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Abstract
This article discusses a generalization of the 1-dimensional multi-reference alignment
problem. The goal is to recover a hidden signal from many noisy observations, where
each noisy observation includes a random translation and random dilation of the hid-
den signal, as well as high additive noise. We propose a method that recovers the
power spectrum of the hidden signal by applying a data-driven, nonlinear unbiasing
procedure, and thus the hidden signal is obtained up to an unknown phase. An unbi-
ased estimator of the power spectrum is defined, whose error depends on the sample
size and noise levels, and we precisely quantify the convergence rate of the proposed
estimator. The unbiasing procedure relies on knowledge of the dilation distribution,
and we implement an optimization procedure to learn the dilation variance when
this parameter is unknown. Our theoretical work is supported by extensive numerical
experiments on a wide range of signals.

Keywords Multi-reference alignment · Method of invariants · Dilations · Signal
processing

1 Introduction

In classic multi-reference alignment (MRA), one attempts to recover a hidden signal
f : R → R from many noisy observations, where each noisy observation has been
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randomly translated and corrupted by additive noise, as described in the following
model.

Model 1 (Classic MRA) The classic MRA data model consists of M independent
observations of a compactly supported, real-valued signal f ∈ L2(R):

y j (x) = f (x − t j )+ ε j (x) , 1 ≤ j ≤ M , (1)

where:

(i) supp(y j ) ⊆ [− 1
2 ,

1
2 ] for 1 ≤ j ≤ M.

(ii) {t j }Mj=1 are independent samples of a random variable t ∈ R.
(iii) {ε j (x)}Mj=1 are independent white noise processes on [− 1

2 ,
1
2 ] with variance

σ 2.

This toy model is a first step towards more realistic models arising in cryo-electron
microscopy (cryo-EM), and is relevant in many other applications including structural
biology [25, 44, 45, 48, 49, 54]; radar [30, 58]; single cell genomic sequencing [35];
image registration [12, 28, 47]; and signal processing [58]. Somemethods solveModel
1 via synchronization [2–5, 10, 16, 17, 46, 52, 57], i.e., the translation factors {t j }Mj=1
are explicitly recovered and the signals aligned. Synchronization approaches will fail
in the high noise regime when the signal-to-noise ratio (SNR) is low, but the hidden
signal can still be recovered by methods which avoid alignment; these include the
method of moments [31, 34, 50], which contain the method of invariants [6, 8, 21] as
a special case, and expectation-maximization type algorithms [1, 23]. The method of
invariants leverages translation invariant Fourier features such as the power spectrum
and bispectrum, i.e.,Fourier invariants, as they are especially useful for solvingModel
1. Recall the Fourier transform (FT) of a signal f ∈ L1(R) is defined as

f̂ (ω) =
∫

f (x)e−i xω dx ,

and its power spectrum is then defined by (P f )(ω) = | f̂ (ω)|2 and its bispectrum
by (B f )(ω1, ω2) = f̂ (ω1) f̂ (ω2)

∗ f̂ (ω2 − ω1). Furthermore, continuous time white
noise is defined as the derivative of a Brownian motion, i.e., ϵ(x) = dBx so that
ϵ̂(ω) =

∫ 1/2
−1/2 e

−i xωdBx .
Although foundational, Model 1 fails to capture important sources of random-

ness which appear in many applications. For example in cryo-EM, 3D molecules are
randomly rotated and only the 2D tomographic projection is observed. Furthermore,
macromolecular structures contain flexible regions whose dynamics have important
affects on molecular interactions [26, 27, 36, 37] and the regulation of histone tails
[11, 24, 40], but these dynamics make imaging highly challenging. Mathematically,
one can model the situation as a diffeomorphism, i.e., there is an underlying structure
f (x) but one observes f (ζ(x)) for some random diffeomorphism ζ(x). Translations,
i.e., ζ(x) = x − t , are the simplest diffeomorphism and give rise to classic MRA.
In this article we analyze the following generalization of classic MRA, where signals
are also corrupted by a random scale change (i.e., dilation) in addition to random
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Fig. 1 Left: Illustration of Model 2. A hidden signal is randomly translated (column 1), randomly dilated
(column 2), and then corrupted by additive noise (columns 3 and 4). Column 3 shows SNR = 1

2 and
column 4 shows SNR = 2, which is the noise level considered in the simulations reported in Sect. 6. Right:
Illustration of Noisy dilation MRA in two dimensions. From a collection of noisy images (bottom and top
right), one seeks to recover a high-resolution image (top left)

translation and additive noise; see Fig. 1. This corresponds to the next simplest class
of diffeomorphisms, i.e., affine functions ζ(x) = C(x − t).

Model 2 (Noisy dilation MRA data model) The noisy dilation MRA data model con-
sists of M independent observations of a compactly supported, real-valued signal
f ∈ L2(R):

y j (x) = f
(
(1 − τ j )

−1(x − t j )
)
+ ε j (x) , 1 ≤ j ≤ M . (2)

In addition, we assume:

(i) supp(y j ) ⊆ [− 1
2 ,

1
2 ] for 1 ≤ j ≤ M.

(ii) {t j }Mj=1 are independent samples of a random variable t ∈ R.
(iii) {τ j }Mj=1 are independent samples from a uniformly distributed random variable

τ with mean zero and variance η2 ≤ 1/12, so that:

τ ∈ [−
√
3η,

√
3η] , E(τ ) = 0 , Var(τ ) = η2.

(iv) {ε j (x)}Mj=1 are independent white noise processes on [− 1
2 ,

1
2 ] with variance σ 2.

Dilations are highly relevant in many applications, for example in the analysis of time-
warped audio signals [41–43] and in imaging [13, 15, 33, 39, 47, 55], where distance
to an object and camera zoom determine the scale of an object. Note the box size
in Models 1 and 2 is arbitrary; more generally, the signals may be supported on any
finite interval [− N

2 ,
N
2 ]. All results still hold with σ

√
N replacing σ . The assumption

η2 ≤ 1
12 is also arbitrary but arises from requiring that the dilation factors satisfy

(1 − τ) ∈ [ 12 , 2]; more generally, one can replace this requirement with (1 − τ) ∈
[rmin, rmax] for some rmin lower bounded away from 0; this will affect constants but
all key results still hold.
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Remark 1 We consider L∞(R) normalized dilations in Model 2, i.e., we consider
a dilation operator DC f (x) = f (C−1x) which preserves the infinity norm, since
∥DC f ∥∞ = ∥ f ∥∞. However the method is easily modified to accommodate Lp(R)
normalized dilation operators where DC f (x) = C−1/p f (C−1x), so that ∥DC f ∥p =
∥ f ∥p. We consider p = ∞ because this is natural for imaging applications, but other
normalizations are useful in other contexts. For example it is natural to take p = 1 in
the statistical context, where one may observe samples from a family of distributions
which are shifts and rescalings of an underlying distribution.

Solving Model 2 is highly challenging. Dilations cause instabilities in the high
frequencies of a signal, where even a small dilation can lead to a large perturbation of
the frequency values. In this paper we generalize themethod of invariants to the setting
of dilation corruptions, i.e., we seek to fully solve Model 2 using Fourier invariants.
Note kth order Fourier invariants are obtained by taking the Fourier transformof the kth
order auto-correlation function, a process which always results in translation-invariant
features; for example power spectra are second order Fourier invariants while bispectra
are third order. Fully recovering the hidden signal in Model 2 via Fourier invariants
involves two key challenges (1) remove the dilation bias from the Fourier invariants
and (2) invert the Fourier invariants to obtain the hidden signal. In this paper we focus
on the first key challenge, and for simplicity we start with a method for recovering
the power spectrum of the hidden signal, i.e., k = 2. However we expect that the
methodology developed here can in fact be generalized to Fourier invariants of any
order. For a 1d signal to be uniquely determined by its Fourier invariants, k = 3 is
generally required, since the bispectrum is invertible under very general conditions
[56].

