the interquartile range. Points represent outliers that are less than $1.5 \times$ the interquartile range of Q1 or
 238 greater than $1.5 \times$ the interquartile range of Q3.

239

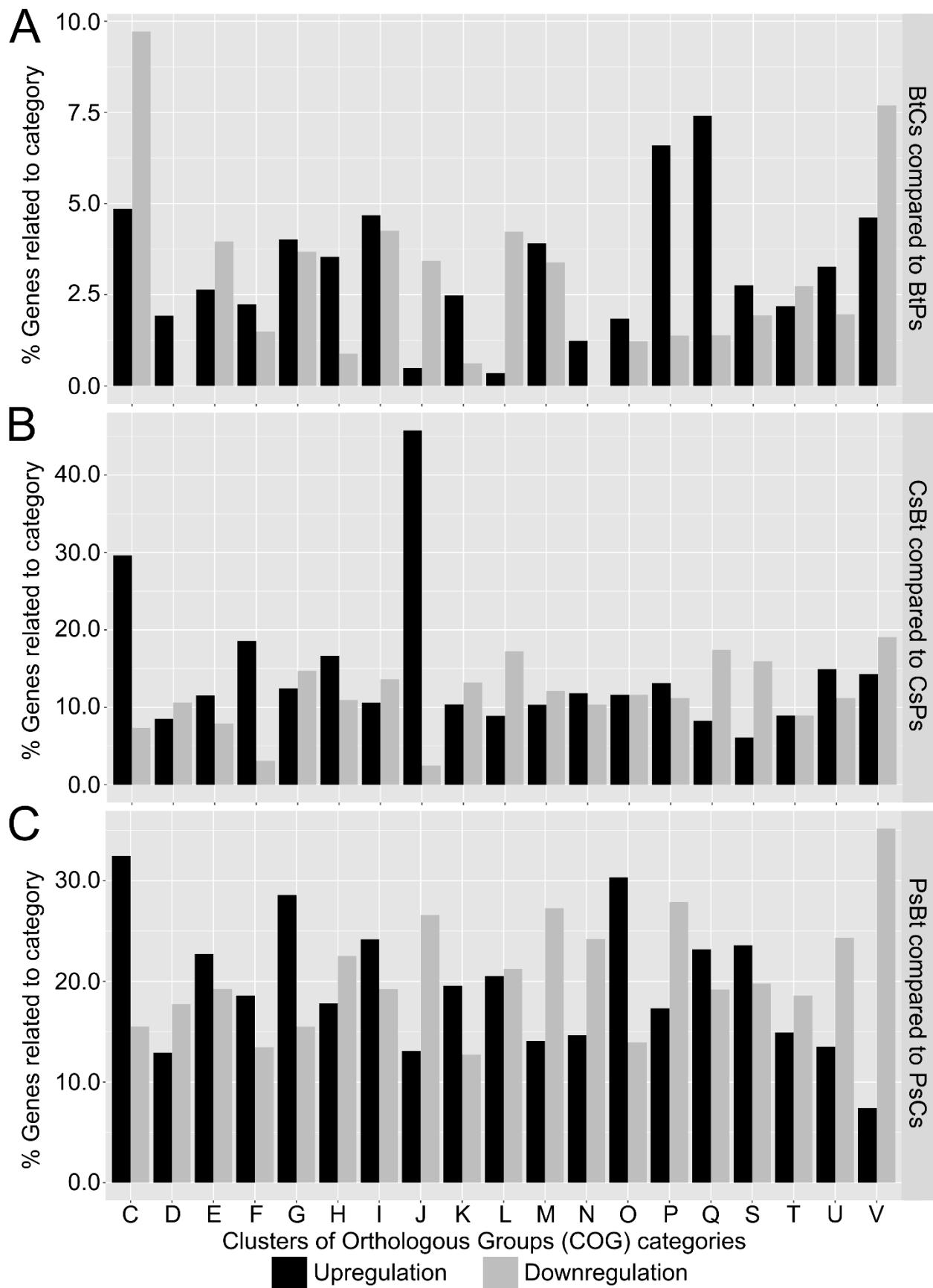
240

241


242

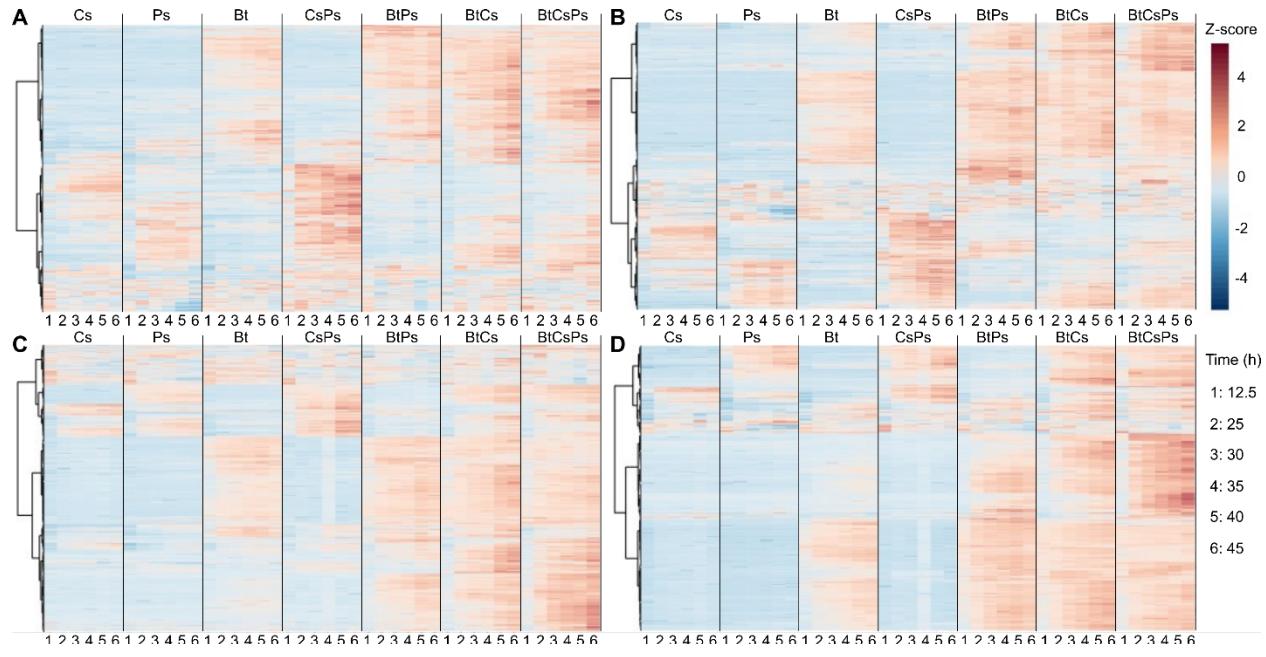
243 **Figure S5. *P. syringae* RNA-seq transcript dissimilarity through time.** Bray-Curtis dissimilarities were
 244 calculated for each coculture condition compared to the monoculture condition at each time point (n= 3-4
 245 replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3) quartiles,
 246 respectively, and the line inside the box is the median. The whiskers extend from their respective hinges
 247 to the largest value (top), and smallest value (bottom) was no further away than 1.5 \times the interquartile
 248 range. Points represent outliers that are less than 1.5 \times the interquartile range of Q1 or greater than 1.5 \times
 249 the interquartile range of Q3.
 250

