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Let R be a polynomial or formal power series ring with coeffi-
cients in a DVR V of mixed characteristic with a uniformizer π.
We prove that the R-module annihilator of any nonzero D(R, V )-
module is either zero or is generated by a power of π. In contrast
to the equicharacteristic case, nonzero annihilators can occur; we
give an example of a top local cohomology module of the ring
Z2[[x0, . . . , x5]] that is annihilated by 2, thereby answering a ques-
tion of Hochster in the negative. The same example also provides
a counterexample to a conjecture of Lyubeznik and Yildirim.

1. Introduction

In [8], Huneke discussed 4 basic problems concerning local cohomology; these
problems have guided the developments in the study of local cohomology
modules for over two decades. As mentioned in the introduction of [8], “We
will find all of these problems are connected with another question: what an-
nihilates the local cohomology?” More concretely, Hochster’s [7, Question 6]
asks the following:

Question 1.1. Is the top local cohomology module of a local Noetherian
domain with support in a given ideal faithful? That is, if R is a local Noethe-
rian domain and I ⊆ R is an ideal of cohomological dimension δ, is Hδ

I (R)
a faithful R-module?

Here Hδ
I (R) being faithful amounts to AnnR(H

δ
I (R)) = (0). When R is a

regular local ring containing a field, Question 1.1 has a positive answer; this
was stated in [10, Theorem 1.1] and was attributed to Hochster and Huneke
[9, Lemma 2.2] in characteristic p > 0 and to Lyubeznik in characteristic
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zero. As stated in [10, page 543], when R is a regular local ring of mixed
characteristic, Question 1.1 remained open.

Question 1.1 also stems from a conjecture made by Lynch in [10]; Lynch
conjectured that Question 1.1 has a positive answer for all Noetherian local
rings even without assuming the ring is a domain. In [1, Example 3.2], a
counterexample to Lynch’s conjecture was found; note that the local ring in
[1, Example 3.2] is not equidimensional.

The main purpose of this paper is to investigate Question 1.1 for reg-
ular local rings of mixed characteristic. One of our main results classifies
annihilators of D-modules as follows.

Theorem A (Theorem 3.1). Let R = V [[x1, . . . , xn]] or R =
V [x1, . . . , xn] where (V, πV ) is a DVR of mixed characteristic (0, p).
Let M be a nonzero D(R, V )-module. Then, either AnnR(M) = (0) or
AnnR(M) = (πℓ) for some ℓ ≥ 1.

Note that local cohomology modules of R are primary examples of
D(R, V )-modules (cf. §2), and that investigating local cohomology modules
from the D-module viewpoint has proven fruitful over the years (cf. [12]).

We also answer Question 1.1 in the negative in the case of regular local
rings of mixed characteristic by considering a slight modification of Reisner’s
example.

Theorem B (Example 4.2 and Remark 4.3). Let A = Z[x0, . . . , x5]
and m = (2, x0, . . . , x5). Let R be the m-adic completion of A, and let I be
the ideal of R generated by the 10 monomials

{x0x1x2, x0x1x3, x0x2x4, x0x3x5, x0x4x5,

x1x2x5, x1x3x4, x1x4x5, x2x3x4, x2x3x5}.

Then cd(R, I) = ara(I) = 4 and AnnR(H
4
I (R)) = (2) ̸= (0), where ara(I)

denotes the arithmetic rank of I.

This turns out to be a counterexample to a conjecture of Lyubeznik and
Yildirim as well (cf. Remark 4.7).