In this paper we do not focus on key challenge (2), but we note that there are already
many works in the literature regarding this topic. Although the hidden signal is in gen-
eral not uniquely determined by its power spectrum, there are some exceptions, such
as when the signal lives in a spline or shift invariant space [20, 53], or is sufficiently
sparse [7]; see [9, 51] for an overview of phase retrieval results. Inverting the bispec-
trum is more tenable, andmethods include non-convex optimization over the manifold
of phases [8], iterative phase synchronization [8], semi-definite programming, phase
unwrapping, frequency marching [29, 48], and the spectral method proposed in [18].
Thus the main contribution of the present work is a novel technique for key challenge
(1), i.e., dilation unbiasing of Fourier invariants; future workwill investigate full signal
recovery by extending the method from the power spectrum to the bispectrum, and
then combining with existing bispectrum inversion algorithms.

We note in [32] an alternate method for dilation unbiasing of Model 2 is proposed,
assuming L1(R) normalized dilations. The authors define wavelet-based, translation
invariant features and unbias for dilations by utilizing the first few moments of the
dilation distribution (note similar unbiasing procedures have been applied in the decon-
volution context [14, 22]). The method has two main short-comings: although it can
reduce the bias due to dilations, it cannot remove it entirely, i.e., the method of [32]
does not define an unbiased estimator of the true features. In addition, inverting the
wavelet-based features to recover the power spectrum of the hidden signal is numeri-
cally unstable, as it is driven by the condition number of a low rank matrix. This article
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proposes a method which overcomes both of these challenges: by working directly on
the power spectrum, we avoid a numerically unstable inversion, and we develop a new
unbiasing procedure which yields an unbiased estimator of the power spectrum of the
hidden signal; we refer to this unbiasing procedure as inversion unbiasing. To achieve
this we assume explicit knowledge of the dilation distribution instead of knowledge of
the first few moments. To illustrate inversion unbiasing, it is helpful to define the fol-
lowing model in which signals are randomly translated and dilated, but not corrupted
by additive noise.

Model 3 (Dilation MRA data model) The dilation MRA data model consists of M
independent observations of a compactly supported, real-valued signal f ∈ L2(R):

y j (x) = f
(
(1 − τ j )

−1(x − t j )
)
, 1 ≤ j ≤ M . (3)

In addition, we assume (i)–(iii) of Model 2.

Since Model 3 lacks additive noise, it can in fact be trivially solved by first estimating
∥ f ∥2, and then dilating any observed signal to have the right norm (for further details
see [32]). We use Model 3 to build a theory to solve Model 2, but note it is not of
independent interest.

Remark 2 This article generalizes the method of invariants for Model 2. Another pos-
sible approach is to generalize the expectation maximization algorithm proposed in
[1] (see Appendix I in [32]). Although this may work well in many cases, some dis-
advantages are: (1) the high computational cost of each iteration, (2) convergence to
local (not global) minima, and (3) error accumulation due to off grid interpolation of
dilated function values.

The remainder of the article is organized as follows. Section2 motivates inversion
unbiasing by first considering the infinite sample size case. Section3 presents ourmain
results for solvingModels 2 and 3 in the finite sample regime. Section4 discusses how
inversion unbiasing is implemented via an optimization algorithm. Section5 discusses
the discretization error incurred when the continuous signals of Model 2 are discretely
sampled. Section6 reports simulation results testing the performance of inversion
unbiasing. Section7 concludes the article and summarizes future research directions.

1.1 Notation

Let f j (x) = f
(
(1 − τ j )

−1(x − t j )
)
denote the j th signal which is dilated by 1− τ j .

We note that f̂ j (ω) = e−i t jω(1 − τ j ) f̂ ((1 − τ j )ω), so that

(P f j )(ω) = (1 − τ j )
2(P f )((1 − τ j )ω) .

We let g = P f , and for Models 2 and 3 we define

gη(ω) := Eτ

[
(P f j )(ω)

]
. (4)
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Thus g(ω) is the power spectrum of the hidden signal, while gη(ω) is the expected
value of the power spectrum under dilation corruption. Note for Model 2, it is easy to
show that

gη(ω) = Eτ,ϵ[(Py j )(ω) − σ 2] ,

since y j = f j +ϵ j andEτ,ϵ[(Pϵ j )(ω)] = σ 2; see for example Proposition 3.1 in [32].
We let g′

η(ω) = d
dω gη(ω) denote the normal derivative. We also define the following

constants which depend on η:

B0 =
(1 −

√
3η)

(1+
√
3η)

, B1 = 2
√
3η , B2 =

1

1+
√
3η

, (5)

and we let (LCg)(ω) = C3g(Cω) be a dilation operator. We use a∗ to denote the
complex conjugate of a, and a ∧ b to denote min{a, b}. When a ≤ Cb for an absolute
constant C , we say a = O(b) and write a ! b. Finally, we let C0(R) denote the
space of continuous functions on R, and Ck(R) functions on R with k continuous
derivatives.

2 Infinite Sample Estimate

To motivate our finite sample procedure, we first consider how to define an unbiased
estimator in the infinite sample limit. We can recover P f from gη, as stated in the
following Proposition.

Proposition 1 Assume P f ∈ C0(R) and gη as defined in (4). Then for ω ̸= 0:

(P f )(ω) = (I − LB0)
−1B1LB2(3gη(ω)+ ωg′

η(ω)) ,

where B0, B1, B2 are as defined in (5).

Proof of Proposition 1 Since τ has a uniform distribution with variance η2, the proba-
bility density function (pdf) of τ has form pτ (ω) = 1

2
√
3η
1[−

√
3η,

√
3η](ω). Thus:

gη(ω) := Eτ [(1 − τ)2g((1 − τ)ω)]

=
∫
(1 − τ)2g((1 − τ)ω)pτ (ω) dτ

= 1

2
√
3η

∫ √
3η

−
√
3η
(1 − τ)2g((1 − τ)ω) dτ

= 1

2
√
3η

∫ (1+
√
3η)ω

(1−
√
3η)ω

τ̃ 2

ω2 g(̃τ )
1
ω

d τ̃ ,

where we have applied the change of variable τ̃ = (1 − τ)ω,
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dτ = − 1
ω d τ̃ . Letting h(x) = x2 g(x) and H(x) an antiderivative of h, by the

Fundamental Theorem of Calculus we thus obtain:

2
√
3ηω3gη(ω) =

∫ (1+
√
3η)ω

(1−
√
3η)ω

τ̃ 2g(̃τ ) d τ̃

=
∫ (1+

√
3η)ω

(1−
√
3η)ω

h(̃τ ) d τ̃

= H((1+
√
3η)ω) − H((1 −

√
3η)ω) .

Differentiating with respect to ω yields:

2
√
3η

(
3ω2gη(ω)+ ω3g′

η(ω)
)

= (1+
√
3η)h((1+

√
3η)ω) − (1 −

√
3η)h((1 −

√
3η)ω) ,

and dividing by ω2 gives:

2
√
3η

(
3gη(ω)+ ωg′

η(ω)
)

= (1+
√
3η)3g((1+

√
3η)ω) − (1 −

√
3η)3g((1 −

√
3η)ω) .

Applying the dilation operator LB2 then gives:

B1LB2(3gη + ωg′
η(ω))

= g (ω) −
(
1 −

√
3η

1+
√
3η

)3

g

((
1 −

√
3η

1+
√
3η

)

ω

)

= (I − LB0)g(ω) .

Since B0 < 1, the series I + LB0 + L2
B0

+ L3
B0

+ . . . converges, and I − LB0 is
invertible. We thus obtain

g(ω) = (I − LB0)
−1B1LB2(3gη(ω)+ ωg′

η(ω)) ,

which proves the proposition. ⊓⊔

Proposition 1 indicates that when τ is uniformly distributed, P f can be recovered
from gη, which is known in the infinite sample limit. It thus provides the key insight
on how to unbias for dilations.
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3 Finite Sample Estimates

Since we are only given a finite sample, we do not have access to gη, but for large M ,
gη is well approximated by:

g̃η(ω) :=
1
M

M∑

j=1

(P f j )(ω) . (6)

For dilationMRA, g̃η can be computed exactly, andwe describe the resulting estimator
in Sect. 3.1. For noisy dilationMRA, g̃η cannot be computed exactly due to the additive
noise, but an unbiased estimator can still be defined as described in Sect. 3.2.

