

1 **Comparative approaches in social network ecology**

2 Authors: Gregory F Albery*^{1,2}, Shweta Bansal¹, Matthew J Silk*^{3,4}

3
4 **Affiliations**

5 ¹Department of Biology, Georgetown University, Washington, DC, USA

6 ²Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

7 ³CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France

8 ⁴ Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh,
9 Edinburgh, United Kingdom

10
11 *Corresponding authors: Department of Biology, Georgetown University, Washington, DC,
12 USA. gfalbery@gmail.com (GFA); Institute of Ecology and Evolution, School of Biological
13 Sciences, University of Edinburgh, Edinburgh, UK. matthewsilk@outlook.com (MJS)

14
15 **Authorship statement:** All authors developed the ideas for the manuscript. GFA and MJS
16 wrote the initial draft with all authors contributing to subsequent revisions.

17
18 **Data accessibility statement:** Studies found in the literature review are available at
19 <https://doi.org/10.6084/m9.figshare.24552514.v1>. The dataset used to produce Figure 5 is
20 available at <https://doi.org/10.6084/m9.figshare.24552517.v1>. Code used to produce Figures
21 1 and 5 is available at <https://doi.org/10.6084/m9.figshare.24552511.v1>.

22
23 **Keywords:** comparative analysis; meta-analysis; social networks; social system; social
24 dominance; group stability; disease dynamics; pathogen spread; network analysis

25
26 **Number of words in abstract:** 140

27
28 **Number of words in main text:** 7601

29
30 **Number in text boxes:** 412 (Box 1), 588 (Box 2)

31
32 **Number of figures, tables and text boxes:** 5 figures; 2 text boxes; 1 table

33
34 **Number of references:** 134

35 **Abstract**

36 Social systems vary enormously across the animal kingdom, with important implications for
37 ecological and evolutionary processes such as infectious disease dynamics, anti-predator
38 defense, and the evolution of cooperation. Comparing social network structures between
39 species offers a promising route to help disentangle the ecological and evolutionary
40 processes that shape this diversity. Comparative analyses of networks like these are
41 challenging and have been used relatively little in ecology, but are becoming increasingly
42 feasible as the number of empirical datasets expands. Here, we provide an overview of
43 multispecies comparative social network studies in ecology and evolution. We identify a
44 range of advancements that these studies have made and key challenges that they face, and
45 we use these to guide methodological and empirical suggestions for future research. Overall,
46 we hope to motivate wider publication and analysis of open social network datasets in animal
47 ecology.

48

49

50 Introduction

51 The social lives of animals vary immensely and across many axes (Hinde 1976; Whitehead
52 1997; Hobson *et al.* 2019; Prox & Farine 2020). In some species, individuals live
53 predominantly solitary lives, only interacting with others sporadically, while others form
54 spectacular aggregations of many thousands. Similarly, while some species live in stable
55 groups and form social bonds that last a lifetime (Mitani 2009; Bruck 2013; Dakin & Ryder
56 2020), in others social preferences can be weaker and the identity of social partners
57 relatively unimportant. Variation among social systems is closely tied to ecological and
58 evolutionary pressures faced by different populations (Kurvers *et al.* 2014; He *et al.* 2019;
59 Evans *et al.* 2020; Cantor *et al.* 2021b). Variation in well-studied benefits (e.g. access to
60 information, avoidance of predation) and costs (e.g. competition, parasitism) of social
61 interactions across species therefore creates associations between particular social systems
62 and specific environments (Leu *et al.* 2016) or taxonomic groups (Chak *et al.* 2017).
63 However, given the ecological environment can also cause variation in social structure within
64 populations (e.g. (Jordán *et al.* 2021)), it is important to decompose intra- and inter-specific
65 variation in social structure. Because social structure alters the course of evolution (Fisher &
66 McAdam 2017, 2019), determines the outcome of ecological processes like disease spread
67 (Keeling & Eames 2005; White *et al.* 2017), and potentially influences a species' resilience to
68 global change (Fisher *et al.* 2021), understanding drivers of inter-specific variation in social
69 structure has important implications and applications. Comparative approaches are popular
70 ways for researchers examining the evolutionary ecology of sociality to understand these
71 processes (Lukas & Clutton-Brock 2013; Lukas & Huchard 2014; Kappeler & Pozzi 2019).

72 Nevertheless, there are substantial challenges applying comparative approaches in
73 socioecology, of which a major one is classifying or quantifying variation in social systems.
74 Recent work (e.g. (Lang & Farine 2017; Prox & Farine 2020)) has begun to provide higher-
75 dimensional classifications of sociality, but there remain limitations in the power and

76 universality of these approaches, as qualitative classifications only provide coarse
77 approximations. Further, in many contexts, it is the specific pattern of interactions that plays
78 a role rather than the type of social system *per se*. With the popularisation of social network
79 analyses in behavioural ecology, the time is ripe to apply more quantitative cross-species
80 comparisons that address diverse questions around interspecific variation in social structure
81 and dynamics.

82 Social networks are an integral part of a behavioural ecologist's toolkit (Farine &
83 Whitehead 2015; Webber & Vander Wal 2019). By linking individual behaviour to group- and
84 population-level structure and outcomes (Fig. 1), they have helped study diverse aspects of
85 animal behaviour including dominance (Shizuka & McDonald 2012; Hobson *et al.* 2021a),
86 cultural evolution (Voelkl & Noë 2008; Cantor *et al.* 2021a), and epidemiology (Keeling &
87 Eames 2005; Bansal *et al.* 2007; White *et al.* 2017). Applications of network approaches in
88 socioecology have grown rapidly and now encompass substantial geographic and taxonomic
89 diversity, albeit with remaining biases (Webber & Vander Wal 2019).

90 Despite the growth in animal social network analyses, few studies have undertaken
91 multispecies comparisons of social networks or used meta-analytic approaches to test
92 broader evolutionary or ecological patterns. Nevertheless, multispecies analyses of social
93 networks have multiple advantages for comparative analysis in social ecology, offering
94 valuable tools to summarise the diversity of animal social systems and tease apart inter-
95 specific variation in social structure. These benefits emerge from network descriptions
96 providing: diverse measures to succinctly quantify different aspects of social structure; the
97 ability to quantify fine-scale variation in social systems beyond features like group size; and a
98 way to unify analyses across social scales, from individual- to group-, and population-level
99 features. For example, network approaches have moved discussion about sociality and the
100 costs of parasitism beyond group size to factor in combined effects of group structure and
101 individual social relationships (Nunn *et al.* 2015; Briard & Ezenwa 2021). This provides
102 insight into the strategies with which animal societies balance the trade-offs between

103 parasitism and the benefits of sociality. Similarly, network approaches' ability to quantify
104 social structure across scales has revealed multilevel social systems in taxonomically diverse
105 species, demonstrating variation in the mechanisms underlying these structures
106 (Papageorgiou *et al.* 2019; Camerlenghi *et al.* 2022). Two main issues have limited
107 comparative analyses of social networks: i) it is challenging to compare the structure of
108 networks of different sizes (Faust 2006), especially when they are generated by different
109 behavioural processes (Hobson *et al.* 2021b); and ii) there has been a shortage of animal
110 social network datasets available to compare.

111 With the recent development of multi-species repositories of social network data (Box
112 1) and an increasingly advanced statistical toolkit, there is now the potential to overcome
113 these issues and exploit comparative social network analyses in ecology and evolution.
114 Here, we review existing studies that have undertaken such analyses. We then identify
115 outstanding challenges to successfully employing comparative and meta-analytic
116 approaches with social network data, suggesting potential solutions and highlighting specific
117 areas in need of methodological research, as well as identifying promising areas for future
118 empirical research. Overall, our paper provides a roadmap for conducting these analyses
119 and aims to inspire the development of new statistical tools to increase their accessibility, as
120 well as motivating the collection and publication of further open social network datasets.

121

122 The current state of comparative network analysis

123 **The Data:** As of 3rd November 2022 we uncovered 49 studies that compared multiple
124 species' social networks, spanning 16 years (2007-2022; Table S1). Initially, these studies
125 typically compared a small number of species and networks; however, over time, these
126 numbers have increased exponentially (Figure 1). While some studies still compare only a
127 few species, there are now many that incorporate several hundred networks encompassing
128 dozens of species – three of which also included humans. These larger studies often

129 featured replication of several networks within each species, (potentially) allowing estimation
130 of within- and between-species variation in network structure. On three occasions
131 researchers developed (or are developing) substantial publicly available databases (Box 1).
132 Otherwise, larger studies tended to produce their network datasets through literature
133 searches and independently contacting researchers to request data (Nunn *et al.* 2015;
134 Rocha *et al.* 2021), or by aggregating datasets that the authors themselves collected (Bhadra
135 *et al.* 2009; Pasquaretta *et al.* 2014). Given the few independent datasets, substantial reuse
136 of said datasets, and growing exploitation of the animal social network repository (ASNR;
137 Box 1), there has been encouragingly little duplication of effort in producing network meta-
138 datasets. In the near future, researchers carrying out comparative behavioural analyses will
139 be well-placed to use much of the available data, rather than encountering issues with
140 dataset harmonisation and unification – as has been the case with datasets of host-pathogen
141 associations, for example (Gibb *et al.* 2021).

142

143 **Taxonomic skew:** Many studies (19/49; 39%) focused primarily or entirely on primates, with
144 a particular focus on macaques (*Macaca* sp.; e.g. (Sueur *et al.* 2011; Ciani *et al.* 2012;
145 Balasubramaniam *et al.* 2020)). Otherwise, there was broad coverage of different taxonomic
146 classes, including fish (Roose *et al.* 2022), hymenoptera (Bhadra *et al.* 2009), and elephants
147 (de Silva & Wittemyer 2012), as well as large-scale studies that included diverse vertebrate
148 classes and some invertebrates (Sah *et al.* 2017; Rocha *et al.* 2021). It is unclear how this
149 taxonomic skew could influence the results of pan-dataset analyses.

