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Abstract 14 

 During prolonged resource limitation, bacterial cells can persist in metabolically 15 

active states of non-growth. These maintenance periods, such as those experienced in 16 

stationary phase, can include upregulation of secondary metabolism and release of 17 

exometabolites into the local environment. As resource limitation is common of many 18 

environmental microbial habitats, we hypothesized that neighboring bacterial 19 

populations employ exometabolites to compete or cooperate during maintenance, and 20 
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that these exometabolite-facilitated interactions can drive community outcomes. Here, 21 

we evaluated the consequences of exometabolite interactions over stationary phase 22 

among three environmental strains: Burkholderia thailandensis E264, Chromobacterium 23 

subtsugae ATCC 31532, and Pseudomonas syringae pv.tomato DC3000. We 24 

assembled them into synthetic communities that only permitted chemical interactions. 25 

We compared the responses (transcripts) and outputs (exometabolites) of each 26 

member with and without neighbors. We found that transcriptional dynamics were 27 

changed with different neighbors, and that some of these changes were coordinated 28 

between members. The dominant competitor B. thailandensis consistently upregulated 29 

biosynthetic gene clusters to produce bioactive exometabolites for both exploitative and 30 

interference competition. These results demonstrate that competition strategies during 31 

maintenance can contribute to community-level outcomes. It also suggests that the 32 

traditional concept of defining competitiveness by growth outcomes may be narrow, and 33 

that maintenance competition could be an additional or alternative measure.  34 

 35 

Importance   36 

Free-living microbial populations often persist and engage in environments that offer 37 

few or inconsistently available resources. Thus, it is important to investigate microbial 38 

interactions in this common and ecologically relevant condition of non-growth. This work 39 

investigates the consequences of resource limitation for community metabolic output 40 

and for population interactions in simple synthetic bacterial communities.  Despite non-41 

growth, we observed active, exometabolite-mediated competition among the bacterial 42 
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populations. Many of these interactions and produced exometabolites were dependent 43 

on the community composition, but we also observed that one dominant competitor 44 

consistently produced interfering exometabolites regardless.  These results are 45 

important for predicting and understanding microbial interactions in resource-limited 46 

environments.   47 

  48 

Introduction  49 

 Bacteria interact with other bacteria and their environment within complex, multi-50 

species communities. Bacterial interactions rely on the ability to sense and respond to 51 

both biotic and abiotic stimuli [1, 2]. These stimuli include physical, chemical or 52 

molecular cues, and can alter bacterial behaviors [3, 4], and ultimately, can also alter 53 

community functioning [5, 6]. It is expected that interspecies interactions play an 54 

important role in shaping microbial community dynamics [7]. However, multiple stimuli in 55 

the environment make it difficult to disentangle the separate influences of abiotic versus 56 

biotic stimuli on microbial community dynamics [8]. Therefore, efforts to characterize 57 

and distinguish community responses to biotic stimuli, such as those that facilitate 58 

interspecies interactions, will provide insights into the specific roles that microbial 59 

interactions play in shaping their communities [9].  60 

Interspecies interactions can be facilitated through small molecules [10]. 61 

Extracellular small molecules are collectively referred to as exometabolites [11, 12, 13]. 62 

Depending on the exometabolite produced, these molecules can mediate interspecies 63 

interactions that range from competitive to cooperative [14]. Of these interaction types, 64 
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competition has been shown to have a major influence in structuring microbial 65 

communities [15, 16, 17]. Thus, competitive interactions that are mediated by 66 

exometabolites are also expected to influence  microbial community dynamics. In 67 

addition, different types of exometabolites can be employed by bacteria to gain 68 

advantage in both exploitative (e.g. nutrient scavenging) and interference (direct cell 69 

damage) categories of competition.  70 

 Traditionally, competition has been viewed through the lens of resource 71 

acquisition [18]. In previous studies, competitiveness is modeled with respect to yield 72 

given resource consumption and growth [19, 20]. However, competition for survival or 73 

maintenance may be just as important as competition for yield, especially during periods 74 

of resource limitation [21, 22]. Competition during maintenance is likely common in 75 

environments that experience relatively long periods of nutrient famine punctuated by 76 

short periods of nutrient influx, for example such as in soils, sequencing batch reactors, 77 

and the gut [23, 24, 25, 26]. The stationary phase of a bacterial growth curve falls within 78 

this context of growth cessation, and pulses of nutrients may be transiently available as 79 

cells die and lyse (necromass), while the total population size remains stagnant. 80 

Stationary phase is often coordinated with a metabolic shift to secondary metabolism 81 

[27, 28]. Therefore, an effective “maintenance” competitor may produce bioactive 82 

exometabolites, like antibiotics, which are often produced because of secondary 83 

metabolism. Bacteria can activate biosynthetic gene clusters (BSGCs) to produce 84 

bioactive exometabolites [29]. The activation of BSGCs is closely tied to stress 85 

responses, suggesting that bacteria can sense the stress of competition [30, 31]. While 86 

it is known that certain exometabolites can trigger BSGC upregulation and, more 87 
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generally alter transcription [32], there is much to understand about the outcomes of 88 

interspecies interactions for BSGCs in multi-member microbial communities.  89 

Here, we build on our previous research to understand how exometabolite-90 

mediated interactions among bacterial neighbors contribute to community outcomes in a 91 

simple, three-member community (Table 1). These three members are commonly 92 

associated with terrestrial environments (soils or plants) and were chosen because of 93 

reported [33] and observed interspecies exometabolite interactions in the laboratory. 94 

We used a synthetic community (SynCom) approach [34] by applying our previously 95 

described transwell system [35], which allowed for evaluation of “community goods” 96 

within a media reservoir that was shared among members. The members’ populations 97 

were physically isolated by membrane filters at the bottom of each transwell, but could 98 

interact chemically via the reservoir. In our prior work, we investigated each member’s 99 

exometabolites and transcription over stationary phase, and the objective was to 100 

understand monoculture responses (in minimal glucose media) before assembling the 101 

more complex 2- and 3- member communities. We previously found that each member 102 

in monoculture produced a variety of exometabolites in stationary phase, including 103 

bioactive molecules involved in competition [36]. In this work, we build to 2- and 3- 104 

member communities to ask: How do members interact via exometabolites in simple 105 

communities during maintenance (stationary phase), and what are the competitive 106 

strategies and outcomes of those interactions? What genetic pathways, molecules, and 107 

members drive the responses?  108 

We found that B. thailandensis had a major influence on the transcriptional 109 

responses of both C. subtsugae and P. syringae, and that this influence could be 110 
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attributed to an increase in both interference and exploitative competition strategies. 111 

These findings show that diverse competitive strategies can be deployed even when 112 

bacterial neighbors are surviving rather than exponentially growing. Therefore, we 113 

suggest that contact-independent, exometabolite-mediated interference and exploitation 114 

are important competitive strategies in resource-limited environments and support the 115 

non-yield outcome of maintenance.  116 

 117 

Materials and Methods 118 

Bacterial strains and culture conditions  119 

 We selected three environmental bacterial strains for the SynCom experiments 120 

that were originally isolated from various plant/soil habitats and that had prior evidence 121 

of exometabolite interactions among them in the laboratory [Table 1; 33, 37-40]. Freezer 122 

stocks of B. thailandensis, C. subtsugae, and P. syringae were plated on half-123 

concentration Trypticase soy agar (TSA50) at 27°C for at least 24 h. Members were 124 

inoculated in 7 ml of M9–0.2% glucose medium and grown for 16 h at 27°C, 200 rpm. 125 

Cultures were then diluted into 50 ml M9-0.2% glucose medium such that exponential 126 

growth phase was achieved after 10 h of incubation at 27°C, 200 rpm. Members were 127 

diluted in 50 ml M9 glucose medium to target ODs (B. thailandensis 0.3 OD, C. 128 

subtsugae: 0.035 OD, P. syringae 0.035 OD). The high initial OD for B. thailandensis 129 

was necessary such that stationary phase would be achieved by all members within a 2 130 

h window after 24 h incubation in the transwell plate. The glucose concentration in the 131 

final dilution varied upon community membership- 0.067% for monocultures, 0.13% for 132 
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pairwise cocultures, and 0.2% for the 3-member community. For each member, 48 ml of 133 

diluted culture was transferred as 4 mL aliquots in 12, 5 mL Falcon tubes to more 134 

efficiently prepare replicate transwell plates.  135 

 136 

Synthetic community experiments 137 

 Transwell plate preparation was performed as previously described [35]. Briefly, 138 

we used sterile filter plates with 0.22-μm-pore polyvinylidene difluoride (PVDF) filter 139 

bottoms (Millipore MAGVS2210). Prior to use, filter plates were washed three times with 140 

sterile water using a vacuum apparatus (NucleoVac 96 vacuum manifold; Clontech 141 

Laboratories). The filter of well H12 was removed with a sterile pipette tip and tweezer, 142 

and 31 ml of M9 glucose medium was added to the reservoir through well H12. The 143 

glucose concentration in the reservoir varied upon community membership- 0.067% for 144 

monocultures, 0.13% for pairwise cocultures, and 0.2% for the 3-member community. 145 

Glucose concentration was adjusted to plate occupancy (e.g., 3-member communities 146 

had higher number of wells occupied than 2- or 1-member). Our aim was for each 147 

member to achieve stationary phase at similar times across all conditions to compare 148 

transcripts and exometabolites under similar growth trajectories. In other words, 149 

available resources were standardized while keeping the well occupancy for each 150 

member constant. With this design, transcripts and exometabolites in cocultures that 151 

deviated from those in monocultures could be attributed to interspecies interactions and 152 

not complicated by offset in member growth trajectories across the experimental 153 

conditions.  154 
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 Each well was filled with 130 μL of culture or medium (prepared as described, 155 

above; see methods section: Bacterial strains and culture conditions). For each plate, a 156 

custom R script (RandomArray.R [see script at 157 

https://github.com/ShadeLab/PAPER_Chodkowski_mSystems_2017/blob/master/R_an158 

alysis/RandomArray.R]) was used to randomize community member placement in the 159 

wells so that each member occupied a total of 31 wells per plate. In total, there were 7 160 

community conditions- 3 monocultures, 3 pairwise cocultures, and the 3-member 161 

community. Each member occupied 31 wells per plate regardless of experimental 162 

condition. Thus, “baseline” exometabolites could be determined in the monocultures, 163 

and then deviations in exometabolite abundance or detection in the cocultures could be 164 

attributed to interspecies interactions. A time course was performed for each replicate. 165 

The time course included an exponential phase time point (12.5 h) and 5 time points 166 

assessed every 5 h over stationary phase (25 h – 45 h). Four biological replicates were 167 

performed for each community condition for a total of 28 experiments. For each 168 

experiment, 6 replicate filter plates were prepared for destructive sampling for a total of 169 

168 transwell plates.  170 

 Filter plates were incubated at 27°C with gentle shaking (~0.32 rcf). For each 171 

plate, a custom R script (RandomArray.R [see script at 172 

https://github.com/ShadeLab/PAPER_Chodkowski_mSystems_2017/blob/master/R_an173 

alysis/RandomArray.R]) was used to randomize wells for each organism assigned to 174 

RNA extraction (16 wells) and flow cytometry (5 wells). The following procedure was 175 

performed for each organism when a transwell plate was destructively sampled: i) wells 176 

containing spent culture assigned to RNA extraction were pooled (~100 μL/well) into a 177 
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1.7 mL microcentrifuge tube and flash frozen in liquid nitrogen and stored at -80 until 178 

further processing. ii) 20 μL from wells assigned for flow cytometry were diluted into 180 179 

μL Tris-buffered saline (TBS; 20 mM Tris, 0.8% NaCl [pH 7.4]). In community 180 

memberships where P. syringae was arrayed with B. thailandensis, P. syringae had a 181 

final dilution of 70-fold in TBS. In community memberships where P. syringae was 182 

arrayed in monoculture or in coculture with C. subtsugae, P. syringae had a final dilution 183 

of 900-fold in TBS. Final dilutions for B. thailandensis and C. subtsugae were 1 300-fold 184 

and 1 540-fold, respectively. Each member was diluted differently to achieve a suitable 185 

events/second range on the flow cytometer for accurate cell counting. Populations were 186 

then stained and analyzed on the flow cytometer for live/dead counting (see 187 

Supplementary Methods). iii) Spent medium (~31 ml) from the shared reservoir was 188 

transferred to 50 mL conical tubes, flash-frozen in liquid nitrogen and stored at −80 °C 189 

prior to metabolite extraction.  190 

 191 

RNA-seq 192 

RNA extraction, sequencing, quality control, and count matrix generation was performed 193 

as previously published [36, see Supplementary Methods]. 194 

 195 

Transcriptomics 196 

Quality filtering and differential gene expression analysis 197 

 Count matrices for each member were quality filtered in two steps: genes 198 

containing 0 counts in all samples were removed, and genes with a transcript count of 199 