3.1 Results for DilationMRA

Motivated by Proposition 1, we define the following estimator for dilation MRA:

(P̃ f )(ω) := (I − LB0)
−1B1LB2(3g̃η(ω)+ ωg̃′

η(ω)) , (7)

where g̃η is as defined in (6) and B0, B1, B2 are as defined in (5). We note that in
practice one does not have a closed form formula for applying (I − LB0)

−1, but
(P̃ f )(ω) can be obtained by solving the following convex optimization problem:

argming̊≥0 ∥(I − LB0)g̊ − B1LB2(3g̃η(ω)+ ωg̃′
η(ω))∥22 .

We describe this optimization procedure in detail in Sect. 4, but first we analyze the
statistical properties of the estimator (P̃ f )(ω). The key quantity we bound is the mean
squared error (MSE) E

[
∥P f − P̃ f ∥22

]
. The following lemma establishes that when

g̃η, g̃′
η are good approximations of gη, g′

η, P̃ f is a good approximation of P f , so we
can reduce the problem to controlling g̃η, g̃′

η.

Lemma 1 Assume Model 3, P f ∈ C1(R), and the estimator (P̃ f )(ω) defined in (7).
Then:

∥P f − P̃ f ∥22 ! ∥gη − g̃η∥22 + ∥ω(g′
η(ω) − g̃′

η(ω))∥22 .

Proof The proof of Lemma 1 is given in Appendix A. ⊓⊔

Lemma 1 thus establishes that to bound E
[
∥P f − P̃ f ∥22

]
, it is sufficient to bound

E
[
∥gη − g̃η∥22

]
andE

[
∥ω(g′

η(ω) − g̃′
η(ω))∥22

]
. Utilizing Lemma 1 yields the follow-

ing Theorem, which bounds the MSE of (7) for dilation MRA. To control higher order
terms we define:

(P f )k(ω) := max
ξ∈[ω/2,2ω]

|(P f )k(ξ)| .
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In general for well behaved functions, (g)k and gk have the same decay rate; for
example, if gk is monotonic, (g)k(ω) = gk(2ω).

Theorem 1 Assume Model 3, the estimator (P̃ f )(ω) defined in (7), P f ∈ C3(R), and
that ωk(P f )(k)(ω) ∈ L2(R) for k = 2, 3. Then:

E
[
∥P f − P̃ f ∥22

]
! η2

M

(
∥(P f )(ω)∥22 + ∥ω(P f )′(ω)∥22 + ∥ω2(P f )′′(ω)∥22

)
+ r ,

where r is a higher-order term satisfying

r ≤ η4

M

(
∥ω2(P f )

′′
(ω)∥22 + ∥ω3(P f )

′′′
(ω)∥22

)
.

Proof By Lemma 1, it is sufficient to bound E
[
∥[∥

]
gη − g̃η

2
2

]
and

E
[
∥[∥

]
ω(g′

η(ω) − g̃′
η(ω))

2
2

]
. Since g̃η(ω) = 1

M

∑M
j=1 P f j (ω), we have

(g̃η(ω) − gη(ω))
2 ≤

⎛

⎝ 1
M

M∑

j=1

(P f j )(ω) − gη(ω)

⎞

⎠
2

.

Let X j = (P f j )(ω)−gη(ω) = (P f j )(ω)−E
[
(P f j )(ω)

]
. Thus because 1

M

∑M
j=1 X j

is a centered random variable, we have

E

⎡

⎢⎣

⎛

⎝ 1
M

M∑

j=1

X j

⎞

⎠
2
⎤

⎥⎦ = var

⎡

⎣ 1
M

M∑

j=1

X j

⎤

⎦ = var(X j )

M
. (8)

Note that we can write:

X j = (P f j )(ω) − (P f )(ω)+ (P f )(ω) − E
[
(P f j )(ω)

]

X2
j ≤ 2

(
(P f j )(ω) − (P f )(ω)

)2 + 2
(
(P f )(ω) − E

[
(P f j )(ω)

])2
.

Since it is easy to check that

E
[(
(P f )(ω) − E

[
(P f j )(ω)

])2] ≤ E
[(
(P f j )(ω) − (P f )(ω)

)2]
,

we obtain

E
[
X2

j

]
≤ 4E

[(
(P f j )(ω) − (P f )(ω)

)2]
.

Taylor expanding (P f )((1 − τ j )ω) gives:

(P f )((1 − τ j )ω) = (P f )(ω)+ (P f )′(ω) · ωτ j ±
1
2
(P f )

′′
(ω) · ω2τ 2j .
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Multiplying by (1 − τ j )
2 and rearranging:

(1 − τ j )
2(P f )((1 − τ j )ω) − (P f )(ω)

= (−2τ j + τ2j )(P f )(ω)+ (1 − τ j )
2(P f )′(ω) · ωτ j ±

(1 − τ j )
2

2
(P f )

′′
(ω) · ω2τ2j .

Utilizing a + b − c ≤ d ≤ a + b + c 0⇒ d2 ! a2 + b2 + c2, we square and take
expectation to obtain

E
[(
(P f j )(ω) − (P f )(ω)

)2] ! [(P f )(ω)]2 η2 +
[
ω(P f )′(ω)

]2
η2 +

[
ω2(P f )

′′
(ω)

]2
η4 .

Thus

var[X j ] = E[X2
j ] !

(
[(P f )(ω)]2 +

[
ω(P f )′(ω)

]2)
η2 +

[
ω2(P f )

′′
(ω)

]2
η4 .

Utilizing (8), we obtain

E
[
(g̃η(ω) − gη(ω))

2
]

! η2

M

(
[(P f )(ω)]2 +

[
ω(P f )′(ω)

]2 +
[
ω2(P f )

′′
(ω)

]2
η2
)

so that

E
[
∥gη − g̃η∥22

]
=
∫

E
[
(g̃η(ω) − gη(ω))

2
]
dω

! η2

M

(
∥(P f )(ω)∥22 + ∥ω(P f )′(ω)∥22 + ∥ω2(P f )

′′
(ω)∥22 η2

)
.

We now bound E
[
∥[∥

]
ω(g′

η(ω) − g̃′
η(ω))

2
2

]
. Letting g j = P f j , we have

ωg̃′
η(ω) − ωg′

η(ω) =
1
M

M∑

j=1

ωg′
j (ω) − ωg′

η(ω) =
1
M

M∑

j=1

Z j

where

Z j = ωg′
j (ω) − ωg′

η(ω) .

We note E[Z j ] = 0, and a similar argument as the one applied to X j gives

Z2
j ≤ 2

(
ωg′

j (ω) − ωg′(ω)
)2

+ 2
(
ωg′(ω) − ωg′

η(ω)
)2

E
[
Z2
j

]
≤ 4E

[(
ωg′

j (ω) − ωg′(ω)
)2]

.
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Taylor expanding (P f )′((1 − τ j )ω) gives

(P f )′((1 − τ j )ω) = (P f )′(ω)+ (P f )′′(ω) · ωτ j ±
1
2
(P f )

′′′
(ω) · ω2τ 2j .

Since ωg′
j (ω) = ω(P f j )′(ω) = (1 − τ j )

3ω(P f )′((1 − τ j )ω), we multiply by (1 −
τ j )

3ω to obtain:

ω(P f j )′(ω) = (1 − τ j )
3ω(P f )′(ω)+ τ j (1 − τ j )

3ω2(P f )′′(ω)

± 1
2
τ 2j (1 − τ j )

3ω3(P f )
′′′
(ω)

Rearranging:

ω(P f j )′(ω) − ω(P f )′(ω) = (−3τ j + 3τ 2j − τ 3j )ω(P f )′(ω)

+ τ j (1 − τ j )
3ω2(P f )′′(ω)± 1

2
τ 2j (1 − τ j )

3ω3(P f )
′′′
(ω) .