150

151 **Species-level analyses:** Many comparative papers (11/49=22%) examined how species'
152 traits correlated with their social network topology with others doing so qualitatively. For
153 example, several analyses linked primates' cognition or behaviour with the structure of their
154 networks (Sueur *et al.* 2011; Pasquaretta *et al.* 2014). Conversely, two studies used the
155 ASNR to examine how species' contact network structures were associated with their

156 parasite communities, focusing on parasite species richness (Poulin & Filion 2021) or the
157 evolution of parasite species transmitted over the focal host's contact networks (Collier *et al.*
158 2022). These studies incorporated external databases of host-parasite associations
159 (Stephens *et al.* 2017) and human parasite traits (Richardson *et al.* 2001; European Centre
160 for Disease Control 2016), as illustrated in Figure 2.

161

162 **Generative models:** Two papers (2/49=4%) developed generative models for social network
163 formation, which they validated using multi-species network datasets. For example, (Ilany &
164 Akcay 2016) developed a model for network formation by social inheritance, validating their
165 predicted networks using data from four species.

166

167 **Methodological studies:** Several studies (6/49=12%) used animal social network meta-
168 datasets to illustrate new methods or confirm trends in network science or related fields.
169 These included identifying novel scaling trends (Rocha *et al.* 2021; Ward 2021; Ojer &
170 Pastor-Satorras 2022), producing new approaches (Shizuka & Farine 2016; McDonald &
171 Hobson 2018; Ward 2021; Ojer & Pastor-Satorras 2022), or deriving new network traits
172 (Péron 2023).

173

174 **Dynamical simulations:** A particularly common approach (13/49 studies; 27%) to
175 comparative social network analysis was the simulation of transmission dynamics (e.g.
176 (Nunn *et al.* 2015; Sah *et al.* 2017, 2018; Romano *et al.* 2018; Collier *et al.* 2022; Fountain-
177 Jones *et al.* 2022)). This approach may be so popular because, so far, networks have been
178 used to test general ideas for a broad set of potential pathogens. This reduces the
179 importance of disparity in data collection methods and timescales, as (to some extent) the
180 networks are providing a substrate to test ideas in network epidemiology rather than to
181 provide broader ecological insights. These approaches have also often used unweighted

182 (binary) versions of networks, mitigating the impact of variable edge weighting across
183 different studies (see below).

184

185 **Individual-level meta-analyses:** Finally, among our identified studies, there was only one
186 (1/49=2%) “true” meta-analysis – i.e., one that did not use raw data, but rather analysed a
187 series of model estimates published in other studies (Briard & Ezenwa 2021). All other
188 papers derived network-level traits and carried out species-level comparative analyses. We
189 capture the distinction between these approaches in *Box 2*.

190

191 **Biological overview of comparative network studies**

192 The 49 studies we found tackle diverse research questions across multiple ecological
193 disciplines. We identify the major themes addressed so far, providing a synthesis within each
194 theme based on the objectives and findings of comparative network studies.

195

196 **In behavioural ecology:** Comparative network analyses in behavioural ecology (23 studies)
197 have predominantly been used to provide insights into the structure and dynamics of animal
198 groups, addressing these questions across social scales. Frequently, it has been applied to
199 quantify population-level social structure for taxonomically similar species (e.g. bats: (August
200 *et al.* 2014); elephants: (de Silva & Wittemyer 2012); equids: (Sundaresan *et al.* 2007;
201 Rubenstein *et al.* 2015)). In these cases, using a comparative approach can reveal fine-scale
202 differences in social structure that were previously undetected (e.g. (Sundaresan *et al.*
203 2007)). These studies have often demonstrated how ecological differences between closely
204 related species explain variation in network structure. For example, different social network
205 structures between Australian snubfin *Orcaella heinsohni* and Indo-Pacific humpback
206 dolphins *Sousa chinensis* were attributed to differences in diet, prey availability and feeding
207 behaviour (Parra *et al.* 2011). Similarly, the role of mating systems (Matsuda *et al.* 2012) and

208 variation in individual traits, such as cognitive capabilities (Pasquaretta *et al.* 2014), have
209 also been investigated. One underused approach is applying comparative network analyses
210 to find general rules for animal social structure. For example, (Rocha *et al.* 2021) found a
211 potential power law relationship between group size and social connectivity, with evidence
212 that it varied depending on social interaction type.

213 At a finer social scale, comparative network analyses have also been used for within-
214 group social dynamics, including dominance hierarchies (Balasubramaniam *et al.* 2018;
215 Hobson *et al.* 2021a) and social stability (Sueur *et al.* 2010, 2011). Here comparing between
216 species can identify general patterns in within-group interactions. For example, (Hobson *et*
217 *al.* 2021a) compared dominance networks across 172 groups from 85 species to show most
218 species distributed aggressive interactions evenly across all lower-ranked individuals rather
219 than on either close competitors or the weakest individuals. This has implications for
220 quantifying individual variation in the costs and benefits of social strategies. Comparative
221 studies in macaques (*Macaca* sp.) have investigated how social networks influence fission-
222 fusion dynamics and collective behaviour, for example demonstrating how the importance of
223 kinship differs between socially tolerant and intolerant species (Sueur *et al.* 2010). These
224 types of study naturally extend into collective behaviour, including group fission events and
225 departures (Sueur & Petit 2008). Correspondingly, comparative network approaches have
226 also been used in theoretical models of collective behaviour by demonstrating how more
227 differentiated relationships in within-group social networks lead to reduced when modelling
228 flocking dynamics (Ojer & Pastor-Satorras 2022).

229

230 **In conservation and applied animal behaviour:** Comparative social network analyses
231 have also occasionally been used in applied ecology and conservation (5 studies), moving
232 beyond group-based analyses to simultaneously incorporate the importance of social
233 relationships and the wider social environment in these contexts. For example, in the context

234 of human-wildlife interactions, (Balasubramaniam *et al.* 2020) showed differences among
235 macaque species in how within-group social network centrality was associated with the
236 tendency to interact with humans, with implications for pathogen spread. In the context of
237 conservation welfare, comparative network analyses have revealed long-term social bonds
238 in captive population that could inform husbandry decisions (Rose & Croft 2017) or evaluated
239 impacts of environmental enrichment (Dufour *et al.* 2011).

240

241 **In disease ecology:** Comparative social network analyses in disease ecology (15 studies)
242 have quantified the role of both individuals and emergent group- or population-level social
243 structures in infectious disease transmission. They have also provided a more generalizable
244 understanding of epidemiologically-relevant features of animal social networks that provides
245 insight at both ecological and evolutionary timescales.

246 Some studies have combined comparative network data with empirical
247 epidemiological data: for example, (Briard & Ezenwa 2021) used a meta-analysis to show
248 consistent positive effects of network centrality on infection probability, with the pattern
249 stronger for local rather than global measures of social centrality, and (Poulin & Filion 2021)
250 demonstrated correlations between some aspects of group social network structure and
251 parasite species richness in parasite groups. As more simultaneously collected network and
252 epidemiological data becomes available, these types of study will provide further tests of key
253 hypotheses in disease ecology.

254 Of studies to apply comparative analysis to the outputs of simulated network
255 epidemiological models on multi-species social network datasets, a small number (e.g.
256 (Carne *et al.* 2013)) have focused at an individual level, comparing the role of individual
257 heterogeneity and/or the value of network-targeted vaccination between species. Many more
258 studies have examined how different aspects of network structure impact epidemiological
259 dynamics, for example: providing and testing new methods to quantify the vulnerability of

260 different hosts to outbreaks (Colman *et al.* 2021; Fountain-Jones *et al.* 2022), linking them to
261 key epidemiological concepts such as density-dependence in transmission (Colman *et al.*
262 2021) and offering insight into how network structure for different interaction types could
263 influence pathogen evolution (Collier *et al.* 2022). An area of particular interest has been the
264 role of modular social structures (Griffin & Nunn 2012; Nunn *et al.* 2015; Sah *et al.* 2017),
265 providing insight into how group living shapes disease risk. One study extended these
266 insights to other contagions (Romano *et al.* 2018).

267

268 **Principal challenges for comparative network 269 analysis**

270 Based on our methodological synthesis, we identified key challenges facing comparative
271 analyses of social network structure and classified them into three main groups: meta-
272 analytical choices, between-study comparability, and network features. We generated a
273 framework to help researchers with the principal decisions at each stage of a comparative
274 social network analysis (Figure 4), and provide a number of solutions, many of which
275 address several interrelated issues (Figure 5). Addressing these methodological issues will
276 be critical to tackling research questions across the themes identified in our biological
277 synthesis, in particular by enabling comparisons that incorporate more diverse social
278 systems, data collection approaches and social behaviours.

279

280 **Analytical choices for comparison**

281 **Sample sizes:** In our review, the median number of networks compared was 12, and the
282 median number of species was 4. Especially for more powerful comparative approaches
283 (e.g. controlling for phylogeny, machine-learning approaches etc.), this sample size

284 substantially limits the power to deal with confounding variables and reduces the diversity of
285 questions can be answered. A key solution, which the field is well-placed to achieve, is the
286 coordination and centralisation of publicly accessible databases to facilitate sufficient sample
287 sizes. This could generate issues related to managing a large open dataset and ensuring its
288 continuity, but social network researchers could learn from other efforts to maintain open,
289 partially-automated updating datasets (e.g. (Carlson *et al.* 2022)). Increased power could
290 also be achieved through greater replication per species (e.g. see MacaqueNet; *Box 1*),
291 which would allow quantification of within- versus between-species variation in network
292 structure. This could arise through renewed research effort, wider data acquisition, or
293 incorporating networks at a range of temporal resolutions (e.g. weekly, monthly, yearly)
294 where appropriate.

295

296 **Taxonomic biases:** We identified an overpowering focus on non-human primates, especially
297 macaques, across comparative studies. This was present in both the studies themselves and
298 in aggregated datasets; with substantial overrepresentation of primates in the ASNR, for
299 example (Sah *et al.* 2019). A fear of overcoming the challenges of big taxonomic divides may
300 have driven researchers to focus on small subsets and within-subgroup analyses rather than
301 analysing across the animal kingdom. As such, it remains an open question how comparable
302 these systems are, and whether generalisable rules shape social structure across these
303 divides. This limits how general the insights provided can be across the diverse social
304 systems present in nature.