≤10 in more than 90% of samples were removed. DESeq2 [41] was used to extract size 200 
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factor and dispersion estimates. These estimates were used as external input into 201 

ImpulseDE2 for the analysis of differentially regulated genes [42]. ImpulseDE2 202 

determines differential expression by comparing longitudinal count datasets. Case-203 

control (Cocultures-monoculture control) analyses were analyzed to identify genes with 204 

differences in temporal regulation at an FDR-corrected threshold of 0.01. Genes that 205 

passed the FDR threshold were further filtered for genes that had at least one time point 206 

with a log2 fold-change (LFC) >= 1 or <= -1. Thus, we defined differentially expressed 207 

genes (DEGs) as genes that met both the FDR-corrected and LFC thresholds. For each 208 

member, differences in gene regulation between the three coculture conditions was 209 

visualized with Venn diagrams using the VennDiagram package [43].  210 

 Differentially expressed genes were first determined by comparing each 211 

coculture condition to the monoculture control and applying a LFC threshold (see 212 

above). We then determined a second set of DEGs by comparing pairwise cocultures to 213 

each other. ImpulseDE2 case-control analyses were performed as follows: B. 214 

thailandensis coculture with C. subtsugae (case) compared to B. thailandensis coculture 215 

with P. syringae (control), C. subtsugae coculture with B. thailandensis (case) compared 216 

to C. subtsugae coculture with P. syringae (control), and P. syringae coculture with B. 217 

thailandensis (case) compared to P. syringae coculture with C, subtsugae (control). 218 

Genes that passed the FDR-corrected threshold of 0.01 based on ImpulseDE2 analysis 219 

and had at least one time point with a LFC of >= 1 or <= -1 represented coculture 220 

specific DEGs. The DEGs determined from monoculture comparisons and coculture 221 

comparisons were then categorically grouped using Clusters of Orthologous Groups 222 

(COG).  223 
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 224 

COG analysis 225 

 Protein fasta files were downloaded from NCBI and uploaded to eggNOG-226 

mapper v2 (http://eggnog-mapper.embl.de/) to obtain COGs. The DEGs determined 227 

from ImpulseDE2 and LFC thresholds were categorized as upregulated or 228 

downregulated based on temporal expression patterns. DEGs with consistent positive 229 

LFC throughout all stationary phase time points were categorized as upregulated. DEGs 230 

with consistent negative LFC throughout all stationary phase time points were 231 

categorized as downregulated. These DEGs were then assigned to COGs, grouped 232 

based on temporal up/downregulation patterns, and plotted using ggplot2 [44].  233 

 234 

Principal coordinates analysis and statistics 235 

 Normalized gene matrices were extracted from DESeq2 and filtered to only 236 

contain DEGs (coculture to monoculture comparisons) based on our previously 237 

described definition. A variance-stabilizing transformation was performed on normalized 238 

gene matrices using the rlog function in DESeq2. A distance matrix based on the Bray-239 

Curtis dissimilarity metric was then calculated on the variance-stabilized gene matrices 240 

and principal coordinates analysis was performed using the R package vegan [45]. 241 

Principal coordinates were plotted using ggplot2. Coordinates of the first two PCoA axes 242 

were used to perform PROTEST analysis using the PROTEST function in vegan. 243 

Dissimilarity matrices were used to perform PERMANOVA and variation partitioning 244 

using the adonis and varpart functions in vegan, respectively. The RVAideMemoire 245 

package [46] was used to perform a post-hoc pairwise PERMANOVAs. Lastly, 246 
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distances were extracted from the Bray-Curtis dissimilarity matrix that compared each 247 

coculture condition to the monoculture condition at each time point within each member. 248 

These distances were used to produce time series distance plots.  249 

 250 

Biosynthetic gene cluster (BSGC) analysis 251 

 NCBI accession numbers were uploaded to antiSMASH 6 beta bacterial version 252 

[47] to identify genes involved in BSGCs using default parameters. Where possible, 253 

literature-based evidence and BSGCs uploaded to MIBiG [48] were used to better 254 

inform antiSMASH predictions. Log2 fold-changes (LFCs) were calculated for all 255 

predicted biosynthetic genes within each predicted cluster by comparing coculture 256 

expression to monoculture expression at each time point. Average LFCs were 257 

calculated from all predicted biosynthetic genes within a predicted BSGC at each time 258 

point. Temporal LFC trends were plotted using ggplot2. An upregulated BSGC was 259 

defined as a BSGC that had at least two consecutive time points in stationary phase 260 

with a LFC > 1.  261 

 262 

Network analysis 263 

 Unweighted co-expression networks were created from quality filtered and 264 

normalized expression data. Networks were generated for pairwise cocultures 265 

containing B. thailandensis. First, data were quality filtered as previously described 266 

(see methods section: Quality filtering and differential gene expression analysis). Then, 267 

normalized expression data was extracted from DESeq2. Twenty-three and twenty-268 

four RNA-seq samples from each member were used for network analysis in the B. 269 
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thailandensis-C. subtsugae and B. thailandensis-P.syringae cocultures, respectively 270 

(23/24 samples/member; 6 time points, 4 biological replicates). Only 23 samples were 271 

used in the B. thailandensis-C. subtsugae network analysis because RNA-seq failed 272 

for C. subtsugae at 45 h, biological replicate 2. Interspecies networks were then 273 

inferred from the expression data using the context likelihood of relatedness [49] 274 

algorithm within the R package Minet [50]. Gene matrices for each coculture pair were 275 

concatenated to perform the following analysis. Briefly, the mutual information 276 

coefficient was determined for each gene-pair. To ensure robust detection of co-277 

expressed genes, a resampling approach was used as previously described [51]. 278 

Then, a Z-score was computed on the mutual information matrix. A Z-score threshold 279 

of 4.5 was used to determine an edge in the interspecies network. Interspecies 280 

networks were uploaded into Cytoscape version 3.7.1. for visualization, topological 281 

analysis, and enrichment analysis [52].  282 

 Gene annotation and gene ontology (GO) files were obtained for B. 283 

thailandensis, P. syringae, and C. subtsugae for enrichment analyses. For B. 284 

thailandensis, annotation and ontology files were downloaded from the Burkholderia 285 

Genome Database (https://www.burkholderia.com). For P. syringae, annotation and 286 

ontology files were downloaded from the Pseudomonas Genome Database 287 

(http://www.pseudomonas.com/strain/download). Annotation and ontology files for C. 288 

subtsugae were generated using Blast2GO version 5.2.5 [53]. InterProScan [54] with 289 

default parameters were used to complement gene annotations from C. subtsugae. GO 290 

terms were assigned using Blast2GO with default parameters. In addition, genes 291 

involved in secondary metabolism were manually curated and added to these files as 292 
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individual GO terms. These genes were also used to update the GO term GO:0017000 293 

(antibiotic biosynthetic process), composed of a collection of all the biosynthetic genes. 294 

(see methods section: Biosynthetic gene cluster (BSGC) analysis).  295 

 Topological analysis was performed as follows: Nodes were filtered from each 296 

coculture network to only select genes from one member at a time. The GLay 297 

community cluster function in Cytoscape was used to determine intra-member modules. 298 

Functional enrichment analysis was then performed on the modules using the BiNGO 299 

package [55] in Cytoscape. 300 

 To determine interspecies co-regulation patterns, we filtered network nodes that 301 

contained an interspecies edge. Functional enrichment analysis was performed on the 302 

collection of genes containing interspecies edges for each member using the BiNGO 303 

package in Cytoscape. Then, we selected all genes contained within modules of interest 304 

(e.g. B. thailandensis modules containing either thailandamide or malleilactone genes in 305 

the B. thailandensis-C. subtsugae coculture network or B. thailandensis-P. syringae 306 

coculture network, respectively) in Cytoscape. Node selection was extended by 307 

selecting the first neighbors of the selected nodes. This resulted in interspecies edges. 308 

The resultant nodes were transformed into a circular layout and exported for manual 309 

edits in InkScape.. The biosynthetic gene cluster organization of thailandamide and 310 

malleilactone were obtained from MIBig and drawn in InkScape.  311 

 Protein sequences from an interspecies gene of interest (CLV_2968) within a 312 

network module that also contained thailandamide genes from the B. thailandensis-C. 313 

subtsugae network and an interspecies gene of interest (PSPTO_1206) within a 314 

network module that also contained malleilactone genes from the B. thailandensis-P. 315 
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syringae network were obtained. A protein blast for each protein was run against B. 316 

thailandensis protein sequences. B. thailandensis locus tags were extracted from the 317 

top blast hit from each run. Normalized transcript counts for these 4 genes of interest 318 

were plotted in R. Time course gene trajectories were determined using a loess 319 

smoothing function.  320 

 321 

 322 

Metabolomics  323 

LCMS, feature detection, and quality control 324 

 Standard operating protocols were performed at the Department of Energy Joint 325 

Genome Institute as previously described [36]. MZmine 2 [56] was used for feature 326 

detection and peak area integration as previously described [36]. Select exometabolites 327 

were identified in MZmine 2 by manual observation of both MS and MS/MS data. We 328 

extracted quantities of these identified exometabolites for ANOVA and Tukey HSD post-329 

hoc analysis in R. We filtered features in three steps to identify coculture-accumulated 330 

exometabolites. The feature-filtering steps were performed as follows on a per-member 331 

basis: (i) retain features where the maximum peak area abundance occurred in any of 332 

the coculture communities ; (ii) a noise filter, the minimum peak area of a feature from a 333 

replicate at any time point needed to be 3 times the maximum peak area of the same 334 

feature in one of the external control replicates, was applied; (iii) coefficient of variation 335 

(CV) values for each feature calculated between replicates at each time point needed to 336 

be less than 20% across the time series.  337 



Chodkowski & Shade: Exometabolite-driven maintenance competition in bacteria 

 
 

16 

Four final feature data sets from polar and nonpolar analyses in both ionization modes 338 

were analyzed in MetaboAnalyst 5.0 [57], as reported in our prior work [36, see 339 

Supplementary Methods]. In addition, exometabolites categorized as primary 340 

metabolites were identified according to Metabolomics Standards Initiative (MSI) level 1 341 

criteria [58], as reported in our prior work [36, see Methods].  342 

 343 

Principal coordinates analysis and statistics 344 

 A distance matrix based on the Bray-Curtis dissimilarity metric was used to 345 

calculate dissimilarities between exometabolite profiles. Principal coordinates analysis 346 

was performed using the R package vegan. Principal coordinates were plotted using 347 

ggplot2. Coordinates of the first two PCoA axes were used to perform Protest analysis 348 

using the protest function in vegan. Dissimilarity matrices were used to perform 349 

PERMANOVA and variation partitioning using the adonis and varpart functions in 350 

vegan, respectively. The RVAideMemoire package was used to perform a post-hoc 351 

pairwise PERMANOVAs. Monoculture controls were removed to focus on coculture 352 

trends. 353 

 354 

  355 

 356 

 357 

Results 358 

Overview 359 
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 Our major data types included both transcriptomics and metabolomics, and we 360 

integrate these to interpret SynCom dynamics and interactions. Our longitudinal design 361 

resulted in 288 RNAseq samples across the three members, and 168 community 362 

metabolomics samples analyzed in each of four mass spectral modes (polar/nonpolar, 363 

positive/negative modes = 672 total mass spectral profiles). After quality control, we 364 

were left with 281 RNAseq and 605 total mass spectral profiles for the integrated 365 

analyses 366 

[https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021/tree/maste367 

r/SummaryOfSamples]. First, we present a summary of experiments and cell viability 368 

(section 1). Then, we present results of general responses of transcription (section 2) 369 

and exometabolomics (section 3), separately. Then, we integrate transcriptomic and 370 

metabolomic efforts to determine the upregulation of biosynthetic gene clusters 371 

(BSGCs) and identify exometabolites of interest from mass spectrometry (section 4). 372 

Lastly, we then present a transcriptomics co-expression network to ask how the 373 

upregulation of BSGCs influenced interspecies interactions through coordinated 374 

longitudinal gene expression (section 5).  375 

1. SynCom design/sampling scheme and membership cell viability  376 

We had four replicate, independent timeseries for each of seven community 377 

memberships (three of each monoculture, three of each pair in coculture, and the 3-378 

member community). We define membership as the specific strains present in a given 379 

condition. Here, we focus on the multi-member analyses (2 and 3-member 380 

combinations) to gain insights into community outcomes (Fig. 1A). The SynCom 381 

transwell system isolated member populations among separate transwells but permitted 382 
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exchange of their collective exometabolites via the plate’s shared media reservoir (Fig. 383 

1B). We collected data (transcripts, metabolites, etc) over a timeseries that included one 384 

exponential phase time point (12.5 h) followed by 5 stationary phase time points (25-45 385 

h sampled at 5-hour intervals; Fig. 1C).  386 

We observed relatively unchanged viability in B. thailandensis across all conditions 387 