Squaring and taking expectation:

E
[(

ωg′
j (ω) − ωg′(ω)

)2]
!
[
ω(P f )′(ω)

]2
η2

+
[
ω2(P f )′′(ω)

]2
η2 +

[
ω3(P f )

′′′
(ω)

]2
η4 .

Having bounded var
[
Z j
]
, an identical argument as the one used to control

E
[
∥[∥

]
gη − g̃η

2
2

]
gives

E
[
∥[∥

]
ωg′

η(ω) − ωg̃′
η(ω)

2
2

]

! η2

M

(
∥[∥

]
ω(P f )′(ω)22 + ∥[∥

]
ω2(P f )′′(ω)

2
2 + ∥[∥

]
ω3(P f )

′′′
(ω)

2
2η

2
)
,

which proves the Theorem. ⊓⊔

Figure2d illustrates how much is gained from inversion unbiasing for a specific
high frequency signal; the mean power spectrum under Model 3 is greatly perturbed
due to large dilations, but P̃ f is still an accurate approximation of P f . Although
in general a signal is not uniquely defined by its power spectrum, if f̂ is real and
positive as in Fig. 2, f can be approximated by taking the inverse Fourier Transform
of (P̃ f )

1
2 . Figure2a–c illustrate how in this case inversion unbiasing yields a signal

which accurately approximates the target.
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(d) Power spectra

Fig. 2 Power spectrum estimation and signal recovery for high frequency Gabor signal f3(x) =
C3 exp−5x2 cos(32x) under Model 3 with η = 12−1/2 and M = 100, 000. The mean power spectrum
g̃η is greatly perturbed from the target power spectrum P f , but applying inversion unbiasing to g̃η yields an
approximation P̃ f which is quite close to P f (see Fig. 2d). Figure2a shows the target signal, and Figs. 2b,
c show the target signal approximations obtained by inverting g̃η , P̃ f ; in 2b the relative L2 error is 9.5%,
while in 2c it is 89%

3.2 Results for Noisy DilationMRA

Solving noisy dilation MRA presents several additional challenges which are lack-
ing in dilation MRA. First of all, since white noise has a flat power spectrum, i.e.,
E[(Pϵ)(ω)] = σ 2 for all frequencies ω, the MSE can only be controled on a finite
frequency interval. We thus restrict to a finite frequency interval ), and consider the
MSE of an estimator P̃ f over the finite interval, i.e., E

[
∥P f − P̃ f ∥2L2())

]
. We note

the residual error from working on ) decays to zero as |)| → ∞. In addition, in any
numerical implementation one is always restricted to a finite frequency interval.

Another challenge is that one does not have direct access to g̃η; rather one only has
access to

1
M

M∑

j=1

Py j − σ 2 = g̃η + g̃σ (9)

where
g̃σ := 1

M

M∑

j=1

f̂ j ϵ̂∗
j + f̂ ∗

j ϵ̂ j + Pϵ j − σ 2 .

Although the compact support of the hidden signal guarantees the smoothness of g̃η , g̃σ

is not smooth due to the additive noise. To extend the unbiasing procedure of Sect. 3.1
to the additive noise context, it is thus necessary to smooth the noisy power spectra.

We thus compute (g̃η + g̃σ )∗φL where φL(ω) = (2πL2)−
1
2 e− ω2

2 L2 is a Gaussian filter
with width L , and then define the following estimator:
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(P̃ f )(ω) := (I − LB0)
−1B1LB2[

3(g̃η + g̃σ ) ∗ φL(ω)+ ω
(
(g̃η + g̃σ ) ∗ φL

)′
(ω)

]
, (10)

where g̃η + g̃σ are as in (9) and B0, B1, B2 as in (5). As M → ∞ and L → 0, (10) is
an unbiased estimator of P f . To quantify how the error of the estimator depends on
L , we need the following two lemmas.

Lemma 2 Let h ∈ L2(R) and assume |̂h(ω)| decays like |ω|−α for some integer α ≥ 1.
Then for L small enough:

∥h − h ∗ φL∥22 ! ∥h∥22L4 + L4∧(2α−1) .

Proof The proof of Lemma 2 is given in Appendix B. ⊓⊔

Lemma 3 Let xh(x) ∈ L2(R) and assume |(̂·)h(·)(ω)| decays at least like |ω|−α for
some integer α ≥ 1. Then for L small enough:

∥x(h − h ∗ φL)∥22 ! (L3∥h∥22) ∧ (L4∥h′∥22)+ ∥xh∥22L4 + L4∧(2α−1) .

Proof The proof of Lemma 3 is given in Appendix C. ⊓⊔

We now state the main result of the article.

Theorem 2 Assume Model 2, the estimator (P̃ f )(ω) defined in (10), P f ∈ C3(R),
and that ωk(P f )(k)(ω) ∈ L2(R) for k = 2, 3. Then

E
[
∥P f − P̃ f ∥2L2())

]
! C f ,)

(
η2

M
+ L4 + σ 2 ∨ σ 4

L2M

)
.

Proof From Proposition 1 and a proof similar to Lemma 1

∥P f − P̃ f ∥2L2())
! ∥gη + ωg′

η(ω) − (g̃η + g̃σ ) ∗ φL − ω((g̃η + g̃σ ) ∗ φL )
′(ω)∥2L2())

.

By the triangle inequality

∥P f − P̃ f ∥2L2())
! ∥gη + ωg′

η(ω) − g̃η − ωg̃′
η(ω)∥22

+ ∥g̃η + ωg̃′
η(ω) − (g̃η + g̃σ ) ∗ φL − ω((g̃η + g̃σ ) ∗ φL )

′(ω)∥2L2())

:= (A)+ (B) .

From the proof of Theorem 1,

E[(A)] ! η2

M

(
∥(P f )(ω)∥22 + ∥ω(P f )′(ω)∥22 + ∥ω2(P f )′′(ω)∥22

)
+ r ,
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where r = C f η
4/M for a constant C f depending on f . It remains to control (B). We

have

(B) ! ∥g̃η − g̃η ∗ φL∥22 + ∥ωg̃′
η − ω(g̃η ∗ φL)

′∥22
+ ∥g̃σ ∗ φL∥2L2())

+ ∥ω(g̃σ ∗ φL)
′∥2L2())

:= (I)+ (II)+ (III)+ (IV) .

We control (I) with Lemma 2 and (II) with Lemma 3; we note in both cases α can be
chosen arbitrarily large since the signals have compact support. By Lemma 2,

(I) = ∥g̃η − g̃η ∗ φL∥22 ! L4∥g̃η∥22 ! L4∥P f ∥22 ,

since ∥P f j∥2 = (1 − τ j )
3
2 ∥P f ∥2 ≤ ( 32 )

3
2 ∥P f ∥2. By Lemma 3,

(II) = ∥ωg̃′
η − ω(g̃η ∗ φL)

′∥22
! L4∥g̃′′

η∥22 + L4∥ωg̃′
η(ω)∥22 + L4

! L4
(
∥(P f )′′∥22 + ∥ω(P f )′(ω)∥22 + 1

)
.

For (III), note that by Young’s Convolution Inequality

∥g̃σ ∗ φL∥2L2())
≤ ∥φL∥21 · ∥g̃σ ∥2L2())

= ∥g̃σ ∥2L2())

! ∥[∥
] 1
M

M∑

j=1

f̂ j ϵ̂∗
j

2

2

+ ∥[∥
] 1
M

M∑

j=1

Pϵ j − σ 2

2

L2())

.

We have

E

⎡

⎣∥ 1
M

M∑

j=1

f̂ j ϵ̂∗
j ∥22

⎤

⎦ =
∫

E

⎛

⎝ 1
M

M∑

j=1

f̂ j (ω)̂ϵ∗
j (ω)

⎞

⎠
2

dω

≤
∫

1
M2

M∑

j=1

f̂ j (ω)2σ 2 dω

! σ 2

M
∥ f ∥22 .

