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1   |   INTRODUCTION

Spoken language poses a complex computational problem 
for listeners, and in turn, for researchers interested in the 
neurobiology of language. In order to perceive speech, lis-
teners must map continuous acoustic cues onto linguistic 
categories (Holt & Lotto, 2010), deal with considerable vari-
ability across contexts (Hillenbrand et  al.,  1995; Jongman 
et  al.,  2000), integrate multiple cues in real time (Galle 
et al., 2019; Toscano & McMurray, 2012), and combine those 
cues with higher-level linguistic information (Andruski 

et al., 1994; Connine, 1987, 1990). Because there is immense 
variability in speech at multiple levels, listeners must cope 
with these issues from the earliest stages of language pro-
cessing—during initial perceptual encoding.

One of the major challenges in elucidating the mech-
anisms supporting perceptual encoding of speech sounds 
is the issue of time. Spoken language comprehension 
unfolds rapidly, necessitating measures with millisec-
ond-scale precision. Recent work using the event-related 
potential (ERP) technique has offered a solution to this 
problem (see Getz & Toscano, 2021, for a recent review). 
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Abstract
Machine learning techniques have proven to be a useful tool in cognitive neuro-
science. However, their implementation in scalp-recorded electroencephalogra-
phy (EEG) is relatively limited. To address this, we present three analyses using 
data from a previous study that examined event-related potential (ERP) responses 
to a wide range of naturally-produced speech sounds. First, we explore which fea-
tures of the EEG signal best maximize machine learning accuracy for a voicing 
distinction, using a support vector machine (SVM). We manipulate three dimen-
sions of the EEG signal as input to the SVM: number of trials averaged, number 
of time points averaged, and polynomial fit. We discuss the trade-offs in using 
different feature sets and offer some recommendations for researchers using ma-
chine learning. Next, we use SVMs to classify specific pairs of phonemes, finding 
that we can detect differences in the EEG signal that are not otherwise detectable 
using conventional ERP analyses. Finally, we characterize the timecourse of pho-
netic feature decoding across three phonological dimensions (voicing, manner 
of articulation, and place of articulation), and find that voicing and manner are 
decodable from neural activity, whereas place of articulation is not. This set of 
analyses addresses both practical considerations in the application of machine 
learning to EEG, particularly for speech studies, and also sheds light on current 
issues regarding the nature of perceptual representations of speech.
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Toscano et al. (2010) demonstrated that the auditory N1, 
an early cortical response reflecting sensory process-
ing, indexes graded changes along an acoustic dimen-
sion, independently of listeners' phonological categories. 
Subsequent work has demonstrated that early cortical 
responses can be influenced by top-down information 
from context in cases where acoustic cues are ambiguous 
(Getz & Toscano, 2019; Noe & Fischer-Baum, 2020; Sarrett 
et  al.,  2020). This suggests that, at the earliest stages of 
perceptual processing, listeners' initial encoding of speech 
sounds reflects continuous acoustic cues, and that this en-
coding can be flexibly influenced by feedback from high-
er-level linguistic information.

Despite progress in understanding the neural basis 
of perceptual encoding, we still do not fully understand 
how the brain carries out these processes. One reason for 
this is that conventional ERP analyses (e.g., mean ampli-
tude of specific ERP components, measured at specific 
electrodes) may only capture some of the perceptual dis-
tinctions in speech that researchers are interested in.

The current study aims to address this problem using 
machine learning techniques to decode the information 
available in the ERP response across multiple electrode 
sites and from multiple time points, providing a more sen-
sitive measure than traditional ERP analyses. In doing so, 
we explore how best to apply decoding techniques to this 
issue, combining perspectives that have used machine 
learning to decode information in scalp electroenceph-
alography (EEG; Bae & Luck,  2018), intracranial EEG 
(iEEG; Rhone et  al.,  submitted), and functional mag-
netic resonance imaging (fMRI; Haxby et al., 2001). This 
provides a set of best practices that can be considered in 
future work studying speech perception and spoken lan-
guage processing.

In the following sections, we review previous work on 
speech perception and speech sound encoding that sets up 
the problems we aim to address, and describe prior work 
that uses machine learning techniques to decode infor-
mation from neurophysiological data. We then present 
a series of analyses using data from Pereira et al. (2018), 
which investigated speech sound encoding using scalp-re-
corded EEG across a range of phonological contrasts in 
natural speech. Results are discussed in terms of their im-
plications for understanding the neurobiology of speech 
perception and applications of machine learning tech-
niques to future work.

1.1  |  Perceptual representations of 
speech sounds

Speech sounds can be defined along a number of differ-
ent dimensions (Jakobson et  al.,  1953; Ladefoged,  1996; 

Stevens,  2000). For instance, the dimensions of voicing, 
manner of articulation, and place of articulation are typi-
cally used to classify consonant sounds. Voicing refers to 
whether or not a given sound is produced concurrent with 
the vibration of the vocal folds (e.g. /b/ is voiced, /p/ is 
voiceless). Place of articulation refers to the location in the 
vocal tract where a constriction or obstruction is made to 
produce a consonant (e.g. /b/ is a voiced bilabial stop con-
sonant, produced with the lips; /d/ is voiced alveolar stop 
consonant, produced with the tongue hitting the alveolar 
ridge). Finally, manner is based on the interaction be-
tween the articulators and the type of airflow that creates 
a given speech sound (e.g. /b/ is a stop, which completely 
obstructs the airflow; /m/ is a nasal, which redirects air-
flow through the nose).

A longstanding theoretical issue in speech perception 
concerns the nature of acoustic cues that provide the 
listener with information about these features. A single 
cue value can map to multiple different speech sounds, 
depending on surrounding context. For example, the 
primary cue to distinguish voicing for stop consonants 
is Voice Onset Time (VOT; Lisker & Abramson,  1964). 
Shorter VOTs signal voiced phonemes, such as /b,d,g/, 
whereas longer VOTs signal voiceless phonemes, like 
/p,t,k/. For example, in English, voiced bilabial stops (/b/) 
typically have VOTs around 0 ms and voiceless bilabial 
stops (/p/) have VOTs around 50 ms. Thus, an intermedi-
ate cue value of 25 ms could equally signal either category. 
In addition, VOT varies depending on speaking rate (Allen 
& Miller, 1999), such that a VOT of 25 ms might signal a 
voiced sound when speaking slowly and a voiceless sound 
when speaking quickly. Moreover, VOT also provides 
information about place of articulation (Benkí,  2001; 
Chodroff & Wilson,  2014; Fischer-Jørgensen,  1954; 
Lehiste & Peterson, 1961; Lisker & Abramson, 1964), fur-
ther complicating the mapping between cues and linguis-
tic categories.

Early work suggested that listeners perceive changes 
along these dimensions categorically (Liberman 
et  al.,  1957), rather than as continuous acoustic cues. 
Under this hypothesis, listeners would only encode dif-
ferences that cross a phoneme category boundary. For 
example, the 10 ms difference between a 20 ms (/b/) and 
30 ms (/p/) VOT would be perceptible, because it crosses a 
category boundary, whereas the 10 ms difference between 
a 5 ms (/b/) and 15 ms (also /b/) VOT would be impercep-
tible. However, subsequent work disproved the categori-
cal hypothesis (Pisoni & Lazarus, 1974). Indeed, it is more 
advantageous for listeners to retain such subphonemic 
information in cases when the initial phoneme decision 
may need to be revised. Moreover, when other relevant 
information in the speech signal is taken into account—
coarticulation, higher-level linguistic information, talker 
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differences, etc.—this favors a perceptual process that 
inherently relies on noncategorical perception (see 
McMurray, 2021, for a recent review).

Recent work from cognitive neuroscience supports 
the idea that listeners encode continuous cues, indicat-
ing a flexible neural mechanism subserving gradient 
acoustic processing (but see Chang et al., 2010, for ev-
idence of category-based representations using iEEG). 
The majority of evidence shows that the brain encodes 
acoustic cues gradiently when indexed at the auditory 
N1 component (Frye et al., 2007; Gwilliams et al., 2018; 
Sarrett et al., 2020; Toscano et al., 2010, 2018), and the 
degree of gradiency may vary between individual lis-
teners (Kapnoula & McMurray,  2021). These studies 
typically present listeners with minimal pairs that vary 
along a voicing continuum (such as beach or peach). 
The VOT at word onset is manipulated to vary between 
a prototypical /b/ to a prototypical /p/, and participants 
are asked to categorize the word. Then, the amplitude 
of the N1 component in response to target word onset 
is measured.

Shorter (more voiced) VOTs yield a more negative 
N1 amplitude, whereas longer (more voiceless) VOTs 
yield a less negative N1. This N1 effect varies linearly 
with the VOT of the target word, suggesting that early 
perceptual representations of speech sounds are gradi-
ent (not categorical) with respect to the acoustic signal. 
Moreover, perceptual representations can be influenced 
by contextual expectations. Orthographic priming (Getz 
& Toscano, 2019), sentential contexts (Sarrett et al., 2020), 
and lexical status (Noe & Fischer-Baum, 2020) modulate 
perceptual encoding, particularly for ambiguous cue val-
ues (i.e., when a sound is not clearly a /b/ or a /p/). Taken 
together, these studies give us insight into the nature of 
perceptual representations of speech sounds and how per-
ceptual processing interacts with higher-level lexico-se-
mantic processing.

Despite this emerging evidence, details about the 
neural mechanisms supporting perceptual encoding in 
the brain remain unclear. For example, while changes 
in VOT show robustly different responses that are easily 
observable in ERPs, other relevant dimensions—such 
as contrasts in place or manner of articulation—yield 
less clear differences. Pereira et al. (2018) expanded the 
paradigm described above to use the N1 as an index of 
other phonetic distinctions, across a range of different 
phonemes, while participants categorized which pho-
neme they heard. This work showed that the N1 can be 
used as an index for many phonetic distinctions, not just 
voicing.

However, there were some limitations of Pereira et al's 
results. Some phonemes, such as /s/ and /ʃ/, showed no 
difference in N1 amplitude, even though participants' 

classification performance was at ceiling. That is, listen-
ers show behavioral evidence that they are encoding pho-
neme differences, but traditional ERP methods are unable 
to detect such effects for some phoneme contrasts. One 
reason for this may be due to the orientation of dipoles 
in auditory cortex that respond to differences in acoustic 
cues. If the dipoles are oriented in such a way that dif-
ferences cannot be detected at fronto-central electrodes 
where the N1 component is measured, this implies the 
need for a different measure. Machine learning offers a 
number of advantages over traditional ERP analyses: It al-
lows us to detect potentially subtler differences in cortical 
activity by utilizing information across the entire scalp. 
This also allows us to reconceptualize how we design EEG 
experiments altogether, as multidimensional data can-
not be studied effectively using univariate designs. Thus, 
understanding how to best apply machine learning tech-
niques to EEG data will be important for informing future 
work.