(Fig. S1; panels A-D). On the contrary, we observed a slight reduction (~2.1 log2 fold 388 

change) in C. subtsugae live cell counts, and a drastic reduction (~4.7 log2 fold change) 389 

in P. syringae live cell counts, when either member was cocultured with B. thailandensis 390 

(Fig. 2; panels A vs C and panels D vs F, respectively). Reductions in cell viability of C. 391 

subtsugae and P. syringae were also present in the 3-member community (Fig. S1; 392 

panels E and F). C. subtsugae and P. syringae had minimal effects on each other (Fig. 393 

2; panels B and E). Dead cell accumulation of P. syringae plateaued in coculture 394 

conditions compared to monoculture, suggesting cell lysis (Fig. 2, panels D-F). We note 395 

that one doubling occurred in B. thailandensis and P. syringae monocultures, and in C. 396 

subtsugae in pairwise coculture with P. syringae. We elaborated on this finding as the 397 

possibility of a reductive cell division in our previous manuscript [36]. 398 

 399 

2. Stationary phase transcript dynamics of microbial community members 400 

 Differentially expressed genes were determined by comparing time series 401 

transcript trajectories applying an FDR and LFC threshold (see methods: Quality 402 

filtering and differential gene expression analysis). First, we compared each coculture to 403 

the monoculture control. A range of 153 to 276 genes were differentially expressed by 404 

each member in coculture, irrespective of the identity of neighbors (Fig. S2). In addition, 405 
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each member also had differential gene expression that was unique to a particular 406 

neighbor(s). Summarizing across all cocultures, 1089/5639 (19.3%) coding sequences 407 

(CDSs), 1991/4393 CDSs (45.3%), and 3274/5576 CDSs (58.7%) DEGs were 408 

determined for B. thailandensis, C. subtsugae, and P. syringae, respectively. Primary 409 

drivers of transcriptional response patterns for each member were community 410 

membership (PCoA axis 1) and time (PCoA axis 2) (Fig. 3, Table S1). Together, these 411 

data suggest that there are both general and specific consequences of neighbors for the 412 

transcriptional responses of these bacterial community members.  413 

 Temporal trajectories in member transcript profiles were generally reproducible 414 

across replicates (PROTEST analyses, Table S2). Each member had a distinct 415 

transcript profile (0.480 ≤ r2 ≤ 0.778 by Adonis; P value, 0.001; all pairwise false 416 

discovery rate [FDR]-adjusted P values, ≤0.01 except for two community memberships, 417 

Table S3). For all ordinations, community membership had the most explanatory value 418 

(Axis 1), followed by time (Axis 2), with the most variation explained by the interaction 419 

between time and membership (Table S1). Membership alone accounted for 60.6% and 420 

77.0% of the variation explained in C. subtsugae and P. syringae analyses, respectively 421 

and 46.3% in the B. thailandensis analysis (Table S1). 422 

When included in the community, B. thailandensis strongly determined the 423 

transcript profiles of the other two members. For example, the inclusion of B. 424 

thailandensis in a coculture differentiated transcript profiles for both C. subtsugae and 425 

P. syringae (Fig. 3B & 3C, Figs. S3-S5). The transcript profile differences between 426 

monoculture and coculture conditions are largest for C. subtsugae (Fig. S4) and P. 427 

syringae (Fig. S5) when B. thailandensis is included in the coculture. Thus, B. 428 
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thailandensis appears to have had a dominating influence on the transcriptional 429 

response of neighbors, and these responses were dynamic with respect to time. 430 

 We analyzed clusters of orthologous groups of proteins (COGs) to infer the 431 

responses of members to their neighbors. Differentially expressed genes (DEGs) were 432 

categorized as upregulated or downregulated based on temporal patterns and 433 

representation in COGs (Fig. S6). We focused on the largest differences between total 434 

DEGs upregulated and total DEGs downregulated within a COG, which provides 435 

insights into broad biological processes affected by community membership. COGs with 436 

large differences toward upregulation in B. thailandensis included cell motility [N], 437 

secondary metabolites biosynthesis, transport, and catabolism [Q], and signal 438 

transduction mechanisms [T] while COGs with large differences toward downregulation 439 

included defense mechanisms [V], energy production and conversion [C], translation, 440 

and ribosomal structure and biogenesis [J]. These results suggest that B. thailandensis 441 

responds to neighbors via downregulation of growth and reproduction and upregulation 442 

of secondary metabolism. We therefore hypothesized that B. thailandensis was 443 

producing bioactive exometabolites against C. subtsugae and P. syringae to 444 

competitively inhibit their growth. 445 

Because of the strong transcript response of C. subtsugae and P. syringae when 446 

neighbored with B. thailandensis (Fig. 3B & 3C), we focused on COGs within 447 

community memberships with B. thailandensis (Fig. S6B & S6C, rows 2 & 3). The COG 448 

with large differences toward upregulation in both C. subtsugae and P. syringae were 449 

translation, ribosomal structure and biogenesis [J]. COG groups tending toward 450 

downregulation in C. subtsugae and P. syringae were signal transduction mechanisms 451 
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[T] and secondary metabolites biosynthesis, transport, and catabolism [Q], respectively. 452 

These results suggest that the presence of B. thailandensis alters its neighbor’s ability 453 

to respond to the environment and inhibits secondary metabolism. The effects of B. 454 

thailandensis on C. subtsugae and P. syringae were also evident by mapping timeseries 455 

LFCs onto KEGG pathways. Various enzymes involved in central metabolism, fatty acid 456 

degradation, growth, transport, and response systems were upregulated when B. 457 

thailandensis was grown with either or both members 458 

(https://figshare.com/s/b7f5e559a32cc5c8a61f).  459 

 The above analyses focused on DEGs determined by comparing each coculture 460 

to the monoculture control. However, we also wanted to understand differences 461 

between pairs to determine if the alterations in transcripts were attributed to specific 462 

memberships (aka interspecies interactions). A total of 436, 1 762, and 2 962 DEGs 463 

were determined when comparing the pairs including B. thailandensis, the pairs 464 

including C. subtsugae , and the pairs including P. syringae, respectively. We detected 465 

member-specific effects on the COGs that were differentially expressed (Fig. S7). 466 

These data suggest that there were transcriptional changes driven by particular 467 

members and given their partner. Due to the physical separation of members in our 468 

SynCom plate system, these member-specific interspecies interactions were very likely 469 

exometabolite-mediated.  470 

 471 

3. Stationary phase exometabolite dynamics of microbial communities  472 

 Because member populations are physically separated in the SynCom transwell 473 

system but allowed to interact chemically, observed transcript responses in different 474 
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community memberships are inferred to result from exometabolite interactions. Spent 475 

medium from the shared medium reservoir was collected from each transwell plate and 476 

analyzed using mass spectrometry to detect exometabolites. Our previous manuscript 477 

focused on exometabolite dynamics in monocultures [36]. Here, we focused our 478 

analysis on those exometabolites that had maximum accumulation in a coculture (either 479 

in pairs or in 3-member community). Consistent with the transcript analysis, we found 480 

that both community membership and time explained the exometabolite dynamics, and 481 

that the explanatory value of membership and time was maintained across all polarities 482 

and ionization modes (Fig. 4, Table S4).  483 

 Temporal trajectories in exometabolite profiles were generally reproducible 484 

across replicates with some exceptions (PROTEST analyses, Table S5, Supplementary 485 

File 1). Exometabolite profiles were distinct by community membership (0.475 ≤ r2 ≤ 486 

0.662 by Adonis; P value, 0.001; all pairwise false discovery rate [FDR]-adjusted P 487 

values, ≤0.01 except for two comparisons, Table S6), and also dynamic over time. As 488 

observed for the member transcript profiles, the interaction between membership and 489 

time had the highest explanatory value for the exometabolite data (Table S4).  490 

 We found that the C. subtsugae-P. syringae coculture exometabolite profiles 491 

were consistently the most distinct from the other coculture memberships (Fig. 4), 492 

supporting, again, that the inclusion of B. thailandensis was a major driver of 493 

exometabolite dynamics, possibly because it provided the largest or most distinctive 494 

contributions to the community exometabolite pool. Indeed, we observed that a majority 495 

of the most abundant exometabolites were either detected uniquely in the B. 496 

thailandensis monoculture or accumulated substantially in its included community 497 
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memberships (Fig. S8). Some exometabolites detected in B. thailandensis-inclusive 498 

communities were not detected in its monocultures (Fig. S8D), suggesting that the 499 

inclusion of neighbors contributed to the accumulation of these particular 500 

exometabolites (e.g. upregulation of biosynthetic gene clusters or lysis products). C. 501 

subtsugae and P. syringae contributed less to the 3-member community exometabolite 502 

profile, as exometabolites detected in the C. subtsugae-P. syringae coculture were less 503 

abundant and had lower accumulation over time in the 3-member community (Fig. 504 

S8A). Together, these results suggest that B. thailandensis can suppress or overwhelm 505 

expected outputs from neighbors. 506 

 Exometabolites categorized as primary metabolites were identified according to 507 

Metabolomics Standards Initiative (MSI) level 1 criteria [58]. We identified primary 508 

metabolites accumulated in the shared medium reservoir over time in each monoculture 509 

(Fig. 5; [36]) to compare their dynamics in cocultures. These primary metabolites were 510 

detected to decrease in concentration across coculture conditions, suggesting metabolic 511 

inhibition or interspecies uptake. In addition, we also found a subset of primary 512 

metabolites that accumulate substantially in exponential phase in monocultures (Fig. 513 

S9). Taken together, each member contributed a unique set of primary metabolites to 514 

the community exometabolite pool. The uptake and metabolism of these primary 515 

metabolites by the non-producing members may directly affect the available pool of 516 

exometabolites in cocultures, particularly with respect to exometabolites contributed 517 

from secondary metabolism.  518 

In summary, we observed both increased accumulation and unique production of 519 

exometabolites in pairs and in the 3-member community, with B. thailandensis 520 
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contributing the most to the shared exometabolite pool as determined by comparisons 521 

with its monoculture exometabolite profile. Related, the transcriptional responses of C. 522 

subtsugae and P. syringae in the 3-member community is most like their respective 523 

transcriptional response when neighbored with B. thailandensis alone, despite the 524 

presence of the third neighbor.  525 

 526 

4. B. thailandensis increases competition strategies in the presence of neighbors 527 

 Given the observed reduction in cell viability (Fig. 2) and that there have been 528 

competitive interactions between B. thailandensis and C. subtsugae previously reported 529 

[33], we hypothesized that B thailandensis was using competition strategies to influence 530 

its neighbors via production of bioactive exometabolites. If true, we would expect 531 

transcriptional upregulation in B. thailandensis biosynthetic gene clusters (BSGC) that 532 

encode bioactive exometabolites. Indeed, when compared to the monoculture control, 533 

we found evidence of upregulated BSGCs across various time points in stationary 534 

phase in B. thailandensis cocultures (Fig. 6, Table S7). Some of these upregulation 535 

patterns were associated to particular pairs of members and some upregulation patterns 536 

were strongest in the full community (e.g. thailandamide). For example, B. thailandensis 537 

upregulated an unidentified non-ribosomal peptide synthetase (NRPS) when paired with 538 

P. syringae, but when paired with C. subtsugae, upregulated a different BSGC encoding 539 

an unidentified beta-lactone. This suggests that B. thailandensis responded to 540 

neighbors by upregulating genes involved in the production of bioactive compounds, 541 

likely to gain a competitive advantage. However, not all BSGCs in B. thailandensis were 542 

upregulated. Some BSGCs were unaltered or downregulated (Fig. S10). C. subtsugae 543 
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upregulated only 1 BSGC, an uncharacterized hybrid nonribosomal peptide synthetase-544 

type I polyketide synthase, in coculture with B. thailandensis, while P. syringae did not 545 

upregulate any BSGC in any coculture (Figs. S11 & S12). Interspecies interactions led 546 

to the upregulation of BSGCs in both B. thailandensis and C. subtsugae and three of 547 

these BSGCs encode potentially novel bioactive exometabolites.  548 

 Because B. thailandensis upregulated the transcription of various BSGCs when 549 

grown in cocultures, we asked if this led to the unique production of or increased 550 

accumulation of secondary metabolites as compared to when it was grown in 551 

monoculture. We identified 6 of the 11 exometabolites from the BSGCs in B. 552 

thailandensis that were upregulated and quantified their abundances from mass 553 

spectrometry data (Fig. 7, Supplementary File 2). We found that each identified 554 

exometabolite differentially accumulated between community memberships containing 555 

B. thailandensis (Table S8), particularly when comparing the B. thailandensis 556 

monoculture to each coculture (Table S9). As expected, these identified exometabolites 557 

were not detected in communities that did not include B. thailandensis (data not shown). 558 