Since E[Pϵ j ] = σ 2, E[(Pϵ j )
2] ≤ 3σ 4 (see Lemma D.1 in [32]), one has

E
(

1
M

∑
Pϵ j − σ 2

)2

= var(Pϵ j )

M
≤ 3σ 4

M
,
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which implies

E
[
∥ 1
M

∑
Pϵ j − σ 2∥2L2())

]
! |)|σ

4

M
.

Thus

E [(III)] ! σ 2

M

(
∥ f ∥22 + |)|σ 2

)
.

For (IV), note that since ∥φ′
L∥21 ∼ L−2,

∥ω(g̃σ ∗ φL)
′∥2L2())

≤ |)|2 ∥g̃σ ∗ φ′
L∥2L2())

≤ |)|2∥φ′
L∥21∥g̃σ ∥2L2())

! |)|2
L2 ∥g̃σ ∥2L2())

,

so that utilizing our previous bound for E
[
∥g̃σ ∥2L2())

]
one obtains

E [(IV)] ! |)|2σ 2

L2M

(
∥ f ∥22 + |)|σ 2

)
.

Adding up the error terms:

∥P f − P̃ f ∥2L2())
! η2

M

(
∥(P f )(ω)∥22 + ∥ω(P f )′(ω)∥22 + ∥ω2(P f )′′(ω)∥22

)
+ r

+ L4
(
∥P f ∥22 + ∥(P f )′′∥22 + ∥ω(P f )′(ω)∥22 + 1

)
+ |)|2σ 2

L2M

(
∥ f ∥22 + |)|σ 2

)

! C f ,)

(
η2

M
+ L4 + σ 2 ∨ σ 4

L2M

)
,

which proves the theorem. ⊓⊔
To minimize the error upper bound in Theorem 2, we balance the last two terms,

i.e., we choose L such that L4 ∼ σ 2∨σ 4

L2 M . In the high noise regime where σ ≥ 1, this

gives L ∼
(

σ 4

M

) 1
6 , which yields the following important corollary.

Corollary 1 Let the assumptions of Theorem 2 hold and in addition let σ ≥ 1 and

L =
(

σ 4

M

) 1
6
. Then:

E
[
∥P f − P̃ f ∥2L2())

]
! C f ,)

⎡

⎣η2

M
+
(

σ 4

M

) 2
3

⎤

⎦ .



43 Page 16 of 31 Journal of Fourier Analysis and Applications (2023) 29 :43

Thus to achieve an MSE bounded by δ requires M = O
(

η2

δ + σ 4

δ3/2

)
samples.

Remark 3 In the classic MRA context (Model 1), one can estimate P f simply by
1
M

∑M
i=1 Pyi − σ 2, and the MSE for σ ≥ 1 is O( σ 4

M ), so that M = O
(

σ 4

δ

)
samples

are required for MSE ≤ δ. The more restrictive sample size requirement in Corol-
lary 1 is due to the fact that to unbias for dilations one must estimate not only gη

but also g′
η. Although gη can be estimated with MSE = O

(
η2+σ 4

M

)
, estimating g′

η

requires first smoothing the noisy data via convolution, and this increases the MSE to

O
(

η2

M +
(

σ 4

M

) 2
3
)
.

Remark 4 The inversion unbiasing procedure can also be directly applied to the
wavelet-based features (Sy)(λ) = ∥y ∗ ψλ∥22, where ψλ(x) =

√
λψ(λx) is a wavelet

with frequency λ, proposed in [32] for Model 2. Because these features are smooth
by design, no additional smoothing is necessary, and when σ ≥ 1 this will yield an
estimator S̃ f with error

E
[
∥S f − S̃ f ∥2L2())

]
! C f ,)

[
η2

M
+ σ 4

M

]
.

The additive noise convergence rate for the wavelet-based features is slightly better
than the convergence rate for the power spectrum given in Corollary 1. A power
spectrum estimator P̃ f can then be obtained from S̃ f , since the wavelet-based features
are defined by an invertible operator on the power spectrum. However, this inversion
process is highly unstable numerically, as its accuracy is governed by the smallest
eigenvalue of a low rank matrix. In practice, applying inversion unbiasing directly to
the power spectrum yielded a lower error in our numerical experiments.

Remark 5 If the signals are only corrupted by dilations and additive noise, i.e., y j (x) =
f ((1− τ j )x)+ ϵ j (x) for uniform τ j , then inversion unbiasing can be applied directly
in the spatial domain and Fourier invariants are unnecessary. Defining

f̃ (x) := (I − LB0)
−1B1LB2

[
ỹ ∗ φL(x)+ x (ỹ ∗ φL)

′ (x)
]

where ỹ = 1
M

∑M
i=1 yi and LB2 f (x) = B2 f (B2x), a nearly identical analysis gives

that for σ ≥ 1 and optimal width L ,

E
[
∥ f − f̃ ∥2L2(R)

]
! C f

⎡

⎣η2

M
+
(

σ 2

M

) 2
3

⎤

⎦ .

Thus the advantages over Model 2 are two-fold: (1) there is an improved sample
complexity with respect to the additive noise, since M = O

(
η2

δ + σ 2

δ3/2

)
samples are

required for MSE ≤ δ and (2) the signal is fully recovered from inversion unbiasing
and inverting Fourier invariants can be avoided.
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4 Optimization

In practice, two subtleties arise in the computation of the estimator (10). First of
all, there is no simple formula for applying the inverse operator (I − LB0)

−1, but
the estimator can be computed by solving an optimization problem as described in
this section. Secondly, although our theoretical results apply to continuous signals,
in practice one only obtains discrete vectors sampled from these continuous signals;
Sect. 5 discusses the various errors arising from discretization.

To avoid inversion of the operator I − LB0 , we compute (10) by solving a convex
optimization problem. In the infinite sample limit, one has access to the perfect data
term

d(ω) = 3gη(ω)+ ωg′
η(ω) ,

and Proposition 1 guarantees that g = P f can be recovered from d by

g⋆ = argming̊≥0 L(g̊) , L(g̊) = ∥[∥
]
(I − LB0)g̊ − B1LB2d

2
2 , (11)

where the constants Bi depend on η. If η is known, the optimization (11) is a linearly
constrained quadratic program,which is convex. It has a unique globalminimumgiven
by g⋆ = P f .

To compute the gradient of this loss function, ∇g̊L(g̊), we calculate the Frechet
derivative of L(g̊). Let A = I − LB0 ; note

L(g̊) = ∥Ag̊ − B1LB2d∥22 = N (Ag̊) ,

where N f = ∥ f − B1LB2d∥22. Thus by the chain rule, the functional derivative at g̊
applied to a test function h is

(DL)(g̊)h = (DN )(Ag̊) ◦ D(Ag̊)h = (DN )(Ag̊) ◦ Ah ,

since A is a linear operator. To compute DN , note that

|N ( f + h) − N f − 2⟨ f − B1LB2d, h⟩|
∥h∥2

= ∥h∥22
∥h∥2

→ 0

as ∥h∥2 → 0, so (DN )( f )h = 2⟨ f − B1LB2d, h⟩. Thus

(DL)(g̊)h = 2⟨Ag̊ − B1LB2d, Ah⟩
= ⟨2A∗(Ag̊ − B1LB2d), h⟩

0⇒ ∇L(g̊) = 2A∗(Ag̊ − B1LB2d) ,

where A∗ is the adjoint of A. A straightforward calculation shows A∗h(ω) = h(ω)−
B0

2 h
(

ω
B0

)
.



43 Page 18 of 31 Journal of Fourier Analysis and Applications (2023) 29 :43

Remark 6 In order for g⋆ to be a valid power spectrum of a real-valued signal, it must
also be symmetric, i.e., we must have g⋆(ω) = g⋆(−ω). However since the operator
I − LB0 acts pointwise and d is an even function, g⋆ is always an even function, and
imposing an explicit symmetry constrain in the optimization is unnecessary.

Remark 7 Another approach to solving (11) is to define p̊ =
√
g̊, optimize over p̊

to obtain the optimal p⋆, and then define g⋆ = (p⋆)2; such a procedure ensures g⋆

is nonnegative without constraining g̊ in the optimization. However, the resulting
optimization over p̊ is nonconvex.