305 There are other subtle biases present. For example, because ant colonies are
306 relatively easy to replicate and observe, the ASNR contains many replicate ant networks,
307 such that ants are overrepresented at the network level rather than a higher taxonomic level
308 (Sah *et al.* 2019). Because sociality is often studied at different intensities across taxonomic
309 groups (Sah *et al.* 2018), other well-studied taxa may be similarly overrepresented. Studies'
310 findings could be swayed by these taxonomic skews. In the short-term, following the lead of

311 previous studies can help mitigate these issues, for example by subsampling networks for
312 over-represented species (Collier *et al.* 2022) or re-analysing without them (Fountain-Jones
313 *et al.* 2022). In the longer term, targeted addition of new datasets can address taxonomic
314 biases, perhaps using innovative approaches to exploit existing social or movement data,
315 such as approximating proximity networks using Movebank data (Kays *et al.* 2022).

316

317 **Choosing networks relevant to the question:** Careful selection of networks from
318 databases is required to ensure they are relevant for the question posed (Figure 4). For
319 example, there is little value in using networks based on indirect contacts to model the
320 transmission of many contagious pathogens (Albery *et al.* 2021). Similarly, the relevance of
321 wild and captive network datasets will depend on the question asked and the taxa
322 investigated. Importantly, taxonomic biases may interact with these problems: for example,
323 how does the effect of captivity on network structure differ between ants and macaques?

324 One particularly difficult incarnation of this problem lies in comparing species with
325 qualitatively different social systems: for example, is it meaningful to compare species with
326 well-mixed fission-fusion societies to ones that live in stable groups? A potential solution is
327 to use existing frameworks (Prox & Farine 2020) to inform decisions about which types of
328 social systems to compare for any given question. These frameworks can be used to
329 summarise networks based on multidimensional traits, employing emergent continuous
330 variables rather than discrete *a priori* “social organisation” categories. Also relevant here are
331 decisions about which behaviours (and so networks) are relevant to a particular research
332 question (see “Between-Study comparability” section below).

333

334 **Combining network data with external data:** Combining comparative network analyses
335 with external data on individual, group or species level traits considerably expands research
336 scope across diverse areas. However, only rarely have studies combined network data with
337 external data sources (Figure 2), with exceptions including cognitive traits (Pasquaretta *et al.*

338 2014) and parasite richness (Poulin & Filion 2021). These examples illustrate how integrating
339 comparative network data with other traits provides increased power to identify the diverse
340 factors that shape social structure and testing hypotheses related to the variable ecological
341 and evolutionary consequences of these structures (Fig. 2). Indeed, one reason that
342 simulations are so regularly used is because they allow approximation of epidemiological
343 consequences of network structures without necessitating additional empirical sources of
344 information.

345 One limiting factor for some comparative analyses will be the availability of other
346 species-level traits. In general, basic life-history data will likely be available for species that
347 have been sufficiently well-studied to collect social network data, and these types of
348 information have been collated into existing databases such as PanTHERIA (Jones *et al.*
349 2009). However, other data types may be more limited. For example, a recent integration of
350 the ASNR and global mammal parasite database (Stephens *et al.* 2017; Sah *et al.* 2019)
351 resulted in a sample size of 18 primates with available infection data (Poulin & Filion 2021). It
352 remains likely that comparative projects will need to compile external, non-network datasets
353 themselves for some traits. Similarly, while existing databases (see *Box 1*) do contain limited
354 individual-level data (e.g. age, sex) for some networks, this may also limit the number of
355 networks that can be included without contacting the authors of original studies. This
356 highlights the importance of authors providing attribute data alongside their networks to help
357 answer individual-based questions.

358

359 **Between-study comparability**

360 **Variable methods of data collection:** Networks in multi-species datasets are collected
361 using diverse and occasionally difficult-to-compare methodologies, and little methodological
362 research has critically considered how this impacts comparative analyses. In some cases,
363 there are clear issues with comparisons: for example, group-based methods of network

364 construction will typically cause much denser social networks than other forms of data
365 collection. However, in others comparability can be less clear. Additionally, different data
366 collection strategies can be confounded with taxonomy and social system. For example,
367 rodents may be disproportionately trapped, large mammals GPS-tracked, birds ringed or
368 PIT-tagged, and ungulates censused. Similarly, behavioural interactions are easier to
369 observe in species living in stable groups, while network data for less social species may
370 typically be collected using bio-loggers (Smith & Pinter-Wollman 2021). Further challenges
371 will occur if sampling intensities differ across forms of data collection (e.g. more proximity
372 interactions will be missed using focal sampling than if most individuals are carrying proximity
373 loggers). All of these challenges create limitations that explain the taxonomic scale and
374 narrow research focus of many existing comparative network analyses.

375 Dealing with the difficulties imposed by data collection methods represents a major
376 challenge. Great care is required, especially because interactions with other study or network
377 features are likely and effects may not be linear. The most conservative solution is to be strict
378 with inclusion criteria (Figure 4) and avoid comparing networks collected in different ways.
379 However, the impacts may also be mitigated by the solutions highlighted in other sections,
380 especially when data collection method is confounded with the type of behaviour studied or
381 scale of interaction. In these cases, dealing with interactive effects of these confounding
382 variables will be key. Ultimately, the best approach will be not to avoid comparing them, but
383 to compare them explicitly – both with empirical data and simulations – with the aim of
384 discovering such biases. This approach may be particularly powerful where multiple data
385 collection approaches are used in a single system (e.g. (Castles *et al.* 2014)).

386
387 **Social/spatial/temporal scale of observation:** Studies vary substantially in their scale,
388 whether social (e.g. within-group vs. multigroup), spatial (study area size), or temporal. For
389 example, studies may choose a geographic area and follow (a proportion of) a population
390 there (Firth & Sheldon 2016; Testard *et al.* 2021), or choose certain individuals across a

391 series of groups (Silk *et al.* 2018; Papageorgiou & Farine 2020), or identify a specific group
392 and follow all its members (Kulahci *et al.* 2018). Terminology can exacerbate challenges
393 here; some studies use “group” and “network” interchangeably, while others do not. A key
394 challenge is identifying if and when we can compare studies focused on groups with those
395 focused on entire populations/multiple groups. Compounding this challenge, other issues
396 such as data collection method and network size are often confounded. Further, the spatial
397 or temporal scale of studies may also be correlated with the proportion of individuals that are
398 tracked or identified, which can also impact topological measures (Gilbertson *et al.* 2021). All
399 these differences could introduce disparities that are difficult to overcome during analysis and
400 may either exacerbate or mask interspecific variability in social structure.

401 A crucial methodological development would therefore be to identify combinations of
402 sampling approach and types of network measure that can be used more robustly in these
403 contexts, and which should be avoided entirely. Similarly, comparing studies that occur over
404 different timeframes represents a considerable challenge. On the one hand, network data
405 collected over longer durations can lead to greater confidence that the observed network
406 structure is a good representation of reality (Farine & Strandburg-Peshkin 2015; Davis *et al.*
407 2018; Hart *et al.* 2023). On the other, observing networks for longer will lead to more densely
408 connected networks as more infrequent or random interactions are observed. This will be a
409 greater problem for some data types (e.g. proximity, group-based) than others (e.g.
410 grooming). Networks aggregated over long periods also risk overlooking network dynamics
411 (see subsequent section).

412 In the short term, careful screening of studies is again important in ensuring the
413 networks used employ a relevant scale. Ensuring that metadata in databases accurately
414 indicates this information (e.g. (Sah *et al.* 2019)) is therefore vital. Heading towards
415 incorporating data into these databases as dynamic edge lists or at various temporal
416 resolutions would allow researchers greater flexibility on whether to include a study or not. It
417 will also be beneficial to apply other previously identified solutions such as (with caution)

418 controlling for the scale of the study within the statistical model (e.g. (Sah *et al.* 2018)), or
419 analysing separately for networks measured at different social scales (e.g. group vs.
420 population) and integrating the results qualitatively or meta-analytically. As with data
421 collection methods, what is most needed is a renewed effort to employ simulations using
422 well-known study systems to more accurately quantify when and how problems will arise
423 when comparing networks across scales.

424

425 **Disparate edge types:** There is substantial variation among networks in how edges
426 are defined (Table 1): some use specific behavioural interactions such as grooming, while
427 others use coarser approaches such as association within a group, or spatial proxies such as
428 home range overlap. Frequently these networks will not be directly comparable (Castles *et*
429 *al.* 2014). In other cases, it is not necessarily clear to what extent different observations
430 represent different behaviours *per se*. Some may be nested: for example, sexual contact
431 requires spatiotemporal proximity, and so the former network may represent a subset of the
432 latter. Similarly, it will be challenging to work out what represents comparable behaviour
433 types in taxa with very different ethograms. For example, DomArchive (see *Box 1*) only
434 includes data on dominance networks but includes >150 different “behaviours”, some of
435 which are rather distinct. Some network types will also have very different topologies: for
436 example, fluid exchange networks are generally very sparse and skewed, exhibiting different
437 topologies to direct contact networks (Collier *et al.* 2022). This issue is also confounded with
438 differences in data collection methodologies outlined above, further reducing comparability:
439 for example, GPS tracks might be used to detect grouping, while short-range proximity
440 collars are used to identify direct contacts (Albery *et al.* 2021; Smith & Pinter-Wollman 2021).
441 Because these methods exhibit different sensitivities and sampling frequencies, two
442 networks may have different topologies purely because of methodology rather than biological
443 differences.

444 In the short term, careful use of selection criteria can prevent these potential issues
445 (Figures 4 & 5). For example, questions related to within-group social stability may use data
446 on grooming, dominance, social foraging or trophallaxis from the ASNR and combine this
447 with relevant data from DomArchive or MacaqueNet. Researchers can also include data
448 collection methods as fixed or random effects in comparative analyses (e.g. (Albery *et al.*
449 2022)). However, in many cases, it can be more effective to repeat the analysis for different
450 data collection methodologies and then either qualitatively or quantitatively compare the
451 results. This can even be used as the strength of a study (Collier *et al.* 2022). One could
452 even examine if the results of a comparative analysis are sensitive to inclusion/exclusion of
453 particular behavioural types. In the future, methodological research that uses the
454 comparability of different networks from the same species can help identify interaction types
455 that are more comparable and perhaps use advances in latent network modelling (Young *et*
456 *al.* 2021; Ross *et al.* 2022) to combine insights from multiple data sources.