Bactobolin was the only identified exometabolite that accumulated in monoculture to 559 

equivalent levels of accumulation in all coculture conditions. The other identified 560 

secondary metabolites were not detected or did not accumulate in monoculture, 561 

suggesting interspecies induction of secondary metabolism. Thus, in response to an 562 

exometabolite from either C. subtsugae or P. syringae, B. thailandensis increased its 563 

competitive strategies through the upregulation and production of many bioactive 564 

exometabolites. Of these bioactive exometabolites, three are documented 565 

antimicrobials [59, 60, 61], two are siderophores [62, 63], and one is a biosurfactant 566 
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[64]. We conclude that B. thailandensis produced bioactive exometabolites to 567 

competitively interact using both interference and exploitative competition strategies 568 

[65]. Given that B. thailandensis upregulated competitive strategies, and responded 569 

more broadly in producing competition-supportive exometabolites when grown with 570 

neighbors, we hypothesized that these bioactive exometabolites are responsible for the 571 

altered transcriptional responses in C. subtsugae and P. syringae.  572 

 In our experimental design, we adjusted glucose concentration depending on 573 

plate occupancy. Glucose concentration increased as plate occupancy increased (31 574 

wells vs 62 wells vs 93 wells), but a member consistently occupied 31 wells across all 575 

experimental conditions. One complication of this design is that population density and 576 

resource concentration could contribute to differences in transcripts and exometabolites 577 

in a member-agnostic manner. To address this, we performed additional SynCom 578 

experiments to affirm confidence that some changes in transcripts and exometabolites 579 

are attributable to exometabolite-mediated interspecies interactions. In these 580 

experiments, we increased the plate occupancy of B. thailandensis in monoculture while 581 

subsequently increasing resource concentration. Pairwise cocultures and the 3-member 582 

community SynCom experiments were repeated as well (see Supplementary methods). 583 

We calculated the relative gene expression of three genes in the thailandamide operon 584 

(thaF, thaK, and thaQ) through RT-qPCR by comparing each experimental condition to 585 

the monoculture control (B. thailandensis, 31 wells in M9-0.067% glucose). Decreased 586 

gene expression was observed across all three genes as both plate occupancy and 587 

resource concentration increased in B. thailandensis monocultures. In fact, thaF, thaK, 588 

and thaQ gene expression was further reduced in the 93 well B. thailandensis 589 
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monoculture compared to the 62 well B. thailandensis monoculture, suggesting that the 590 

thailandamide operon trended towards reduced expression as a function of B. 591 

thailandensis plate occupancy in monoculture conditions. On the contrary, thaF, thaK, 592 

and thaQ had increased expression in all coculture memberships, suggesting that 593 

exometabolite interspecies interactions were responsible for the increased expression 594 

of a BSGC in B. thailandensis (Table S10).  595 

 596 

5. Interspecies co-transcriptional networks reveal coordinated gene expression 597 

related to competition 598 

We performed interspecies co-expression network analysis to infer interspecies 599 

interactions. We used temporal profiles from transcriptional responses to generate co-600 

expression networks for B. thailandensis-C. subtsugae and B. thailandensis-P. syringae 601 

cocultures, respectively (Table S11). As expected, the majority of nodes in the network 602 

had intraspecies edges only, with interspecies edges comprising 1.85% and 1.90% of 603 

the total edges in the B. thailandensis-C. subtsugae and B. thailandensis-P. syringae 604 

networks, respectively. We explored interspecies edges for evidence of interspecies 605 

transcriptional co-regulation.  606 

We performed two analyses, module analysis and Gene Ontology (GO) 607 

enrichment, to validate networks and infer interspecies interactions (Fig. S13). Module 608 

analysis validated networks as intraspecies modules enriched for biological processes 609 

(Supplementary File 3). To infer interspecies interactions, we filtered genes with 610 

interspecies edges and performed enrichment analysis (Supplementary File 4). The top 611 

enriched GO term for B. thailandensis when paired with C. subtsugae was antibiotic 612 
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synthesis of thailandamide, supporting the interpretation of interference competition. 613 

Though the top enriched GO term in B. thailandensis when paired with P. syringae was 614 

bacterial-type flagellum-dependent cell motility, antibiotic synthesis of malleilactone was 615 

also enriched. Both thailandamide genes from the B. thailandensis-C. subtsugae 616 

network (Fig. 8) and malleilactone genes from the B. thailandensis-P. syringae network 617 

(Fig. S14) formed near-complete modules within their respective BSGCs. In addition, 618 

genes that were part of the BSGC modules contained interspecies edges with both C. 619 

subtsugae and P. syringae. 620 

 At least one gene from each of B. thailandensis’s upregulated BSGCs (Fig. 6) 621 

had an interspecies edge, except for rhamnolipid. Our interpretation of this result is that, 622 

generally, B. thailandensis’s upregulated BSGCs had co-expression patterns with genes 623 

from the other members. In the thailandamide and malleilactone modules, some of 624 

these interspecies genes were related to stress, transport, and iron-scavenging 625 

(Supplementary File 5).  The top GO term for both C. subtsugae and P. syringae genes 626 

that had edges shared with B. thailandensis was bacterial-type flagellum-dependent 627 

motility. Other notable enriched GO processes were efflux activity for C. subtsugae and 628 

signal transduction for P. syringae. Specifically, a DNA starvation/stationary phase gene 629 

(CLV04_2968, Fig. 8), dspA, was within the network module that also contained 630 

thailandamide genes from the B. thailandensis-C. subtsugae network and a TonB-631 

dependent siderophore receptor gene (PSPTO_1206, Fig. S14) was within the network 632 

module that also contained malleilactone genes from the B. thailandensis-P. syringae 633 

network. Interestingly, both CLV04_2968 and PSPTO_1206 were DEGs and 634 

downregulated when cocultured with B. thailandensis (Figs. S15A & S16A, 635 



Chodkowski & Shade: Exometabolite-driven maintenance competition in bacteria 

 
 

29 

respectively). Additionally, the closest homolog for dspA in B. thailandensis was 636 

unaltered (BTH_I1284, Supplementary File 6) when cocultured with C. subtsugae (Fig. 637 

S15B) and the closest homolog to the TonB-dependent receptor in B. thailandensis 638 

(BTH_I2415, Supplementary File 7) was a DEG and upregulated when cocultured with 639 

P. syrinage (Fig. S16B). Taken together, these co-expression networks revealed 640 

interspecies coordinated expression patterns. Specifically, we detected interspecies co-641 

expression patterns related to antibiotic upregulation in B. thailandensis, suggesting C. 642 

subtsugae and P. syringae were sensing and responding directly to these competition 643 

strategies of B. thailandensis.    644 

 645 

Discussion 646 

 Here, we used a synthetic community system to understand how 647 

exometabolomic interactions determine members transcriptional responses and 648 

exometabolite outputs. Our experiment used a systems approach to compare the seven 649 

possible community memberships of three members, and their dynamics in member 650 

transcripts and community exometabolites over stationary phase. Differential gene 651 

expression across community memberships and over time show that the 652 

exometabolites released by a member were sensed and responded to by its neighbors. 653 

Furthermore, members’ ouputs in monocultures changed because of coculturing, as 654 

evidenced by differential exometabolite production. The largest transcriptional 655 

alterations in C. subtsugae and P. syringae occurred when cocultured with B. 656 

thailandensis. Global expression patterns in C. subtsugae and P. syringae when in the 657 
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3-member community still resembled expression patterns in pairwise cocultures with B. 658 

thailandensis. These transcriptional alterations in C. subtsugae and P. syringae were 659 

coordinated with increases in B. thailandensis competitive strategies (evaluated by 660 

BSGC transcript upregulation and exometabolite abundance). That interactions within a 661 

relatively simple community altered the transcriptional responses and exometabolite 662 

outputs of each member is important because these kinds of alterations could, in turn, 663 

drive changes in community structure and/or function in an environmental setting. For 664 

example, it was shown that interspecies interactions more strongly influenced the 665 

assembly of C. elegans gut communities than host-associated factors [66]. Therefore, 666 

mechanistic and ecological characterization of interspecies interactions will inform as to 667 

the principles that govern emergent properties of microbial communities.  668 

 Overall, competitive interactions predominated in this synthetic community. This 669 

was first evidenced by reductions in viable cell counts in both C. subtsugae and P. 670 

syringae when cocultured with B. thailandensis. Interestingly, P .syringae was the only 671 

member to have an exponential increase in dead cell counts in monoculture. P. 672 

syringae dead cell count accumulation ceased in coculture conditions. We attribute this 673 

finding to the overall reduction of cell viability and/or lysis of dead cells when cocultured.  674 

Our previous study found that, over stationary phase in monocultures, each 675 

member released and accumulated at least one exometabolite documented to be 676 

involved in either interference or exploitative competition [36]. This suggests that entry 677 

into stationary phase primed members for competitive interactions, regardless of 678 

heterospecific neighbors present. We interpret this strategy of preemptive aggression to 679 

be especially advantageous to B. thailandensis, as it successfully used competitive 680 
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strategies against both C. subtsugae and P. syringae. B. thailandensis’s success was 681 

supported by decreased viable P. syringae cells when cocultured with B. thailandensis. 682 

Though C. subtsugae viable cell counts were not as affected directly by the coculture 683 

with B. thailandensis, B. thailandensis-produced bactobolin [67] was detected in the 684 

shared medium reservoir. Bactobolin is a bacteriostatic antibiotic previously shown to be 685 

bioactive against C. subtsugae [33] through ribosome binding [59]. But, C. subtsugae 686 

can resist bactobolin through upregulation of an RND-type efflux pump [68]. This finding 687 

also is supported by our data, as all genes coding for the CdeAB-OprM RND-type efflux 688 

system were DEGs and upregulated in C. subtsugae cocultures with B. thailandensis 689 

(CLV04_2413-CLV04_2415).  690 

 When cocultured with B. thailandensis, we observed COG groups such as 691 

translation, ribosomal structure and biogenesis [J] had large differences toward 692 

upregulation in both C. subtsugae and P. syringae. At first glance, this seems at odds 693 

with our interpretation of B. thailandensis competitiveness toward C. subtsugae and P. 694 

syringae. In other words, how is B. thailandensis effectively competing via interference 695 

competition if both C. subtsugae and P. syringae are upregulating machinery for 696 

growth? There is both theoretical [69] and experimental [70] evidence that show how 697 

cells treated with antibiotics stimulate ribosomal production to maintain a sufficient 698 

number of active ribosomes. As previously mentioned, B. thailandensis-produced 699 

bactobolin binds to the ribosome and can inhibit C. subtsugae [33, 59]. We also have 700 

evidence that bactobolin inhibits P. syringae (data not shown). It could be that 701 

bactobolin is stimulating ribosomal production in C. subtsugae and P. syringae as a 702 

survival mechanism to maintain protein production by maintaining enough active 703 
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ribosomes. There also was evidence of B. thailandensis antibiotic efficacy against C. 704 

subtsugae and P. syringae, including general loss of cell viability and upregulation of 705 

various enzymes involved in central metabolism by both members when they were 706 

cocultured with B. thailandensis (https://figshare.com/s/b7f5e559a32cc5c8a61f). These 707 

patterns are consistent with antibiotic treatments in Escherichia coli and Staphylococcus 708 

aureus where the upregulation of oxidative phosphorylation due to drug treatment 709 

contributes to antibiotic efficacy [71, 72]. A barrage of B. thailandensis-produced 710 

antibiotics (Figs. 6 & 7) likely drove the transcriptional patterns in C. subtsugae and P. 711 

syringae.     712 

 Coculturing can induce secondary metabolism [73, 74, 75] because an 713 

exometabolite produced by one microbe can prompt secondary metabolism in a 714 

neighbor [31]. We found that coculturing led to the upregulation of numerous BSGCs in 715 

B. thailandensis. These exometabolites included bactobolin, malleilactone [62, 76; 716 

siderophore and cytotoxin], malleobactin [77, 78; siderophore], capistruin [79; lasso 717 

peptide], thailandamide [80; polyketide], pyochelin [63; siderophore], rhamnolipids [64; 718 

biosurfactants], and two uncharacterized BSGCs encoding nonribosomal peptide 719 

synthetases. Of these exometabolites, bactobolin, capistruin, and thailandamide have 720 

documented antimicrobial activities through translation inhibition [59], transcription 721 

inhibition [60], and inhibition of fatty acid synthesis [61], respectively. For those 722 

exometabolites we were able to identify with mass spectrometry, their accumulation in 723 

cocultures was correlated with the upregulation of their BSGCs. Furthermore, 724 

up/downregulated patterns across all B. thailandensis BSGCs was consistent with 725 

ScmR global regulatory patterns of secondary metabolism [81].  726 
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We acknowledge that this study is limited in its ability to pinpoint the underlying 727 

mechanisms driving the activation of secondary metabolism, particularly in B. 728 

thailandensis. Aside from self-activating mechanisms documented in B. thailandensis 729 