1.2  |  Machine learning approaches to 
decoding neural data

Machine learning1 may offer a solution to the limitations 
of traditional ERP analyses. Several different approaches 
have been used to apply machine learning techniques to 
neural data, each with its own set of goals, advantages, 
and limitations.

1.2.1  |  Functional MRI

The first approach comes from functional magnetic res-
onance imaging (fMRI) research. Multivariate pattern 
analysis (MVPA; previously referred to as multivoxel 
pattern analysis) has been used by fMRI researchers 
for decades (Haxby,  2012; Haxby et  al.,  2001; Norman 
et al., 2006). This approach was developed as an alter-
native to conventional fMRI methods, which tended to 
focus on whether a single voxel or cluster of voxels in a 
given region showed an increase in activity above a cer-
tain threshold during in a particular experiment. MVPA 
is an umbrella term which encompasses a diverse set of 
classification algorithms that share a common goal: un-
derstanding how the pattern of neural activity (in con-
trast to simply the degree of neural activity) in a given 
brain region corresponds to different stimulus proper-
ties, task demands, or cognitive states. Examples of 

 1For the purposes of the present article, we will use the terms “machine 
learning”, “decoding”, and “classifying”, to refer to the same type of 
analysis.
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MVPAs include both linear and nonlinear classifiers, 
such as linear and nonlinear support vector machines 
(SVMs), neural networks, and correlation-based classi-
fiers (see Duda et al., 2001, for descriptions of these and 
other algorithms).

The overarching goal of this line of work is to use MVPA 
as a more sensitive substitute for traditional statistical analy-
ses—to determine if a given brain region is involved in a par-
ticular cognitive or perceptual process based on whether or 
not classification performance in that region is above chance. 
This approach typically relies on data that are averaged across 
two or more conditions, though it is also possible to use with 
single-trial fMRI (Pessoa & Padmala, 2005). MVPA is widely 
accepted in the fMRI literature and has been used to effec-
tively answer questions about brain function in speech per-
ception (Archila-Meléndez et al., 2018; Correia et al., 2015b; 
Luthra et  al.,  2020; Vandermosten et  al.,  2017), as well as 
an enormous span of domains, including memory retrieval 
(Polyn et al., 2005), visual perception (Boynton, 2005), and 
face and object recognition (O'Toole et al., 2005).

1.2.2  |  Intracranial EEG

The second decoding approach comes from iEEG. This 
line of work has applied machine learning techniques 
with an eye towards decoding the neural signal for input 
to brain-computer interfaces (BCIs). As such, researchers 
have primarily been concerned with decoding individual-
trial-level neural activity. This relies on a similar logic: If 
classification performance is above chance, it means there 
is some feature of the neural signal that distinguishes the 
conditions of interest.

This approach is suitable both for answering questions 
about basic brain functions, such as characterizing the 
neural substrates involved in spoken word recognition 
(Rhone et  al.,  submitted) or phonetic feature encoding 
(Mesgarani et al., 2014), and also for advancing technol-
ogy for BCI applications, such as synthesizing speech from 
subvocal articulatory representations (Anumanchipalli 
et al., 2019), writing text from imagined hand movements 
(Willett et al.,  2021), or decoding words from attempted 
articulations in patients with severe paralysis (Willett 
et al., 2023). Moreover, iEEG has a much finer temporal 
resolution than fMRI, which allows researchers to make 
more precise claims about when certain processes are oc-
curring in cortical activity as well.

1.2.3  |  Scalp-recorded M/EEG

A third approach has addressed this question by devel-
oping machine learning tools to decode the contents of 

scalp-recorded EEG signals (or magnetoencephalography 
[MEG] signals) as they unfold over time, offering potential 
advantages over traditional ERP analyses. This approach 
combines aspects of the fMRI and iEEG approaches and 
shares many of the same motivations.

One advantage that decoding techniques may offer 
over traditional ERP analyses is that they can take advan-
tage of the pattern of voltage changes across the entire 
scalp, in contrast to traditional analyses, which tend to 
focus on a single electrode or small subset of electrodes. 
Bae and Luck (2018) conducted a study on the feasibility 
of applying machine learning to EEG recorded across the 
scalp. They were primarily interested in decoding the con-
tents of working memory during a visual attention task. 
Participants saw lines in one of 16 different orientations 
(e.g., horizontal, vertical, slanted left) in one of 16 different 
locations on the screen (e.g., top right, bottom left, center). 
Decoding algorithms were applied to averaged EEG data, 
and the results revealed that different features of the EEG 
signal coded for different aspects of the stimulus proper-
ties: alpha oscillations carried information about spatial 
location of the stimulus, whereas sustained ERPs carried 
information about the orientation of the stimulus. This 
provided a proof of concept that neural information can 
be decoded at the scalp level. Since then, follow-up stud-
ies have employed similar decoding paradigms with good 
success (Bae & Luck, 2019). Moreover, other studies have 
shown that decoding on even a single-trial level is possible 
(Bayet et al., 2020; Correia, Jansma, Hausfeld, et al., 2015; 
McMurray et al., 2022; Trammel et al., 2023).

Beach et  al.  (2021) applied similar techniques to 
single-trial MEG data, which share many of the same 
qualities as EEG data. They were interested in how task 
demands affect the nature of neural representations of 
speech sounds, using decoding ability as the primary 
measure. Listeners either actively or passively attended 
to syllables along a place of articulation continuum (/
ba/ to /da/). The active condition required that lis-
teners make a response on each trial by clicking on a 
picture of a ball or a dog to indicate which sound they 
heard, whereas the passive condition had no explicit 
language-related task. Applying a decoding analysis to 
the neural data provided information about the degree 
to which continuous or categorical representations of 
speech sounds were present during the active versus the 
passive condition. This was assessed by looking at rep-
resentational dissimilarity matrices from the output of 
the classifier. The results showed that listeners maintain 
both phonemic (categorical) and subphonemic (contin-
uous) speech information during both active and passive 
tasks, but subphonemic information was maintained 
in neural activity for a longer duration when a task re-
sponse was required. This is one of the first studies to 
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look at the decoding of neural representations in speech 
using scalp-level electrophysiological measures.

1.3  |  Goals of the current study

Still, further questions about the nature of cortical rep-
resentations to speech sounds remain, and the various 
approaches to machine learning with neural data leave 
an open question regarding how to best apply these tech-
niques as the field develops. Thus, the first goal of the pre-
sent study is to unite different decoding traditions: from 
approaches that use machine learning on averaged data 
as a substitute for other statistical approaches, to tradi-
tions that primarily focus on individual-trial data for BCI 
or other applications. In particular, we seek to better un-
derstand how to maximize machine learning accuracy for 
scalp-recorded EEG.

Some recent work has had similar aims (Grootswagers 
et  al.,  2017; Trammel et  al.,  2023). For example, 
Grootswagers et al.  (2017) used MEG data from a visual 
animacy judgment task to compare how decisions in 
the machine learning pipeline affect classification per-
formance for animacy (animate vs. inanimate). They ex-
amined several key researcher decision points, including 
decisions made at the preprocessing stage (such as resam-
pling and trial averaging) and also at the later classifica-
tion stage (such as which classification algorithm is used 
and how classifier cross-validation is handled). Trammel 
et  al.  (2023) also examined differences in classification 
algorithm performance using EEG data during a seman-
tic priming task, and found the support vector machines 
yield the highest overall classification performance (com-
pared to linear discriminant analysis or random forest 
algorithms). Due to the high number of individual deci-
sions that a researcher can make throughout the machine 
learning pipeline, it is critical to better understand how 
these decisions can be used to improve classification per-
formance, while also mitigating the accompanying risk of 
researcher bias.

In the present study, we extend previous work to ex-
amine the effects of other researcher degrees of freedom 
in the machine learning pipeline. In particular, our ini-
tial analysis (Analysis 1) examines how differences in the 
input to a classifier (in our case, a support vector machine) 
affect classification performance. This analysis combines 
more traditional approaches (which have tended to rely 
on averaged data) and more recent approaches (which 
have looked at individual-trial classification) to exam-
ine the trade-offs in terms of machine learning accuracy 
along these dimensions.

In addition, we assess outstanding questions about 
how human listeners encode speech sounds during early 

perceptual processing. We use the information from the 
first analysis to identify parameters to use with the classi-
fiers in two further analyses. As previously outlined, the 
nature of perceptual representations of speech sounds 
has not yet been fully characterized. One key example is 
that in Pereira et al. (2018), several phoneme contrasts did 
not show significant differences in N1 amplitude. This 
leaves an open question as to whether and how specific 
phonemic representations are distinguishable in neu-
ral measures. It is possible that more powerful machine 
learning techniques will be able to distinguish between 
phonemes where measures of N1 amplitude alone could 
not. This is assessed in Analysis 2. In addition, theories 
of speech perception differ in how phonetic features of 
speech sounds—such as voicing, manner of articulation, 
and place of articulation—contribute to perceptual repre-
sentations, and there are open questions about how these 
representations unfold over time. Thus, in Analysis 3, 
we examine decoding over time to better understand the 
contributions of voicing, manner, and place during early 
stages of speech sound encoding.

After presenting these analyses, we discuss potential 
directions for future work and provide recommendations 
for best practices when using decoding analyses to study 
perceptual encoding of speech sounds.

2   |   ANALYSIS 1:  OPTIMAL 
PARAMETERS FOR DECODING 
VOICING IN SPEECH

2.1  |  Introduction

The goal of Analysis 1 was to determine which classifier 
parameters would yield the highest accuracy for decoding 
neural representations of speech by examining the classi-
fier parameter space (Pitt et al., 2006). This analysis seeks 
to find the optimal parameters for classification, given the 
goals of the specific research question. When doing any 
sort of parameter optimization, it is important to consider 
the consequences of certain decisions throughout the ma-
chine learning pipeline, particularly in regards to the risk 
of researcher bias. In the next sections, we discuss both 
advantages and disadvantages of certain decisions, as cau-
tionary notes to those newly interested in applying these 
techniques.