457

458 **Disparate network size:** Network size also differs considerably between studies.
459 Historically, differences in network size have been identified as a key problem for
460 comparisons (Faust 2006), by creating several overlapping issues. First and most simply,
461 raw values of many social network measures depend on network size and how best to
462 correct for its effect will differ between measures and is not always intuitive. For example,
463 while degree is best normalised by dividing through by the number of possible *partners* and
464 betweenness is best normalised by dividing by the number of possible *paths*, for other
465 measures this choice is less clear. Second, the value of using size-corrected measures can
466 depend on both the research question and the generative process determining network
467 structure. For example, network size in existing databases could be reflective of either
468 sampling effort or social group size. In the latter case, it can be biologically meaningful that
469 individuals in larger groups have more social connections. Similarly, if the number of
470 connections an individual forms has an upper bound regardless of group size, then

471 correcting for group size effects will remove biological signals. However, this will not
472 universally be the case, and in some contexts failing to control for group size could drive
473 misleading conclusions if interpreted incautiously.

474 Because i) differences in network size may also be driven by variation in sampling
475 (e.g. edge effects or the inability to identify all individuals) and ii) how network measures
476 covary with network size may differ between systems and approaches, great care in
477 interpretation is necessary when network size varies considerably between studies. As such,
478 this is an area in need of methodological research. For example, the advent of Bayesian
479 approaches to impute missing network data (Young *et al.* 2021) and generate uncertainty
480 around edge weights and network measures (Hart *et al.* 2023) can help mitigate issues
481 directly related to sampling differences and allow the focus to be on analytical decisions
482 around the biological effect of group size. One option is to fit network (or group) size as a
483 covariate within comparative models; however, how this is done (e.g. whether it is included
484 as a linear effect) would require careful consideration and cautious interpretation.

485 Differences in confounding effects of network size and sampling intensity also
486 represent a challenge to comparative analyses assessing the relationship between
487 conditional traits and individual network position (Box 2). In these cases, employing Bayesian
488 methods that propagate uncertainty from this initial stage of the analysis through to the
489 cross-system comparative analytic stage would be an ideal solution, especially by enabling
490 studies with better-sampled or larger networks to have greater weight. This is likely to
491 become increasingly feasible as new methods allow uncertainty around social network metric
492 calculations in animal societies (Hart *et al.* 2023).

493

494 **Network features (and information loss)**

495 Researchers must also decide what level of information loss is acceptable, especially for
496 network dynamics, edge weights and edge sizes (Figures 4 & 5). Accepting more information

497 loss allows for comparative analyses across more diverse species, but limits the ability to
498 detect variation in network structure and reduces the diversity of questions one can ask.

499

500 **Dynamic networks:** Social interaction patterns typically change over time and/or between
501 ecological contexts (Silk *et al.* 2017; Smith *et al.* 2018; Shizuka & Johnson 2020) meaning
502 social networks are rarely static, and snapshots or aggregations captured in adjacency
503 matrices are a simplification of reality. Currently very few papers have considered network
504 dynamics within a comparative framework (but see (Rubenstein *et al.* 2015; Chase *et al.*
505 2022)), in part because dynamic network data is less readily available (e.g. not in the ASNR;
506 (Sah *et al.* 2019)). However, even when conducting comparative analyses using static
507 networks it is important to consider the impact of social dynamics.

508 Generally, researchers define data collection periods based on their research
509 question (e.g. matching the transmission dynamics of a pathogen (White *et al.* 2017)) and
510 biological knowledge. However, the duration of data collection can also be constrained by
511 convenience factors (e.g. battery performance of bio-loggers, duration of presence in a study
512 location, etc. (Gilbertson *et al.* 2021; Smith & Pinter-Wollman 2021)). Similar considerations
513 and constraints also apply to the frequency of network data collection. This creates a
514 challenge when conducting comparative analyses because the potential for variation in social
515 dynamics between systems means it is not straightforward to control for study duration. For
516 example, if the rate at which individuals of species A change their interaction partners is
517 much slower than that same rate in species B, then any correction for study duration will
518 introduce bias related to genuine biological differences, rather than achieving what is
519 intended. The potential impact can be limited by focusing a comparative analysis on a subset
520 of social systems (or taxonomic relatives) in which changes in network structure over time
521 are more similar. Alternatively, if using network duration as a control variable, then allowing
522 its effect to vary according to social system, behaviour type, method of data collection, etc.
523 may mitigate this issue to some extent. In the longer run, another effective solution will be

524 storing data as dynamic edge lists so that researchers can make their own decisions whether
525 to use a dynamic or static approach, and the duration over which to aggregate static
526 networks. However, moving towards these higher-resolution datasets may reduce
527 researchers' willingness to share network data, as they contain more information about their
528 study system.

529

530 **Disparate edge weightings:** Variation in edge weight definitions represents another key
531 challenge for comparative analyses, especially when they covary with taxonomy, social
532 system and data collection methods. For example, many studies have used association
533 indices like the simple ratio index (Hoppitt & Farine 2018), and the popularity of alternatives
534 has varied over time and between research communities. In contrast, many contact-based
535 networks use bio-logging devices to measure the duration or frequency of encounters. This
536 creates problems for a comparative analyst because edge weights in different studies can
537 mean very different things. Previous studies have typically used only a subset of networks
538 that use a similar approach (limiting statistical power), extracted binary networks (losing
539 information on connection strength), or fitted a network's weighted/unweighted status as a
540 covariate in the comparative analyses (Collier *et al.* 2022). One potential alternative would be
541 to use a simple correction to make edge weights in different networks more comparable (e.g.
542 by dividing all edges by the maximum edge weight to generate a standardised index).
543 However, a potentially more satisfying approach is to use statistical approaches like mixture
544 models that can classify edges as belonging to different distributions, e.g. "weak",
545 "intermediate" and "strong" (Weiss *et al.* 2019; Ellis *et al.* 2021). A key advantage would be
546 that uncertainty in these classifications could be propagated to subsequent stages of the
547 analysis. Additionally, as is the case with network dynamics, storing network data in raw
548 edge list format would empower those conducting comparative analyses to make their own
549 decisions about how to weight edges to be comparable between studies.

550

551 **Higher-order interactions:** Another source of lost information in all comparative social
552 network studies conducted so far – and existing data repositories – is that data is stored as
553 dyadic networks, even when this is a simplification (e.g. group-based data). This loses
554 information on interaction size that can be captured using higher-order network approaches
555 (Silk *et al.* 2022). While these have only rarely been used in behavioural ecology (Musciotto
556 *et al.* 2022), they are gaining popularity as a tool in network science (Battiston *et al.* 2021). It
557 would be valuable to move towards also storing higher-order network data in repositories
558 (e.g. as group-by-individual or incidence matrices) to facilitate approaches that explicitly
559 incorporate this higher-order structure.

560

561 **Future opportunities for comparative social network 562 analysis**

563 Comparative social network analysis has displayed wide informative power across diverse
564 topics, and offers a tool to link social structure to varied ecological and evolutionary
565 processes (Fig. 2). Building on and expanding this literature, there remain numerous
566 research areas that are as yet relatively underexplored, especially once methodological
567 approaches facilitate effective comparisons across diverse social systems. Here we continue
568 to focus on disease ecology, behavioural ecology and conservation, as well as the interface
569 between these topics. However, we encourage others to develop additional applications of
570 these approaches (see Fig. 2), especially as a tool to unify across ecological disciplines.

571

572 **Social behaviour and disease**

573 **Transmission and contagion processes:** While transmission has been a focus of existing
574 comparative network analyses, there remain many unanswered questions. For example,
575 most simulation studies of transmission dynamics examined traits of the networks
576 themselves, rather than using the results to explain between-species differences, despite the

577 potential added by integrating additional data (Fig. 2). A prominent example of this lies in our
578 improved understanding of modularity (Griffin & Nunn 2012; Sah *et al.* 2017), which although
579 highly informative, has largely not been related to species traits themselves. Similar studies
580 could also extend beyond concepts such as modularity to further explore what species- and
581 population-level traits explain important network properties revealed by existing comparative
582 analyses (Colman *et al.* 2021; Fountain-Jones *et al.* 2022). Conducting more nuanced
583 comparative analyses that examine differences across multiple types of social association
584 and interaction (Collier *et al.* 2022) could also be extended to better quantify the expected
585 dynamics of diverse zoonotic and agricultural diseases in their wild hosts.

586 Moving beyond pathogen spread, there are few explorations of how other social
587 contagions (e.g. behaviour spread) manifest across systems. Because other contagions are
588 often complex (e.g. non-dyadic), their spread can differ from that of pathogens (Firth 2020),
589 with implications for social system evolution (Evans *et al.* 2020). For example, (Evans *et al.*
590 2021) showed that only modular networks with small sub-groups favoured conformist
591 behavioural contagions over pathogen spread. Comparative network analyses represent an
592 opportunity to explore the consequences of different social systems for pathogen *and*
593 behaviour spread, as well as to link this to species traits. A nice example of how this could
594 be applied to multi-network comparisons is provided by (Beck *et al.* 2023), who compared
595 different social contagions across multiple great tit *Parus major* social networks, showing
596 how individual network position linked to the order of behaviour acquisition. Extending these
597 types of study to multispecies comparisons could help generalise across diverse taxa.

598

599 **Health and immunity:** Applications of comparative network analyses in disease ecology
600 could also include better quantifying cross-species social drivers of health and immunity.
601 While the consequences of network structure for outbreak dynamics are relatively well
602 understood (theoretically at least), an individual's social interactions can also influence their
603 stress physiology (MacLeod *et al.* 2023) and health (Snyder-Mackler *et al.* 2020).

604 Consequently, comparative network analyses could examine the importance of social
605 network structure for the manifestation of individual and population-level disease (or health)
606 itself. To provide a specific example, because mechanisms of immunity are expected to
607 evolve in response to infection (Graham *et al.* 2011), species- and population-level
608 differences in social network structure should manifest in realised differences in immunity
609 across species via their effects on infection prevalence. Comparative network analyses offer
610 an ideal way to test these predicted relationships that moves beyond coarse measures of
611 sociality like group size (Côté & Poulin 1995; Patterson & Ruckstuhl 2013). Future work
612 could integrate individual-level social network position with group- or population-level network
613 structure and explicitly incorporate physiological markers of health or immunity. It should be
614 noted that comparative studies of immunity are also difficult due to issues such as the
615 variable sensitivity of the available eco-immunological tools (Boughton *et al.* 2011), but
616 nevertheless even coarse and generalisable measures may prove informative when
617 integrated with social networks.