The paper is organized as follows. In §2, we review some basics of the
theory of D-modules; in §3, we classify the annihilators of D(R, V )-modules
when R is a ring of polynomials or formal power series over a DVR (V, πV )
of mixed characteristic (0, p); in §4, we answer Question 1.1 in the negative.
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2. Preliminaries on D-modules

We begin by fixing some conventions. All rings are assumed to have a unit
element 1. If R is a commutative ring and r ∈ R is an element, we denote by
(r) the principal ideal rR ⊆ R. All local commutative rings are assumed to
be Noetherian. When we say that (V, πV, k) is a DVR of mixed characteristic
(0, p), we mean that V is a rank-one discrete valuation ring of characteristic
zero whose maximal ideal is the principal ideal (π) = πV generated by π,
and whose residue field k = V/πV has characteristic p > 0. If ω ∈ V , we
denote by νπ(ω) the π-adic valuation of ω, that is, νπ(ω) is the exponent in
the largest power of π dividing ω (so νπ(ω) = 0 if and only if ω is a unit in
V ).

We now provide some necessary background material concerning D-
modules. If S is any commutative ring and A ⊆ S is a commutative sub-
ring, then the ring D(S,A) of A-linear differential operators on S, a subring
of EndA(S), is defined recursively as follows [4, §16]. A differential opera-
tor S → S of order zero is multiplication by an element of S. Supposing
that differential operators of order ≤ j − 1 have been defined, d ∈ EndA(S)
is said to be a differential operator of order ≤ j if, for all s ∈ S, the
commutator [d, s] ∈ EndA(S) is a differential operator of order ≤ j − 1.
We write D

j(S) for the set of differential operators on S of order ≤ j
and set D(S,A) = ∪jD

j(S). Every D
j(S) is naturally a left S-module. If

d ∈ D
j(S) and d′ ∈ D

l(S), it is easy to prove by induction on j + l that
d′ ◦ d ∈ D

j+l(S), so D(S,A) is a ring.
By a D(S,A)-module, we mean a left module over the ring D(S,A).

We denote by ModD(S,A) the Abelian category of (left) D(S,A)-modules.
The ring S itself has a D(S,A)-module structure; using the quotient rule,
we can give a D(S,A)-module structure to the localization Sf for every
f ∈ S in such a way that the natural localization map S → Sf is a map of
D(S,A)-modules. Using the Čech complex interpretation of local cohomol-
ogy, it follows [12, Example 2.1] that the local cohomology modules H i

I(S)
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have D(S,A)-module structures for all finitely generated ideals I ⊆ S and
all i ≥ 0.

We will be concerned with the special case in which S = A[[x1, . . . , xn]]
(resp. S = A[x1, . . . , xn]) is a formal power series (resp. polynomial) ring
with coefficients in A. In this case, we can describe explicitly the structure
of the ring D(S,A): we have

D(S,A) = S⟨∂
[t]
i | 1 ≤ i ≤ t, t ≥ 1⟩

by [4, Thm. 16.11.2], where ∂
[t]
i denotes the differential operator 1

t!
∂t

∂xt
i
(which

is well-defined even if the natural number t is not invertible in S). If a ∈ A
is an element, then aD(S,A) is a two-sided ideal of D(S,A), and it follows
from the displayed equality (with A replaced by the quotient A/(a)) that

D(S,A)/aD(S,A) ∼= D(S/(a), A/(a))

as rings. In particular, a D(S/(a), A/(a))-module is precisely a D(S,A)-
module annihilated by a.

We will need the following proposition in the sequel.

Proposition 2.1. Let S = k[[x1, . . . , xn]] or k[x1, . . . , xn] for some n ≥ 0,
where k is a field. If M is a nonzero D(S, k)-module, then AnnS(M) = (0).

Proposition 2.1 is essentially contained in the proof of [2, Theorem 3.6]
which only treats local cohomology modules; it follows from [3, Proposi-
tion 3.3]1 and [2, Theorem 2.4]. Also note that Proposition 2.1 makes no
assumption about the characteristic of k.

3. The annihilator of a D(R, V )-module

Throughout this section, (V, πV, k) denotes a fixed DVR of mixed character-
istic (0, p), and R denotes either the ring V [[x1, . . . , xn]] or V [x1, . . . , xn] for
some n ≥ 0. In either case, we denote by R the ring R/(π), which is either
a formal power series or polynomial ring over k. Our goal in this section is
to classify the possible R-module annihilators of D(R, V )-modules, and our
main result is the following:

Theorem 3.1. Let M be a nonzero D(R, V )-module. Then, either
AnnR(M) = (0) or AnnR(M) = πℓR for some ℓ ≥ 1.