251


252

253

255 **Figure S6. Patterns of transcriptional regulation reveal biological responses of community**
256 **members to different community memberships.** Differentially expressed genes categorized by COG
257 categories in A) *B. thailandensis* B) *C. subtsugae* and C) *P. syringae*. These DEGs were determined by
258 comparing each coculture conditions to the monoculture control. COG categories include: [C] Energy
259 production and conversion, [D] Cell cycle control, cell division, chromosome partitioning, [E] Amino acid
260 transport and metabolism, [F] Nucleotide transport and metabolism, [G] Carbohydrate transport and
261 metabolism, [H] Coenzyme transport and metabolism, [I] Lipid transport and metabolism, [J] Translation,
262 ribosomal structure and biogenesis, [K] Transcription, [L] Replication, recombination and repair, [M] Cell
263 wall/membrane/envelope biogenesis, [N] Cell motility, [O] Post-translational modification, protein turnover,
264 and chaperones, [P] Inorganic ion transport and metabolism, [Q] Secondary metabolites biosynthesis,
265 transport, and catabolism, [S] Function unknown, [T] Signal transduction mechanisms, [U] Intracellular
266 trafficking, secretion, and vesicular transport, and [V] Defense mechanisms. Community memberships are
267 as follows: *B. thailandensis*-*P. syringae* coculture (BtPs/PsBt), *B. thailandensis*-*C. subtsugae* coculture
268 (BtCs/CsBt), *C. subtsugae*-*P. syringae* coculture (CsPs/PsCs), and the 3-member community
269 (BtCsPs/CsPsBt/PsBtCs).

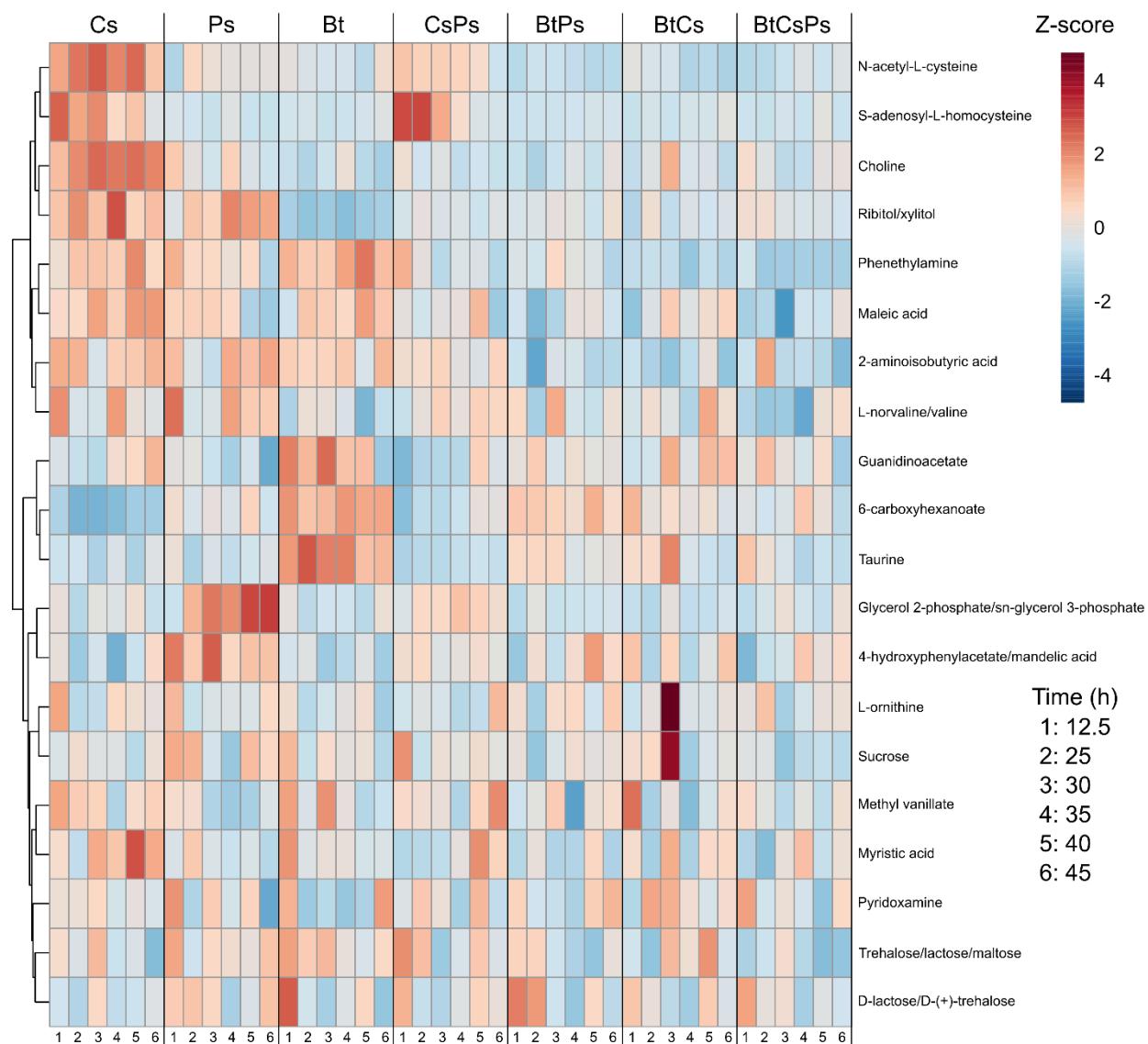

270
271

273 **Figure S7. Patterns of transcriptional regulation reveal pairwise coculture-specific differences.**
274 Differentially expressed genes categorized by COG categories in A) *B. thailandensis* B) *C. subtsugae* and
275 C) *P. syringae*. These DEGs were determined by comparing gene expression between pairwise
276 cocultures for each member. Analyses were as follows: BtCs-BtPs; *B. thailandensis* coculture with *C.*
277 *subtsugae* (case) was compared to *B. thailandensis* coculture with *P. syringae* (control), CsBt-CsPs; *C.*
278 *subtsugae* coculture with *B. thailandensis* (case) was compared to *C. subtsugae* coculture with *P.*
279 *syringae* (control), and PsBt-PsCs; *P. syringae* coculture with *B. thailandensis* (case) was compared to *P.*
280 *syringae* coculture with *C. subtsugae* (control). COG categories are labeled in the Figure S6 legend.

281
282

283
284

285
286
287
288
289
290
291
292
293
294
295
296
297


Figure S8. Exometabolites have membership-specific production and temporal accumulation. A heat map of coculture accumulated exometabolites is shown for polar positive (A), polar negative (B), nonpolar positive (C), and nonpolar negative (D) modes, for *C. subtsugae* monoculture (Cs), *P. syringae* monoculture (Ps), *B. thailandensis* monoculture (Bt), *C. subtsugae*-*P. syringae* coculture (CsPs), *B. thailandensis*-*P. syringae* coculture (BtPs), *B. thailandensis*-*C. subtsugae* coculture (BtCs), and the 3-member community (BtCsPs), where samples are in columns and exometabolites are in rows. Data for each sample are the averages from independent time point replicates ($n = 2$ to 4). Euclidean distance was calculated from Z-scored mass spectral profiles. Features with similar dynamics were clustered by Ward's method.