618

619 **Integrative behavioural ecology**

620 **Socio-spatial ecology and behavioural integration:** individuals' spatial and social
621 behaviours are tightly intertwined (Webber *et al.* 2023), with spatial behaviour often being
622 important in explaining social network structure (Mourier *et al.* 2012; Pinter-Wollman 2015;
623 Firth & Sheldon 2016). Comparative network analyses offer an exciting opportunity to look at
624 how the role of the ecological environment and movement behaviour in explaining social
625 structure varies among populations and species (Fig. 2), testing whether variation in these
626 relationships can be linked to species traits such as body mass, mobility, and kin structure.
627 Examining how spatial and social network types are linked across and within species could
628 inform a wide range of empirical questions, e.g. refining our ability to quantify individual
629 variation in optimal group size and structure (Webber *et al.* 2023), as well as encouraging

630 integration of spatial data types into social network workflows using spatio-temporally
631 parameterised telemetry tracks (Robitaille *et al.* 2019).

632

633 **Group structure and dynamics:** Existing applications of comparative social network
634 analyses have focused on comparing group- and population-level social structure and
635 patterns of group stability. However, typically this has involved small numbers of closely-
636 related species. Extending these approaches across diverse social systems offers the
637 potential to start teasing apart the importance of the ecological environment, evolutionary
638 history and species-level traits (e.g. life history, mode of movement, migratory tendency,
639 mating system etc.; Fig. 2) in explaining broad patterns in animal social structure. Using a
640 comparative network approach provides a more flexible way to capture nuanced variation in
641 social structure and its temporal dynamics than historical approaches. Moving to finer social
642 scales, there is considerable scope to answer novel questions as more social network
643 datasets become available. For example, different relationships between the costs of
644 aggression and dominance rank have been documented (Silk *et al.* 2019; Hobson *et al.*
645 2021a), and comparative network analyses offer promise in finding general patterns for how
646 this relationship varies and depends on other species traits.

647

648 **The evolution of sociality and cooperation:** The evolution of cooperation is a major focus
649 in behavioural ecology, and has benefited from previous comparative analyses (Cornwallis *et*
650 *al.* 2017; Firman *et al.* 2020). Despite studies in this area frequently examining the
651 maintenance of complex sociality (e.g. (Akçay 2018)), they have yet to take full advantage of
652 comparative network approaches, either theoretically or empirically. Moving network models
653 of the evolution of cooperation from theoretical network structures (e.g. (Ohtsuki *et al.* 2006))
654 to exploit multi-species data from social network repositories could help generalise findings
655 to different real-world network structures. These approaches may also help investigate how

656 the emergence of cooperation in different network structures is linked to species-level traits,
657 and how well it aligns with recorded cooperative behaviours. From an empirical perspective,
658 comparative social network analyses can provide further metrics to help construct
659 multidimensional projections of social complexity (Prox & Farine 2020), as well as feeding
660 back to inform the development of social network structures themselves (Akçay 2018).
661 Identifying consistent features of social networks that differ between cooperative and non-
662 cooperative species, for example, could help quantify how the evolution of cooperation
663 shapes wider ecological and evolutionary processes.

664

665 **Social ageing:** Recent interest in social ageing has revealed age-related changes in social
666 behaviours as older individuals become less socially connected (Siracusa *et al.* 2022).
667 Because ageing itself is a complex process that needs to be demonstrated at the individual
668 level (Nussey *et al.* 2008), it will greatly benefit from – if not necessitate – comparative
669 network analyses rather than more classical approaches that look at traits such as group size
670 and composition. Given that age data is regularly monitored in many long-term study
671 systems and already available as a node attribute in some social network repositories,
672 comparative network approaches can play an important role in generalising age-related
673 changes in social interaction patterns across species and ecological contexts.

674

675 **Conservation and behaviour**

676 **Human-wildlife interactions and conservation:** Another opportunity is to test how species'
677 social networks differ in their responses to anthropogenic disturbance. For group-living
678 species, social networks may respond in varied ways to these anthropogenic pressures
679 (Fisher *et al.* 2021; Blumstein *et al.* 2023). For example, endangered mountain gorillas' social
680 networks became more cohesive when tourists were too close (Costa *et al.* 2023). Testing to

681 what extent these dynamics vary according to other species traits could help inform which
682 social species are most at risk from anthropogenic pressures and how best to protect them
683 (Snijders *et al.* 2017). In a similar vein, a generalised, cross-species understanding of group
684 social network stability or individual social integration and how it is linked to health
685 (integrating behaviour, disease, and conservation) could help inform population
686 augmentation or reintroduction attempts if extended to endangered social species. Group
687 stability and social integration are likely to play a key role in the initial success of such
688 projects when social relationships strongly determine fitness.

689

690 **Concluding Remarks**

691 By providing a tool to compare and contrast diverse social systems across species with
692 diverse evolutionary histories and highly variable ecologies, comparative social network
693 analyses have huge untapped potential to further our understanding of the evolutionary
694 ecology of animal societies and to strengthen the links between different ecological sub-
695 fields. Our synthesis reveals growing interest in comparing network structures and their
696 ecological consequences across taxonomic divides, as well as the increasing power of
697 approaches being used. Especially given the apparent trend of increasing data breadth,
698 depth, and availability over time, we expect that these approaches will only become more
699 powerful for quantifying the diversity of animal social systems and explaining variability
700 across species in the near future. Greater use of meta-analyses of within-network trends
701 alongside these approaches will increase the reach and reliability of comparative approaches
702 in social network analysis (Spake *et al.* 2022), and transform the hunt for general patterns
703 shaping the structure of animal social systems.

704

705 **Acknowledgements**

706 GFA and SB were supported by NSF grant number DEB-2211287, and GFA by Leverhulme
707 Grant RPG-2022-220. MJS received funding from the European Union's Horizon 2020
708 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.
709 101023948 and from Royal Society University Research Fellowship URF\R1\221800.
710

712

References

713 Akçay, E. (2018). Collapse and rescue of cooperation in evolving dynamic networks. *Nat Commun*, 9,
714 2692.

715 Albery, G.F., Kirkpatrick, L., Firth, J.A. & Bansal, S. (2021). Unifying spatial and social network analysis
716 in disease ecology. *Journal of Animal Ecology*, 90, 45–61.

717 Albery, G.F., Sweeny, A.R., Becker, D.J. & Bansal, S. (2022). Fine-scale spatial patterns of wildlife
718 disease are common and understudied. *Functional Ecology*, 36, 214–225.

719 August, T.A., Nunn, M.A., Fensome, A.G., Linton, D.M. & Mathews, F. (2014). Sympatric Woodland
720 Myotis Bats Form Tight-Knit Social Groups with Exclusive Roost Home Ranges. *PLOS ONE*, 9,
721 e112225.

722 Balasubramaniam, K.N., Beisner, B.A., Berman, C.M., De Marco, A., Duboscq, J., Koirala, S., *et al.* (2018).
723 The influence of phylogeny, social style, and sociodemographic factors on macaque
724 social network structure. *American Journal of Primatology*, 80, e22727.

725 Balasubramaniam, K.N., Marty, P.R., Samartino, S., Sobrino, A., Gill, T., Ismail, M., *et al.* (2020).
726 Impact of individual demographic and social factors on human–wildlife interactions: a
727 comparative study of three macaque species. *Sci Rep*, 10, 21991.

728 Bansal, S., Grenfell, B.T. & Meyers, L.A. (2007). When individual behaviour matters: homogeneous
729 and network models in epidemiology. *Journal of The Royal Society Interface*, 4, 879–891.

730 Barrett, L., Henzi, P. & Rendall, D. (2007). Social brains, simple minds: does social complexity really
731 require cognitive complexity? *Philosophical Transactions of the Royal Society B: Biological
732 Sciences*, 362, 561–575.

733 Battiston, F., Amico, E., Barrat, A., Bianconi, G., Ferraz de Arruda, G., Franceschiello, B., *et al.* (2021).
734 The physics of higher-order interactions in complex systems. *Nat. Phys.*, 17, 1093–1098.

735 Beck, K.B., Sheldon, B.C. & Firth, J.A. (2023). Social learning mechanisms shape transmission
736 pathways through replicate local social networks of wild birds. *eLife*, 12, e85703.

737 Bhadra, A., Jordán, F., Sumana, A., Deshpande, S.A. & Gadagkar, R. (2009). A comparative social
738 network analysis of wasp colonies and classrooms: Linking network structure to functioning.
739 *Ecological Complexity*, 6, 48–55.

740 Blumstein, D.T., Hayes, L.D. & Pinter-Wollman, N. (2023). Social consequences of rapid
741 environmental change. *Trends in Ecology & Evolution*, 38, 337–345.

742 Boughton, R.K., Joop, G. & Armitage, S.A.O. (2011). Outdoor immunology: methodological
743 considerations for ecologists. *Functional Ecology*, 25, 81–100.

744 Briard, L. & Ezenwa, V.O. (2021). Parasitism and host social behaviour: a meta-analysis of insights
745 derived from social network analysis. *Animal Behaviour*, 172, 171–182.

746 Bruck, J.N. (2013). Decades-long social memory in bottlenose dolphins. *Proceedings of the Royal
747 Society B: Biological Sciences*, 280, 20131726.

748 Camerlenghi, E., McQueen, A., Delhey, K., Cook, C.N., Kingma, S.A., Farine, D.R., *et al.* (2022).
749 Cooperative breeding and the emergence of multilevel societies in birds. *Ecology letters*, 25,
750 766–777.

751 Cantor, M., Chimento, M., Smeele, S.Q., He, P., Papageorgiou, D., Aplin, L.M., *et al.* (2021a). Social
752 network architecture and the tempo of cumulative cultural evolution. *Proceedings of the
753 Royal Society B: Biological Sciences*, 288, 20203107.

754 Cantor, M., Maldonado-Chaparro, A.A., Beck, K.B., Brandl, H.B., Carter, G.G., He, P., *et al.* (2021b).
755 The importance of individual-to-society feedbacks in animal ecology and evolution. *Journal of
756 Animal Ecology*, 90, 27–44.