1The proof of Proposition 3.3 in [2] is incomplete, and was corrected in [3].
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In order to prove Theorem 3.1, we begin with a classification of D(R, V )-
submodules of R.

Theorem 3.2. Let I ⊆ R be a nonzero D(R, V )-submodule of R. There
exists a natural number ℓ ≥ 0 such that I = πℓR.

Proof. We write elements f ∈ R in multi-index notation as follows:

f =
∑

β∈(Z≥0)n

ωβx
β ,

where all ωβ ∈ V and if β = (β1, . . . , βn) ∈ (Z≥0)
n, then xβ denotes the

monomial xβ1

1 · · ·xβn

n . When R is a polynomial ring over V , we of course
have ωβ = 0 for almost all β ∈ (Z≥0)

n.
We prove the formal power series case first. Let R = V [[x1, . . . , xn]], let

I ⊆ R be a nonzero D(R, V )-submodule, and let f ∈ I be given. If there
exists β ∈ (Z≥0)

n such that ωβ is a unit in V (that is, νπ(ωβ) = 0), then
I = R = (π0), since

∂
[β1]
1 · · · ∂[βn]

n (ωβx
β1

1 · · ·xβn

n ) = ωβ ,

and so, since ∂
[β1]
1 · · · ∂

[βn]
n (f) (which belongs to I by hypothesis) has a unit

constant term, it is itself a unit in R. On the other hand, assume that
for every f =

∑
β∈(Z≥0)n

ωβx
β ∈ I, we have νπ(ωβ) > 0 for all β ∈ (Z≥0)

n.
Under this assumption, let ℓ be the minimal value of νπ(ωβ) among all
ωβ occurring as coefficients in any f ∈ I. This ℓ is a well-defined, nonzero
natural number; we claim that I = (πℓ). It is clear that I ⊆ (πℓ). For the
converse inclusion, choose f =

∑
β∈(Z≥0)n

ωβx
β ∈ I such that for some β ∈

(Z≥0)
n we have νπ(ωβ) = ℓ. Applying the differential operator ∂

[β1]
1 · · · ∂

[βn]
n ,

we obtain an element g ∈ I whose constant term is of the form πℓ times a
unit in V . But by the minimality ℓ, every other coefficient in g is divisible
by πℓ; factoring out πℓ, we can write g as πℓ times a unit h in R, from which
it follows that (πℓh)h−1 = πℓ ∈ I. Thus, I = (πℓ) as claimed.

On the other hand, suppose that R = V [x1, . . . , xn]. Again let I ⊆ R be a
nonzero D(R, V )-submodule, and let f ∈ I be given. Let γ = (γ1, . . . , γn) ∈
(Z≥0)

n be such that ωγx
γ is the leading term of f with respect to the grlex

term order. Then ∂
[γ1]
1 · · · ∂

[γn]
n (f) = ωγ ∈ I. Scaling by a unit if needed, we

conclude that πνπ(ωγ) ∈ I. Now let ℓ be the minimal π-adic valuation of any
of the (grlex) leading coefficients of elements of I. Since I ̸= (0), ℓ is a natural
number. By the preceding argument, πℓ ∈ I. We claim that, conversely, I ⊆
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(πℓ) and so the two are equal. Indeed, if f ∈ I is not divisible by πℓ, then
some nonzero term ωβx

β has νπ(ωβ) < ℓ. Let ωβx
β be the greatest term

(under the grlex order) whose coefficient has π-adic valuation less than ℓ.
That is, f can be written as f = f1 + f2 where ωβx

β is the leading term of
f1 and πℓ divides f2. Since πℓ ∈ I, this implies that f1 ∈ I and its leading
coefficient ωβ is not divisible by πℓ, a contradiction to the hypothesis on ℓ.
This completes the proof. □

Before we proceed to a proof of Theorem 3.1, we need the following
lemma. In this lemma, and the rest of the results in this section, the proofs
for the formal power series and polynomial cases are identical.