(e.g. quorum-sensing driven bactobolin production) and/or sensing antibiotics and 730 

competitively responding [82], we note two major patterns in exometabolite production 731 

in the monocultures that may have contributed to activation of secondary metabolism in 732 

the cocultures. First, each member released and accumulated a unique set of primary 733 

metabolites over their time series. These exometabolites had relatively reduced 734 

concentrations in their coculture conditions. Second, because our experimental design 735 

included a comparative time point taken during exponential growth, we also identified a 736 

unique set of primary metabolites that had substantially accumulated by 12.5 h. Indeed, 737 

primary metabolites [83] have been documented to induce secondary metabolism in B. 738 

thailandensis. Thus, it is possible that the dynamics observed over stationary phase 739 

could be attributed also to the uptake of exometabolites that were produced earlier in 740 

exponential phase, or to the uptake of accumulated primary metabolites. Instead of 741 

pinpointing single molecule elicitors of secondary metabolism, our systems-level 742 

approach is better used to improve understanding of the environmental and ecological 743 

factors that contribute to member or community success. 744 

C. subtsugae can inhibit B. thailandensis [33] but we did not observe B. 745 

thailandensis inhibition based on cell counts. However, we did find that in stationary 746 

phase C. subtsugae-B. thailandensis cocultures, C. subtsugae upregulated an 747 

uncharacterized hybrid nonribosomal peptide synthetase-type I polyketide synthase. P. 748 

syringae was the least competitive of the three neighbors, as evidenced by a reduction 749 
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in live cell counts when cocultured with B. thailandensis. Also, P. syringae did not 750 

increase competitive strategies when cocultured, as no BSGCs were upregulated 751 

across all coculture conditions. In summary, though all three neighbors had potential to 752 

use competitive strategies and maintained competitive strategies in monoculture [36], B. 753 

thailandensis was most successful in cocultures over stationary phase through 754 

increased production of exometabolites involved in interference and exploitative 755 

competition strategies.  756 

 Given the upregulation of BSGCs in B. thailandensis and the strong 757 

transcriptional responses of C. subtsugae and P. syringae to the presence of B. 758 

thailandensis, we hypothesized that competitive exometabolites were contributing to 759 

their community dynamics. Thus, we used a co-expression network analysis with our 760 

longitudinal transcriptome series to infer interspecies interactions [84]. The use of this 761 

approach was first demonstrated to infer coregulation between a phototroph-heterotroph 762 

commensal pair [85]. Our network confirmed that B. thailandensis BSGCs had 763 

coordinated gene expression patterns with both C. subtsugae and P. syringae. 764 

Interspecies nodes in both networks contained various genes involved in the 765 

upregulated B. thailandensis BSGCs. We focused on interspecies edges within 766 

thailandamide nodes for the B. thailandensis-C. subtsugae network and interspecies 767 

edges within malleilactone nodes for the B. thailandensis-P. syringae network because 768 

these were significantly enriched as interspecies nodes. A C. subtsugae gene of 769 

interest, CLV04_2968, was contained within the thailandamide cluster of interspecies 770 

nodes. This gene codes for a DNA starvation/stationary phase protection protein and 771 

had the highest homology to the Dps protein in Escherichia coli across all C. subtsugae 772 
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protein coding genes. Dps mediates tolerance to multiple stressors and dps knockouts 773 

are more susceptible to thermal, oxidative, antibiotic, iron toxicity, osmotic, and 774 

starvation stressors [86]. Interestingly, CLV04_2968 was downregulated when 775 

cocultured with B. thailandensis, suggesting that B. thailandensis attenuates C. 776 

subtsugae stress tolerance over stationary phase. While we observed a slight decrease 777 

in viable C. subtsugae cells when cocultured with B. thailandensis, one may expect C. 778 

subtsugae to have increased sensitivity to a subsequent stress [e.g. pH stress; 87] 779 

resulting from CLV04_2968 downregulation in the presence of B. thailandensis. 780 

 In the B. thailandensis-P. syringae co-expression network, a P. syringae gene of 781 

interest, PSPTO_1206, was contained within the malleilactone cluster of interspecies 782 

nodes. PSPTO_1206 is annotated as a TonB-dependent siderophore receptor. A P. 783 

syringae iron-acquistion receptor had coordinated expression with malleilactone, which 784 

has been characterized as a siderophore with antimicrobial properties [62]. Interestingly, 785 

this gene was downregulated when in coculture with B. thailandensis. In contrast, the 786 

closest TonB-dependent siderophore receptor homolog to PSPTO_1206 in B. 787 

thailandensis, BTH_I2415, was upregulated in coculture conditions with P. syringae. To 788 

summarize, co-expression network analysis revealed interspecies coordinated gene 789 

expression patterns. Though determining directionality was beyond the scope of this 790 

analysis, we observed B. thailandensis-increased competition strategies were 791 

coordinated with a potential decrease in competition strategies in C. subtsugae via 792 

reduced stress tolerance and in P. syringae with reduced iron acquisition ability.  793 

 One feature of our study is that we adjusted glucose concentration depending on 794 

plate occupancy. Glucose concentration increased as membership increased, but a 795 
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member consistently occupied 31 wells across all experimental conditions. One could 796 

argue that resource concentration contributed to differences in transcripts and 797 

exometabolites and not interspecies interactions. However, DEGs were present when 798 

comparing pairwise coculture conditions and these were attributed to differences in 799 

temporal regulation of COG categories (Fig. S7). More specifically, regarding BSGCs, 800 

an unidentified NRPS was upregulated in B. thailandensis when cocultured with P. 801 

syringae but not when cocultured with C. subtsugae (Fig. 6) and, an unidentified NRPS- 802 

Type I polyketide synthase was upregulated in C. subtsugae when cocultured with B. 803 

thailandensis but not when cocultured with P. syringae (Fig. S11). These differences 804 

occurred in experimental conditions where the glucose concentration was the same. 805 

Furthermore, we performed additional SynCom experiments where we increased the 806 

plate occupancy of B. thailandensis in monoculture while subsequently increasing 807 

resource concentration. Decreased gene expression was observed across all three RT-808 

qPCR tested thailandamide genes as both plate occupancy and resource concentration 809 

increased in B. thailandensis monocultures. These same three genes had increased 810 

gene expression across all cocultures. These findings show that some undefined 811 

exometabolite interspecies interactions were responsible for the increased expression 812 

of a BSGC in B. thailandensis. Overall, we acknowledge that resource concentration 813 

and exometabolite output are intertwined, and subsequent work could test how initial 814 

resource availability determines SynCom outcomes.  815 

 A major goal in microbial ecology is to predict community dynamics for purposes 816 

of modulating and/or maintaining ecosystem function [88, 89]. At its core, microbial 817 

functional properties emerge, in part, from the concerted interactions of multi-species 818 
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assemblages. The SynCom system provides a tractable experimental system to 819 

understand the relationships between exometabolite interactions and environmental 820 

stimuli to inform higher-order community interactions. Higher-order interactions are 821 

those that are unexpected based on interactions observed in simpler situations (e.g., of 822 

member pairs) [90, 91, 92]. Therefore, integrating different system variables, like 823 

transcriptome and metabolome dynamics, within controlled microbial communities will 824 

inform how unexpected phenomena arise and how they contribute to deviations in 825 

predictive models of community outcomes. 826 

Our results indicated that competition strategies were maintained despite 827 

stagnant population growth. B. thailandensis upregulated various bioactive 828 

exometabolites involved in both interference and exploitative competition when with 829 

neighbors. An effective competitor is often defined as by its ability to outcompete 830 

neighbors via growth advantage that stems from efficient nutrient uptake and/or 831 

biomass conversion rates [93, 94]. We add to this that a competitor can also have a 832 

fitness advantage through effective maintenance, which can similarly employ 833 

interference or exploitative competitive strategies despite no net growth. Maintenance 834 

may ensure survival in some environments that impose a stationary phase lifestyle, 835 

where long periods of nutrient depletion are punctuated with short periods of nutrient 836 

flux. In these scenarios, it warrants to understand how competitive strategies are 837 

deployed in the interim of growth and the extent to which these interactions contribute to 838 

long-term community outcomes. Though population levels remain constant, sub-839 

populations of growing cells have been observed in stationary phase [95], and 840 

continued production of competitive exometabolites may serve as an advantageous 841 
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strategy to hinder growth of competitors. In addition, some antibiotics remain effective in 842 

non-replicating bacteria [96]. The ability for continued maintenance via effective 843 

competition strategies during stationary phase may provide spatiotemporal maintenance 844 

of population levels before growth resumption [97]. Alternatively, both growth and non-845 

growth strategies may be occurring simultaneously (e.g. as can occur in biofilms). The 846 

heterogeneity of biofilms may provide an environment where a bacterial population 847 

contains both stationary cells in the center of the colony with growing cells at the 848 

periphery of the colony that compete and alter developmental patterns of neighboring 849 

populations [98, 99]. Thus, we expect that insights into the long-term consequences of 850 

competition for microbial community outcomes will be gained by considering 851 

competition in both active growth and maintenance scenarios.  852 

 853 

Code availability 854 

Computing code, workflows, and data sets are available at 855 

[https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021]. R 856 

packages used during computing analyses included DEseq2 [41], ImpulseDE2 [42], 857 

VennDiagram [43], ggplot2 [44], vegan 2.5-4 [45], RVAideMemoire [46], Minet [50], 858 

rtracklayer [100], viridis [101], and helper functions [102, 103, 104, 105]. 859 

 860 

Data availability 861 

Genomes for B. thailandensis, C. subtsugae, and P. syringae are available at the 862 

National Center for Biotechnology Information (NCBI) under accession 863 

numbers NC_007651 (Chromosome I)/NC_007650 (Chromosome 864 
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II), NZ_PKBZ01000001, and NC_004578 (Chromosome)/NC_004633 (Plasmid 865 

A)/NC_004632 (Plasmid B), respectively. An improved annotated draft genome of C. 866 

subtsugae is available under NCBI BioProject accession 867 

number PRJNA402426 (GenBank accession number PKBZ00000000). Data for 868 

resequencing efforts for B. thailandensis and P. syringae are under NCBI BioProject 869 

accession numbers PRJNA402425 and PRJNA402424, respectively. Metabolomics 870 

data and transcriptomics data are also available at the JGI Genome Portal [106] under 871 

JGI proposal identifier 502921. MZmine XML parameter files for all analyses can be 872 

viewed at and downloaded from GitHub (see Dataset 7 873 

at https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020/t874 

ree/master/Datasets). Large data files (e.g., MZmine project files) are available upon 875 

request. Supplementary files are also available on GitHub 876 

(https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021/tree/maste877 

r/Supplemental_Files). 878 
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Figure 1. Experimental design and destructive sampling procedure of transwell 1332 

plates. There were seven conditions, six time points/condition, and four independent 1333 

replicates/condition (168 total transwell plates). Each member occupied 31 1334 

wells/condition to maintain member-specific population density across all conditions (A). 1335 

The SynCom transwell plate maintains physical separation of members in individual 1336 

wells while permitting exometabolite exchange through a 0.22-μm-pore filter bottom. 1337 

Exometabolite exchange occurs via a bottom-fitted shared medium reservoir (B; [35]). 1338 

Six replicate transwell plates were prepared for a time course experiment. The time 1339 

course experiment included one exponential phase time point and five stationary phase 1340 

time points. At specified time points, a transwell plate was destructively sampled (C). 1341 

Note that all members were diluted to different starting ODs to allow for all members to 1342 

achieve stationary phase within a two-hour window of each other. This figure was 1343 

created with BioRender.com.   1344 
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Figure 2. Loss of cell viability in B. thailandensis cocultures. Live (green) and dead 1347 

(blue) flow cytometry cell counts for C. subtsugae (Top row, panels A-C) and P. 1348 

syringae (Bottom row, panels D-F) from Syto9- and propidium iodide-stained cells (n = 4 1349 

to 5 technical replicates/time point/community membership/transwell plate and n = 4 1350 

independent replicates/time point/community membership). Cell counts are from 1351 

monocultures (panels A & D), cocultures with P. syringae (panel B) or C. subtsugae 1352 

(panel E), and cocultures with B. thailandensis (panels C & F). The bottom and top of 1353 

the box are the first (Q1) and third (Q3) quartiles, respectively, and the line inside the 1354 

box is the median. The whiskers extend from their respective hinges to the largest value 1355 

(top), and smallest value (bottom) was no further away than 1.5× the interquartile range. 1356 

Points represent outliers that are less than 1.5x the interquartile range of Q1 or greater 1357 

than 1.5x the interquartile range of Q3.  1358 
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Figure 3. Transcriptional responses are driven by community membership and 1362 

time. Shown are principal coordinates analysis (PCoA) plots for B. thailandensis (A), C. 1363 

subtsugae (B), and P. syringae (C). Each PCoA sub-panel presents the time series of 1364 

transcriptional patterns of the focal member given each of its 4 growth conditions (one 1365 

monoculture condition, two pairs, and one three-member). Each point represents a 1366 

mean transcript profile for a community member given a particular condition (indicated 1367 

by symbol color) and sampled at a given time point over exponential and stationary 1368 

phases (in hours since inoculation, h, indicated by symbol size, n = 3 to 4 replicates per 1369 

time point/community membership). The Bray-Curtis distance metric was used to 1370 

calculate dissimilarities between transcript profiles. Error bars are 1 standard deviation 1371 

around the mean axis scores. Note that transcriptional responses are driven by 1372 

community membership on PCoA axis 1 and time on PCoA axis 2 across all plots.   1373 
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Figure 4. Bacterial community exometabolite profiles differ by community 1375 

membership and time. Shown are PCoA plots for exometabolite profiles from the 1376 

following mass spectrometry modes: polar positive (A), polar negative (B), nonpolar 1377 

positive (C), and nonpolar negative (D). Each point represents the mean exometabolite 1378 

profile (relative contributions by peak area) given a particular community membership 1379 