In practice the variation parameter η may be unknown and one only has access to
the finite sample data term, so the relevant loss function is

L̃(g̊, η̊) := ∥[∥
](
I − LB0(η̊)

)
g̊ − B1(η̊)LB2(η̊)d̃

2
2 ,

for finite sample data term

d̃(ω) := 3(g̃η + g̃σ ) ∗ φL(ω)+ ω
[
(g̃η + g̃σ ) ∗ φ′

L
]
(ω) .

Optimization of this loss function can be delicate as it is no longer convex. Fluctuations
induced by the noise in the finite sample regime mean that g⋆ is not guaranteed to be
non-negative without imposing the constraint g̊ ≥ 0. Furthermore, since L̃(g̊, 0) = 0
for any g̊, there is a large plateau defined by η = 0 where loss values are small even
for g̊ very far from P f . It thus becomes necessary to constrain η to be bounded away
from 0, i.e., in practice we compute:

(g⋆, η⋆) = argming̊≥0, η̊>δ L̃(g̊, η̊), (12)

for δ > 0. Section6 describes specific implementation details.

5 Discretization

Although our theoretical results apply to continuous signals, in practice one only
obtains discrete vectors sampled from these continuous signals. More specifically, if
the noisy signals are supported on the compact interval [− N

2 ,
N
2 ] and are sampled at

a rate 1x = 1/2ℓ, we obtain a discrete set of frequencies ωi on the interval ) =
[−2ℓπ, 2ℓπ ], sampled at rate 1ω = 2π

N . The optimization of Sect. 4 is thus carried
out not on a continuous g, but on a vector gwith entries gi = g(ωi ). The discretization
of the signals introduces discretization errors which are not reflected in Theorem 2.
Althoughwe do not attempt a precise analysis of all discretization errors, in this section
we outline what these sources are and how they impact the solution we recover. In
particular, we analyze the error incurred when using a fourth order finite difference
method to approximate derivatives and a cubic spline interpolation algorithm with
not-a-knot boundary conditions to approximate dilation operators, as this reflects the
procedure used in the simulations reported in Sect. 6.
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To simplify the discussion, we consider the error incurred in the infinite sample
limit, i.e., as M → ∞, under a Fourier decay assumption. In particular, we assume
there exist constants C, β > 0 such that | f̂ (ω)| ≤ C/(1 + |ω|β). Note if β is an
integer, this implies f ∈ Cβ−2(R), and if β is non-integer, that f ∈ C⌊β−1⌋(R) [38].
According to the continuum theory (Proposition 1), we know:

g = (I − LB0)
−1B1LB2(3gη(ω)+ ωg′

η(ω)) = (I − LB0)
−1B1LB2dc , (13)

where dc = 3gη(ω) + ωg′
η(ω) is the continuum data term. Let fη(x) = Eτ [ f ((1 −

τ)−1x)] and fη denote the discretization of fη; note f̂η also decays like |ω|−β , since
(1 − τ) is contained in [ 12 , 2]. In the infinite sample (but discrete resolution) limit,
one has access to the power spectrum of fη computed via a discrete Fourier transform
(DFT), but not to gη, where (gη)i = (P fη)(ωi ) is the discretization of the continuous
power spectrum.However, ifβ is large, theDFT is a good approximation of the Fourier
transform, and in particular:

∥∥∥∥g − 1
22ℓ

|DFT(fη)|2
∥∥∥∥

∞
≤ C f

(
1
2ℓ

)β

(seeExercise 3.21 in [38]). The discretization errors impacting g′
η(ω) also involvefinite

difference approximations of derivatives. Since we use a fourth order finite difference
quotient approximation (FDQ) for g′

η, if we had access to gη, this would incur an error
bounded by O( 1

N4 ). However if these function values are observed with error ϵ, the
derivative approximation will have error O(Nϵ+ 1

N4 ). Since we observe gη with DFT
error, our error in approximating g′

η becomes

∥∥∥∥g
′
η − FDQ

(
1
22ℓ

|DFT(fη)|2
)∥∥∥∥

∞
≤ C f

(

N
(

1
2ℓ

)β

+ 1
N 4

)

.

Letting dc denote the discretization of the continuum data term 3gη(ω)+ωg′
η(ω), and

dd the vector which is actually computed via DFT and FDQ, we thus have:

∥dc − dd∥∞ ≤ C f 2ℓ

(

N
(

1
2ℓ

)β

+ 1
N 4

)

,

since |ωi | ≤ 2ℓπ . Let g denote the discretization of g = P f = (I − LB0)
−1B1LB2dc.

We are not able to compute g exactly, but instead we compute

gd = (I − LB0)
−1B1LB2dd , (14)

where LC is a grid-based approximation of the dilation operator LC . Since we use
a cubic spline interpolation algorithm with not-a-knot boundary conditions, the error
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scales like a fourth power of the step size, i.e., as O( 1
N4 ) [19], so that the interpolation

error on dc is bounded by:

∥(LCdc) − LCdc∥∞ ≤ C f
1
N 4 ,

where (LCdc) denotes the discretization of the continuous function LCdc. We can
now bound ∥g − gd∥2; note by (14):

∥g − gd∥2 ≤ ∥(I − LB0)
−1∥2 · ∥(I − LB0) (g − gd) ∥2

= ∥(I − LB0)
−1∥2 · ∥(I − LB0)g − B1LB2dd)∥2 .

We thus have:

(I − LB0)g = g − LB0g

= g − (LB0g)+ O(N−4) (interpolation error)

= B1(LB2dc)+ O(N−4) (by (13))

= B1LB2dc + O(N−4) (interpolation error)

so that ∥(I − LB0)g − B1LB2dc∥∞ = O(N−4). We thus obtain:

∥g − gd∥2
≤ ∥(I − LB0 )

−1∥2 ·
(
∥(I − LB0 )g − B1LB2dc∥2 + ∥B1LB2dc − B1LB2dd )∥2

)

≤ ∥(I − LB0 )
−1∥2 ·

(
(N2ℓ)

1
2 ∥(I − LB0 )g − B1LB2dc∥∞ + B1∥LB2∥2 · ∥dc − dd )∥2

)

≤ (N2ℓ)
1
2 ∥(I − LB0 )

−1∥2 ·
(
∥(I − LB0 )g − B1LB2dc∥∞ + B1∥LB2∥2 · ∥dc − dd )∥∞

)
.

Since ∥LB2∥2, ∥(I − LB0)
−1∥2 can be bounded independently of the grid size (but

dependent on η), we get:

∥g − gd∥2 ! (N2ℓ)
1
2

⎛

⎜⎜⎜⎝
1
N 4
︸︷︷︸

Interpolation

+ N2ℓ

(
1
2ℓ

)β

︸ ︷︷ ︸
DFT

+ 2ℓ

N 4
︸︷︷︸
FDQ

⎞

⎟⎟⎟⎠
= O(hβ−3 + h2) ,

where we assume for simplicity that the spatial and frequency grid have equal resolu-
tion, i.e., 2πN = 1

2ℓ = h. To comparewith the error in Theorem 2,wewant to report how
well we can approximate the continuous g. Let gd = interp(gd) be a cubic Hermite
spline of the approximated grid values gd , where derivatives at the grid points have
first been approximated with a fourth order method. Decomposing g = g) + g)C ,
where g)(ω) = g(ω)1(ω ∈ )),

∥g − gd∥22 ! ∥g)C ∥22 + ∥g) − interp(g)∥22 + ∥interp(g) − interp(gd)∥22 .
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The fourier decay assumption guarantees ∥g)C ∥22 ! h2β−1. Furthermore, |g) −
interp(g)| ≤ O(h4), giving ∥g) − interp(g)∥22 ≤ O(h7). Finally, a straightforward
calculation gives

∥interp(g) − interp(gd)∥22 ! ∥g − gd∥22 · h = O(h2β−5 + h5) .

We thus obtain:

∥g − gd∥22 = O(h2β−5 + h5) .