In this analysis, we trained a classifier to predict a two-
way voicing distinction (voiced vs. voiceless sounds), as 
previous research has shown that voicing is robustly rep-
resented in the neural signal for stop consonants (Frye 
et al., 2007; Getz & Toscano, 2019; Gwilliams et al., 2018; 
Noe & Fischer-Baum,  2020; Sarrett et  al.,  2020; Sharma 
et al., 2000; Toscano et al., 2010, 2018). Thus, we expect it 
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to be readily decodable. The current analysis also seeks to 
expand this previous work by testing our ability to decode 
voicing across all consonants, not just stops.

We varied the input to the classifier across three di-
mensions. First, we varied the number of trials averaged 
in the input to the classifier, from individual-trial data 
(most often used in iEEG/BCI applications) to averag-
ing many trials per condition (stemming from the fMRI/
MVPA tradition). Recent EEG work has used both types of 
input, but trial-level and averaged data have not yet been 
directly compared on the same classification job in regard 
to their effect on classification accuracy. Here, we expect 
that a greater number of trials (resulting in a higher sig-
nal-to-noise ratio [SNR]) will yield better classifier perfor-
mance overall.

Second, we varied the number of timepoints averaged, 
from very small time windows (2 ms, or a single time 
sample) to much longer time windows (250 ms). Similar 
to averaging over trials, averaging over time may be an-
other way to functionally increase the SNR of the data. 
However, averaging over timepoints sacrifices some de-
gree of temporal precision, and if the time window is too 
long, it may capture segments of the EEG signal that do 
not contain the information being decoded, thus reducing 
classification accuracy. By examining the number of trials 
and number of time points we average across, we are also 
able to quantify the trade-off between averaging over trials 
and averaging over time in terms of decoding accuracy.

Third, we varied the type of function that was fit to the 
data. Traditionally with MVPA, the mean activity of the 
voxel is used as classifier input, which corresponds to a 
zero-order polynomial. More temporally precise mea-
sures, however, like iEEG (Rhone et  al.,  submitted) or 
scalp EEG (McMurray et al., 2022), can take into account 
fluctuations in the neural signal, which may be informa-
tive for stimulus decoding. For example, we can consider 
the slope of the voltage across a certain time window or a 
quadratic function that encompasses an ERP component. 
The majority of previous work has been developed to use 
mean voltage (a zero-order polynomial; Bae & Luck, 2018, 
2019; Bayet et al., 2020), but some has used higher-order 
polynomial fits (McMurray et  al.,  2022). In order to ex-
amine trade-offs across all options, we compared results 
using the mean voltage (zero-order polynomial), linear 
fit (first-order polynomial), and quadratic fit (second-or-
der polynomial). These polynomials functioned addi-
tively (e.g., the linear classifier comprised the slope plus 
the mean). This is further described in the Method sec-
tion below. Connecting these polynomials with trade-offs 
across time and number of trials yields a more complete 
picture of the landscape in terms of feature optimization.

In summary, the first analysis explores the param-
eter space of the classifier along three dimensions by 

manipulating the number of trials averaged, the number 
of timepoints averaged, and the type of polynomial fit 
used for the classifier.

2.2  |  Method

Before describing the machine learning techniques used 
in the current study, we first provide an overview of the 
data set from Pereira et  al.  (2018) that is used for our 
analyses.

2.2.1  |  Participants

Participants in Pereira et al.  (2018) were 27 members of 
the Villanova University community. Participants were 
fluent in English, had self-reported normal hearing, 
and self-reported normal or corrected-to-normal vision. 
Twenty three participants were right-handed; four were 
left-handed. One participant was excluded due to exces-
sive noise in the EEG data. The final sample included 
26 participants (11 male, 15 female; with a mean age of 
19 years old). All participants gave informed consent be-
fore participating in the study, following Villanova IRB 
protocols.

2.2.2  |  Stimuli

Participants heard monosyllabic words, which were mini-
mal pairs and whose word-initial consonant spanned a 
range of different speech sounds, across voicing, man-
ner, and place (/b, d, g, p, t, k, v, z, f, s, ʃ, ʧ, ʤ, m, n, ɹ, 
l, w/). Stimuli were natural utterances produced by a fe-
male native English speaker, which were edited to remove 
clicks and pops, and amplitude normalized using Praat 
(Boersma, 2006). There were 3–8 words for each phoneme 
and a total of 76 unique words (e.g. for /g/, participants 
heard the words “gear”, “get”, and “gill”). The full list of 
stimuli is in Table  1, and further details about stimulus 
preparation are available in Pereira et al. (2018).

2.2.3  |  Procedure

Participants were fitted with an EEG cap and seated in a 
sound-attenuated, electrically shielded booth in front of a 
22″ monitor. Stimuli were presented over 3 M E-A-RTONE 
3a insert earphones using OpenSesame (Mathôt 
et al., 2012). Participants completed a phoneme categori-
zation task and indicated their response by using a mouse 
to click on the letter from a display corresponding to the 
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      |  7 of 23SARRETT and TOSCANO

first phoneme of the word they heard. This display in-
cluded each of the 18 possible phonemes heard through-
out the experiment, arranged in a circle alphabetically, 
moving clockwise, centered around a fixation point.2 Each 
word was presented 10 times, for a total of 760 trials (30–
80 repetitions per phoneme). Trial order was randomized 
for each participant, with breaks every 17 trials. The ex-
perimental session lasted approximately two hours.

2.2.4  |  EEG data

EEG data were collected using a BrainVision 32-channel 
active electrode setup. Electrodes were placed accord-
ing to the International 10-20 system. Electrooculograms 
(EOG) were recorded with the electrode above the center 
of the left eye (vertical EOG) and two placed near the lat-
eral canthus of each eye (horizontal EOG). Impedances at 
all electrodes were kept below 10 kΩ.

EEG was collected continuously, referenced online 
to the left mastoid, and digitized at a sampling rate of 
500 Hz. During analysis, the data were band-pass fil-
tered from 0.1 to 30 Hz with a 12 dB/octave rolloff and 
rereferenced offline to the average of the left and right 
mastoids (electrodes TP9 and TP10, respectively). Non-
stereotypic artifacts were manually rejected via visual 
inspection. Trials containing stereotypic artifacts (eye-
blinks and saccades) were excluded first using a peak-
to-peak detection at the EOG channels (vertical: Fp1, 
horizontal: bipolar channel, calculated from the differ-
ence between FT9 and FT10), with a threshold of 75 μV. 
If a participant had greater than 15% of trials exceeding 
this threshold, then eyeblinks and saccades were re-
moved using Independent Component Analysis (ICA). 
The mastoid and EOG channels were removed from the 
data set, resulting in 26 electrodes per participant (from 
left to right taking an overhead perspective, rostral to 
caudal: F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, 
Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, 
Oz, O2). Data were timelocked to the presentation of 
the target word, and epoched from 200 ms before tar-
get word onset to 800 ms after word onset. Target word 
onsets were identified by measuring voltage deflections 
in an additional channel in the EEG data file that con-
tained the sound waveform of the stimulus, recorded 
using a BrainVision StimTrak. Epochs were baselined 
to the 200 ms silent period before stimulus onset for 
each trial.

 2This arrangement resulted in some classes being clustered together in 
the response space for the dimensions we attempt to decode: voicing, 
manner, or place of articulation. For example, both the nasals M and N 
occurred in the bottom middle of this arrangement. In theory, if this 
pattern of a bias to a region of the response space was widespread, we 
could be concerned that motor planning might contribute to overall 
decoding accuracy. We verified that, for the majority of classes, there 
was little or no bias to any part of the response space. Thus, we 
conclude that it is unlikely for motor response planning to play a role in 
our ability to decode along these dimensions.

T A B L E  1   List of stimuli.

Phoneme Words Voicing Manner Place

/b/ bead, beat, beer, bees, bet, bill, bat Voiced Stop Bilabial

/d/ dead, deal, debt, deed, deer, den, dill, dip Voiced Stop Alveolar

/g/ gear, get, gill Voiced Stop Velar

/p/ peas, pen, pet, pin Voiceless Stop Bilabial

/t/ tease, ted, teen, ten, tin, tip Voiceless Stop Alveolar

/k/ Ken, keys, kin Voiceless Stop Velar

/v/ veal, vend, vest Voiced Fricative Labiodental

/z/ zeal, zen, zest, zip Voiced Fricative Alveolar

/f/ fed, feel, feet, fend Voiceless Fricative Labiodental

/s/ said, seal, seat, seen, sin, sip Voiceless Fricative Alveolar

/ʃ/ Shed, sheet, shin Voiceless Fricative Postalveolar

/ʤ/ gin, Jeep, Jess Voiced Affricate Postalveolar

/ʧ/ Cheap, chess, chin Voiceless Affricate Postalveolar

/m/ meet, met, mit Voiced Nasal Bilabial

/n/ knit, neat, need, net, nip Voiced Nasal Alveolar

/ɹ/ Red, reed, rip Voiced Approximant Alveolar

/l/ Let, lead, lip, lit Voiced Lateral approximant Alveolar

/w/ Weed, wet, wit Voiced Glide Labiovelar
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8 of 23  |      SARRETT and TOSCANO

2.2.5  |  Machine learning techniques

Data were analyzed using custom MATLAB scripts and the 
LibSVM package from Chang and Lin (2011). This package 
uses a radial basis function to optimize classification perfor-
mance of a nonlinear multiclass support vector machine 
(SVM).3 An SVM classifier is optimized to separate input 
(training) data into distinct sets of classes, and then this 
model is used to classify a new (testing) set of data. Specifically 
when using a radial basis function, this optimization is done 
by tuning two free parameters of the model: cost (C) of the 
function and width of the kernel (γ). C refers to the degree to 
which the SVM is penalized for an incorrect guess. A low C 
parameter (low penalty for misclassification) allows for a 
higher number of incorrect guesses on training data—for ex-
ample, by allowing some outliers to be incorrectly classified. 
This results in a larger margin between the hyperplane that 
separates classes and the actual data points, and can result in 
better classification performance on the testing data. In con-
trast, a high C parameter (large penalty for misclassification) 
allows for fewer incorrect guesses on the training data. This 
can result in a smaller margin between the separating hyper-
plane and the actual data points, and can result in lower clas-
sification performance at test. Next, the width of the kernel 
(γ) determines how far (in a multidimensional feature space) 
data points in the training set are allowed to be from the sep-
arating hyperplane. A low γ can result in underfitting—for 
example, classifying the whole data set as a single class. In 
contrast, a high γ can result in overfitting—for example, in-
ability to generalize to new data points.