(indicated by symbol color) at a particular time point (indicated by symbol size). The 1380 

Bray-Curtis distance metric was used to calculate dissimilarities between exometabolite 1381 

profiles. Error bars are 1 standard deviation around the mean axis scores (n = 2 to 4 1382 

replicates). Bt is B. thailandensis, Cs is C. subtsugae, and Ps is P. syringae. 1383 
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Figure 5. Primary metabolites accumulated in monocultures have altered 1386 

dynamics in cocultures. A heat map of identified, primary metabolites is shown for C. 1387 

subtsugae monoculture (Cs), P. syringae monoculture (Ps), B. thailandensis 1388 

monoculture (Bt), C. subtsugae-P. syringae coculture (CsPs), B. thailandensis-P. 1389 

syringae coculture (BtPs), B. thailandensis-C. subtsugae coculture (BtCs), and the 3-1390 

member community (BtCsPs), where samples are in columns and exometabolites are in 1391 

rows. These exometabolites were filtered based on their time series accumulation in 1392 

monocultures (See supplementary methods for details). Data for each sample are the 1393 

averages from independent time point replicates (n = 3 to 4). Euclidean distance was 1394 

calculated from Z-scored mass spectral profiles. Features with similar dynamics were 1395 

clustered by Ward’s method. 1396 
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Figure 6. B. thailandensis upregulates biosynthetic gene clusters (BSGC) in 1399 

cocultures. Columns represent community membership for B. thailandensis cocultures 1400 

and rows represent BSGCs in B. thailandensis that were determined to be upregulated 1401 

compared to the monoculture control. Genes part of a BSGC were curated from 1402 

antiSMASH predictions and literature-based evidence. Within each BSGC at each time 1403 

point, the log2 fold-change (LFC) was calculated by comparing gene counts from a 1404 

coculture to the monoculture control (n = 3 to 4 LFC calculations/community 1405 

membership/time point). Log2 fold-changes were then averaged from all biosynthetic 1406 

genes within the BSGC at each time point. Error bars indicate standard deviations. We 1407 

defined an upregulated BSGC as a BSGC that had at least two consecutive stationary 1408 

phase time points with a LFCs > 1 (indicated by the horizontal red dashed line). Note 1409 

that plots for each BSGC have separate scales for the Y-axis. 1410 
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Figure 7. Coculture upregulation of BSGCs from B. thailandensis translates to 1412 

temporally accumulated secondary metabolites. Columns represent community 1413 

membership and rows represent identified secondary metabolites in B. thailandensis. 1414 

Known bioactive secondary metabolites produced by B. thailandensis were identified in 1415 

MZmine 2 through the observation of MS and MS/MS data. The accumulation of each 1416 

exometabolite was quantified through time (n = 2 to 4 integrated peak areas per time 1417 

point). The bottom and top of the box are the first (Q1) and third (Q3) quartiles, 1418 

respectively, and the line inside the box is the median. The whiskers extend from their 1419 

respective hinges to the largest value (top), and smallest value (bottom) was no further 1420 

away than 1.5× the interquartile range. Points represent outliers that are less than 1.5x 1421 

the interquartile range of Q1 or greater than 1.5x the interquartile range of Q3. 1422 
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Figure 8. B. thailandensis genes involved in thailandamide production are co-1424 

expressed with C. subtsugae genes. A network module containing the thailandamide 1425 

BSGC is shown (A). The network module nodes are color coded by  according to the 1426 

following criteria: thailandamide biosynthetic genes that had interspecies edges 1427 

(magenta), thailandamide biosynthetic genes that did not have interspecies edges 1428 

(orange), other B. thailandensis genes that were not part of the BSGC (yellow), and 1429 

genes that were from C. subtsugae (blue). The chromosomal organization of the 1430 

thailandamide BSGC is shown below the network module (B). The same colors are 1431 

applied to the BSGC operon. The operon also depicts genes that were not detected 1432 

within the interspecies network, shown in gray. Asterisks indicate core biosynthetic 1433 

genes in the BSGCs, as predicted from antiSMASH. The table (C) shows upregulated 1434 

B. thailandensis BSGCs (Fig. 6) and whether interspecies edges were detected (check 1435 

is yes, x is no). 1436 
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Code and data: 5 
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Supplementary Methods 8 

 9 

This supplementary information contains expanded Materials and Methods. 10 

 11 

RNA-seq 12 

RNA extraction  13 

 RNA was extracted using the E.Z.N.A. Bacterial RNA kit (Omega Bio-tek, Inc.). 14 

An in-tube DNase I (Ambion, Inc AM2222, 2U) digestion was performed to remove DNA 15 

from RNA samples. RNA samples were purified and concentrated using the Qiagen 16 

RNAeasy MinElute Clean up Kit (Qiagen, Inc). Ten random samples were chosen to 17 

assess RNA integrity (RIN > 7) on an Agilent 2100 Bioanalyzer. Standard operating 18 

protocols were performed at the Department of Energy Joint Genome Institute as 19 

previously described [1].  20 

 21 

RNA sample prep, sequencing, QC, read preprocessing, and filtering  22 

 Standard operating protocols were performed at the Department of Energy Joint 23 

Genome Institute as previously described [1].  24 

 25 

Pseudoalignment and counting 26 

 Reads from each library were pseudoaligned to the transcriptome of each 27 

member with kallisto [2]. Raw counts from each library were combined into a gene count 28 

matrix for each member. The gene count matrix was used for downstream analyses. 29 

 30 

 31 



3 
 

KEGG pathway analysis  32 

Log-2 fold changes (LFC) were extracted from DESeq analysis by comparing 33 

each condition at each time point to the exponential-phase time point (12.5 h) in 34 

monoculture. We then mapped longitudinal LFCs onto KEGG pathways for each strain 35 

using the pathview package in R. First, K numbers were assigned to genes for both C. 36 

subtsugae and P. syringae using BlastKOALA (version 2.2). K numbers were not 37 

assigned to B. thailandensis because KEGG identifiers were available. KEGG identifiers 38 

for B. thailandensis and K numbers assigned to C. subtsugae and P. syringae were 39 

used to map longitudinal LFCs onto KEGG pathways. Pathways of interest were 40 

uploaded to FigShare.  41 

 42 

Flow cytometry 43 

 Diluted cultures were stained with the Thermo Scientific LIVE/DEAD BacLight 44 

bacterial viability kit at final concentrations of 1.5 μM Syto9 (live stain) and 2.5 μM 45 

propidium iodide (dead stain). Two hundred microliters of stained cultures were 46 

transferred to a 96-well microtiter U-bottom microplate (Thermo Scientific). Twenty 47 

microliters of sample were analyzed on a BD Accuri C6 flow cytometer (BD 48 

Biosciences) at a fluidics rate of 66 μl/min and a threshold of 500 on an FL2 gate. The 49 

instrument contained the following optical filters: FL1-533, 30 nm; FL2-585, 40 nm; and 50 

FL3, 670-nm longpass. The counting accuracy of the flow cytometer was checked with 51 

green fluorescent protein beads (Thermo Scientific). Data were analyzed using BD 52 

Accuri C6 software version 1.0.264.21 (BD Biosciences). 53 

 54 
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Metabolomics  55 

Normalization and heatmap analysis 56 

 Features were normalized by an ITSD reference feature (see Dataset 5 57 

at https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020/t58 

ree/master/Datasets) and cube root transformed. Reference features for polar analyses 59 

in positive ([13C,15N]proline) and negative ([13C,15N]alanine) modes were determined by 60 

the ITSD with the lowest CV value across all samples. The reference feature for 61 

nonpolar data sets was the ITSD ABMBA. Heat maps were generated in MetaboAnalyst 62 

using Ward’s clustering algorithm with Euclidean distances from Z-scored data. Data for 63 

each sample are the averages from independent time point replicates (n = 2 to 4). The 64 

heatmaps were exported and edited in InkScape for labelling purposes. The normalized 65 

and transformed data sets were exported from MetaboAnalyst to generate principal-66 

coordinate analysis (PCoA) plots in R (see main methods). 67 

 68 

Selection of Metabolomics Standards Initiative (MSI) level 1 primary metabolites for 69 

heatmap analysis 70 

 DOE-JGI provided a feature table containing MSI level 1 identified primary 71 

metabolites from their in-house curated reference database. The metabolites were only 72 

identified from polar positive and polar negative analyses. The m/z and retention times 73 

(RT) provided by DOE-JGI were used to identify these metabolites from our feature 74 

table after MZmine 2 analysis. Internal standards, [13C,15N]proline and [13C,15N]alanine 75 

were added to the polar positive feature table and polar negative feature table, 76 

respectively. Each feature table, containing all 7 conditions, was uploaded to 77 
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MetaboAnalyst. Features were normalized by ITSD and cube root transformed. Each 78 

feature table was exported and combined. Then, the feature table was split by each 79 

member, meaning 3 feature tables were created containing 4 conditions each (1 80 

monoculture, 2 pairwise cocultures, and 1, 3-member community). These normalized 81 

and log transformed feature tables were re-uploaded to MetaboAnalyst for heatmap 82 

analysis.  83 

Heat maps were generated in MetaboAnalyst using Ward’s clustering algorithm with 84 

Euclidean distances from Z-scored data. The dendrograms from each analysis were 85 

manually inspected to select clusters of primary metabolites that met the following 86 

criteria for each member: 1) accumulated over the time series in monoculture or 2) 87 

accumulated substantially in the exponential phase time point in monoculture compared 88 

to the stationary phase time points in monoculture. Primary metabolites that met criteria 89 

1 were filtered from the normalized and log transformed MSI level 1 feature table and 90 

primary metabolites that met criteria 2 were filtered from the normalized and log 91 

transformed MSI level 1 feature table, separately. These filtered feature tables, 92 

containing all 7 conditions, were re-uploaded to MetaboAnalyst for heatmap analysis. 93 

Heat maps were generated in MetaboAnalyst using Ward’s clustering algorithm with 94 

Euclidean distances from Z-scored data. The heatmaps were exported and edited in 95 

InkScape for labeling purposes. 96 

 97 

 98 

Effects of plate occupancy and resource concentration on gene expression 99 

SynCom experiments 100 
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We designed an additional experiment to determine whether the observed 101 

dynamics in exometabolites and transcription could be attributed solely to population 102 

density given resource availability, rather than to interspecies interactions. Additional 103 

SynCom experiments (6 conditions, 3 replicates/condition), were prepared as described 104 

(see methods section: Bacterial strains and culture conditions and Synthetic Community 105 

Experiments). The conditions varied based on plate occupancy (# of wells occupied by 106 

each member) and resources (% glucose) in the transwell plate. The conditions were as 107 

follows:  B. thailandensis (31 wells) in M9-0.067% glucose, B. thailandensis (62 wells) in 108 

M9-0.13% glucose, B. thailandensis (93 wells) in M9-0.2% glucose, B. thailandensis-C. 109 

subtsugae (31 wells/member) in M9-0.13% glucose, B. thailandensis- P. syringae (31 110 

wells/member) in M9-0.13% glucose, and B. thailandensis-C. subtsugae- P. syringae 111 

(31 wells/member) in M9-0.2% glucose. Plates were destructed after 45 h incubation 112 

and the following procedures were performed: 1) Wells containing spent culture from 113 

each member were separately pooled into 15 mL conical tubes, flash frozen in liquid 114 

nitrogen, and stored at -80 until further processing. 2) Spent medium (~31 ml) from the 115 

shared reservoir was transferred to 50 mL conical tubes, flash-frozen in liquid nitrogen 116 

and stored at −80 °C.  117 

 118 

RNA extraction, QC, and cDNA synthesis 119 

RNA was extracted using the E.Z.N.A. Bacterial RNA kit (Omega Bio-tek, Inc.). 120 

An in-tube DNase I (Ambion, Inc. AM2222, 2U) digestion was performed to remove 121 

DNA from RNA samples. RNA samples were purified and concentrated using the 122 

Qiagen RNAeasy MinElute Clean up Kit (Qiagen, Inc.). RNA samples were quantified 123 
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on a Qubit using the RNA High Sensitivity Assay Kit (Thermo Fisher Scientific, Inc.). 124 

RNA samples were then sent to the RTSF Genomics Core at Michigan State University 125 

for high sensitivity RNA ScreenTape analysis on an Agilent 4200 TapeStation. 126 

TapeStation analysis confirmed successful digestion of DNA. Total RNA (150 127 

ng/sample) was synthesized to cDNA using the Invitrogen SuperScript III First-Strand 128 