298

299

300

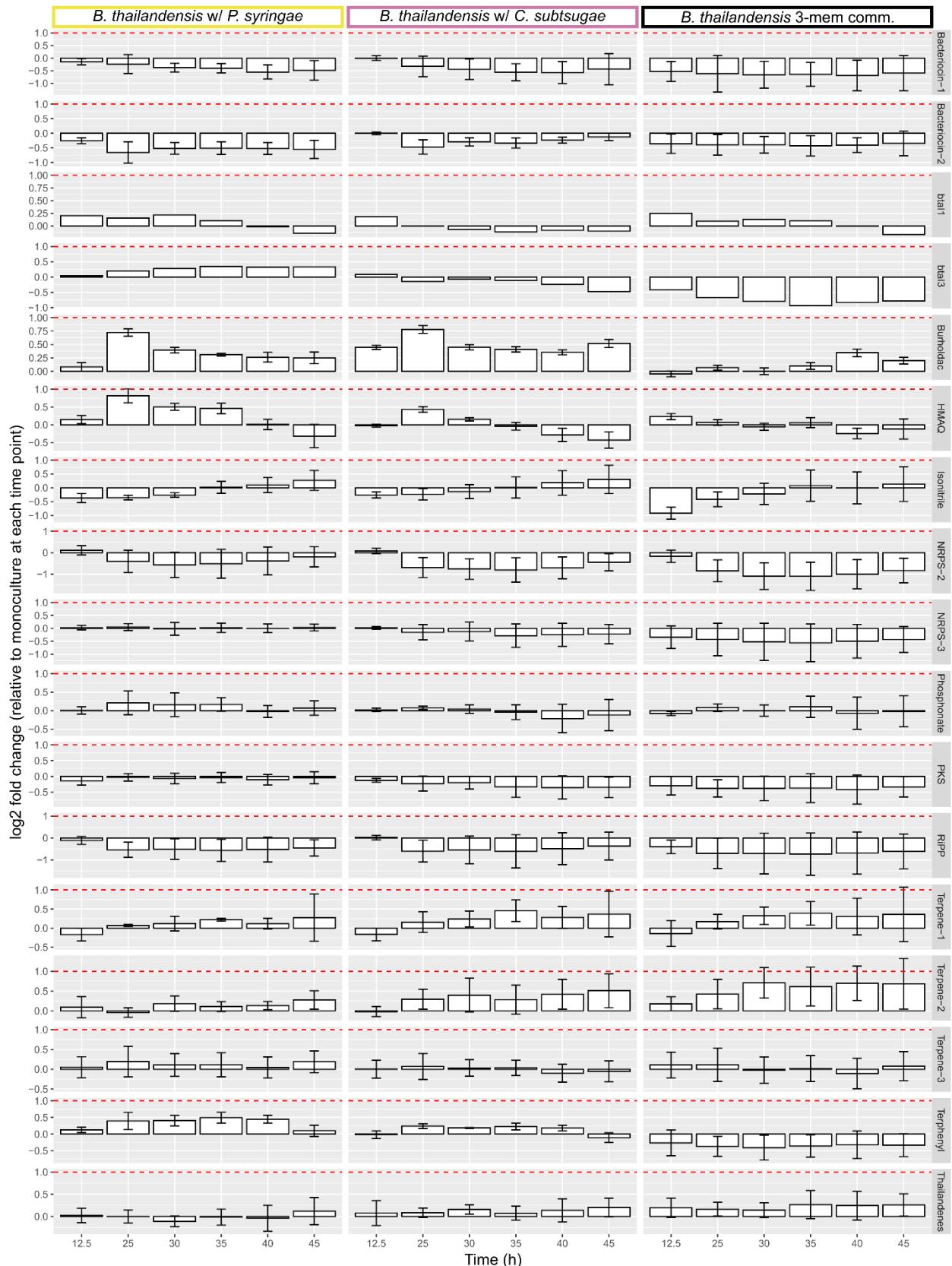
301

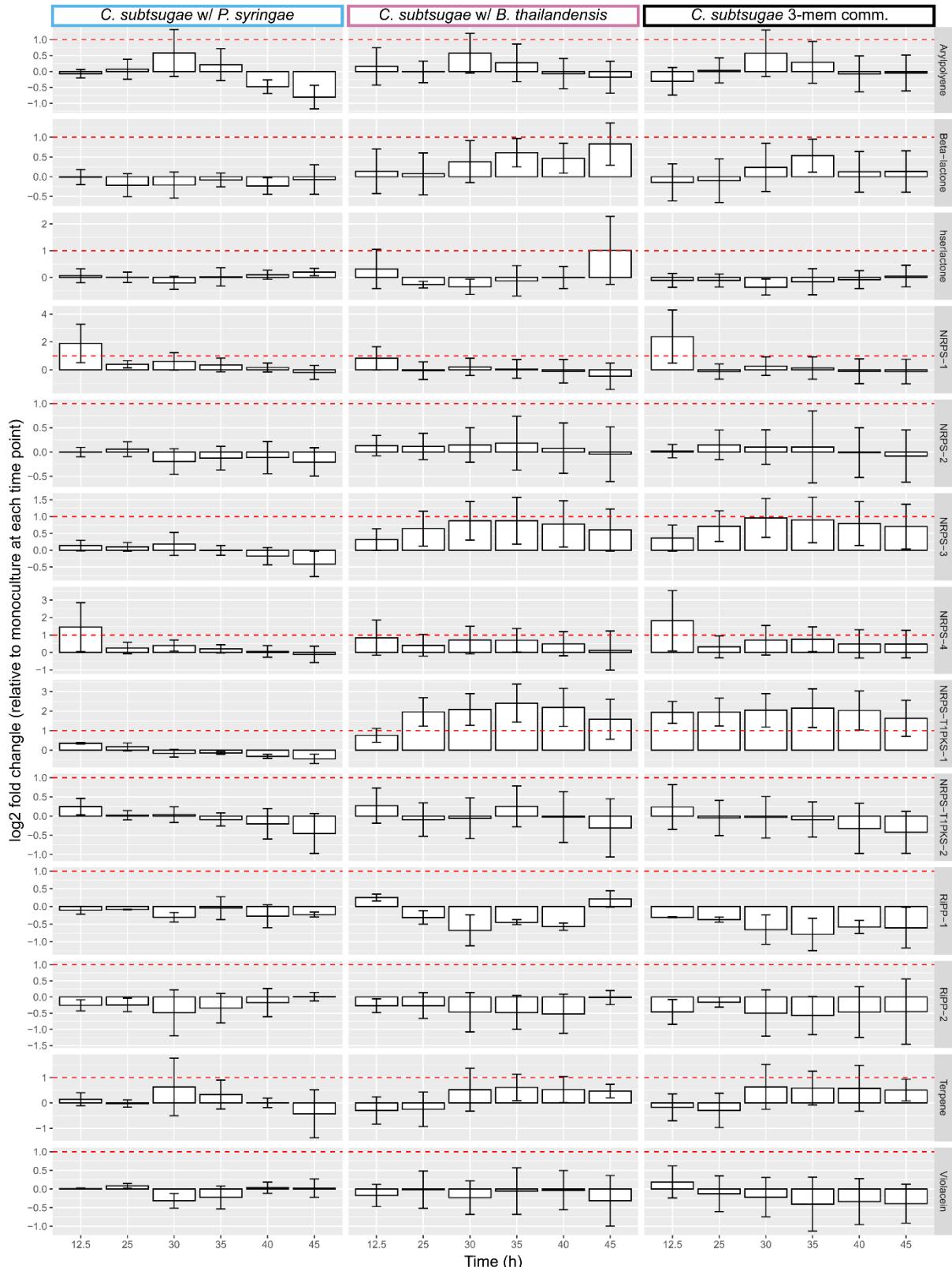
302

Figure S9. Identified exometabolites with exponential phase accumulation. A heat map of exometabolite dynamics is shown for identified metabolites with exponential phase accumulation (time point 12.5 h) determined from *C. subtsugae* monoculture (Cs), *P. syringae* monoculture (Ps), and *B. thailandensis* monoculture (Bt). Temporal dynamics for these exometabolites were then plotted for *C. subtsugae*-*P. syringae* coculture (CsPs), *B. thailandensis*-*P. syringae* coculture (BtPs), *B. thailandensis*-*C. subtsugae* coculture (BtCs), and the 3-member community (BtCsPs), where samples are in