It is not known which combination of C and γ will yield 
best classification performance for a given data set. 
Therefore, we must perform some sort of parameter space 
search to optimize them. The parameters were optimized 
for each participant and for each classification job (i.e., for 
each combination of number of trials × time points × 
polynomial type). Parameter optimization was done using 
a hybrid approach, starting with a brute force search and 
then a finer gradient descent method.4 The brute force 

search sampled the linear space from the lower bound 
(2−5 for C, 2−19 for γ) to the upper bound (215 for C, 23 for 
γ) in an 8 × 8 grid. From this brute force search, the C and 
γ combination that yielded the best performance was cho-
sen. This combination was then used as the starting point 
for the gradient descent method, which further refined 
these parameters until the local minimum was reached.

For Analysis 1, the SVM was trained to perform a voic-
ing distinction. Phonemes were classified as either voiced 
(/b, d, g, v, z, ʤ, m, n, ɹ, l, w/) or voiceless (/p, t, k, f, s, ʃ, ʧ 
/). The number of trials in each class (voiced and voice-
less) were equalized before inputting the data to the SVM. 
This was done by identifying which class had fewer trials 
and indexing that same number of trials from a random-
ized vector of the other class.5 Included trials were ran-
domly sampled from the full duration of the experiment.

We varied the three parameters previously described 
(number of trials averaged, number of time points aver-
aged, and polynomial fit). To manipulate number of trials 
averaged, we split the data N ways and took the mean volt-
age of all trials within each number of data splits—rang-
ing from 3 data splits to 25 data splits—or used individual 
trials for classification. Fewer data splits corresponds to a 
greater number of trials averaged.

To manipulate number of timepoints averaged, we used 
a time window centered at 120 ms post-target word onset, 
which corresponds to the approximate peak of the audi-
tory N1 in this data set, and varied its width by including 
different numbers of adjacent time points. Time window 
width ranged from 2 to 150 ms for the zero-order polyno-
mial, and from 10 to 250 ms for the first- and second-order 
polynomials. We did not fit the higher-order polynomials 
across the smallest 2 ms time window because the linear 

 3We ran an initial comparison to the SVM package used by Bae and 
Luck (2018), which uses a linear binary SVM and error-correcting 
output codes (Dietterich & Bakiri, 1994) for multiclass decoding. 
Despite the differences in the underlying algorithms, we found that 
both packages showed comparable classification performance.
 4There are several ways that parameter optimization can be performed. 
We used a hybrid approach, though other methods may be useful for 
other applications. For example, a Bayesian approach (Frazier, 2018) 
may be particularly useful for classification jobs with a low dimensional 
space (e.g., less than 20 dimensions). However, because most EEG work 
uses 32 to 128 electrodes, this approach may not be appropriate for 
some studies. Nevertheless, the Bayesian approach could be 
advantageous in developmental work or work with special populations 
where a longer duration EEG setup is not possible, and thus fewer 
electrodes are used.

 5Equalizing the number of trials per class (voiced and voiceless) was 
necessary for several reasons. Because the experiment was not designed 
to have an equal number of voiced and voiceless words, there were 
more voiced trials overall in the data set. Thus, there was concern 
regarding SVM training, both for individual-trial SVMs and averaged-
trial SVMs. If trials are extremely imbalanced between conditions, then 
an individual-trial SVM may adopt a strategy of guessing the more 
frequently occurring class in its training data, as that guess is more 
likely to be correct. This could yield above chance performance that is 
not due to the SVM truly distinguishing between the two classes. The 
second reason had to do with the use of trial-averaged SVMs. If the 
number of trials is extremely imbalanced between conditions, this may 
lead to a difference in the SNR of the ERPs, where the class with the 
greater number of trials would have a “smoother” ERP or a difference 
in peak amplitude between conditions (Luck, 2014). The SVM could 
thus potentially learn to distinguish classes based on this difference, 
which again could yield above chance performance that is not based on 
detecting a true difference between conditions. Moreover, individual 
subjects varied in the number of voiced and voiceless trials in their data 
set, due to the removal of trials during the artifact rejection stage of data 
processing.
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      |  9 of 23SARRETT and TOSCANO

and quadratic functions cannot be computed for a single 
data point. We also included two longer time windows for 
higher-order polynomials, 200 and 250 ms (not used for 
the zero-order polynomial), as these longer time windows 
may allow the higher-order functions to better capture the 
pattern in the underlying data.

Lastly, we varied the type of polynomial used to train 
the SVM. The zero-order polynomial took the mean across 
the specified time window at each electrode, resulting in 
26 inputs to the SVM (1 parameter × 26 electrodes). The 
first-order polynomial fit a line to the data across the speci-
fied time window, and the slope of this line and its intercept 
were used as input to the classifier, resulting in 52 features 
sent to the SVM (2 parameters × 26 electrodes). Similarly, 
the second-order polynomial fit a quadratic function to the 
data. This included the value of the quadratic term, the lin-
ear slope, and the intercept, resulting in 78 features input 
to the SVM (3 parameters × 26 electrodes).

SVM cross-validation was performed using a k-fold 
procedure.6 This involves splitting the data into k num-
ber of folds: k-1 folds are used for training the SVM, and 
one fold containing withheld (untrained) data is used for 
testing SVM predictions. For analyses using averaged 
data, the number of data splits corresponded to the num-
ber of k-folds. For example, averaging over the greatest 
number of trials, the data were randomly split 3 ways and 
then averaged over each third. Two of the folds were used 
to train the SVM, and the final fold was withheld for test-
ing SVM predictions. For analyses using individual-trial 
data as input, a 15 k-fold procedure was used. Individual-
trial SVMs did not average within the k-fold, and in the-
ory, any value for k could be chosen for cross-validation. 
Typically, a k-value of around 10 will work for most data 
sets (Karal, 2020). This was run over multiple iterations, 
such that each fold served as the testing data at least 
once. For example, the SVM would train on the data in 
folds 1 through 14, then test on 15th fold. On the next it-
eration, it would train on folds 2 through 15, and test on 
1st fold, and so on (cyclically). Then, the entire k-fold 
procedure was repeated 15 times, so that any idiosyncra-
sies due to trial assignment to a particular fold would 
even out. SVM performance over these repetitions was 
averaged to yield a single value for classification perfor-
mance. Average classification performance across sub-
jects is reported below.

2.2.6  |  Statistical approach

We used one-sample t-tests to determine whether a given 
parameter combination (polynomial order × time window 
× trials averaged) performed significantly above chance 
levels, where average SVM performance across partici-
pants was compared to numerical chance (i.e., 50%). 
These t-statistics were calculated manually, following the 
standard formula: (X ̄ − μ)/(S/√N), where X ̄ is the sample 
mean, μ is chance performance, S is standard deviation of 
the sample, and N is number of participants in the 
sample.7

2.3  |  Results

Results are shown in Figure  1 on the left with a corre-
sponding table of t-values on the right. Figure 1a shows 
the classification results from SVMs trained on the zero-
order polynomial (mean voltage). The time window width 
over which the mean was taken is given in the column 
headers, from 2 to 150 ms. The number of data splits is 
given in the row labels, from 3 to 25 data splits, as well as 
individual-trial classification. Each cell shows mean SVM 
performance across subjects.

We found that voicing is decodable above chance given 
a wide range of feature inputs to the SVM. The results 
also indicate that both averaging over trials and averaging 
over timepoints has an effect on SVM accuracy. Generally 
speaking, a greater number of trials averaged corresponds 
to higher SVM accuracy. This is true across a wide range 
of time window widths, but beyond 50 ms, averaging over 
more timepoints does not generally yield greater SVM ac-
curacy. The effect of time window width can be explained 
in part by the pattern of the underlying data (i.e., the du-
ration of the auditory N1 component, which captures the 
information relevant to the voicing distinction that the 
classifiers were trained on). As the time window width 
increases past 50 ms, it is likely that there is some aver-
aging of positive voltages from the surrounding P50 and 
P2 components. This could obscure the differences in N1 

 6There are a number of different ways that cross-validation can be 
performed. Grootswagers et al. (2017) compares a few of these, as well 
as how they affect classification performance. They show similar 
performance between k-fold and leave-one-trial-out cross-validation 
and suggest that the particular implementation of cross-validation is 
study-specific. For the purposes of the present analyses, we used k-fold 
cross-validation throughout.

 7For Analysis 1, we were unable to run all the permutations needed for 
a true SVM validation, due to computational constraints. Ideally, a 
statistical validation would be performed, consisting of running a new 
SVM on data with randomized trial codes. This allows researchers to 
estimate the general variation in classification performance due to 
random chance. However, the results (to be discussed) from Analyses 2 
and 3 indicate that comparing classification to numerical chance yields 
similar—and in some cases, more conservative—estimates of statistical 
significance. Moreover, because Analysis 1 was largely an exploration 
of the parameter space, we found this singular statistical approach to 
suffice.
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10 of 23  |      SARRETT and TOSCANO

amplitude between voicing conditions, resulting in a de-
crease in performance.

Figure  1b shows SVM results using the first-order 
polynomial (linear function) as input to the classifier. 
Time windows were centered at 120 ms (as in Figure 1a). 
The results for the first-order polynomial differed some-
what from the results for the zero-order polynomial. 

Performance overall tended to increase by adding another 
feature (slope) to the SVM input. Mid-range time window 
widths (50–150 ms) tended to yield better performance 
than shorter time windows, especially for data that were 
averaged over many trials.

Figure  1c shows SVM performance using the sec-
ond-order polynomial (quadratic function) as input. For 

F I G U R E  1   Results of parameter space exploration in Analysis 1. Average SVM performance on a two-way voicing classification 
(chance = 50%, N = 26 subjects). Red colors correspond to lower SVM accuracy; green colors correspond to higher accuracy. Column headers 
are time window width in milliseconds, centered at 120 ms post-target word onset. Row headers are the number of data splits, which is 
inversely proportional to number of trials averaged. Row and column means are shown in gray in the margins. SVM performance on all 
tested feature inputs was significantly above chance. (a) Results for the zero-order polynomial (i.e., mean voltage with a total of 26 features). 
(b) Results for the first-order polynomial (i.e., linear function with a total of 52 features). (c) Results for the second-order polynomial (i.e., 
quadratic function with a total of 78 features).