Again, assuming that β ≥ 5, we obtain an approximation gd (from solving the discrete
problem) of the continuum g with squared error ∥g − gd∥22 = O(h5). As the grid is
taken finer both in space and frequency, the solution recovered via discretization thus
converges to the continuum solution.Althoughwe omit a detailed analysis for the finite
M case, we expect that the squared error will be the sum of this O(h5) discretization
error and the sampling error reported in Theorem 2.

Remark 8 If the signal is sufficiently smooth (more specifically, if β ≥ 5), then ∥g −
gd∥2 = O(h2) which implies that on the grid points one obtains an entry-wise root
mean squared discretization error of O(h3).

Remark 9 In our simulations, we actually compute the error based on the DFT of the
discretized true sample, as computing the continuum power spectrum for some of the
signals is cumbersome. Thus the error decay in Figs. 4 and 6 includes discretization
errors due to finite difference and interpolation, but not the DFT error. However for
most of our signals we expect β is large and the discretization error is dominated by
the interpolation and finite difference error.

6 Simulation Results

In this section we investigate the proposed inversion unbiasing procedure on the fol-
lowing collection of synthetic signals which capture a variety of features:

f1(x) = C1 exp−5x2 cos(8x)

f2(x) = C2 exp−5x2 cos(16x)

f3(x) = C3 exp−5x2 cos(32x)

f̂4(ω) = C4 [sinc(0.2(ω − 32))+ sinc(0.2(−ω − 32))]

f5(x) = C5 exp−0.04x2 cos(30x + 1.5x2)

f̂6(ω) = C6 [1(ω ∈ [−38,−32])+ 1(ω ∈ [32, 38])]
f̂7(ω) = C7

[
zigzag (0.2(ω + 40))+ zigzag (0.2(ω + 40))

]1/2

f8(x) = 0.



43 Page 22 of 31 Journal of Fourier Analysis and Applications (2023) 29 :43

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

(a) f1

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

(b) f2

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

(c) f3

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

(d) f4

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

(e) f5

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

(f) f6

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

(g) f7

-6 -4 -2 0 2 4 6

-10

-5

0

5

10

(h) f8

Fig. 3 The signals discussed in Sect. 6
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(d) f4 (m = −0.23)
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Fig. 4 Error decay with standard error bars for Model 2 (oracle moment estimation). All plots show relative
L2 error and have the same axis limits, except Fig. 4h, which shows absolute error; m reports the slope of
linear regression on the right half of the plot, i.e., for 12 ≤ log2(M) ≤ 20

The hidden signals were defined on [− N
4 ,

N
4 ] and the corresponding noisy signals on

[− N
2 ,

N
2 ]. The signals were sampled at rate 1/2ℓ, resolving frequencies in the interval

[−2ℓπ, 2ℓπ ]; N = 25 and ℓ = 5 were used for all simulations. As indicated above,
f4, f6, f7 were sampled directly in the frequency domain, while the rest were sampled
in the spatial domain. The normalization constants Ci were chosen so that all signals
would have the same SNR for a fixed additive noise level, specifically (SNR)−1 = σ 2,
where SNR =

(
1
N

∫ N/2
−N/2 f (x)2 dx

)
/σ 2.
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Fig. 5 Plots explaining the small discrepancy between theoretical and empirical convergence rates. a The
right side of the dashed line shows the L values corresponding to 12 ≤ log2(M) ≤ 20, i.e., the upper range
of values used in our simulations. In the simulation regime, the slope in the log-log plot is 1.65; however for
small L (left side of dashed line), the slope is 1.96, which closely matches the L2 rate given in Lemma 3.
b the additive noise term exhibits a decay rate of −0.25 in the range of M values used for our simulations,
while the upper bound due to Young’s Inequality decays at the faster rate of −0.33
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Fig. 6 Error decay with standard error bars for Model 2 (empirical moment estimation). All plots show
relative L2 error and have the same axis limits, except Fig. 6h, which shows absolute error; m reports the
slope of linear regression on the right half of the plot, i.e., for 12 ≤ log2(M) ≤ 20
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See Fig. 3 for plots of f1 through f8. The Gabors f1, f2, f3 are smooth with a fast
decay in both space and frequency; f4 is discontinuous in space, with a smooth but
slowly decaying FT; f5 is a linear chirp with a non-constant instantaneous frequency;
f6 is discontinuous in frequency; f7 is continuous but not smooth in frequency. The
zero signal was included to investigate the effect of the inversion unbiasing procedure
when applied directly to additive noise, i.e., in the absence of any signal.We investigate
the ability of inversion unbiasing to solve Model 2 in the challenging regime of both
low SNR and large dilations. Specifically we choose SNR = 1

2 and τ uniform on
[− 1

2 ,
1
2 ] (thus σ =

√
2 and η = 12−1/2 ≈ 0.2887). For comparison, the simulations

in [32] were restricted to η ≤ 0.12.
We first assume oracle knowledge of the additive noise and dilation variances

σ 2, η2. We let M increase exponentially from 16 to 1, 048, 576, and for each value of
M we run 10 simulations of Model 2 and let (Pf)d be the discrete implementation of
the estimator P̃ f given in (10), i.e., (Pf)d is computed via optimization on a discrete
grid as described in Sects. 4 and 5. The width of the Gaussian filter L is chosen as in
Corollary 1, and the optimization was implemented using Matlab’s fminunc function
with a Quasi–Newton algorithm. For each simulation, the relative error of the resulting
power spectrum estimator is computed as

Error := ∥Pf − (Pf)d∥2
∥Pf∥2

,

and the mean error is then computed across simulations. Figure4 shows the decay of
the mean error as the sample size M increases. All signals exhibit a linear error decay
in the log–log plots; as the error decay does not plateau, the simulations support that
P̃ f is an unbiased estimator of P f as shown in Theorem 2 and Corollary 1.

More specifically, for signals with a smooth power spectrum ( f1, . . . , f5, f8), when
the discretization error is negligible, Corollary 1 predicts that the error should decay
like M−1/3, i.e., we would expect to observe a slope of −1/3 in the log-log plots. In
practice the error decay is slightly slower, with a slope of about −1/4 for the smooth
signals. There are a few possible reasons for the small mismatch between the theory
and simulations. First of all, Lemmas 2 and 3 are based on Taylor expansions about
L = 0, and so the decay rates in terms of L are only sharp for L small enough;
the decay rate is slightly worse in the range of L values used in our simulations; see
Fig. 5a. In practice when the continuous theory is implemented on a computer, one
can never take L smaller than the discrete frequency resolution. Secondly, the proof
of Theorem 2 applies Young’s Convolution Inequality to control the additive noise
terms, but simulations indicate that the actual decay rate of the additive noise terms
is smaller than this upper bound for the simulation range of M values. See Fig.5b;
as M → ∞, the decay rates do converge. Thirdly, there are discretization errors
impacting the simulation results which are not accounted for in Corollary 1.

For the non-smooth signals, recall that f7 has a power spectrumwhich is continuous
but not differentiable while f6 has a discontinuous power spectrum. The decay rate
of f7 matches that of the smooth signals, but P f7 /∈ C1(R), indicating that perhaps
P f ∈ C3(R) is not required to achieve the rate in Theorem 2 but an artifact of the
proof technique. We note the infinite sample result (Proposition 1) holds under the
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much milder assumption P f ∈ C0(R). In practice, the decay rate seems to be driven
by the α appearing in Lemma 2; for f6, Lemma 2 would apply with α = 1 to give an
error decay like

√
L and a predicted slope of −1/12 = −0.083; we observe −0.1071

in Fig. 4f.
We next investigate the ability of inversion unbiasing to solve Model 2 without

oracle knowledge of the variances σ 2, η2. The additive noise level can be reliably
estimated from the mean vertical shift in the tail of the mean power spectrum. In
particular, for 4 = [−2ℓπ, 2ℓπ ]\[−2ℓ−1π, 2ℓ−1π ], we define

σ̃ 2 := 1
|{ωi ∈ 4}|

∑

ωi∈4

|̂y(ωi )|2 .