Lemma 3.3. Let M be a D(R, V )-module. Set I = AnnR(M) and

J = (I : π∞) := {a ∈ R | aπm ∈ I for some integer m ≥ 0}.

Then J is a D(R, V )-submodule of R.

Proof. Let p = πℓu, for some u ∈ V ×. Then it is easy to see that

J = (I : π∞) = (I : (πℓ)∞) = (I : p∞),

and so, it suffices for us to show that

J = (I : p∞) = {a ∈ R | apm ∈ I for some integer m ≥ 0}

is a D(R, V )-submodule of R. It further suffices to show that ∂
[t]
i (r) remains

in J for every 1 ≤ i ≤ n, t ≥ 1, and r ∈ J .
Since r ∈ J , there is an integer ℓ such that (pℓr)M = 0. First we consider

the case when t = 1. For each m ∈ M , we have

0 = ∂i(p
ℓrm) = pℓ∂i(rm) = pℓ(∂i(r)m+ r∂i(m)) = pℓ∂i(r)m,

which shows that ∂i(r) ∈ J . Now an easy induction on t shows that ∂t
i (r) ∈ J

for all t ≥ 1. Since ∂t
i = t!∂

[t]
i , it follows that t!∂

[t]
i (r) ∈ J for all t ≥ 1. Since

every integer coprime to p is a unit in R, we have pνπ(t!)∂
[t]
i (r) ∈ J . By

definition of J = (I : p∞), there exists m ≥ 0 such that pm(pνπ(t!)∂
[t]
i (r)) =

pm+νπ(t!)∂
[t]
i (r) ∈ I; again by definition of J , this means ∂

[t]
i (r) ∈ J . □

We will also need the following consequence of Proposition 2.1.

Lemma 3.4. Let M be a nonzero D(R, V )-module such that πM = (0).
Then AnnR(M) = πR.
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Proof. By hypothesis, (π) ⊆ AnnR(M). For the converse inclusion, ob-
serve that since M is annihilated by π, it has a natural structure of
D(R, V )/πD(R, V ) = D(R/(π), V/(π)) = D(R, k)-module. Since M ̸= (0)
and k is a field, we have AnnR(M) = (0) by Proposition 2.1, so that
AnnR(M) ⊆ (π). □

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let I = AnnR(M) and assume that I ̸= (0). By
Lemma 3.3, J = (I : π∞) is a nonzero D(R, V )-submodule of R, so by The-
orem 3.2, we have J = (πe) for some natural number e ≥ 1. In particular,
πe ∈ J , so for some ℓ ≥ e, πℓ ∈ I by definition of J . Assume that ℓ is the
minimal integer such that πℓ ∈ I. Since M ̸= (0), we must have ℓ ≥ 1.

We will use induction on ℓ to show that I = (πℓ). The base case, ℓ = 1,
is precisely Lemma 3.4. If ℓ ≥ 2, we consider πM . The definition of ℓ im-
plies that πM ̸= (0). Since π ∈ V , the module πM is naturally a D(R, V )-
submodule of M . Applying the induction hypotheses to πM (which is anni-
hilated by πℓ−1), by minimality of ℓ we have AnnR(πM) = (πℓ−1). It follows
immediately that AnnR(M) = (πℓ). □

Theorem 3.1, in conjunction with Theorem 3.2, has the following inter-
pretation: the R-module annihilators of D(R, V )-modules are precisely the
D(R, V )-submodules of R.

4. Reisner’s example in mixed characteristic

The main purpose of this section is to produce an example of a top local
cohomology module of a regular local ring of mixed characteristic that has
nonzero annihilator. Such an example provides a negative answer to Ques-
tion 1.1 even in the special case of regular rings. We will begin with the
following observation.

Proposition 4.1. Let A = Z[x1, . . . , xn] for some n ≥ 0 and let I ⊆ A be
a monomial ideal.