(a)

(b)

(c)
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      |  11 of 23SARRETT and TOSCANO

this polynomial, the longer time windows (75–200 ms) 
showed the highest SVM performance. This polynomial 
also yielded the best performance across all SVMs—
74.7%—using SVM input that averaged across 3 data splits 
(the largest number of trials) and across a large number of 
timepoints (150 ms). Moreover, the individual-trial SVMs 
showed robust above chance classification using the sec-
ond-order polynomial, particularly at wider time win-
dows (reaching 57.7% with a 100 ms time window) This 
may suggest that the SVM makes better use of the greater 
number of features available in the quadratic function for 
decoding individual trials, particularly when compared 
to the first- and zero-order individual-trial SVMs, which 
showed lower performance overall.

2.4  |  Discussion

The results of Analysis 1 reveal that all three dimensions 
affect classifier performance, though the relationship be-
tween them is complex. In general, averaging over a larger 
number of trials yielded better performance, as expected. 
The optimal time window width, however, depended on 
the type of polynomial fit to the data. For the mean volt-
age, time windows from 10 to 50 ms produced the best 
performance; for the linear function, time windows from 
20 to 150 ms produced the best performance; and for the 
quadratic function, time windows of 75–200 ms produced 
the best performance.

In addition, the patterns observed are consistent with 
what we know about the underlying data. For this ini-
tial exploration of the parameter space, we used a speech 
sound contrast that produces a known effect in scalp-re-
corded ERPs: voiced sounds evoke a more negative N1 than 
voiceless sounds. This is true for stop consonants (Frye 
et al., 2007; Sharma et al., 2000; Toscano et al., 2010), as 
well as fricatives and affricates (Pereira et al., 2018). Given 
the pattern in the ERP data in these previous studies, we 
would expect good performance for a classifier trained on 
the parameters of a quadratic function, fit with a large 
number of trials, over a sufficiently large time window 
that encompasses the N1 component—this is precisely the 
combination of features that produced the highest classi-
fication accuracy.

Interestingly, when using higher-order polynomials, 
such as the quadratic in Figure  1c, we see that individ-
ual-trial SVMs are able to perform similarly to some 
averaged-trial SVMs, particularly for the lower-order poly-
nomials. This suggests that using a greater number of fea-
tures of the EEG signal can enhance SVM performance, 
particularly on individual-trial data. This is an import-
ant consideration for applications that would necessi-
tate trial-level data, such as BCIs, or for correlating brain 

responses with trial-level behavior. However, it should be 
noted that while individual-trial performance was similar 
numerically, it never reached as high a level of accuracy as 
averaged-trial performance (consistent with Grootswagers 
et al., 2017).

Overall, these analyses underscore the need for the 
experimenter to evaluate what to prioritize when choos-
ing the input to the SVM. For example, if precision in the 
timecourse of decoding is most critical, then it may be best 
to average over many trials and use a shorter time win-
dow with mean voltage as input. If individual-trial level 
decoding is most important, then it may be best to use a 
higher-order polynomial over a longer time window. If 
maximizing classifier accuracy is most crucial, it may be 
best to use a higher-order polynomial on data averaged 
over many trials. Experimenters must be cautious, as deci-
sions made at this stage can seriously influence the inter-
pretation of later results. All of the feature combinations 
we tested resulted in above chance decoding. However, it 
is possible that if we were attempting to decode a contrast 
that is less robustly represented in the neural signal, some 
of these feature combinations with lower performance 
may not have been statistically above chance. This means 
that experimenters may draw errant conclusions that 
some contrast or representation is not decodable from the 
neural signal, when perhaps the features given to the clas-
sifier simply did not capture it. As such, these parameter 
choices must be made mindfully.

3   |   ANALYSIS 2:  PHONEME 
DISTINCTIONS

3.1  |  Introduction

Analysis 2 seeks to apply these principles to examine 
whether specific phoneme pairs can be reliably decoded 
from the EEG signal. Previous work has shown that cer-
tain distinctions, such /b/ vs. /p/, show a robust effect on 
N1 amplitude. However, other phonemic distinctions do 
not show an N1 effect, despite being perceptually distinct. 
In Pereira et  al.  (2018), for example, some phonemes, 
such as /s/ and /ʃ/, were statistically indistinguishable at 
the N1. However, participants' phoneme classification 
performance during the task was near ceiling. Thus, lis-
teners were able to perceive the difference in these pho-
nemes, even though differences in perceptual encoding 
could not be detected at the N1 with conventional analy-
sis approaches. This suggests that the N1 component is 
only sensitive to certain acoustic distinctions in speech, 
possibly due to differences in the orientation of dipoles 
coding different types of acoustic cues. For example, neu-
ronal populations coding VOT may be oriented in such 
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12 of 23  |      SARRETT and TOSCANO

a way that differences are observable in the N1 at fron-
tal electrodes, while those coding spectral mean (one of 
the primary cues distinguishing /s/ and /ʃ/) might be ori-
ented differently, such that differences are not observed 
in the N1, even though listeners do perceive this acoustic 
distinction.

Because decoding analyses are more sensitive, they 
may be better at detecting weaker, but nevertheless in-
formative dipoles, using information distributed across 
the entire scalp. To assess this, we examined decoding 
performance for specific phoneme pairs. There were sub-
stantially fewer trials for the classifier to train on for each 
phoneme individually, compared to when phonemes were 
grouped by whether they were voiced or voiceless (as in 
Analysis 1). Thus, informed by Analysis 1, we selected the 
features that would maximize classification accuracy (see 
Method below for details).

We were interested in testing a range of phonemes 
to determine which pairs were significantly decodable 
during early perceptual processing. These were selected to 
sample along three relevant phonological dimensions in 
the data set: voicing, manner, and place. For voicing, this 
included the pairs /b/ vs. /p/, /z/ vs. /s/, and /ʤ/ vs. /ʧ/. 
For manner, this included /b/ vs. /m/, /z/ vs. /n/, and /t/ vs. 
/s/. Finally, for place, this included /b/ vs. /d/, /z/ vs. /v/, 
and /ʃ/ vs. /s/. Given the phonemic inventory of English 
and the phonemes available in the data set, it was not pos-
sible to achieve perfect balance among the three contrasts, 
such that each pair differed in only one feature and each 
phoneme appeared in each list. However, we chose the 
pairs we used deliberately, such that within a given feature 
dimension, there was variation across the other features. 
For example, the voicing contrasts included a bilabial stop 
consonant pair (/b/ vs. /p/), an alveolar fricative pair (/z/ 
vs. /s/), and a postalveolar affricate pair (/ʤ/ vs. /ʧ/). We 
also chose pairs that both showed significant differences 
in N1 amplitude in Pereira et  al.'s (Pereira et  al.,  2018) 
original analyses, as well as those that did not.

The stop consonant voicing contrast (/b/ vs. /p/) served 
as a baseline condition, as Analysis 1 and previous work 
has shown that voicing across stop consonants is readily 
detectable at the N1. Therefore, it should also be easily 
decodable. If decoding analyses are a sensitive enough al-
ternative to traditional analyses and if there exist dipoles 
that code for such phoneme differences in neural activity, 
we predict that the other phoneme pairs should also be de-
codable significantly above chance regardless of whether 
or not they showed N1 differences in Pereira et al. (2018). 
We know that there must be neural representations that 
code for these phoneme differences, as they are perceptu-
ally distinct, and participants in Pereira et al. performed at 
ceiling during the phoneme categorization task. Therefore, 
the key question is whether or not machine learning will 

be able to detect these differences by taking advantage of 
the neurophysiological activity across the entire scalp.

3.2  |  Method

3.2.1  |  Machine learning techniques

As in Analysis 1, we used custom MATLAB scripts and 
LibSVM (Chang & Lin, 2011) to train the classifiers. We 
ran nine separate SVMs: one for each phoneme pair (see 
the Phoneme contrast column in Figure 2). We were inter-
ested in detecting differences in the neural signal that are 
likely very small, and we had a predefined time window in 
which we were interested in decoding (during early per-
ceptual processing). For this analysis, we did not require 
individual-trial level data.

Thus, we chose SVM parameters that sought to maxi-
mize SVM performance. Based on Analysis 1, we used a 
3-fold average and fit a second-order polynomial to the 
data over a 150 ms time window, centered at 120 ms. Free 
parameters C and γ were determined for each subject and 
for each classification job, and these were optimized using 
the hybrid brute force search and gradient descent ap-
proach, as previously described.

Cross-validation was performed with a 3 k-fold proce-
dure; this was repeated 15 times for each classification job. 
Mean classification performance was calculated across all 
repetitions.

3.2.2  |  Statistical approach

We adopted a two-part statistical approach for this analy-
sis: (1) a one-sample t-test of average SVM performance 
across participants compared to numerical chance (the 
same approach used in Analysis 1), and (2) a two-sam-
ple t-test comparing SVM performance on each job to a 
100-repetition SVM classification on randomly shuffled 
data.

This second approach was part of a broader method-
ological goal. The strongest evidence that information is 
decodable in the neural signal (and not due to some other 
random variation) is by running a comparison SVM that 
is trained and tested on data with shuffled trial codes. This 
allows us to examine what the baseline SVM performance 
is for a given data set, and we would expect the SVM to 
perform at or around chance. Typically this procedure 
uses tens—if not hundreds—of repetitions, making it 
computationally costly. Therefore, we wanted to compare 
this procedure using shuffled data across many repetitions 
with a less costly alternative (one-sample t-test against nu-
merical chance) to understand how these two statistical 
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      |  13 of 23SARRETT and TOSCANO

approaches relate. This will be reported for the current 
analysis and for Analysis 3 (detailed below).

3.3  |  Results

Results are shown in Figure 2. We found that all of the 
tested phoneme contrasts were decodable significantly 
above chance, regardless of whether or not N1 amplitude 
showed significant differences in Pereira et al. (2018). For 
the three phoneme pairs that differ in voicing, we found 
that /b/ vs. /p/ showed average SVM classification accu-
racy of 59.1% (SE: 1.0, t1(25) = 9.6; p < .001; t2(25) = 7.9, p 
< .001), /z/ vs. /s/ showed average SVM accuracy of 57.5% 
(SE: 1.1, t1(25) = 6.9; p < .001; t2(25) = 6.5, p < .001), and 
/ʤ/ vs. /ʧ/ showed average SVM accuracy of 53.8% (SE: 
1.4, t1(25) = 2.8; p < .05; t2(25) = 2.8, p < .01). Thus, al-
though decoding accuracy was not particularly high for 

these contrasts, it was consistently above chance, even for 
the phoneme contrast that did not yield a significant dif-
ference in mean N1 amplitude (/ʤ/ vs. /ʧ/).