columns and exometabolites are in rows. Data for each sample are the averages from independent time point replicates ($n = 2$ to 4). Euclidean distance was calculated from Z-scored mass spectral profiles. Features with similar dynamics were clustered by Ward's method.

311

312



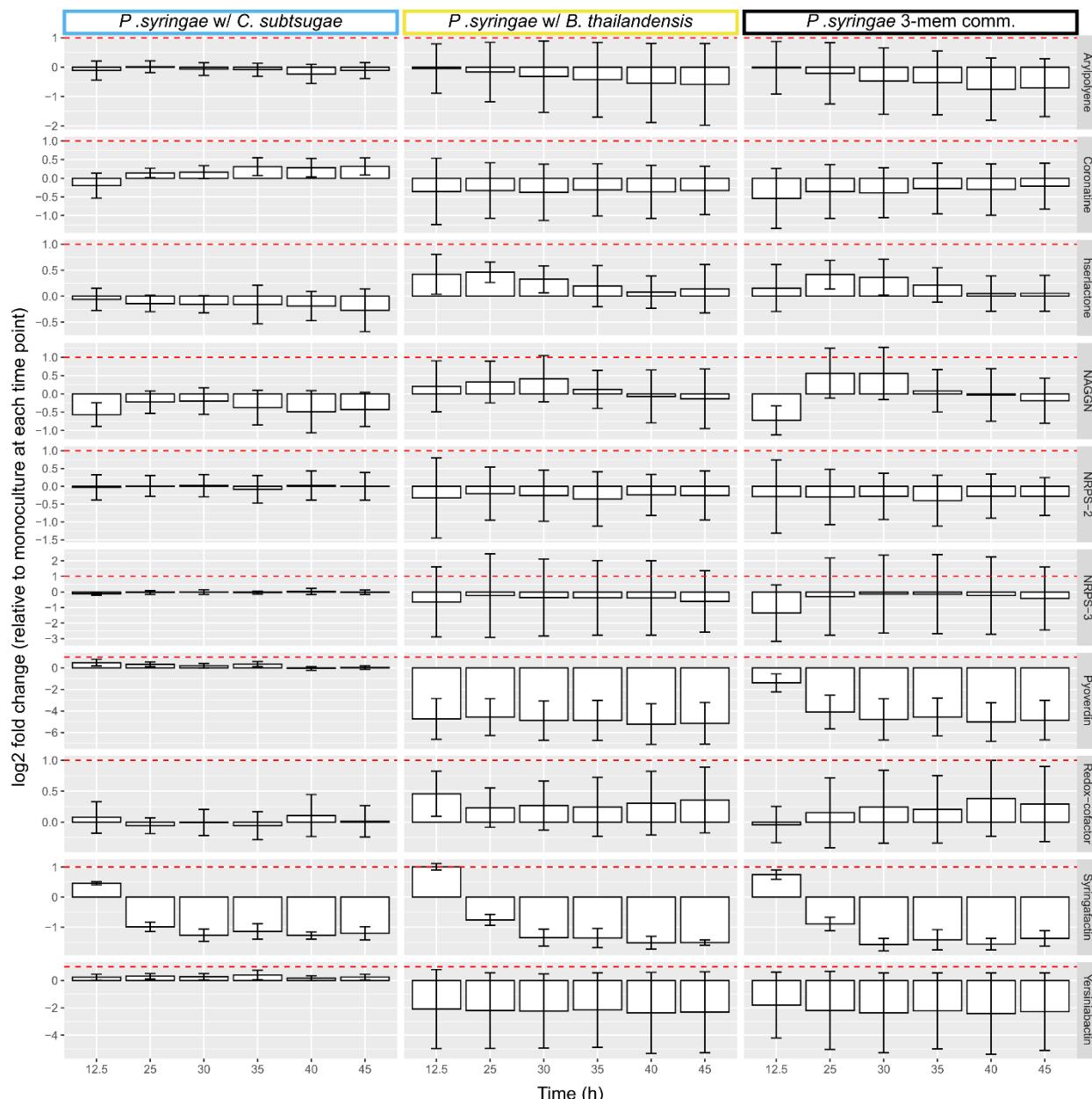

Figure S10. BSGC downregulated or unaltered in *B. thailandensis*. Biosynthetic genes involved in

315 each BSGC were determined with antiSMASH and evidence from literature. At each time point, the
316 average log₂ fold-change (LFC) was determined across all biosynthetic genes for each BSGC. The
317 horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales for
318 the Y-axis.