Synthesis kit (Thermo Fisher Scientific, Inc.). cDNA samples were quantified by Qubit in 129 

preparation of target genes for RT-qPCR.  130 

Three genes from the B. thailandensis thailandamide operon were targeted for 131 

relative quantification normalized to the rpoD reference gene. Primers used for RT-132 

qPCR are shown in Table S12. We first confirmed amplification of intended targets. 133 

Each of these genes were amplified from B. thailandensis gDNA (100 ng) using the 134 

Phusion High-Fidelity DNA Polymerase (New England Biolabs, Inc.) with the following 135 

conditions: 98 oC (30 s), 30 cycles of 98 oC (10 s), 59 oC (10 s), and 72 oC (10 s), and a 136 

final extension at 72 oC (5 min). PCR products were run on gel (100 V for 50 min) and 137 

gel extracted and purified using the Wizard SV Gel and PCR Clean-Up System 138 

(Promega Corporation). PCR amplified and purified products of rpoD, thaF, thaK, and 139 

thaQ were sent to the RTSF Genomics Core at Michigan State University for Sanger 140 

sequencing. 141 

RT-qPCR assays were performed using the SsoAdvanced Universal SYBR 142 

Green Supermix (Bio-Rad Laboratories, Inc.). SYBR reactions were placed into Hard-143 

Shell PCR Plates 96-well, thin wall (Bio-Rad Laboratories, Inc. HSP9601) and analyzed 144 

using a CFX Connect Real-Time System (Bio-Rad Laboratories, Inc.). First, the 145 

dynamic range of each primer set was determined by making a 10-fold dilution series 146 
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from 10 ng-0.1 pg of cDNA. The following mixture was used for each RT-qPCR assay: 147 

10 µL SsoAdvanced universal SYBR Green supermix (2x), 0.5 µL each of forward and 148 

reverse primers, 1 µL water, and 8 µL cDNA sample (6 serially diluted samples 149 

concentrated between 1.25E-5 and 1.25 ng/uL). The RT-qPCR reaction was run with 150 

the following conditions: 95 oC (3 min), 40 cycles of 95 oC (10 s), 59 oC (10 s), and 72 151 

oC (10 s). Following the last extension step, the melt curve was run with the following 152 

conditions: 95 oC (10 s), then 65 oC to 95 oC in 0.5 oC increments. Each primer set had 153 

a 5-fold dynamic range (10 ng-10 pg) with efficiencies between 90-110% (Table S13) 154 

The Δslope between the reference gene and each target gene were all ≤0.1, confirming 155 

that relative gene expression math models were a viable option for comparing gene 156 

expression across conditions. 157 

cDNA concentrations across all conditions were diluted to a stock concentration 158 

of 0.0125 ng/uL. RT-qPCR reactions and conditions were prepared and run as 159 

previously described. Controls for the assay included a gDNA positive control, a no 160 

template negative control, and a no amplification (no-RT) negative control. The Livak 161 

method (2-ΔΔCT) was used to calculate relative gene expression in each test condition 162 

compared to the reference condition (B. thailandensis, 31 wells in M9-0.067% glucose) 163 

where target genes were thaF, thaK, and thaQ and the reference gene was rpoD. 164 

 165 
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 202 
Figure S1. Cell viability of SynCom members. Live (green) and dead (blue) flow cytometry cell counts 203 
for B. thailandensis in monoculture and pairwise cocultures (Top row, panels A-C) and for each member 204 
in the 3-member community (Bottom row, panel D; B. thailandensis, panel E; C. subtsugae, panel F; P. 205 
syringae). Cells were stained with Syto9- and propdium iodide (n = 4 to 5 wells/time point/community 206 
membsership/transwell plate and n=4 independent replicates/time point/community membership). The 207 
bottom and top of the box are the first (Q1) and third (Q3) quartiles, respectively, and the line inside the 208 
box is the median. The whiskers extend from their respective hinges to the largest value (top), and 209 



13 
 

smallest value (bottom) was no further away than 1.5× the interquartile range. Points represent outliers 210 
that are less than 1.5x the interquartile range of Q1 or greater than 1.5x the interquartile range of Q3.   211 
  212 
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 213 
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Figure S2. Differential gene expression patterns across community memberships. Venn diagram 214 
plots of differentially expressed genes in A) B. thailandensis B) C. subtsugae and C) P. syringae. 215 
Differential gene expression was determined using ImpulseDE2 comparing longitudinal gene expression 216 
to a monoculture control (FDR-corrected cutoff of 0.01). Bt- B. thailandensis, Cs- C.subtsugae, and Ps – 217 
P. syringae.  218 

  219 
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 220 
Figure S3. B. thailandensis RNA-seq transcript dissimilarity through time. Bray-Curtis dissimilarities 221 
were calculated for each coculture condition compared to the monoculture condition at each time point 222 
(n= 3-4 replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3) 223 
quartiles, respectively, and the line inside the box is the median. The whiskers extend from their 224 
respective hinges to the largest value (top), and smallest value (bottom) was no further away than 1.5× 225 
the interquartile range. Points represent outliers that are less than 1.5x the interquartile range of Q1 or 226 
greater than 1.5x the interquartile range of Q3.   227 
 228 

 229 

  230 
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 231 
Figure S4. C. subtsugae RNA-seq transcript dissimilarity through time. Bray-Curtis dissimilarities 232 
were calculated for each coculture condition compared to the monoculture condition at each time point 233 
(n= 3-4 replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3) 234 
quartiles, respectively, and the line inside the box is the median. The whiskers extend from their 235 
respective hinges to the largest value (top), and smallest value (bottom) was no further away than 1.5× 236 
the interquartile range. Points represent outliers that are less than 1.5x the interquartile range of Q1 or 237 
greater than 1.5x the interquartile range of Q3.   238 
 239 

 240 

  241 
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 242 
Figure S5. P. syringae RNA-seq transcript dissimilarity through time. Bray-Curtis dissimilarities were 243 
calculated for each coculture condition compared to the monoculture condition at each time point (n= 3-4 244 
replicates/condition/time point). The bottom and top of the box are the first (Q1) and third (Q3) quartiles, 245 
respectively, and the line inside the box is the median. The whiskers extend from their respective hinges 246 
to the largest value (top), and smallest value (bottom) was no further away than 1.5× the interquartile 247 
range. Points represent outliers that are less than 1.5x the interquartile range of Q1 or greater than 1.5x 248 
the interquartile range of Q3.   249 
 250 

 251 

 252 

  253 
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Figure S6. Patterns of transcriptional regulation reveal biological responses of community 255 
members to different community memberships. Differentially expressed genes categorized by COG 256 
categories in A) B. thailandensis B) C. subtsugae and C) P. syringae. These DEGs were determined by 257 
comparing each coculture conditions to the monoculture control. COG categories include: [C] Energy 258 
production and conversion, [D] Cell cycle control, cell division, chromosome partitioning, [E] Amino acid 259 
transport and metabolism, [F] Nucleotide transport and metabolism, [G] Carbohydrate transport and 260 
metabolism, [H] Coenzyme transport and metabolism, [I] Lipid transport and metabolism, [J] Translation, 261 
ribosomal structure and biogenesis, [K] Transcription, [L] Replication, recombination and repair, [M] Cell 262 
wall/membrane/envelope biogenesis, [N] Cell motility, [O] Post-translational modification, protein turnover, 263 
and chaperones, [P] Inorganic ion transport and metabolism, [Q] Secondary metabolites biosynthesis, 264 
transport, and catabolism, [S] Function unknown, [T] Signal transduction mechanisms, [U] Intracellular 265 
trafficking, secretion, and vesicular transport, and [V] Defense mechanisms. Community memberships are 266 
as follows: B. thailandensis-P. syringae coculture (BtPs/PsBt), B. thailandensis-C. subtsugae coculture 267 
(BtCs/CsBt), C. subtsugae-P. syringae coculture (CsPs/PsCs), and the 3-member community 268 
(BtCsPs/CsPsBt/PsBtCs).  269 

 270 
  271 
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Figure S7. Patterns of transcriptional regulation reveal pairwise coculture-specific differences. 273 
Differentially expressed genes categorized by COG categories in A) B. thailandensis B) C. subtsugae and 274 
C) P. syringae. These DEGs were determined by comparing gene expression between pairwise 275 
cocultures for each member. Analyses were as follows: BtCs-BtPs; B. thailandensis coculture with C. 276 
subtsugae (case) was compared to B. thailandensis coculture with P. syringae (control), CsBt-CsPs; C. 277 
subtsugae coculture with B. thailandensis (case) was compared to C. subtsugae coculture with P. 278 
syringae (control), and PsBt-PsCs; P. syringae coculture with B. thailandensis (case) was compared to P. 279 
syringae coculture with C, subtsugae (control). COG categories are labeled in the Figure S6 legend.  280 

 281 
 282 

 283 

  284 
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 285 
 286 
 287 
Figure S8. Exometabolites have membership-specific production and temporal accumulation. A 288 
heat map of coculture accumulated exometabolites is shown for polar positive (A), polar negative (B), 289 
nonpolar positive (C), and nonpolar negative (D) modes, for C. subtsugae monoculture (Cs), P. syringae 290 
monoculture (Ps), B. thailandensis monoculture (Bt), C. subtsugae-P. syringae coculture (CsPs), B. 291 
thailandensis-P. syringae coculture (BtPs), B. thailandensis-C. subtsugae coculture (BtCs), and the 3-292 
member community (BtCsPs), where samples are in columns and exometabolites are in rows. Data for 293 
each sample are the averages from independent time point replicates (n = 2 to 4). Euclidean distance was 294 
calculated from Z-scored mass spectral profiles. Features with similar dynamics were clustered by Ward’s 295 
method. 296 
  297 
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 298 

 299 

 300 

 301 

 302 
Figure S9. Identified exometabolites with exponential phase accumulation. A heat map of 303 
exometabolite dynamics is shown for identified metabolites with exponential phase accumulation (time 304 
point 12.5 h) determined from C. subtsugae monoculture (Cs), P. syringae monoculture (Ps), and B. 305 
thailandensis monoculture (Bt), Temporal dynamics for these exometabolites were then plotted for C. 306 
subtsugae-P. syringae coculture (CsPs), B. thailandensis-P. syringae coculture (BtPs), B. thailandensis-307 
C. subtsugae coculture (BtCs), and the 3-member community (BtCsPs), where samples are in columns 308 
and exometabolites are in rows. Data for each sample are the averages from independent time point 309 
replicates (n = 2 to 4). Euclidean distance was calculated from Z-scored mass spectral profiles. Features 310 
with similar dynamics were clustered by Ward’s method. 311 
  312 
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313 
Figure S10. BSGC downregulated or unaltered in B. thailandensis. Biosynthetic genes involved in 314 
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each BSGC were determined with antiSMASH and evidence from literature. At each time point, the 315 
average log2 fold-change (LFC) was determined across all biosynthetic genes for each BSGC. The 316 
horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales for 317 
the Y-axis. 318 

 319 

 320 

  321 



27 
 

322 
Figure S11. Patterns of transcriptional regulation for BSGC in C. subtsugae. Biosynthetic genes 323 
involved in each BSGC were determined with antiSMASH and evidence from literature. At each time 324 
point, the average log2 fold-change (LFC) was determined across all biosynthetic genes for each BSGC. 325 
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The horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales 326 
for the Y-axis. 327 
 328 

  329 
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 330 

331 
Figure S12. Patterns of transcriptional regulation for BSGC in P. syringae. Biosynthetic genes 332 
involved in each BSGC were determined with antiSMASH and evidence from literature. At each time 333 
point, the average log2 fold-change (LFC) was determined across all biosynthetic genes for each BSGC. 334 
The horizontal line represents a LFC threshold of 1. Note that plots for each BSGC have separate scales 335 
for the Y-axis. 336 
  337 
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 338 

 339 

340 
Figure S13. Flow diagram for interspecies co-expression network analysis. An interspecies 341 
coexpression network was created based on transcript counts from B. thailandensis-C. subtsugae and B. 342 
thailandensis-P. syringae cocultures. All genes that passed initial quality filtering were included in the 343 
analysis to generate networks. Unweighted gene coexpression networks were generated with a Z-score 344 
cutoff of 4.5. Intraspecies genes were used to identify network modules. Gene ontology enrichment 345 
analysis was performed on nodes with interspecies edges.  346 

  347 
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 348 

349 
Figure S14. B. thailandensis genes involved in malleilactone production are detected as 350 
interspecies edges in the B. thailandensis-P. syringae coexpression network and biosynthetic 351 
genes organize into network modules. A network module containing the malleilactone BSGC is shown. 352 
The network module nodes are color coded by B. thailandensis gene type (BSGC or not) and type of 353 
connections (interspecies or not): malleilactone biosynthetic genes that had interspecies edges 354 
(magenta), malleilactone biosynthetic genes that did not have interspecies edges (orange), or other 355 
genes that were not part of the BSGC (yellow); as well as genes that were from P. syringae (green). The 356 
chromosomal organization of the malleilactone BSGC is shown below the network module. The same 357 
colors are applied to the BSGC operons. Asterisks indicate core biosynthetic genes in the BSGCs, as 358 
predicted from antiSMASH. 359 