757 Carlson, C.J., Gibb, R.J., Albery, G.F., Brierley, L., Connor, R.P., Dallas, T.A., *et al.* (2022). The Global
758 Virome in One Network (VIRION): an Atlas of Vertebrate-Virus Associations. *mBio*, 13,
759 e02985-21.

760 Carne, C., Semple, S., Morrogh-Bernard, H., Zuberbühler, K. & Lehmann, J. (2013). Predicting the
761 Vulnerability of Great Apes to Disease: The Role of Superspreaders and Their Potential
762 Vaccination. *PLOS ONE*, 8, e84642.

763 Castles, M., Heinsohn, R., Marshall, H.H., Lee, A.E.G., Cowlishaw, G. & Carter, A.J. (2014). Social
764 networks created with different techniques are not comparable. *Animal Behaviour*, 96, 59–
765 67.

766 Cattuto, C., Broeck, W.V. den, Barrat, A., Colizza, V., Pinton, J.-F. & Vespignani, A. (2010). Dynamics of
767 Person-to-Person Interactions from Distributed RFID Sensor Networks. *PLOS ONE*, 5, e11596.

768 Chak, S.T.C., Duffy, J.E., Hultgren, K.M. & Rubenstein, D.R. (2017). Evolutionary transitions towards
769 eusociality in snapping shrimps. *Nat Ecol Evol*, 1, 1–7.

770 Chase, I.D., Coelho, D., Lee, W., Mueller, K. & Curley, J.P. (2022). Networks never rest: An
771 investigation of network evolution in three species of animals. *Social Networks*, 68, 356–373.

772 Ciani, F., Dall’Olio, S., Stanyon, R. & Palagi, E. (2012). Social tolerance and adult play in macaque
773 societies: a comparison with different human cultures. *Animal Behaviour*, 84, 1313–1322.

774 Collier, M., Albery, G.F., McDonald, G.C. & Bansal, S. (2022). Pathogen transmission modes determine
775 contact network structure, altering other pathogen characteristics. *Proceedings of the Royal
776 Society B: Biological Sciences*, 289, 20221389.

777 Colman, E., Colizza, V., Hanks, E.M., Hughes, D.P. & Bansal, S. (2021). Social fluidity mobilizes
778 contagion in human and animal populations. *eLife*, 10, e62177.

779 Cornwallis, C.K., Botero, C.A., Rubenstein, D.R., Downing, P.A., West, S.A. & Griffin, A.S. (2017).
780 Cooperation facilitates the colonization of harsh environments. *Nat Ecol Evol*, 1, 1–10.

781 Costa, R.F.P., Romano, V., Pereira, A.S., Hart, J.D.A., MacIntosh, A. & Hayashi, M. (2023). Mountain
782 gorillas benefit from social distancing too: Close proximity from tourists affects gorillas’
783 sociality. *Conservation Science and Practice*, 5, e12859.

784 Côté, I.M. & Poulin, R. (1995). Parasitism and group size in social animals: a meta-analysis. *Behavioral
785 Ecology*, 6, 159–165.

786 Dakin, R. & Ryder, T.B. (2020). Reciprocity and behavioral heterogeneity govern the stability of social
787 networks. *Proceedings of the National Academy of Sciences*, 117, 2993–2999.

788 Davis, G.H., Crofoot, M.C. & Farine, D.R. (2018). Estimating the robustness and uncertainty of animal
789 social networks using different observational methods. *Animal Behaviour*, 141, 29–44.

790 De Moor, D., MacaqueNet, Skelton, M., Schülke, O., Ostner, J., Neumann, C., *et al.* (2023).
791 MacaqueNet: big-team research into the biological drivers of social relationships.

792 Dufour, V., Sueur, C., Whiten, A. & Buchanan-Smith, H. m. (2011). The impact of moving to a novel
793 environment on social networks, activity and wellbeing in two new world primates. *American
794 Journal of Primatology*, 73, 802–811.

795 Ellis, S., Franks, D.W., Weiss, M.N., Cant, M.A., Domenici, P., Balcomb, K.C., *et al.* (2021). Mixture
796 models as a method for comparative sociality: social networks and demographic change in
797 resident killer whales. *Behav Ecol Sociobiol*, 75, 75.

798 European Centre for Disease Control. (2016). Systematic review on the incubation and
799 infectiousness/shedding period of communicable diseases in children.

800 Evans, J.C., Hodgson, D.J., Boogert, N.J. & Silk, M.J. (2021). Group size and modularity interact to
801 shape the spread of infection and information through animal societies. *Behav Ecol Sociobiol*,
802 75, 163.

803 Evans, J.C., Silk, M.J., Boogert, N.J. & Hodgson, D.J. (2020). Infected or informed? Social structure and
804 the simultaneous transmission of information and infectious disease. *Oikos*, 129, 1271–1288.

805 Farine, D.R. & Strandburg-Peshkin, A. (2015). Estimating uncertainty and reliability of social network
806 data using Bayesian inference. *Royal Society Open Science*, 2, 150367.

807 Farine, D.R. & Whitehead, H. (2015). Constructing, conducting and interpreting animal social network
808 analysis. *Journal of Animal Ecology*, 84, 1144–1163.

809 Faust, K. (2006). Comparing social networks: size, density, and local structure. *Advances in
810 Methodology and Statistics*, 3, 185–216.

811 Firman, R.C., Rubenstein, D.R., Moran, J.M., Rowe, K.C. & Buzatto, B.A. (2020). Extreme and Variable
812 Climatic Conditions Drive the Evolution of Sociality in Australian Rodents. *Current Biology*, 30,
813 691–697.e3.

814 Firth, J.A. (2020). Considering Complexity: Animal Social Networks and Behavioural Contagions.
815 *Trends in Ecology & Evolution*, 35, 100–104.

816 Firth, J.A. & Sheldon, B.C. (2016). Social carry-over effects underpin trans-seasonally linked structure
817 in a wild bird population. *Ecology letters*, 19, 1324–1332.

818 Fisher, D.N., Kilgour, R.J., Siracusa, E.R., Foote, J.R., Hobson, E.A., Montiglio, P., et al. (2021).
819 Anticipated effects of abiotic environmental change on intraspecific social interactions.
820 *Biological Reviews*, 96, 2661–2693.

821 Fisher, D.N. & McAdam, A.G. (2017). Social traits, social networks and evolutionary biology. *Journal
822 of Evolutionary Biology*, 30, 2088–2103.

823 Fisher, D.N. & McAdam, A.G. (2019). Indirect genetic effects clarify how traits can evolve even when
824 fitness does not. *Evolution Letters*, 3, 4–14.

825 Fountain-Jones, N.M., Silk, M., Appaw, R.C., Hamede, R., Rushmore, J., VanderWaal, K., et al. (2022).
826 The spectral underpinnings of pathogen spread on animal networks. *bioRxiv*, 2022–07.

827 Gibb, R., Albery, G.F., Becker, D.J., Brierley, L., Connor, R., Dallas, T.A., et al. (2021). Data
828 proliferation, reconciliation, and synthesis in viral ecology. *BioScience*, 71, 1148–1156.

829 Gilbertson, M.L., White, L.A. & Craft, M.E. (2021). Trade-offs with telemetry-derived contact
830 networks for infectious disease studies in wildlife. *Methods in Ecology and Evolution*, 12, 76–
831 87.

832 Graham, A.L., Shuker, D.M., Pollitt, L.C., Auld, S.K.J.R., Wilson, A.J. & Little, T.J. (2011). Fitness
833 consequences of immune responses: strengthening the empirical framework for
834 ecoimmunology. *Functional Ecology*, 25, 5–17.

835 Griffin, R.H. & Nunn, C.L. (2012). Community structure and the spread of infectious disease in
836 primate social networks. *Evolutionary Ecology*, 26, 779–800.

837 Hart, J., Weiss, M.N., Franks, D. & Brent, L. (2023). BISoN: A Bayesian framework for inference of
838 social networks. *Methods in Ecology and Evolution*, n/a.

839 He, P., Maldonado-Chaparro, A.A. & Farine, D.R. (2019). The role of habitat configuration in shaping
840 social structure: a gap in studies of animal social complexity. *Behavioral Ecology and
841 Sociobiology*, 73, 1–14.

842 Hinde, R.A. (1976). Interactions, relationships and social structure. *Man*, 1–17.

843 Hobson, E.A., Ferdinand, V., Kolchinsky, A. & Garland, J. (2019). Rethinking animal social complexity
844 measures with the help of complex systems concepts. *Animal Behaviour*, 155, 287–296.

845 Hobson, E.A., Mønster, D. & DeDeo, S. (2021a). Aggression heuristics underlie animal dominance
846 hierarchies and provide evidence of group-level social information. *Proceedings of the
847 National Academy of Sciences*, 118, e2022912118.

848 Hobson, E.A., Silk, M.J., Fefferman, N.H., Larremore, D.B., Rombach, P., Shai, S., et al. (2021b). A
849 guide to choosing and implementing reference models for social network analysis. *Biological
850 Reviews*, 96, 2716–2734.

851 Hoppitt, W.J. & Farine, D.R. (2018). Association indices for quantifying social relationships: how to
852 deal with missing observations of individuals or groups. *Animal Behaviour*, 136, 227–238.

853 Ilany, A. & Akcay, E. (2016). Social inheritance can explain the structure of animal social networks.
854 *Nature communications*, 7, 12084.

855 Jones, K.E., Bielby, J., Cardillo, M., Fritz, S.A., O'Dell, J., Orme, C.D.L., et al. (2009). PanTHERIA: a
856 species-level database of life history, ecology, and geography of extant and recently extinct
857 mammals: Ecological Archives E090-184. *Ecology*, 90, 2648–2648.

858 Jordán, F., Kovács, B. & Verdolin, J.L. (2021). Resource availability influences global social network
859 properties in Gunnison's prairie dogs (*Cynomys gunnisoni*). *Behaviour*, 159, 321–338.

860 Kappeler, P. & Pozzi, L. (2019). Evolutionary transitions toward pair living in nonhuman primates as
861 stepping stones toward more complex societies. *Science Advances*, 5, eaay1276.