319

320

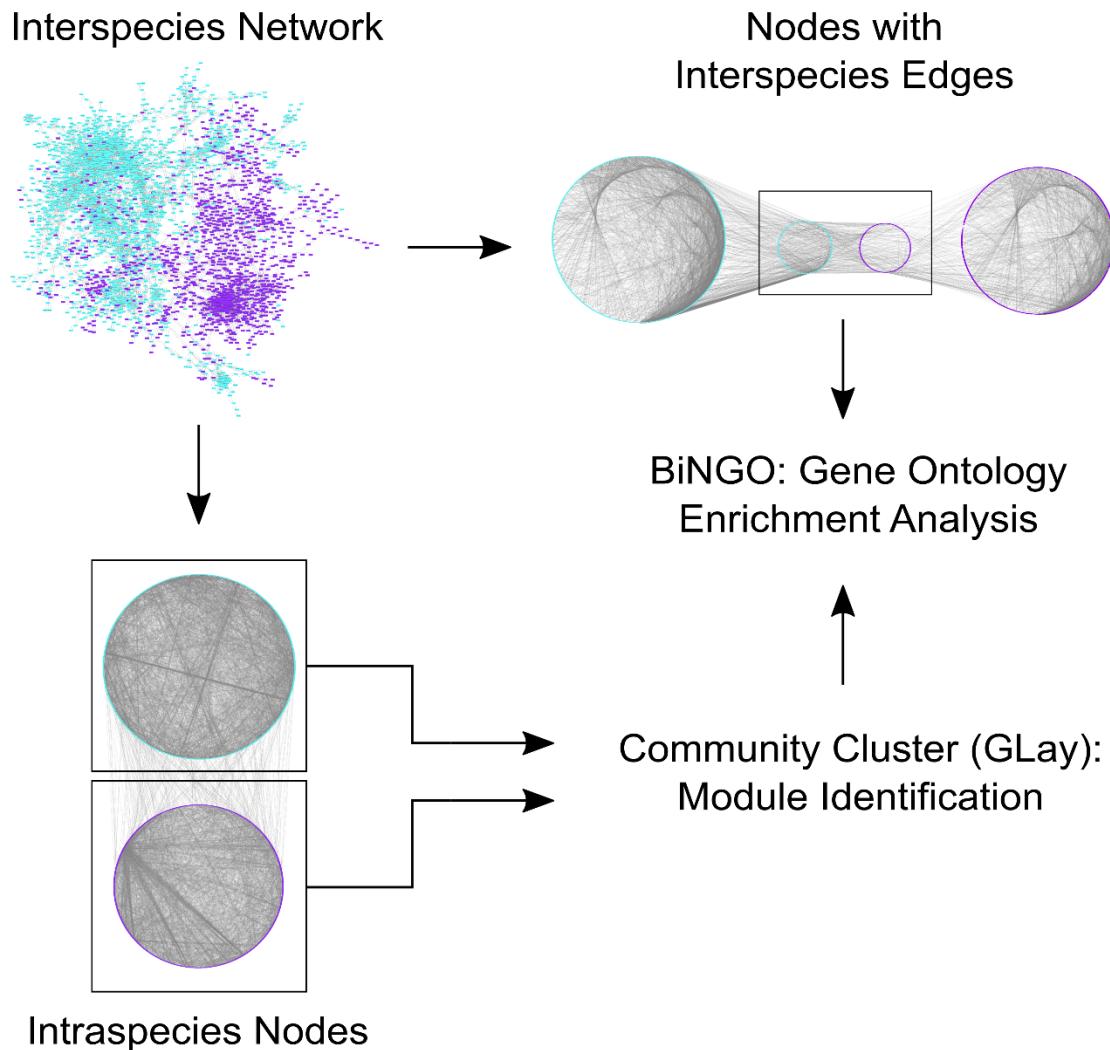
321


322

323 **Figure S11. Patterns of transcriptional regulation for BSGC in *C. subtsugae*.** Biosynthetic genes
 324 involved in each BSGC were determined with antiSMASH and evidence from literature. At each time
 325 point, the average log2 fold-change (LFC) was determined across all biosynthetic genes for each BSGC.