  360 
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 361 

 362 
Figure S15. The DNA starvation/stationary phase protection gene, dpsA, in downregulated in C. 363 
subtsugae when cocultured with B. thailandensis while unaltered in B. thailandensis. Transcript 364 
abundance trajectories of dpsA are plotted for C. subtsugae (A) and B. thailandensis (B). Time course 365 
scatter plots were smooth curve fitted by loess (n=3-4 replicates/condition/time point). Community 366 
memberships are as follows: B. thailandensis monoculture (Bt; orange), C. subtsugae monoculture (Cs; 367 
blue), C. subtsugae-P. syringae coculture (CsPs; light blue), B. thailandensis-P. syringae coculture (BtPs; 368 
yellow), B. thailandensis-C. subtsugae coculture (BtCs; purple), and the 3-member community (BtCsPs; 369 
black).  370 

  371 
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 372 

 373 
Figure S16. The gene encoding a TonB-dependent siderophore receptor is downregulated in P. 374 
syringae when cocultured with B. thailandensis while upregulated in B. thailandensis. Transcript 375 
abundance trajectories of tonB are plotted for P. syringae (A) and B. thailandensis (B). Time course 376 
scatter plots were smooth curve fitted by loess (n = 3-4 replicates/condition/time point). Community 377 
memberships are as follows: B. thailandensis monoculture (Bt; orange), P. syringae monoculture (Ps; 378 
green), C. subtsugae-P. syringae coculture (CsPs; light blue), B. thailandensis-P. syringae coculture 379 
(BtPs; yellow), B. thailandensis-C. subtsugae coculture (BtCs; purple), and the 3-member community 380 
(BtCsPs; black).   381 
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Supplementary Table S1. Percent variation explained on the effect of membership, 382 

time, and their interaction on transcriptomic profiles.  383 

 Membership Time Membership x Time 
B. thailandensis 46.26 13.24 63.11 
C. subtsugae 60.60 3.88 68.29 
P. syringae 77.03 0.00 81.40 

 384 

  385 
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Supplementary Table S2. Summary of Protest analyses comparing transcriptional 386 
profiles through time across independent replicates. Coordinates of the first two PCA 387 
axes were used to perform Protest analyses. Ranges reflect separate Protest analyses 388 
performed between all replicates in a community membership. Values in parenthesis 389 
represent the median P value. 390 

 m12 R P 
B. thailandensis    
Monoculture 0.048 – 0.820 0.424 – 0.976 0.010 – 0.867 (0.200) 
P. syringae coculture 0.018 – 0.049 0.975 – 0.991 0.001 – 0.001 (0.001) 
C. subtsugae coculture 0.010 – 0.112 0.943 – 0.995 0.001 – 0.003 (0.001) 
3-member 0.013 – 0.162 0.916 – 0.994 0.001 – 0.006 (0.001) 
C. subtsugae    
Monoculture 0.011 – 0.140 0.927 – 0.995 0.004 – 0.067 (0.039) 
P. syringae coculture 0.045 – 0.206 0.891 – 0.977 0.003 – 0.042 (0.008) 
B. thailandensis coculture 0.091 – 0.182 0.905 – 0.954 0.001 – 0.108 (0.019) 
3-member 0.190 – 0.543 0.676 – 0.900 0.001 – 0.208 (0.013)  
P. syringae    
Monoculture 0.178 – 0.538 0.680 – 0.907 0.008 – 0.136 (0.054)  
C. subtsugae coculture 0.035 – 0.251 0.865 – 0.982 0.001 – 0.083 (0.021) 
B. thailandensis coculture 0.021 – 0.290 0.843 – 0.990 0.001 – 0.001 (0.001) 
3-member 0.034 – 0.687 0.560 – 0.983 0.007 – 0.317 (0.038) 

 391 

  392 
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Supplementary Table S3. PERMANOVA results calculated on independently 393 
replicated time series within members across all community memberships. 394 
PERMANOVA results are presented as P values, R2 values, and pseudo-F statistic 395 
results in the first row. Post-hoc pairwise PERMANOVA results are presented below the 396 
first row. 397 

 B. thailandensis C. subtsugae P. syringae 
adonis       P = 0.001, 

R2 = 0.480, 
F = 27.686 

P = 0.001,  
 R2 = 0.619, 

           F= 47.15 

P = 0.001, 
 R2 = 0.778, 
F= 107.21 

Monoculture vs 
    B. thailandensis coculture - 0.002 0.001 

Monoculture vs 
    C. subtsugae coculture 0.001 - 0.001 

Monoculture vs 
    P. syringae coculture 0.001 0.010 - 
Monoculture vs 
    3-member 0.001 0.002 0.001 

B. thailandensis coculture vs  
    C. subtsugae coculture - - 0.001 

B. thailandensis coculture vs  
    P. syringae coculture - 0.002 - 

C. subtsugae coculture vs 
    P. syringae coculture 0.001 - - 

B. thailandensis coculture vs  
    3-member - 0.248 0.068 

C. subtsugae coculture vs 
    3-member 0.001 - 0.001 
P. syringae coculture vs 
    3-member 0.001 0.002 - 

 398 

  399 
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Supplementary Table S4. Percent variation explained on the effect of membership, 400 

time, and their interaction on exometabolite profiles.  401 

 Membership Time Membership x Time 
Polar Positive 45.76 7.26 55.89 
Polar Negative 51.61 4.12 58.83 
Nonpolar Positive 56.92 9.49 71.88 
Nonpolar Negative 64.77 7.94 79.38 

 402 

  403 
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Supplementary Table S5. Summary of Protest analyses comparing exometabolite 404 

composition through time across independent replicates. Coordinates of the first two 405 

PCoA axes were used to perform Protest analyses. Ranges reflect separate Protest 406 

analyses performed for each polarity (polar/nonpolar) and ionization mode 407 

(positive/negative). 408 

 m12 R P 
C. subtsugae-P. syringae coculture 0.022 – 0.906 0.307 – 0.989 0.001 – 0.849 (0.025) 
B. thailandensis-P. syringae coculture 0.015 – 0.592 0.638 – 0.992 0.001 – 0.667 (0.050) 
B. thailandensis-C. subtsugae coculture 0.003 – 0.456 0.738 – 0.995 0.001 – 0.250 (0.003) 
3-member community 0.021 – 0.556 0.667 – 0.990 0.001 – 0.133 (0.003) 

 409 

  410 
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Supplementary Table 6. PERMANOVA results calculated on independently replicated 411 

time series across coculture community memberships. PERMANOVA results are 412 

presented as P values, R2 values, and pseudo-F statistic results in the first row. Post-413 

hoc pairwise PERMANOVA results are presented below the first row. 414 

 Polar 
Positive 

Polar 
Negative 

Nonpolar 
Positive 

Nonpolar 
Negative 

adonis 
P = 0.001, 
R2 = 0.475, 
F = 27.711 

P = 0.001, 
R2 = 0.531, 
F = 34.773 

P = 0.001 
R2 = 0.585, 
F = 37.549 

P = 0.001,   
R2 = 0.662, 
F = 45.743 

B. thailandensis-C. subtsugae coculture vs  
    C. subtsugae-P. syringae coculture 0.001 0.001 0.001 0.001 

B. thailandensis-C. subtsugae coculture vs  
    B. thailandensis- P. syringae coculture   0.001 0.001 0.001 0.001 

B. thailandensis- P. syringae coculture vs 
    C. subtsugae-P. syringae coculture 0.001 0.001 0.001 0.001 
3-member community vs  
    C. subtsugae-P. syringae coculture 0.001 0.001 0.001 0.001 

3-member community vs  
    B. thailandensis- P. syringae coculture   0.001 0.001 0.001 0.001 

3-member community vs  
    B. thailandensis-C. subtsugae coculture 0.002 0.008 0.019 0.025 

 415 
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Supplementary Table S7. Number of predicted biosynthetic gene clusters (BSGCs, 417 

first row) followed by the quantity of upregulated BSGCs in cocultures.  418 

 B. thailandensis C. subtsugae P. syringae 
Predicted BSGCs 28 14 10 
C. subtsugae-P. syringae coculture - 0 0 
B. thailandensis-P. syringae coculture 8 - 0 
B. thailandensis-C. subtsugae coculture 10 1 - 
3-member community 11 1 0 

 419 
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Supplementary Table S8. One-way ANOVAa comparing the quantitation of identified 421 
secondary metabolites between community memberships with B. thailandensis 422 
membership.  423 

 Df (between) Df (within) F value p 
Bactobolin 6 160 392.10 <2e-16 
Capistruin 6 160 77.83 <2e-16 
Melleilactone 6 121 150.10 <2e-16 
Rhamnolipidb 6 136 39.34 <2e-16 
Thailandamide 6 121 61.02 <2e-16 
Pyochelin 6 136 105.20 <2e-16 

aFormula: aov(formula = log(Value) ~ Membership, data = .) 424 
bRhamnolipid congener Rha-Rha-C14-C14 425 
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Supplementary Table S9. TukeyHSD post-hoc results comparing quantitation of 427 
identified secondary metabolites between community memberships with B. 428 
thailandensis membership. Values represent the adjusted P-value.  429 

 Bactobolin Capistruin Melleilactone Rhamnolipida Thailandamide Pyochelin 
Monoculture vs     
P. syringae       
coculture 

8.41E-01 8.00E-07 4.00E-07 2.26E-01 1.25E-04 4.85E-01 

Monoculture vs      
C. subtsugae 
coculture 

3.54E-01 8.45E-02 < 1.00E-07 2.53E-02 < 1.00E-07 8.55E-01 

Monoculture vs 
3-member 8.27E-01 5.00E-07 < 1.00E-07 1.00E-05 < 1.00E-07 7.13E-04 
C. subtsugae 
coculture vs    
P. syringae 
coculture 

8.38E-01 6.48E-03 5.45E-02 7.68E-01 9.27E-03 9.11E-01 

P. syringae 
coculture vs    
3-member 

3.28E-01 9.99E-01 1.00E-07 6.50E-03 4.32E-03 4.24E-02 

C. subtsugae 
coculture vs    
3-member 

6.08E-02 4.20E-03 1.76E-03 7.76E-02 9.97E-1 6.20E-03 

aRhamnolipid congener Rha-Rha-C14-C14 430 
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Supplementary Table S10. Relative gene expression of genes in the thailandamide 432 

operon across different SynCom conditions. B. thailandensis (31 wells) in M9-0.067% 433 

glucose was the control condition and rpoD was the reference gene.  434 

  thaF thaK thaQ 

Bt (62 wells)  0.523 0.550 0.650 

Bt (93 wells) 0.303 0.138 0.188 

Bt-Ps (31 wells/member) 1.311 1.675 2.163 

Bt-Cv (31 wells/member) 2.375 2.304 1.05 

Bt-Cv-Ps (31 wells/member) 2.048 2.433 1.742 

 435 
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Supplementary Table S11. Network summary results from interspecies coexpression 437 

networks. 438 

Network B. thailandensis-C. subtsugae B. thailandensis-P. syringae 
Member B. thailandensis C. subtsugae B. thailandensis P. syringae 

Total nodes 2701 2043 3254 3478 
Nodes with only 
intraspecies 
edges 

2418 1814 2749 2996 

Nodes with 
interspecies 
edges 

283 229 505 482 

Total edges 9382 7240 15801 23319 
Intraspecies 
edges 

9074 6932 15056 22574 

Interspecies 
edges 

308 745 
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Supplementary Table S12. Primers used for RT-qPCR analysis of genes in the 441 

thailandamide operon.  442 

Primer Sequence (5’ > 3’) Product size (bps) Reference 

rpoD_F ACCGTCGTGGCTACAAATTC 
 

117 
[3] 

 
rpoD_R TCGTCTCGATCATGTGAACC 

 

thaF_F CATGCACGCGTTTCTGTTTC 
113 This study 

thaF_F TCGTAGCCCAAGATCTCGTT 

thaK_F GGTATTGAGGCCATGAACGT 
104 This study 

thaK_F CATCAGCAGATTCGCGAAAC 

thaQ_F GAACGCGTCGAAGGATTTTC 
115 This study 

thaQ_F ATTCGTTCGGGTACTTCTGC 

 443 
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Supplementary Table S13. RT-qPCR efficiencies of reference and target genes for 445 

relative expression analysis of genes in the thailandamide operon. 446 

Gene Slope R2 Efficiency (%) 

rpoB -3.424 0.999 102.6 

thaF -3.204 0.996 105.2 

thaK -3.358 0.995 98.5 

thaQ -3.305 0.997 100.7 

 447 

 448 

 449 