862 Kays, R., Davidson, S.C., Berger, M., Bohrer, G., Fiedler, W., Flack, A., et al. (2022). The Movebank
863 system for studying global animal movement and demography. *Methods in Ecology and*
864 *Evolution*, 13, 419–431.

865 Keeling, M.J. & Eames, K.T.D. (2005). Networks and epidemic models. *Journal of The Royal Society*
866 *Interface*, 2, 295–307.

867 Kiti, M.C., Tizzoni, M., Kinyanjui, T.M., Koech, D.C., Munywoki, P.K., Meriac, M., et al. (2016).
868 Quantifying social contacts in a household setting of rural Kenya using wearable proximity
869 sensors. *EPJ Data Sci.*, 5, 21.

870 Kulahci, I.G., Ghazanfar, A.A. & Rubenstein, D.I. (2018). Knowledgeable Lemurs Become More Central
871 in Social Networks. *Current Biology*, 28, 1306–1310.e2.

872 Kurvers, R.H.J.M., Krause, J., Croft, D.P., Wilson, A.D.M. & Wolf, M. (2014). The evolutionary and
873 ecological consequences of animal social networks: emerging issues. *Trends in Ecology &*
874 *Evolution*, 29, 326–335.

875 Lang, S.D.J. & Farine, D.R. (2017). A multidimensional framework for studying social predation
876 strategies. *Nat Ecol Evol*, 1, 1230–1239.

877 Leu, S.T., Farine, D.R., Wey, T.W., Sih, A. & Bull, C.M. (2016). Environment modulates population
878 social structure: experimental evidence from replicated social networks of wild lizards.
879 *Animal Behaviour*, 111, 23–31.

880 Lukas, D. & Clutton-Brock, T.H. (2013). The Evolution of Social Monogamy in Mammals. *Science*, 341,
881 526–530.

882 Lukas, D. & Huchard, E. (2014). The evolution of infanticide by males in mammalian societies. *Science*,
883 346, 841–844.

884 MacLeod, K.J., English, S., Ruuskanen, S.K. & Taborsky, B. (2023). Stress in the social context: a
885 behavioural and eco-evolutionary perspective. *Journal of Experimental Biology*, 226,
886 jeb245829.

887 Matsuda, I., Zhang, P., Swedell, L., Mori, U., Tuuga, A., Bernard, H., et al. (2012). Comparisons of
888 Intraunit Relationships in Nonhuman Primates Living in Multilevel Social Systems. *Int J*
889 *Primateol*, 33, 1038–1053.

890 McDonald, D.B. & Hobson, E.A. (2018). Edge weight variance: population genetic metrics for social
891 network analysis. *Animal Behaviour*, 136, 239–250.

892 Mitani, J.C. (2009). Male chimpanzees form enduring and equitable social bonds. *Animal Behaviour*,
893 77, 633–640.

894 Mourier, J., Vercelloni, J. & Planes, S. (2012). Evidence of social communities in a spatially structured
895 network of a free-ranging shark species. *Animal Behaviour*, 83, 389–401.

896 Musciotto, F., Papageorgiou, D., Battiston, F. & Farine, D.R. (2022). Beyond the dyad: uncovering
897 higher-order structure within cohesive animal groups.

898 Nunn, C.L., Jordán, F., McCabe, C.M., Verdolin, J.L. & Fewell, J.H. (2015). Infectious disease and group
899 size: more than just a numbers game. *Philosophical Transactions of the Royal Society B:*
900 *Biological Sciences*, 370, 20140111.

901 Nussey, D.H., Coulson, T., Festa-Bianchet, M. & Gaillard, J.-M. (2008). Measuring senescence in wild
902 animal populations: towards a longitudinal approach. *Functional Ecology*, 22, 393–406.

903 Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M.A. (2006). A simple rule for the evolution of
904 cooperation on graphs and social networks. *Nature*, 441, 502–505.

905 Ojer, J. & Pastor-Satorras, R. (2022). Flocking dynamics mediated by weighted social networks. *Phys.*
906 *Rev. E*, 106, 044601.

907 Papageorgiou, D., Christensen, C., Gall, G.E., Klarevas-Irby, J.A., Nyaguthii, B., Couzin, I.D., et al.
908 (2019). The multilevel society of a small-brained bird. *Current Biology*, 29, R1120–R1121.

909 Papageorgiou, D. & Farine, D.R. (2020). Group size and composition influence collective movement in
910 a highly social terrestrial bird. *eLife*, 9, e59902.

911 Parra, G.J., Corkeron, P.J. & Arnold, P. (2011). Grouping and fission–fusion dynamics in Australian
912 snubfin and Indo-Pacific humpback dolphins. *Animal Behaviour*, 82, 1423–1433.

913 Pasquaretta, C., Levé, M., Claidière, N., van de Waal, E., Whiten, A., MacIntosh, A.J.J., et al. (2014).
914 Social networks in primates: smart and tolerant species have more efficient networks. *Sci
915 Rep*, 4, 7600.

916 Patterson, J.E.H. & Ruckstuhl, K.E. (2013). Parasite infection and host group size: a meta-analytical
917 review. *Parasitology*, 140, 803–813.

918 Péron, G. (2023). Weighting the transitivity of undirected weighted social networks with triadic edge
919 dissimilarity scores. *Social Networks*, 73, 1–6.

920 Pinter-Wollman, N. (2015). Persistent variation in spatial behavior affects the structure and function
921 of interaction networks. *Current Zoology*, 61, 98–106.

922 Poulin, R. & Filion, A. (2021). Evolution of social behaviour in an infectious world: comparative
923 analysis of social network structure versus parasite richness. *Behav Ecol Sociobiol*, 75, 105.

924 Prox, L. & Farine, D. (2020). A framework for conceptualizing dimensions of social organization in
925 mammals. *Ecology and Evolution*, 10, 791–807.

926 Richardson, M., Elliman, D., Maguire, H., Simpson, J. & Nicoll, A. (2001). Evidence base of incubation
927 periods, periods of infectiousness and exclusion policies for the control of communicable
928 diseases in schools and preschools. *The Pediatric Infectious Disease Journal*, 20, 380.

929 Robitaille, A.L., Webber, Q.M.R. & Vander Wal, E. (2019). Conducting social network analysis with
930 animal telemetry data: Applications and methods using spatsoc. *Methods in Ecology and
931 Evolution*, 10, 1203–1211.

932 Rocha, L.E.C., Ryckebusch, J., Schoors, K. & Smith, M. (2021). The scaling of social interactions across
933 animal species. *Sci Rep*, 11, 12584.

934 Romano, V., Shen, M., Pansanel, J., MacIntosh, A.J.J. & Sueur, C. (2018). Social transmission in
935 networks: global efficiency peaks with intermediate levels of modularity. *Behav Ecol
936 Sociobiol*, 72, 154.

937 Roose, R., Oliver, M., Haulsee, D., Breece, M., Carlisle, A. & Fox, D. (2022). The sociality of Atlantic
938 sturgeon and sand tiger sharks in an estuarine environment. *Animal Behaviour*, 193, 181–
939 191.

940 Rose, P.E. & Croft, D.P. (2017). Social bonds in a flock bird: Species differences and seasonality in
941 social structure in captive flamingo flocks over a 12-month period. *Applied Animal Behaviour
942 Science*, 193, 87–97.

943 Ross, C.T., McElreath, R. & Redhead, D. (2022). Modelling human and non-human animal network
944 data in R using STRAND.

945 Rubenstein, D.I., Sundaresan, S.R., Fischhoff, I.R., Tantipathananandh, C. & Berger-Wolf, T.Y. (2015).
946 Similar but Different: Dynamic Social Network Analysis Highlights Fundamental Differences
947 between the Fission-Fusion Societies of Two Equid Species, the Onager and Grevy's Zebra.
948 *PLOS ONE*, 10, e0138645.

949 Sah, P., Leu, S.T., Cross, P.C., Hudson, P.J. & Bansal, S. (2017). Unraveling the disease consequences
950 and mechanisms of modular structure in animal social networks. *Proceedings of the National
951 Academy of Sciences*, 114, 4165–4170.

952 Sah, P., Mann, J. & Bansal, S. (2018). Disease implications of animal social network structure: A
953 synthesis across social systems. *Journal of Animal Ecology*, 87, 546–558.

954 Sah, P., Méndez, J.D. & Bansal, S. (2019). A multi-species repository of social networks. *Sci Data*, 6,
955 44.

956 Shizuka, D. & Farine, D.R. (2016). Measuring the robustness of network community structure using
957 assortativity. *Animal Behaviour*, 112, 237–246.

958 Shizuka, D. & Johnson, A.E. (2020). How demographic processes shape animal social networks.
959 *Behavioral Ecology*, 31, 1–11.

960 Shizuka, D. & McDonald, D.B. (2012). A social network perspective on measurements of dominance
961 hierarchies. *Animal Behaviour*, 83, 925–934.

962 Silk, J.B. (2007). Social Components of Fitness in Primate Groups. *Science*, 317, 1347–1351.

963 Silk, M.J., Cant, M.A., Cafazzo, S., Natoli, E. & McDonald, R.A. (2019). Elevated aggression is
964 associated with uncertainty in a network of dog dominance interactions. *Proceedings of the
965 Royal Society B: Biological Sciences*, 286, 20190536.

966 Silk, M.J., Weber, N., Steward, L.C., Delahay, R.J., Croft, D.P., Hodgson, D.J., *et al.* (2017). Seasonal
967 variation in daily patterns of social contacts in the European badger *Meles meles*. *Ecology
968 and Evolution*, 7, 9006–9015.

969 Silk, M.J., Weber, N.L., Steward, L.C., Hodgson, D.J., Boots, M., Croft, D.P., *et al.* (2018). Contact
970 networks structured by sex underpin sex-specific epidemiology of infection. *Ecology Letters*,
971 21, 309–318.

972 Silk, M.J., Wilber, M.Q. & Fefferman, N.H. (2022). Capturing complex interactions in disease ecology
973 with simplicial sets. *Ecology Letters*, 25, 2217–2231.

974 de Silva, S. & Wittemyer, G. (2012). A Comparison of Social Organization in Asian Elephants and
975 African Savannah Elephants. *Int J Primatol*, 33, 1125–1141.