326 The horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales
327 for the Y-axis.

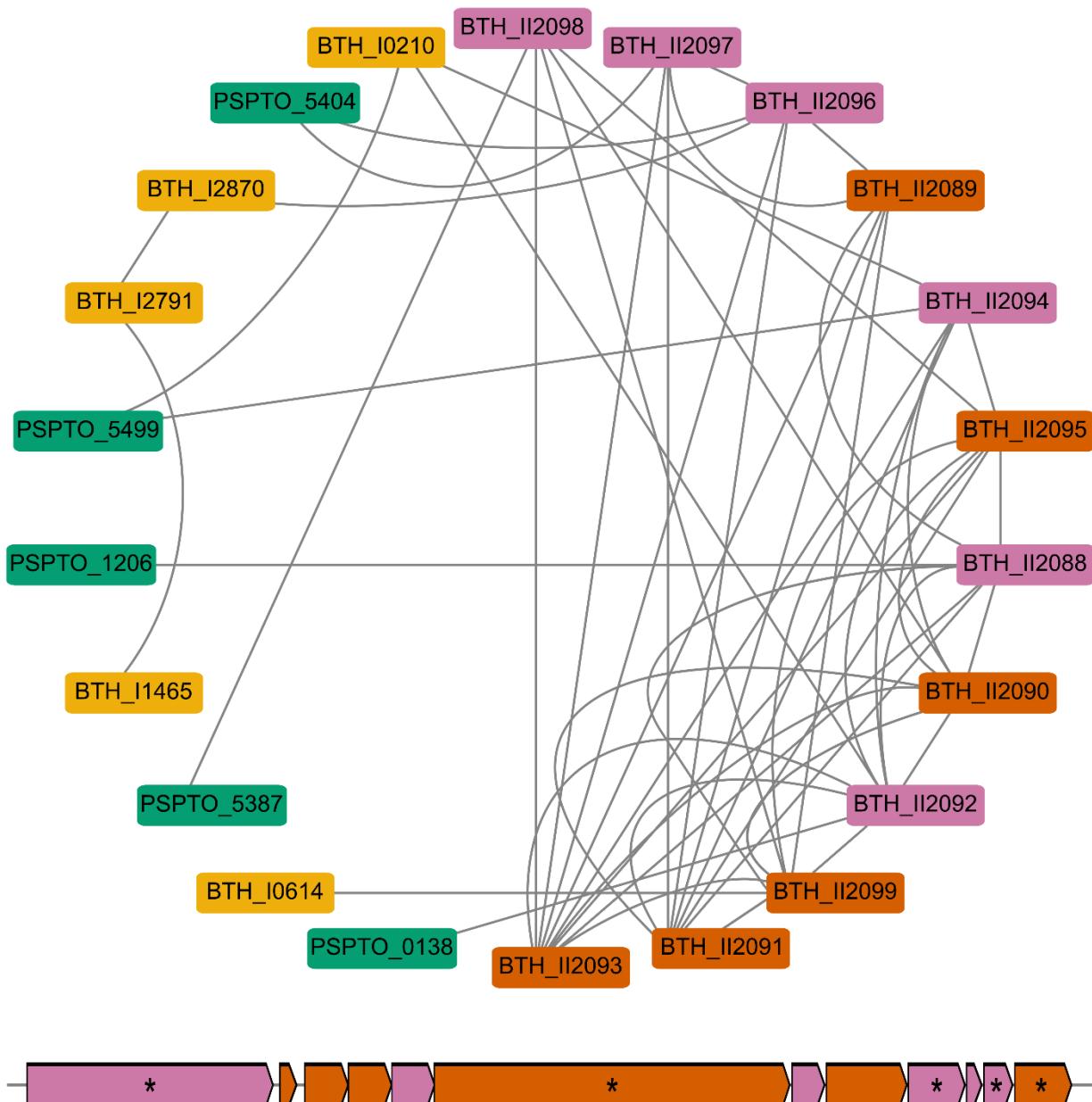
328


329

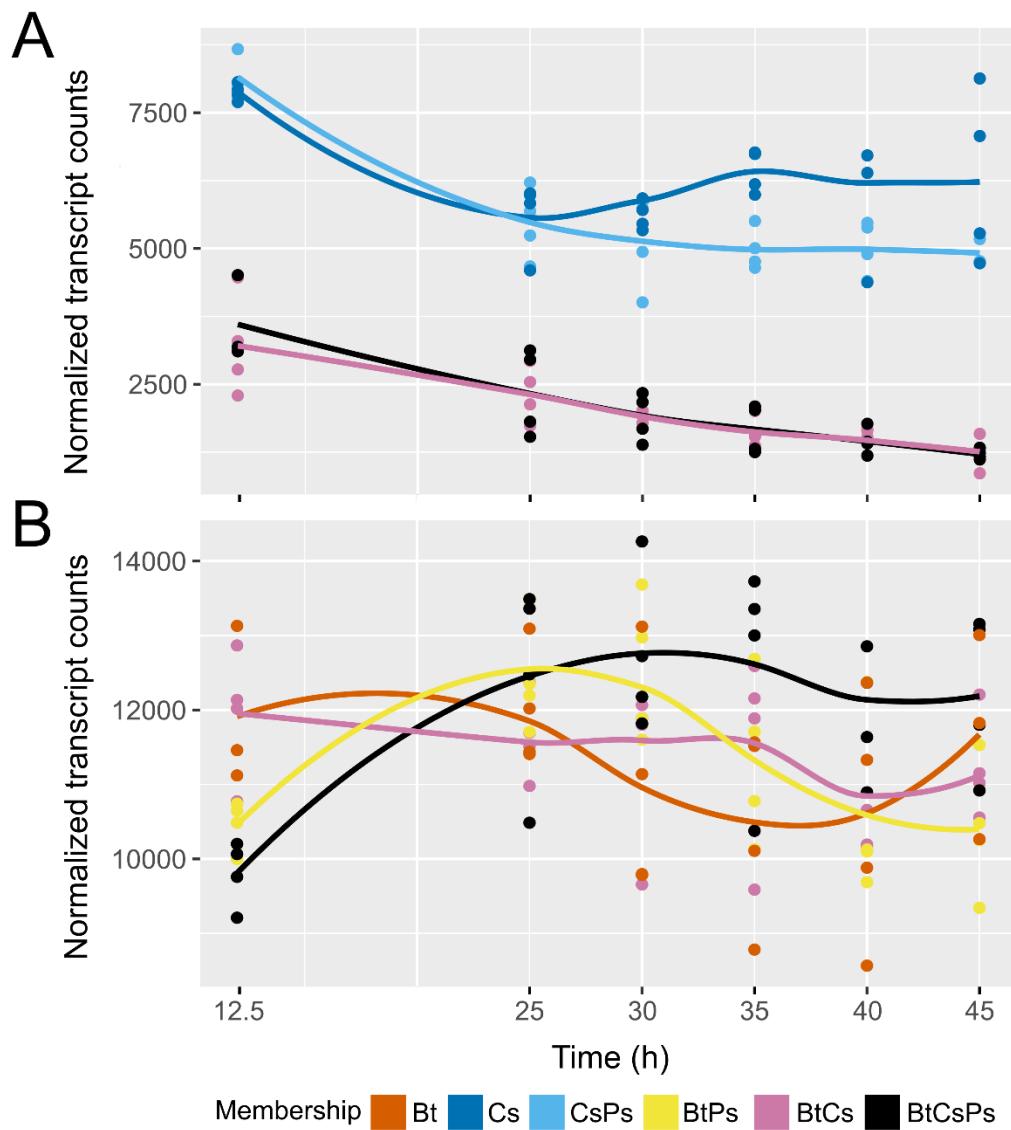
332 **Figure S12. Patterns of transcriptional regulation for BSGC in *P. syringae*.** Biosynthetic genes
 333 involved in each BSGC were determined with antiSMASH and evidence from literature. At each time
 334 point, the average log2 fold-change (LFC) was determined across all biosynthetic genes for each BSGC.
 335 The horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales
 336 for the Y-axis.
 337

338

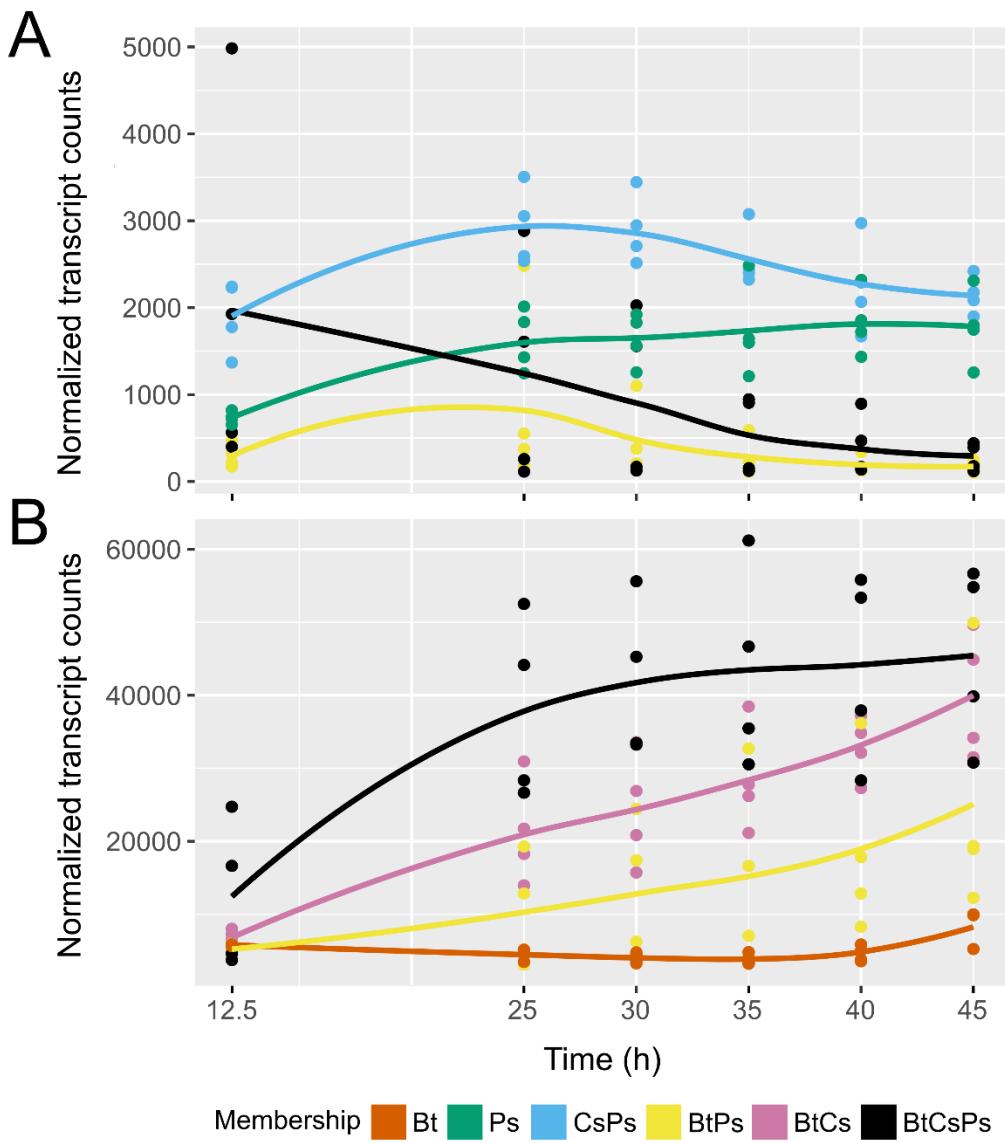
339


340

341


Figure S13. Flow diagram for interspecies co-expression network analysis. An interspecies coexpression network was created based on transcript counts from *B. thailandensis*-*C. subtsugae* and *B. thailandensis*-*P. syringae* cocultures. All genes that passed initial quality filtering were included in the analysis to generate networks. Unweighted gene coexpression networks were generated with a Z-score cutoff of 4.5. Intraspecies genes were used to identify network modules. Gene ontology enrichment analysis was performed on nodes with interspecies edges.