(a) For all ℓ ≥ 1, let Iℓ be the ideal generated by the ℓ-th powers of a
given set of monomial generators for I. Suppose that 0 ̸= α ∈ Z is such
that α annihilates ExtjA(A/I,A) for some j ≥ 0. Then α annihilates

ExtjA(A/Iℓ, A) for all ℓ ≥ 1.
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(b) If α is as in part (a), then α annihilates Hj
I (A); therefore, if Hj

I (A) ̸= (0)

and such a nonzero α exists, then AnnA(H
j
I (A)) is a nonzero proper ideal

of A.

Proof. Part (b) follows immediately from part (a) since Hj
I (A) ∼=

lim
−→ℓ

ExtjA(A/Iℓ, A). To prove part (a), let ℓ ≥ 1 be given and consider

the ring Aℓ = Z[xℓ1, . . . , x
ℓ
n]. Since α is an integer, I (and therefore Iℓ)

is generated by monomials, and αExtjA(A/I,A) = (0), it follows that

αExtjAℓ
(Aℓ/Iℓ, Aℓ) = (0). It is clear that A is a free Aℓ-module, and hence

ExtjA(A/Iℓ, A)
∼= ExtjAℓ

(Aℓ/Iℓ, Aℓ)⊗Aℓ
A

as A-modules. It follows immediately that αExtjA(A/Iℓ, A) = (0), complet-
ing the proof. □

For the rest of this section, we consider the following example, considered
by Reisner in [14, Remark 3] and associated with a minimal triangulation
of the real projective plane. Let A = Z[x0, . . . , x5] and let I be the ideal of
A generated by the 10 monomials

{x0x1x2, x0x1x3, x0x2x4, x0x3x5, x0x4x5,

x1x2x5, x1x3x4, x1x4x5, x2x3x4, x2x3x5}.

It is well-known that cd(I, A) ≤ 4 (cf. [15]), i.e. Hj
I (A) = (0) for j ≥ 5. As

we will see in the next example H4
I (A) ̸= 4 and hence H4

I (A) is a top local
cohomology module. This allows us to give a negative answer to Question 1.1
as follows.

Example 4.2. Let A and I be as in the previous paragraph, and let m =
(2, x0, . . . , x5). It is straightforward to check2 that Ext4A(A/I,A) ∼= A/m,
which is annihilated by 2. As in Proposition 4.1, for all ℓ ≥ 1, let Iℓ be the
ideal generated by the ℓ-th powers of the displayed monomial generators of
I. Since Ext4A(A/I,A)

∼= A/m, it follows from the proof of Proposition 4.1

2This can be seen directly from Hochster’s formula; alternatively, as indicated by
Lyubeznik in [11], it can be computed using the Taylor resolution of A/I.
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that

Ext4A(A/Iℓ, A)
∼= A/(2, xℓ0, . . . , x

ℓ
5)

for all ℓ ≥ 1. It follows from [11, Theorem 1]3 that the transition map
Ext4A(A/Iℓ, A) → Ext4A(A/Iℓ+1, A) is injective for each ℓ ≥ 1. Therefore
H4

I (A) ̸= 0 and is supported only in the maximal ideal m. It follows
from Proposition 4.1 that 2 · Ext4A(A/Iℓ, A) = (0) for all ℓ ≥ 1; and hence
2 ·H4

I (A) = (0). Now consider the m-adic completion Âm of A, a complete

unramified regular local ring. We again write I for the ideal IÂm ⊆ Âm.
(Concretely, the ring Âm is isomorphic to Z2[[x0, . . . , x5]], where Z2 denotes
the ring of 2-adic integers, and IÂm is generated by the same ten mono-
mials.) Local cohomology commutes with the flat base change A → Âm,
so H4

I (Â
m) ̸= (0) and Hj

I (Â
m) = (0) for all j > 4. Consequently H4

I (Â
m)

is a top local cohomology module that is annihilated by 2. In particular,
Ann

Âm
(H4

I (Â
m)) = (2) by Theorem 3.1.