Next, we examined the three phoneme pairs that dif-
fered in manner of articulation. Manner of articulation 
differences were not examined in Pereira et al. (2018). /b/ 
vs. /m/ had an average SVM accuracy of 57.6% (SE: 1.3, 
t1(25) = 5.7; p < .001; t2(25) = 6.2, p < .001), /z/ vs. /n/ had 
an average accuracy of 55.1% (SE: 1.0, t1(25) = 4.8; p < .001; 
t2(25) = 5.3, p < .001), and /t/ vs. /s/ had an average accu-
racy of 56.9% (SE: 1.2, t1(25) = 5.8; p < .001; t2(25) = 5.7, 
p < .001). Thus, as with phoneme contrasts differing in 
voicing, the overall accuracy for these phoneme pairs was 
consistently above chance.

Lastly, we ran classifiers for the three pairs that differed 
in place of articulation. /b/ vs. /d/ had an average accu-
racy of 56.3% (SE: 0.7; t1(25) = 8.9; p < .001; t2(25) = 8.0, 	
p < .001), /z/ vs. /v/ had an average accuracy of 55.9% (SE: 

F I G U R E  2   Results of phoneme classification in Analysis 2. Average SVM performance on a two-way phoneme classification 
(chance = 50%, N = 26 subjects). Redder colors correspond to lower SVM accuracy; greener colors correspond to higher accuracy. Each row 
represents a separate classification job. Time window width was 150 ms, centered at 120 ms post-target word onset. Data were averaged 
across 3 folds, and a second-order polynomial was fit to the averaged data. SVM performance and corresponding t-values (from both 
1-sample t-tests against numerical chance and 2-sample t-tests against randomly shuffled data) are shown in the columns. The results of 
Pereira et al. (2018)'s original analyses are shown in the final column. “Yes” indicates there was a significant difference in N1 amplitude for 
a given contrast, “No” indicates that there was not, and “NT” indicates that the specific contrast was not tested. The present analyses show 
that all phoneme contrasts were decodable significantly above chance.
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14 of 23  |      SARRETT and TOSCANO

1.3; t1(25) = 4.3; p < .001; t2(25) = 4.9, p < .001), and /ʃ/ vs. 
/s/ had an average accuracy of was 56.6% (SE: 0.9; t1(25) 
= 7.8; p < .001; t2(25) = 7.9, p < .001). Thus, again, accu-
racy was consistently above chance for all three phoneme 
contrasts, including the two contrasts that did not differ in 
mean N1 amplitude (/z/ vs. /v/ and /ʃ/ vs. /s/).

3.4  |  Discussion

In this analysis, we trained SVMs to classify different pairs 
of phonemes. We show that we are able to decode pho-
neme differences significantly above chance during early 
speech perception. This was true regardless of whether or 
not conventional ERP methods detected a difference be-
tween these phonemes. In cases where differences were 
not detected by conventional methods, our results suggest 
that this is not because the information is unavailable in 
the neural signal. Rather, the information may be better 
reflected in more subtle, distributed patterns of voltages 
across the scalp. This indicates that machine learning of-
fers a powerful alternative for examining neural responses 
to speech sounds, and potentially other stimuli, and that 
it can detect effects otherwise not seen in traditional 
analyses.

4   |   ANALYSIS 3:  TIMECOURSE OF 
PHONETIC FEATURE DECODING

4.1  |  Introduction

Analysis 3 sought to expand on the previous analyses by 
characterizing the timecourse of decoding, running mul-
tiple classifiers over the epoch, in contrast to Analyses 1 
and 2, which evaluated classifiers centered at a single time 
point. In the current analysis, we examine how decoding 
unfolds along the dimensions of voicing, manner, and 
place. Information along each of these dimensions must 
be quickly extracted from the acoustic signal for speech 
to be accurately understood. Analysis 2 showed that we 
can decode contrasts for specific phoneme pairs that differ 
along each of these dimensions. However, it remains un-
clear whether voicing, manner, and place are decodable as 
categories themselves. For example, manner and place of 
articulation differences might be decodable when examin-
ing specific phoneme contrasts, but may not be decodable 
as phonetic features more broadly. Moreover, the time-
course of feature decoding might be similar across these 
articulatory dimensions, or some features might be de-
coded earlier than others. Thus, Analysis 3 asks whether 
perceptual representations of speech are organized ac-
cording to articulatory features along these dimensions 

more generally, and if so, how the timecourse of process-
ing may differ among the three features.

Specifically, Analysis 3 examines differences in (1) how 
long voicing, manner, and place are represented in the 
neural signal, (2) how early in time we can decode each of 
these dimensions, and (3) how the timing of peak decod-
ing accuracy differs among them.

Based on previous work (Toscano et al., 2010), we pre-
dict that the maximum decoding accuracy for voicing will 
occur at the peak of the N1 component, where we see the 
largest differences in ERP amplitude. Moreover, other 
work (Sarrett et  al.,  2020; Toscano et  al.,  2018) predicts 
that decoding duration may persist in time outside of the 
canonical N1 component peak.

The predicted timecourse for manner of articulation 
is less clear. There are six different manners of articula-
tion for English consonants: stops (or plosives), nasals, 
fricatives, affricates, approximants, and lateral approx-
imants (Reetz & Jongman,  2020). Manner is defined by 
articulatory differences in how the constrictions in the 
vocal tract interact with the airflow. However, differences 
in manner also have very distinct acoustic realizations. 
For example, fricatives typically have broad, aperiodic 
high frequency energy that is sustained for at least 50 ms 
(Jongman et al., 2000). Stops, on the other hand, consist of 
a brief burst (<10 ms) of energy that may be followed by 
a period of weaker aspiration (Lisker & Abramson, 1964). 
A systematic pattern of differences across manner at the 
auditory N1 is not readily apparent (Pereira et al., 2018). 
However, applying machine learning techniques may help 
reveal the degree to which differences in manner are de-
tectable during perceptual encoding.

Finally, we investigate the timecourse of processing 
for place of articulation. In English, consonants vary 
among bilabial, labiodental, alveolar, postalveolar, and 
velar places of articulation (Ladefoged & Johnson, 2014). 
However, the acoustic features of the speech signal that 
are important for distinguishing place of articulation re-
main unclear. Listeners' perception of place distinctions 
has informed models of speech perception (Diehl & 
Kluender, 1989; Liberman & Mattingly, 1985; Nearey, 1990; 
Stevens & Blumstein, 1978; Sussman et al., 1991), and the 
nature of perceptual representations for place distinctions 
has long been a topic of debate. However, there has been 
little ERP work examining differences in place of articula-
tion during early speech perception. This makes it difficult 
to predict whether place will be decodable from the EEG 
signal, and if so, what its timecourse may be.

To address these issues, we ran a different classifier for 
each dimension. We are most interested in characterizing 
the timecourses of perceptual encoding and identifying 
temporal differences in maximal decoding accuracy as 
well as duration of decoding.
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      |  15 of 23SARRETT and TOSCANO

Thus, based on Analysis 1, we used a three-way data 
split (averaging over many trials) and mean voltage at a 
small time window (10 ms) as input to the SVM.

4.2  |  Method

4.2.1  |  Machine learning techniques

As in Analyses 1 and 2, we used custom MATLAB scripts 
and the LibSVM package from Chang and Lin (2011). To 
decode voicing, we used the same two classes (voiced vs. 
voiceless) that were used in Analysis 1. The voiced class 
included trials from words beginning with any voiced 
consonants (/b, d, g, v, z, ʤ, m, n, ɹ, l, w/). The voiceless 
class included trials from words beginning with any 
voiceless consonants (p, t, k, f, s, ʃ, ʧ/). Chance level for 
this classifier was 50%. To decode manner, the data were 
split into four classes: stops, fricatives, affricates, and 
nasals.8 The stops class included trials from words be-
ginning with /b, d, g, p, t, k/, fricatives included /v, z, f, 
s, ʃ/, affricates included /ʤ, ʧ/, and nasals included /m, 
n/. Chance level was 25%. To decode place, the data 
were split into five classes: bilabial, labiodental, alveo-
lar, postalveolar, and velar.9 The bilabial class included 
trials from words beginning with /b, p, m/, labiodental 
included /v, f/, alveolar included /d, t, z, s, ɹ, l, n/, post-
alveolar included /ʤ, ʧ, ʃ/, and velar included /g, k/. 
Chance level was 20%.

For each of these three classifiers, the data at each time 
point were split into three sections (for k-fold cross-valida-
tion) and averaged. The number of trials in each class was 
equalized, as in Analysis 1. For the voicing distinction, 
this included averaging over approximately10 100 trials per 
class and per subject in each k-fold. For the manner and 
place distinctions, this involved averaging over approxi-
mately 20 trials per class and per subject for each k-fold. 
Input to the SVM included the zero-order polynomial 
(mean voltage) in a 10 ms time window across 26 
electrodes.

As in Analyses 1 and 2, the free parameters of the SVM 
(C and γ) were optimized for each participant and for each 
classification job. This was done in two phases, since we 
were running multiple SVMs over the epoch to examine 
the timecourse. In the first phase, we determined the 

optimal C and γ parameters from a representative time-
point. This timepoint was 120 ms after target word onset 
(the peak of the N1 component). We then used the same 
hybrid approach to optimize C and γ as in Analysis 1, start-
ing with a brute force search and then a finer gradient de-
scent method. In the second phase, the C and γ from the 
representative timepoint were held constant, and an SVM 
was fit with these parameters across the full timecourse 
in 10 ms increments, from 100 ms pretarget word onset to 
250 ms post-target word onset.

Cross-validation involved a 3 k-fold procedure as de-
scribed in Analysis 1. Trials were randomly assigned to 
one of three folds and averaged. Each fold served equally 
as a training and testing set. The k-fold procedure was re-
peated 15 times for each classification job, to remove any 
idiosyncrasies in SVM performance due to random trial 
assignment. Average SVM performance across these repe-
titions is reported.

4.2.2  |  Statistical approach

As in Analysis 2, we took two complementary statistical 
approaches: (1) one-sample t-tests compared to numerical 
chance, and (2) two-sample t-tests from a 100-repetition 
SVM on randomly shuffled data.

With this set of analyses, we were primarily interested 
in characterizing the timecourse of decoding. Thus, it 
was necessary to run multiple t-tests (at each timepoint) 
to determine when SVM classification performance was 
above chance. When running multiple comparisons, it is 
critical to control for family-wise error. Traditionally, this 
is done with a Bonferroni correction (Bonferroni, 1936), 
which assumes independent significance tests. However, 
significance tests in a timeseries are not entirely in-
dependent of each other, as test statistics over time 
are highly autocorrelated. This would make applying 
a Bonferroni correction overly conservative. Another 
common method is cluster-based permutation analysis 
(Maris & Oostenveld,  2007), which is less conservative 
than Bonferroni, but is unable to make precise claims 
about the timing of significant effects (Sassenhagen & 
Draschkow, 2019).