346


347

350 **Figure S14. *B. thailandensis* genes involved in malleilactone production are detected as**
 351 **interspecies edges in the *B. thailandensis*-*P. syringae* coexpression network and biosynthetic**
 352 **genes organize into network modules.** A network module containing the malleilactone BSGC is shown.
 353 The network module nodes are color coded by *B. thailandensis* gene type (BSGC or not) and type of
 354 connections (interspecies or not): malleilactone biosynthetic genes that had interspecies edges
 355 (magenta), malleilactone biosynthetic genes that did not have interspecies edges (orange), or other
 356 genes that were not part of the BSGC (yellow); as well as genes that were from *P. syringae* (green). The
 357 chromosomal organization of the malleilactone BSGC is shown below the network module. The same
 358 colors are applied to the BSGC operons. Asterisks indicate core biosynthetic genes in the BSGCs, as
 359 predicted from antiSMASH.

363 **Figure S15. The DNA starvation/stationary phase protection gene, *dpsA*, is downregulated in *C.*
364 *subtsugae* when cocultured with *B. thailandensis* while unaltered in *B. thailandensis*.** Transcript
365 abundance trajectories of *dpsA* are plotted for *C. subtsugae* (A) and *B. thailandensis* (B). Time course
366 scatter plots were smooth curve fitted by loess (n=3-4 replicates/condition/time point). Community
367 memberships are as follows: *B. thailandensis* monoculture (Bt; orange), *C. subtsugae* monoculture (Cs;
368 *C. subtsugae*-*P. syringae* coculture (CsPs; light blue), *B. thailandensis*-*P. syringae* coculture (BtPs;
369 yellow), *B. thailandensis*-*C. subtsugae* coculture (BtCs; purple), and the 3-member community (BtCsPs;
370 black).

374 **Figure S16. The gene encoding a TonB-dependent siderophore receptor is downregulated in *P.*
375 *syringae* when cocultured with *B. thailandensis* while upregulated in *B. thailandensis*.** Transcript
376 abundance trajectories of *tonB* are plotted for *P. syringae* (A) and *B. thailandensis* (B). Time course
377 scatter plots were smooth curve fitted by loess ($n = 3-4$ replicates/condition/time point). Community
378 memberships are as follows: *B. thailandensis* monoculture (Bt; orange), *P. syringae* monoculture (Ps;
379 green), *C. subtsugae*-*P. syringae* coculture (CsPs; light blue), *B. thailandensis*-*P. syringae* coculture
380 (BtPs; yellow), *B. thailandensis*-*C. subtsugae* coculture (BtCs; purple), and the 3-member community
381 (BtCsPs; black).

382 **Supplementary Table S1.** Percent variation explained on the effect of membership,
383 time, and their interaction on transcriptomic profiles.

	Membership	Time	Membership x Time
<i>B. thailandensis</i>	46.26	13.24	63.11
<i>C. subtsugae</i>	60.60	3.88	68.29
<i>P. syringae</i>	77.03	0.00	81.40

384

385

386 **Supplementary Table S2.** Summary of Protest analyses comparing transcriptional
 387 profiles through time across independent replicates. Coordinates of the first two PCA
 388 axes were used to perform Protest analyses. Ranges reflect separate Protest analyses
 389 performed between all replicates in a community membership. Values in parenthesis
 390 represent the median P value.

	m12	R	P
<i>B. thailandensis</i>			
Monoculture	0.048 – 0.820	0.424 – 0.976	0.010 – 0.867 (0.200)
<i>P. syringae</i> coculture	0.018 – 0.049	0.975 – 0.991	0.001 – 0.001 (0.001)
<i>C. subtsugae</i> coculture	0.010 – 0.112	0.943 – 0.995	0.001 – 0.003 (0.001)
3-member	0.013 – 0.162	0.916 – 0.994	0.001 – 0.006 (0.001)
<i>C. subtsugae</i>			
Monoculture	0.011 – 0.140	0.927 – 0.995	0.004 – 0.067 (0.039)
<i>P. syringae</i> coculture	0.045 – 0.206	0.891 – 0.977	0.003 – 0.042 (0.008)
<i>B. thailandensis</i> coculture	0.091 – 0.182	0.905 – 0.954	0.001 – 0.108 (0.019)
3-member	0.190 – 0.543	0.676 – 0.900	0.001 – 0.208 (0.013)
<i>P. syringae</i>			
Monoculture	0.178 – 0.538	0.680 – 0.907	0.008 – 0.136 (0.054)
<i>C. subtsugae</i> coculture	0.035 – 0.251	0.865 – 0.982	0.001 – 0.083 (0.021)
<i>B. thailandensis</i> coculture	0.021 – 0.290	0.843 – 0.990	0.001 – 0.001 (0.001)
3-member	0.034 – 0.687	0.560 – 0.983	0.007 – 0.317 (0.038)

391

392

393 **Supplementary Table S3.** PERMANOVA results calculated on independently
 394 replicated time series within members across all community memberships.
 395 PERMANOVA results are presented as P values, R^2 values, and pseudo-F statistic
 396 results in the first row. Post-hoc pairwise PERMANOVA results are presented below the
 397 first row.

	<i>B. thailandensis</i>	<i>C. subtsugae</i>	<i>P. syringae</i>
adonis	$P = 0.001$, $R^2 = 0.480$, $F = 27.686$	$P = 0.001$, $R^2 = 0.619$, $F = 47.15$	$P = 0.001$, $R^2 = 0.778$, $F = 107.21$
Monoculture vs <i>B. thailandensis</i> coculture	-	0.002	0.001
Monoculture vs <i>C. subtsugae</i> coculture	0.001	-	0.001
Monoculture vs <i>P. syringae</i> coculture	0.001	0.010	-
Monoculture vs 3-member	0.001	0.002	0.001
<i>B. thailandensis</i> coculture vs <i>C. subtsugae</i> coculture	-	-	0.001
<i>B. thailandensis</i> coculture vs <i>P. syringae</i> coculture	-	0.002	-
<i>C. subtsugae</i> coculture vs <i>P. syringae</i> coculture	0.001	-	-
<i>B. thailandensis</i> coculture vs 3-member	-	0.248	0.068
<i>C. subtsugae</i> coculture vs 3-member	0.001	-	0.001
<i>P. syringae</i> coculture vs 3-member	0.001	0.002	-

398

399

400 **Supplementary Table S4.** Percent variation explained on the effect of membership,
401 time, and their interaction on exometabolite profiles.

	Membership	Time	Membership x Time
Polar Positive	45.76	7.26	55.89
Polar Negative	51.61	4.12	58.83
Nonpolar Positive	56.92	9.49	71.88
Nonpolar Negative	64.77	7.94	79.38

402

403

404 **Supplementary Table S5.** Summary of Protest analyses comparing exometabolite
405 composition through time across independent replicates. Coordinates of the first two
406 PCoA axes were used to perform Protest analyses. Ranges reflect separate Protest
407 analyses performed for each polarity (polar/nonpolar) and ionization mode
408 (positive/negative).

	m12	R	P
<i>C. subtsugae</i> - <i>P. syringae</i> coculture	0.022 – 0.906	0.307 – 0.989	0.001 – 0.849 (0.025)
<i>B. thailandensis</i> - <i>P. syringae</i> coculture	0.015 – 0.592	0.638 – 0.992	0.001 – 0.667 (0.050)
<i>B. thailandensis</i> - <i>C. subtsugae</i> coculture	0.003 – 0.456	0.738 – 0.995	0.001 – 0.250 (0.003)
3-member community	0.021 – 0.556	0.667 – 0.990	0.001 – 0.133 (0.003)

409

410

411 **Supplementary Table 6.** PERMANOVA results calculated on independently replicated
 412 time series across coculture community memberships. PERMANOVA results are
 413 presented as P values, R^2 values, and pseudo-F statistic results in the first row. Post-
 414 hoc pairwise PERMANOVA results are presented below the first row.