Remark 4.3 (Arithmetic rank of the ideal I). It follows from [15,
Example 5)] that the ideal I can be defined up to radical by 4 elements

{x0x3x5, x0x1x3 + x0x4x5 + x2x3x5,

x0x2x4 + x1x2x5 + x1x3x4, x0x1x2 + x1x4x5 + x2x3x4}

in both A and Âm. Since it is shown in Example 4.2 that H4
I (A) ̸= 0 and

H4
I (Â

m) ̸= 0, the arithmetic rank of I must be 4 in both A and Âm and

cd(A, I) = cd(Âm, I) = 4.

Remark 4.4. During the preparation of this paper, we learned that
Hochster and Jeffries obtained the following result: Let (R,m) be a Noethe-
rian local domain of characteristic p. Assume that the arithmetic rank of an
ideal I is the same as its cohomological dimension, which is denoted by δ.
Then Hδ

I (R) is faithful.
The combination of Example 4.2 and Remark 4.3 shows that the mixed-

characteristic analogue of the aforementioned Hochster-Jeffries result does
not hold.

Hernández, Núñez-Betancourt, Pérez, and Witt also studied the module
H4

I (Â
m), concluding [6, Theorem 6.3] that this module has zero-dimensional

3In Lyubeznik’s theorem, the ring was assumed to be a local ring containing a
field. However, since each Ext4A(A/Iℓ, A) is annihilated by 2 and supported only
in the maximal ideal m, it is naturally a module over the local ring R̄; hence
Lyubeznik’s theorem is applicable.
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support while its injective dimension as an Âm-module is equal to 1. We
finish this section with a finer analysis of the structure of H4

I (Â
m), that in

particular recovers this result of [6].

Proposition 4.5. Let (R,m) = Âm denote the completion of A at the
maximal ideal m = (2, x0, . . . , x5) and let R̄ denote R/(2). Then H4

I (R) ∼=
ER̄(R̄/m) as R-modules.

Proof. As we have seen in Example 4.2 that the transition map

Ext4A(A/Iℓ, A) → Ext4A(A/Iℓ+1, A)

is injective for each ℓ ≥ 1. Since

(xℓ+1
0 , . . . , xℓ+1

5 ) : (xℓ0, . . . , x
ℓ
5) = (xℓ+1

0 , . . . , xℓ+1
5 , x0 · · ·x5)

(which holds in both A and A/(2)), it is straightforward to check that this
transition map is given by

A

(2, xℓ0, . . . , x
ℓ
5)

·x0···x5−−−−→
A

(2, xℓ+1
0 , . . . , xℓ+1

5 )
.

Therefore,

H4
I (A)

∼= lim
−→
ℓ

Ext4A(A/Iℓ, A)

∼= lim
−→
ℓ

(· · · →
A

(2, xℓ0, . . . , x
ℓ
5)

·x0···x5−−−−→
A

(2, xℓ+1
0 , . . . , xℓ+1

5 )
→ · · · )

∼= H6
m
(A/(2))

∼= H6
m
(R̄)

Therefore H4
I (R) ∼= H4

I (A)⊗A R ∼= H6
m
(R̄) ∼= ER̄(R̄/m) as R-modules. This

completes the proof. □

Inspired by a question of Hellus ([5]), Lyubeznik and Yildirim conjec-
tured in [13, Conjecture 1] that

Conjecture 4.6. Let (R,m) be a regular local ring and I be a non-zero
ideal of R. If Hj

I (R) ̸= 0, then 0 ∈ AssR(D(Hj
I (R))).

Remark 4.7. It is observed in [16] that our Proposition 4.5 provides an
counterexample to Conjecture 4.6: let R, I be the same as in Proposition 4.5,
then D(H4

I (R)) ∼= R/(2) and hence 0 /∈ AssR(D(H4
I (R))).
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partie, Publ. Math. IHÉS 32 (1967) 5–361.
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