Here, we adopt an approach from Oleson et al. (2017), 
which takes into account the autocorrelation of the test 
statistic over time on a millisecond-by-millisecond basis 
to define a new alpha level (for applied examples, see 
Seedorff et  al.,  2018, using eye-tracking data, Sarrett 
et al., 2020, using ERP data, and McMurray et al., 2022, 
using machine learning performance over time). This 
allows us to make more precise claims about the tim-
ing of our effects of interest without being statisti-
cally over-conservative. For each comparison (voicing, 

 8Words beginning with approximates, lateral approximates, and glides 
(/w, ɹ, l/) were excluded from the manner analysis, as there was not a 
sufficient number of items per phoneme for these classes to be decoded.
 9Words beginning with /w/ were excluded from the place analysis, as 
/w/ requires constrictions at multiple locations (bilabial and velar).
 10Numbers are approximate, as the exact number of trials per class per 
subject varied due to artifact rejection.
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16 of 23  |      SARRETT and TOSCANO

manner, and place), we first smoothed each subject's 
classification performance over time using a 50 ms tri-
angular window. This was done to remove any idiosyn-
crasies in the pattern of SVM performance from the data. 
Then, we ran t-tests (either one-sample against numeri-
cal chance, t1, or two-sample against randomly shuffled 
data, t2) at each time point from -100 to 250 ms seconds 
in 10 ms increments (for a total of 36 comparisons). The 
autocorrelation of the test statistics was calculated using 
the bdots package (version 1.0.1; Nolte et al., 2020) in R 
(version 4.1.0; R Core Team, 2022). Autocorrelation (ρ) 
and corrected alpha (α) are reported for each analysis 
below.

4.3  |  Results

Figure  3 shows SVM accuracy over time for decoding a 
voicing distinction, from 100 ms before target word onset 
to 250 ms post-target word onset. SVM performance peaks 
at 66.88% at 140 ms post-target word onset. Both statisti-
cal approaches indicated that decoding was significantly 
above chance from 110 to 220 ms post-target word onset, 
after correcting for multiple comparisons (t1: ρ = .952, cor-
rected α = .009; t2: ρ = .957, corrected α = .008). These re-
sults suggest that information about voicing is available in 

the neural signal for at least 100 ms during the perceptual 
encoding of speech sounds, consistent with previous work 
(Toscano et al., 2018).

Figure 4 shows SVM accuracy for decoding manner of 
articulation. Manner was decodable from roughly 140 to 
240 ms post-target word onset, and maximal classification 
accuracy of 31.06% occurred at 170 ms. For the one-sam-
ple t-tests, decoding was above chance from 140 to 170 ms 
and from 220 to 240 ms (ρ = .918, corrected α = .007). The 
two-sample t-tests against shuffled data showed signifi-
cant decoding from 140 to 180 ms, at 200 ms, and from 
220 to 240 ms (ρ = .921, corrected α = .008). These results 
indicate that manner of articulation is represented in neu-
ral activity for at least 100 ms during speech perception.

F I G U R E  3   Average SVM accuracy over time for decoding 
voicing distinctions (voiced vs. voiceless). Chance level is 50%, 
marked with a black horizontal line. Standard error of the mean 
is shown by the shaded region. Time windows in which decoding 
is significantly above chance using a two-sample t-test against 
randomly shuffled data are marked by the heavy weighted 
blue line at the bottom of the figure. Note that the y-axis scale 
differs between this figure and Figures 4 and 5; in each figure 
the maximum y-axis value is 1.5× chance performance for that 
analysis.

F I G U R E  4   Average SVM accuracy for decoding manner. 
Figure properties are the same as Figure 3.

F I G U R E  5   Average SVM accuracy for decoding place. Figure 
properties are the same as Figure 3.
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      |  17 of 23SARRETT and TOSCANO

Figure  5 shows average SVM accuracy over time for 
place of articulation. Place was not decodable signifi-
cantly above chance for either statistical approach, after 
correcting for multiple comparisons (t1: ρ = .899, corrected 
α = .007; t2: ρ = .895, corrected α = .007).

4.4  |  Discussion

Analysis 3 aimed to characterize the timecourse of decod-
ing accuracy for voicing, manner, and place. We showed 
that both voicing and manner are decodable from scalp-
level ERPs, but place was not. It is difficult to directly 
compare among conditions due to differences in the SVMs 
themselves (e.g., different number of classes in each job). 
Nevertheless, we discuss some potential implications of 
the pattern of results.

First, we found differences in the duration over 
which information about voicing and manner was rep-
resented in cortical activity. It is not entirely clear what 
differences in duration of decoding or timing of maxi-
mum accuracy across these dimensions may mean. 
Minimally, they indicate that information along a given 
dimension is represented in neural activity for differing 
amounts of time, but the reason underlying these differ-
ences remains unclear. One potential interpretation of 
this pattern is that duration of decoding may link to the 
robustness of the representation of a given dimension in 
neural activity. Because both voicing and manner were 
decodable for approximately 100 ms in cortical activity, 
this suggests that each is robustly represented during 
speech perception.

In contrast, place of articulation was not significantly 
decodable above chance. Although all three dimensions 
are defined by their articulatory differences, manner 
and voicing both have clear acoustic distinctions that 
map onto their different classes. Place, however, has 
less clear acoustic correlates (though see Stevens & 
Blumstein, 1978, which maps spectral shape to place dif-
ferences for stop consonants). This suggests that place of 
articulation, defined in terms of articulatory differences, 
may be only weakly represented in cortical activity, if 
at all. Longstanding debates have centered on the na-
ture of perceptual representations and whether they are 
primarily auditory or primarily articulatory in nature 
(Diehl & Kluender, 1989; Liberman & Mattingly, 1985). 
The current results show that place of articulation, 
which has the weakest link to reliable auditory features, 
was also not reliably decoded. This may indicate that 
perceptual representations of speech are more closely 
linked to aspects of auditory encoding than to aspects of 
gestural features, but further work is needed to clarify 
these results.

Second, the dimensions differed slightly in the times at 
which they were decodable from neural activity. Manner 
was decodable starting at 140 ms, whereas voicing was de-
codable earlier, at 100 ms. One possible interpretation of 
this incongruency is that the timing of window onset and 
offset may reflect when cues to each dimension are avail-
able in the acoustic signal. The primary cue to voicing for 
stop consonants—VOT—unfolds early, which may lead to 
the earlier decoding of voicing. Cues to manner, however, 
are more varied, both acoustically and temporally. Some 
spectral cues, such as periodicity, are available essentially 
immediately in the acoustic signal, but other timing-based 
cues, such as duration of noise, arrive later (Reetz & 
Jongman, 2020). This may require cue integration across 
time before a reliable interpretation of the acoustic signal 
can be made. As a result, these cues may be computed and 
reflected in neural activity more slowly relative to cues to 
voicing.

Third, these dimensions differed in when maximal 
decoding accuracy occurred. Voicing peaked around 140 
ms; manner peaked around 170 ms. These differences 
in the timing of peak accuracy suggest some temporal 
asynchrony in neural processing of these dimensions, 
though the timecourses did show substantial overlap. 
Such differences in timing could occur because different 
dimensions of the speech signal are coded by different 
populations of neurons, which may be actively process-
ing perceptual representations during overlapping, but 
not congruent, time windows. It is also possible that 
maximum decoding is influenced by the reliability of 
cues along a given dimension, though accuracy is diffi-
cult to directly compare among these classification jobs 
for a number of reasons. We return to this point in the 
General Discussion.

5   |   GENERAL DISCUSSION

Machine learning techniques, while not new in cognitive 
science, have been relatively underutilized for analyzing 
EEG data. These techniques offer exciting new avenues 
for research and novel ways of designing experiments 
to address outstanding issues, not just about the neural 
processing of spoken language, but questions in other 
domains as well. We presented three analyses that assess 
methodological considerations involved in the applica-
tion of such techniques to EEG data. We sought to unite 
approaches from different lines of work by systematically 
manipulating parameter input to the SVM to character-
ize how to best maximize machine learning accuracy 
(Analysis 1). We also applied these techniques to unre-
solved questions about the nature of perceptual repre-
sentations of speech sounds, measuring differences in the 
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18 of 23  |      SARRETT and TOSCANO

neural signal that are not detectable with conventional ap-
proaches (Analysis 2) and assessing the timecourse of pro-
cessing (Analysis 3). Below, we discuss the results from 
each analysis, synthesize the overall implications, and 
suggest directions for future research.

5.1  |  Methodological considerations for 
machine learning analyses

In Analysis 1, we explored how the features of the EEG 
signal that the classifier is trained on affect classification 
performance. The goal of this analysis was to bring to-
gether different traditions in the application of machine 
learning techniques to neural data. These traditions differ 
in how a classifier is trained on a given data set, such as 
whether to use individual-trial data or averaged-trial data, 
data from individual time points or data averaged over a 
large time window, and whether to fit a polynomial to the 
data or not. Each of these factors (averaging more trials, 
averaging more time points, or fitting a polynomial to cap-
ture the data pattern) could influence the ability to detect 
differences in the neural signal.

We found that each dimension affected classification 
accuracy. Generally, averaging over a greater number of 
trials increased SVM performance, particularly for low-
er-order polynomials. The time window that resulted in 
the best performance depended on the order of the poly-
nomial: the zero-order polynomial performed best with 
the shortest time windows, the first-order polynomial 
with the mid-length time windows, and the second-order 
polynomial with the longest time windows. This is con-
sistent with the way in which the polynomials captured 
patterns in the data.

The dimension of time is particularly important for 
speech perception work, as spoken language unfolds 
quickly over time, and many debates in speech percep-
tion hinge on when in time different stages of linguis-
tic processing unfold (e.g., when and at what level does 
linguistic information feedback during speech percep-
tion; Getz & Toscano, 2019; Noe & Fischer-Baum, 2020; 
Sarrett et  al.,  2020). Thus, an important consideration 
for researchers will be choosing the time window over 
which a classifier is trained. Using longer time win-
dows, which is necessary to achieve above chance per-
formance for some higher-order polynomials and for 
individual-trial SVMs, may make it more challenging to 
make precise claims about the millisecond-level timing 
of effects of interest. Thus, such parameter choices will 
need to be made carefully and appropriately for each re-
search question.