	Polar Positive	Polar Negative	Nonpolar Positive	Nonpolar Negative
adonis	$P = 0.001$, $R^2 = 0.475$, $F = 27.711$	$P = 0.001$, $R^2 = 0.531$, $F = 34.773$	$P = 0.001$, $R^2 = 0.585$, $F = 37.549$	$P = 0.001$, $R^2 = 0.662$, $F = 45.743$
<i>B. thailandensis</i> - <i>C. subtsugae</i> coculture vs <i>C. subtsugae</i> - <i>P. syringae</i> coculture	0.001	0.001	0.001	0.001
<i>B. thailandensis</i> - <i>C. subtsugae</i> coculture vs <i>B. thailandensis</i> - <i>P. syringae</i> coculture	0.001	0.001	0.001	0.001
<i>B. thailandensis</i> - <i>P. syringae</i> coculture vs <i>C. subtsugae</i> - <i>P. syringae</i> coculture	0.001	0.001	0.001	0.001
3-member community vs <i>C. subtsugae</i> - <i>P. syringae</i> coculture	0.001	0.001	0.001	0.001
3-member community vs <i>B. thailandensis</i> - <i>P. syringae</i> coculture	0.001	0.001	0.001	0.001
3-member community vs <i>B. thailandensis</i> - <i>C. subtsugae</i> coculture	0.002	0.008	0.019	0.025

415

416

417 **Supplementary Table S7.** Number of predicted biosynthetic gene clusters (BSGCs,
418 first row) followed by the quantity of upregulated BSGCs in cocultures.

	<i>B. thailandensis</i>	<i>C. subtsugae</i>	<i>P. syringae</i>
Predicted BSGCs	28	14	10
<i>C. subtsugae</i> - <i>P. syringae</i> coculture	-	0	0
<i>B. thailandensis</i> - <i>P. syringae</i> coculture	8	-	0
<i>B. thailandensis</i> - <i>C. subtsugae</i> coculture	10	1	-
3-member community	11	1	0

419

420

421 **Supplementary Table S8.** One-way ANOVA^a comparing the quantitation of identified
422 secondary metabolites between community memberships with *B. thailandensis*
423 membership.

	Df (between)	Df (within)	F value	p
Bactobolin	6	160	392.10	<2e-16
Capistruin	6	160	77.83	<2e-16
Melleilactone	6	121	150.10	<2e-16
Rhamnolipid^b	6	136	39.34	<2e-16
Thailandamide	6	121	61.02	<2e-16
Pyochelin	6	136	105.20	<2e-16

424 ^aFormula: aov(formula = log(Value) ~ Membership, data = .)

425 ^bRhamnolipid congener Rha-Rha-C14-C14

426

427 **Supplementary Table S9.** TukeyHSD post-hoc results comparing quantitation of
 428 identified secondary metabolites between community memberships with *B.*
 429 *thailandensis* membership. Values represent the adjusted P-value.

	Bactobolin	Capistruin	Melleilactone	Rhamnolipid ^a	Thailandamide	Pyochelin
Monoculture vs <i>P. syringae</i> coculture	8.41E-01	8.00E-07	4.00E-07	2.26E-01	1.25E-04	4.85E-01
Monoculture vs <i>C. subtsugae</i> coculture	3.54E-01	8.45E-02	< 1.00E-07	2.53E-02	< 1.00E-07	8.55E-01
Monoculture vs 3-member	8.27E-01	5.00E-07	< 1.00E-07	1.00E-05	< 1.00E-07	7.13E-04
<i>C. subtsugae</i> coculture vs <i>P. syringae</i> coculture	8.38E-01	6.48E-03	5.45E-02	7.68E-01	9.27E-03	9.11E-01
<i>P. syringae</i> coculture vs 3-member	3.28E-01	9.99E-01	1.00E-07	6.50E-03	4.32E-03	4.24E-02
<i>C. subtsugae</i> coculture vs 3-member	6.08E-02	4.20E-03	1.76E-03	7.76E-02	9.97E-1	6.20E-03

430 ^aRhamnolipid congener Rha-Rha-C14-C14

431

432 **Supplementary Table S10.** Relative gene expression of genes in the thailandamide
433 operon across different SynCom conditions. *B. thailandensis* (31 wells) in M9-0.067%
434 glucose was the control condition and *rpoD* was the reference gene.

	<i>thaF</i>	<i>thaK</i>	<i>thaQ</i>
Bt (62 wells)	0.523	0.550	0.650
Bt (93 wells)	0.303	0.138	0.188
Bt-Ps (31 wells/member)	1.311	1.675	2.163
Bt-Cv (31 wells/member)	2.375	2.304	1.05
Bt-Cv-Ps (31 wells/member)	2.048	2.433	1.742

435

436

437 **Supplementary Table S11.** Network summary results from interspecies coexpression
438 networks.

Network	<i>B. thailandensis-C. subtsugae</i>	<i>B. thailandensis-P. syringae</i>		
Member	<i>B. thailandensis</i>	<i>C. subtsugae</i>	<i>B. thailandensis</i>	<i>P. syringae</i>
Total nodes	2701	2043	3254	3478
Nodes with only intraspecies edges	2418	1814	2749	2996
Nodes with interspecies edges	283	229	505	482
Total edges	9382	7240	15801	23319
Intraspecies edges	9074	6932	15056	22574
Interspecies edges		308		745

439

440

441 **Supplementary Table S12.** Primers used for RT-qPCR analysis of genes in the
442 thailandamide operon.

Primer	Sequence (5' > 3')	Product size (bps)	Reference
<i>rpoD</i> _F	ACCGTCGTGGCTACAAATT	117	[3]
<i>rpoD</i> _R	TCGTCTCGATCATGTGAACC		
<i>thaF</i> _F	CATGCACGCGTTCTGTTTC	113	This study
<i>thaF</i> _F	TCGTAGCCCAAGATCTCGTT		
<i>thaK</i> _F	GGTATTGAGGCCATGAACGT	104	This study
<i>thaK</i> _F	CATCAGCAGATTGCGAAC		
<i>thaQ</i> _F	GAACCGCGTGAAGGATTTTC	115	This study
<i>thaQ</i> _F	ATTCGTTGGGTACTTCTGC		

443

444

445 **Supplementary Table S13.** RT-qPCR efficiencies of reference and target genes for
446 relative expression analysis of genes in the thailandamide operon.

Gene	Slope	R ²	Efficiency (%)
<i>rpoB</i>	-3.424	0.999	102.6
<i>thaF</i>	-3.204	0.996	105.2
<i>thaK</i>	-3.358	0.995	98.5
<i>thaQ</i>	-3.305	0.997	100.7

447

448

449