Assuming the frequency box is chosen large enough so that the support of f̂ is con-
tained in [−2ℓ−1π, 2ℓ−1π ], this an unbiased estimator of σ 2 (see Lemma D.1 in [32]),
with error scaling like σ 2√

M
.

Estimating η is more complex and we implement a joint optimization procedure
to simultaneously learn η and P f . The optimization to learn η must be constrained
since η = 0 minimizes the loss function; η is thus constrained to lie in the interval
[0.05, 0.40] and we initialize η on a coarse grid ranging from 0.10 to 0.35. For each
initialization, the learned η value is recorded; a set of candidate η values is obtained
by discarding learned η values which are close to the boundary, and η is then selected
as the candidate value with the smallest loss. Note the constrained optimization was
implemented using Matlab’s fmincon function with an Interior-point algorithm. Fig-
ure7 shows the mean relative error decay for the empirical η estimation for the signals
with smooth power spectra. Figure6 shows the relative error decay for the mean power
spectrum; error decay is similar to the oracle case but more variable. Note η cannot
be reliably learned with this gradient descent procedure when the power spectrum is
not smooth, so f6 and f7 are omitted from Figs. 6 and 7.

Remark 10 For the zero signal f8, the power spectrum estimator with inversion unbi-
asing is worse than the power spectrum estimator without dilation unbiasing (see
Figs. 4h, 6h). Indeed, in this case smoothing the empirical power spectrum is unnec-
essary and reduces the theoretical convergence rate from M−1/2 to M−1/3. Note for
f8 recovery of η is impossible; see Fig. 7f.

7 Conclusion

This article considers a generalization of MRA which includes random dilations in
addition to random translations and additive noise. The proposed method has sev-
eral desirable properties compared with previous work. The bias due to dilations is
eliminated (not just reduced as in [32]) as the sample size increases. In addition, the
method is numerically stable, as the unbiasing procedure operates directly on the
power spectrum, rather than features derived from the power spectrum.
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Fig. 7 Error decay with standard error bars for empirical estimation of η. All plots show relative error and
have the same axis limits

Many compelling directions remain for future research, as the present work only
recovers the power spectrum of the hidden signal. There are two possible approaches
for full signal recovery building on the current work: (1) apply inversion unbiasing
on the power spectrum and then learn the phase via phase retrieval methods or (2)
extend inversion unbiasing to operate directly on the bispectrum and then invert the
bispectrum. The second approach is the most promising and most general, as there is
a well-established history of solvingMRA problems via the bispectrum [6, 8, 21], and
phase retrieval is only possible in limited circumstances.

Another natural direction is to consider nonuniform dilation distributions. Indeed,
preliminary work suggests that inversion unbiasing can be extended to a broad class
of dilation distributions as long as their underlying density functions are known; the
general procedure is to invert a density-dependent but computable operator. Thus
innovative methods for robustly learning the dilation distribution are critical for these
methods to become competitive for real world applications. Finally, extensions to
2-dimensional signals and other additive noise models are also of interest.

Acknowledgements AL thanks NSF DMS 2309570 and NSF DMS 2136198.

Appendix A Proof of Lemma 1

Proof From Proposition 1 and (7)
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P f − P̃ f = (I − LB0)
−1B1LB2

[
3(gη − g̃η)+ ω(g′

η(ω) − g̃′
η(ω))

]
,

for constants B0, B1, B2 defined in (5). Letting ∥·∥ denote the spectral norm, we thus
obtain:

∥P f − P̃ f ∥22 ≤ B1
2∥(I − LB0)

−1∥2∥LB2∥2 × ∥3(gη − g̃η)+ ω(g′
η(ω) − g̃′

η(ω))∥22
≤ 2B1

2∥(I − LB0)
−1∥2∥LB2∥2 ×

(
9∥gη − g̃η∥22 + ∥ω(g′

η(ω) − g̃′
η(ω))∥22

)
.

We first observe that ∥Li
C∥ = C

5i
2 since

∥Li
Cg∥22 =

∫
(C3i g(Ciω))2 dω

=
∫

C6i g(ω̃)2
dω̃

Ci for ω̃ = Ciω

= C5i∥g∥22 .

Thus

∥(I − LB0)
−1∥ = ∥[∥

] ∞∑

i=0

Li
B0 ≤

∞∑

i=0

B0
5i
2 = 1

1 − B0
5
2

= O(η−1)

∥LB2∥ = B2
5
2 = O(1)

B1 = O(η)

so that

2B1
2∥(I − LB0)

−1∥2∥LB2∥2 = O(1)O(η2)O(η−2) = O(1)

and we obtain

∥P f − P̃ f ∥22 ! ∥gη − g̃η∥22 + ∥ω(g′
η(ω) − g̃′

η(ω))∥22 .

⊓⊔

Appendix B Proof of Lemma 2

Proof Note by assumption there exist constants C > 0, ω0 ≥ 1 such that |̂h(ω)| ≤
C |ω|−α for |ω| ≥ ω0. Also note that φ̂L(ω) = e−L2ω2/2, so that 1 − φ̂L(ω) =
L2ω2

2 + O(L3) for small L . We have:

∥h − h ∗ φL∥22 = (2π)−1∥ĥ(1 − φ̂L)∥22
= 1

2π

∫

|ω|<ω0

|̂h(ω)|2|1 − φ̂L(ω)|2 dω
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+ 1
2π

∫

|ω|≥ω0

C2|ω|−2α|1 − φ̂L(ω)|2 dω

:= (I )+ (I I ) .

Note:

(I ) ≤
∫

|ω|<ω0

|̂h(ω)|2|1 − φ̂L(ω)|2 dω

≤ 2
∫ ω0

0
|̂h(ω)|2

(
L2ω2

2
+ O(L3)

)2

dω

≤ 2

(
L4ω4

0

4
+ O(L5)

)∫ ω0

0
|̂h(ω)|2 dω

≤ ω4
0

2
∥h∥22L4 + O(L5) .

To control the second term, note

(I I ) ≤ 2C2
∫ ∞

1
ω−2α

(
1 − e− L2ω2

2

)2

dω

= 2C2
∫ ∞

L

(
L
ω̃

)2α (
1 − e− ω̃2

2

)2 dω̃

L

= 2C2L2α−1
∫ ∞

L
ω−2α

(
1 − e− ω2

2

)2

dω .

Explicit evaluation of the upper bound with a computer algebra system gives:

α = 1 : C1L + O(L4)

α = 2 : C2L3 + O(L4)

α = 3 : C3L4 + O(L5)

Also since

d
dα

∫ ∞

1
ω−2α

(
1 − e− L2ω2

2

)2

dω

=
∫ ∞

1
−2 ln(ω)ω−2α

(
1 − e− L2ω2

2

)2

dω < 0 ,

the upper bound is decreasing in α, and we can conclude (I I ) ! L4∧(2α−1) and the
lemma is proved. ⊓⊔
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Appendix C Proof of Lemma 3

Proof First observe:

∥x(h − h ∗ φL)∥22 = (2π)−1∥[∥
] d
dω

(̂
h − ĥφ̂L

)2

2

= (2π)−1∥ĥ′ − ĥ′φ̂L − ĥφ̂′
L∥22

! ∥ĥ′ − ĥ′φ̂L∥22 + ∥ĥφ̂′
L∥22 .

To bound the first term, we apply Lemma 2 to the function xh to obtain,

∥ĥ′ − ĥ′φ̂L∥22 = 2π∥xh − (xh) ∗ φL∥22
! ∥xh∥22L4 + L4∧(2α−1) .

To bound the second term, note φ̂′
L(ω) = −L2ωe−L2ω2/2, and that ∥ω2e−L2ω2∥∞ =

(eL)−1. Thus

∥ĥφ̂′
L∥22 = L4

∫
|̂h(ω)|2ω2e−L2ω2

dω ≤ L3∥h∥22 .

Note we could get a higher power for L by

∥ĥφ̂′
L∥22 ≤ L4

∫
ω2 |̂h(ω)|2 dω = L4∥ωĥ∥22 ! L4∥h′∥22 ,

which proves the lemma. ⊓⊔
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