Some researchers may be interested in not just the ERP 
responses from EEG, but also in event-related band power 

(ERBP) changes. These machine learning techniques can, 
in principle, be applied to time-frequency analyses as well, 
and there are a number of studies that have included vari-
ous ERBP changes in their feature input to classifiers.

However, these studies have shown mixed results as to 
whether ERBP measures increase overall classification ac-
curacy. McMurray et al. (2022), for example, did not find 
that adding mean ERBP increased classification accuracy 
for auditory words in any of the tested bands (delta, theta, 
alpha, beta, gamma), though this may depend heavily 
on the stimuli or task decisions that are being classified. 
In contrast, Bae and Luck (2019) did show classification 
accuracy significantly above chance when using alpha 
band power as input, and alpha may reflect a dissociable 
representation from ERPs in visual perception. It is im-
portant to note that filtering settings used during data pre-
processing will affect which frequencies are available at 
the scalp. Similarly, while the high gamma band has been 
shown in intracranial work to carry critical speech infor-
mation, there is still debate over whether meaningful high 
gamma information is measurable at the scalp or whether 
it is largely blocked by the dura, skull, and skin (though 
some have attempted to measure it, with some success; see 
Synigal et al., 2020).

Researchers may also be interested in determining 
the maximum level of classification accuracy that these 
machine learning methods can achieve. Across all three 
analyses, we found that maximum accuracy for a given 
classification job was around 70%. There are several po-
tential reasons for this. One possibility is that there may 
have been an insufficient amount of data for the classi-
fier to achieve any higher accuracy. Designing an experi-
ment with a greater number of trials may allow for gains 
in classification accuracy (as suggested by McMurray 
et al., 2022). In addition, the spatial smearing of the neural 
signal in scalp EEG could have resulted in there not being 
enough information available in the signal at the scalp 
level to achieve a higher accuracy.

At present, we cannot make claims about why we ob-
served such a ceiling in classification performance, and it 
may be due to either or both of these factors. However, 
even studies using iEEG data—which avoids the issue of 
spatial smearing—do not always show 100% classification 
accuracy. For example, Rhone et al. (submitted) showed a 
maximum SVM accuracy of ≈40% for decoding the word 
a listener was hearing, based on recordings from auditory 
cortex, with a chance level of 10%.

While classification accuracy in the present study did 
not reach 100%, we did achieve classification accuracy sig-
nificantly above chance. For some applications, this may 
not be adequate. However, adequate performance criti-
cally depends on the goals of a particular machine learn-
ing application. For BCIs, 100% classification accuracy 
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may be the goal (e.g., for synthesizing movements of an 
artificial limb from a neural prosthesis). However, when 
using machine learning as a replacement for traditional 
hypothesis testing, the goal may simply be to decode sig-
nificantly above chance. In this case, 70% accuracy on a bi-
nary classification indicates that some information about 
the stimulus is present in the neural signal (and therefore 
decodable). Because the data set used in this analysis was 
not designed specifically for machine learning techniques, 
it is also possible that we can increase classification accu-
racy with a more tailored design. For example, the number 
of trials per class could be increased to at least 50, or the 
number of electrodes per subject could be increased to 64, 
both of which have been shown to yield gains classifica-
tion performance (McMurray et al., 2022). That is, while 
the current data set showed a ceiling of around 70%, this 
may not be the limit for speech sound decoding. This ex-
ploration should be a goal of future work.

Finally, we also compared two different statistical ap-
proaches in Analyses 2 and 3, looking at (1) SVM per-
formance compared to numerical chance, and (2) SVM 
performance compared to randomly shuffled data. The 
latter is the more accepted and more technically appropri-
ate comparison. However, the former comes with a much 
lower computational cost. We found that comparing SVM 
performance to numerical chance yielded generally sim-
ilar results, thus making it a potentially suitable alterna-
tive. As machine learning becomes a more widely used 
technique, it is important to ensure that it is accessible for 
researchers at a range of institutions who wish to work 
with this method, particularly for those who might not 
have a high-performance computing cluster. The present 
analyses indicate that one way to cut down on computing 
costs is by using numerical chance as a baseline for statis-
tical comparisons.

5.2  |  Theoretical considerations for 
models of speech perception

The current results also provide insights into the neural 
representations used to perceive speech. In Analysis 2, 
we looked at classification accuracy for specific phoneme 
pairs. We found that machine learning offers a more sen-
sitive measure than traditional ERP analyses: Phoneme 
pairs that did not differ in N1 amplitude were decodable 
significantly above chance when taking advantage of the 
full pattern of activity across the scalp.

Such phoneme classification analyses could be ex-
panded in future work to relate individual-trial classifica-
tion to participant task responses, allowing us to expand 
the types of questions that we can address. Some studies 
have looked at classifier confusions in passive listening 

tasks (Mesgarani et al., 2014), but few have related these 
directly to participant behavior (Beach et  al.,  2021). A 
critical future direction will involve examining the link 
between decoding of perceptual representations and cat-
egory-level decisions, including errors (e.g., by using a 
phoneme categorization task and relating participant re-
sponse confusion matrices to SVM confusion matrices). 
Some phonemes are more difficult to recognize than oth-
ers (e.g., /ɵ/; Toscano & Allen,  2014). For these sounds, 
and in cases when there is greater difficulty in perceiving 
phoneme distinctions (e.g., in speech-in-noise tasks or for 
listeners with hearing loss), listeners make more errors 
in their categorization responses. It is possible that these 
response errors correlate with less precise perceptual en-
coding of these sounds, which may show up as a greater 
number of SVM confusions, and lower overall SVM ac-
curacy. Thus, machine learning may be able to help us 
compare differences in perceptual representations across 
different phonemes, between varying task types, and 
among clinical populations.

Finally, in Analysis 3, we examined the timecourse of 
decoding for voicing, manner of articulation, and place of 
articulation. The goal here was to apply what was learned 
in Analysis 1 to address questions about the nature of per-
ceptual representations of speech sounds as they unfold 
over time. We found that voicing and manner—but not 
place—were decodable from the EEG signal during early 
speech perception. There are several reasons why we may 
not have observed an effect of place in this analysis. First, 
in contrast to Analysis 2, this analysis did not compare spe-
cific phoneme pairs, but attempted to decode an overall ef-
fect of place. Thus, the effects observed in Analysis 2 may 
be due to differences in acoustic cues that distinguish par-
ticular pairs of phonemes, rather than differences in place 
of articulation per se. Second, this analysis did not attempt 
to control for differences in manner when decoding place, 
which could have diminished our ability to detect an effect 
of place, as these two dimensions are not completely in-
dependent of each other; other studies have found effects 
of place by looking at cross-generalization across manner 
of articulation (Archila-Meléndez et  al.,  2018; Correia, 
Jansma, & Bonte,  2015). Third, our analysis focused on 
early perceptual representations. Other work (Archila-
Meléndez et al., 2018; Correia, Jansma, & Bonte, 2015) has 
found that place is decodable using fMRI, but these effects 
were most consistent in higher-level associative language 
processing regions. The results were more mixed when 
decoding from early perceptual processing regions, such 
as Heschl's gyrus, planum temporale, and superior tem-
poral gyrus. Thus, there may be representations organized 
around place of articulation during spoken language com-
prehension, but these representations may become avail-
able at a later stage of processing.
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For the effects of manner and voicing, we found 
that maximum accuracy, onset of decodability, and de-
coding duration varied between these two dimensions. 
Differences in these measures could arise for a number of 
reasons. One possibility is that the reliability of cues along 
a given dimension contributes to how well that dimension 
is decoded.

There are often multiple acoustic cues that signal cate-
gory-level differences (Lisker, 1986). Some cues are more 
informative than others, and listeners learn to weight 
these cues accordingly (Toscano & McMurray,  2010). 
More reliable cues may be more decodable from cortical 
activity, as the perceptual system has become attuned to 
using information along those dimensions. Future work 
could test effects of cue reliability by looking at percep-
tual processing in cases where the reliability of certain 
cues differs, for example, across talkers (Clayards,  2017; 
Kleinschmidt, 2019).

The timing of above chance performance is another 
measure that could shed light on perceptual representa-
tions along these phonetic feature dimensions. We ob-
served that voicing peaked earlier than manner and that 
voicing was decodable earlier in the epoch. This pattern 
may be explained in a number of ways. One possibility 
is that differences in timing of maximal accuracy reflect 
when cues to each dimension are available in the acous-
tic signal, or alternatively, how quickly information along 
each dimension is extracted from the signal.

It remains difficult to compare results across different 
phonological feature dimensions directly, particularly 
maximum accuracy differences. Because there are dif-
ferences in the number of classes, chance levels are not 
the same for each type of distinction. This could affect 
SVM performance overall (i.e., distinguishing a greater 
number of classes may be a more difficult classification 
job). Indeed, it may have been a partial contributor to 
the lack of significant decoding for place of articulation 
in Analysis 3. These issues could be addressed to some 
extent, for example, by only examining two-way distinc-
tions for each feature or by examining specific pairs of 
phonemes, as in Analysis 2 (which did find that certain 
place distinctions are decodable). However, there are also 
limitations imposed by the naturally-occurring linguistic 
features of the speech sounds, such as which phoneme 
contrasts exist in a given language. Future work may be 
able to address these issues further by comparing con-
trasts in other languages that have more complex pho-
netic category structures along some of these dimensions 
(e.g., with Korean, Hindi, or some indigenous languages 
of the Americas, which each have more voicing contrasts 
than English; Davis, 1994; Gordon et al., 2000, 2001; Kim 
& Lotto,  2002; Lisker & Abramson,  1964; McDonough 
et  al.,  1992). Further studies will be necessary to better 

characterize what the various aspects of the timecourse 
of decoding—maximum decoding accuracy, duration of 
decoding, and decoding time window—reflect in terms of 
cognitive processing.

5.3  |  Conclusions

The current study addresses methodological considera-
tions in applying machine learning techniques to neuro-
physiological data and also offers theoretical insights into 
the nature of perceptual representations of speech. We 
show the importance of selecting which features of the 
EEG signal to use as input to the classifier (Analysis 1), 
we demonstrate that some limitations of traditional ERP 
analyses can be overcome using machine learning ap-
proaches (Analysis 2), and we show that perceptual en-
coding is sensitive to the phonetic features of voicing and 
manner, characterizing the timecourse of processing for 
these features (Analysis 3). Taken together, these analyses 
provide the groundwork for the continuing development 
and application of machine learning techniques with EEG 
data.
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