976 Siracusa, E.R., Higham, J.P., Snyder-Mackler, N. & Brent, L.J.N. (2022). Social ageing: exploring the
977 drivers of late-life changes in social behaviour in mammals. *Biology Letters*, 18, 20210643.

978 Smith, J.E., Gamboa, D.A., Spencer, J.M., Travenick, S.J., Ortiz, C.A., Hunter, R.D., *et al.* (2018). Split
979 between two worlds: automated sensing reveals links between above- and belowground
980 social networks in a free-living mammal. *Philosophical Transactions of the Royal Society B:
981 Biological Sciences*, 373, 20170249.

982 Smith, J.E. & Pinter-Wollman, N. (2021). Observing the unwatchable: Integrating automated sensing,
983 naturalistic observations and animal social network analysis in the age of big data. *Journal of
984 Animal Ecology*, 90, 62–75.

985 Snijders, L., Blumstein, D.T., Stanley, C.R. & Franks, D.W. (2017). Animal Social Network Theory Can
986 Help Wildlife Conservation. *Trends in Ecology & Evolution*, 32, 567–577.

987 Snyder-Mackler, N., Burger, J.R., Gaydosh, L., Belsky, D.W., Noppert, G.A., Campos, F.A., *et al.* (2020).
988 Social determinants of health and survival in humans and other animals. *Science*, 368,
989 eaax9553.

990 Spake, R., O'Dea, R.E., Nakagawa, S., Doncaster, C.P., Ryo, M., Callaghan, C.T., *et al.* (2022). Improving
991 quantitative synthesis to achieve generality in ecology. *Nat Ecol Evol*, 6, 1818–1828.

992 Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., *et al.* (2011). High-Resolution
993 Measurements of Face-to-Face Contact Patterns in a Primary School. *PLOS ONE*, 6, e23176.

994 Stephens, P.R., Pappalardo, P., Huang, S., Byers, J.E., Farrell, M.J., Gehman, A., *et al.* (2017). Global
995 Mammal Parasite Database version 2.0. *Ecology*, 98, 1476–1476.

996 Strauss, E.D., DeCasien, A.R., Galindo, G., Hobson, E.A., Shizuka, D. & Curley, J.P. (2022). DomArchive:
997 a century of published dominance data. *Philosophical Transactions of the Royal Society B:
998 Biological Sciences*, 377, 20200436.

999 Sueur, C. & Petit, O. (2008). Organization of Group Members at Departure Is Driven by Social
1000 Structure in *Macaca*. *Int J Primatol*, 29, 1085–1098.

1001 Sueur, C., Petit, O., De Marco, A., Jacobs, A.T., Watanabe, K. & Thierry, B. (2011). A comparative
1002 network analysis of social style in macaques. *Animal Behaviour*, 82, 845–852.

1003 Sueur, C., Petit, O. & Deneubourg, J.L. (2010). Short-term group fission processes in macaques: a
1004 social networking approach. *Journal of Experimental Biology*, 213, 1338–1346.

1005 Sundaresan, S.R., Fischhoff, I.R., Dushoff, J. & Rubenstein, D.I. (2007). Network metrics reveal
1006 differences in social organization between two fission–fusion species, Grevy's zebra and
1007 onager. *Oecologia*, 151, 140–149.

1008 Testard, C., Larson, S.M., Watowich, M.M., Kaplinsky, C.H., Bernau, A., Faulder, M., *et al.* (2021).
1009 Rhesus macaques build new social connections after a natural disaster. *Current Biology*, 31,
1010 2299-2309.e7.

1011 Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., *et al.* (2013). Estimating
1012 Potential Infection Transmission Routes in Hospital Wards Using Wearable Proximity Sensors.
1013 *PLOS ONE*, 8, e73970.

1014 Voelkl, B. & Noë, R. (2008). The influence of social structure on the propagation of social information
1015 in artificial primate groups: A graph-based simulation approach. *Journal of Theoretical
1016 Biology*, 252, 77–86.

1017 Ward, J.A. (2021). Dimension-reduction of dynamics on real-world networks with symmetry.
1018 *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 477,
1019 20210026.

1020 Webber, Q.M.R., Albery, G.F., Farine, D.R., Pinter-Wollman, N., Sharma, N., Spiegel, O., *et al.* (2023).
1021 Behavioural ecology at the spatial–social interface. *Biological Reviews*, 98, 868–886.

1022 Webber, Q.M.R. & Vander Wal, E. (2019). Trends and perspectives on the use of animal social
1023 network analysis in behavioural ecology: a bibliometric approach. *Animal Behaviour*, 149,
1024 77–87.

1025 Weiss, M.N., Franks, D.W., Croft, D.P. & Whitehead, H. (2019). Measuring the complexity of social
1026 associations using mixture models. *Behav Ecol Sociobiol*, 73, 8.

1027 White, L.A., Forester, J.D. & Craft, M.E. (2017). Using contact networks to explore mechanisms of
1028 parasite transmission in wildlife. *Biological Reviews*, 92, 389–409.

1029 Whitehead, H. (1997). Analysing animal social structure. *Animal Behaviour*, 53, 1053–1067.

1030 Young, J.-G., Cantwell, G.T. & Newman, M.E.J. (2021). Bayesian inference of network structure from
1031 unreliable data. *Journal of Complex Networks*, 8, cnaa046.

1032

1033

1034 **Box 1: Social network repositories**

1035 A recent development is the creation of large-scale, publicly available databases of social
1036 network data (Table 1). We introduce three databases for non-human animal social networks
1037 here and draw attention to similar efforts for human networks too.

1038 **Animal Social Network Repository (ASNR)**

1039 The animal social network repository (ASNR; (Sah *et al.* 2019)) was first published online in
1040 2016, although has been regularly updated since then. It has subsequently been used by 7
1041 of the studies in our review. Of all the current social network datasets, the ASNR captures
1042 the greatest taxonomic diversity, including insects, fish, birds, reptiles and mammals. Data is
1043 currently stored as adjacency matrices. It also incorporates substantial variation in network
1044 size and the types of behaviour monitored. However, care is needed when exploiting the
1045 ASNR as it also includes networks measured in different ways and over varied social and
1046 temporal scales, as well as incorporating both free-living and captive populations

1047 **DomArchive**

1048 DomArchive is a newly-available database of dominance interactions (Strauss *et al.* 2022),
1049 exploiting the long-term focus on social dominance in the animal behaviour literature. The
1050 majority of data is available as adjacency matrices (sociomatrices), with a subset stored
1051 instead as edge lists. The types of interaction incorporate a wide range of aggressive, formal
1052 dominance or submissive behaviours as well as related behaviours such as threats,
1053 avoidance and social displacement. The data available will be directly relevant to questions
1054 related to social stability and group function.

1055 **MacaqueNet**

1056 MacaqueNet (De Moor *et al.* 2023) is an in-development social network database focused on
1057 macaques (*Macaca* sp.) curated for the purpose of comparative analyses in primatology and
1058 behavioural ecology. By concentrating on a well-studied genus that share similar social
1059 behaviours, MacaqueNet will offer an exciting opportunity for tackling research questions

1060 related to group-living with fewer of the pitfalls of larger datasets. As is the case for the
1061 ASNR, all data stored in MacaqueNet is formatted consistently so fully ready for comparative
1062 analyses (although note that data collection methods and edge weights can still differ
1063 between studies).

1064 **Human contact network databases**

1065 The SocioPatterns team have collected a range of proximity network datasets using
1066 Bluetooth loggers (e.g. primary school (Stehlé *et al.* 2011); scientific conference (Cattuto *et*
1067 *al.* 2010); Kenyan village (Kiti *et al.* 2016); hospital (Vanhems *et al.* 2013)) in addition to one
1068 similar dataset from wild baboons. Data are provided as edge lists, and if aggregated as
1069 adjacency matrices would be directly comparable with networks connected using similar
1070 methods from the ASNR.

1071

1072

1073 **Box 2: Classifying comparative network analyses**

1074 A diverse set of comparative approaches are possible using social network datasets. Here
1075 we provide a framework to distinguish between different approaches (Figure 3)

1076 **1. Comparisons of network properties**

1077 A first approach involves comparing the topology of different networks as an outcome
1078 of other network properties (e.g. network size). This is common in network science
1079 where understanding the generative processes underlying network formation is a
1080 major focus (e.g. (Rocha *et al.* 2021; Ward 2021; Ojer & Pastor-Satorras 2022)).
1081 However, it is also of interest to ecologists, such as with studies that test the
1082 relationship between network size and modularity (Griffin & Nunn 2012).

1083 **2. Species-level comparative approaches**

1084 A second type is a conventional species-level comparative approach, in which a
1085 network property of interest is fitted as a response variable with a series of species-
1086 level traits as explanatory variables, and potentially alongside a phylogeny to control
1087 for non-independence among closely-related species. The appropriate use of random
1088 effects can allow multiple observations to be used for a given species. We subdivide
1089 species-level approaches by the outcome variable of interest.

1090 **2a) Using network topology**

1091 Often the outcome of interest is a property of the network itself (e.g. degree
1092 heterogeneity, modularity). For example, a researcher might want to ask: How does
1093 the modularity of affiliative networks in animal groups vary with environmental
1094 harshness? These types of question will be common in behavioural ecology, for
1095 example in contributing discussions around the role of social complexity in cognitive
1096 evolution (Barrett *et al.* 2007) or linking network structure to demographic factors
1097 (Shizuka & Johnson 2020).

1098 **2b) Using the outcome of dynamical processes**

1099 The outcome of interest could also be the ecological consequences of network
1100 structure, necessitating additional steps prior to the comparative analysis. For
1101 example, studies in disease ecology often conduct simulations of pathogen spread
1102 and then use features of the resulting outbreaks as variables in comparative analyses
1103 (e.g. (Nunn *et al.* 2015; Sah *et al.* 2017; Collier *et al.* 2022; Fountain-Jones *et al.*
1104 2022)). Similar approaches are useful in understanding the consequences of social
1105 structure for information spread and behaviour change (Evans *et al.* 2020).

1106 **3. Individual-level meta-analyses**

1107 The final category is a meta-analytic approach looking at how relationships between
1108 social interaction patterns and conditional traits vary among species. For example,
1109 Briard and Ezenwa (Briard & Ezenwa 2021) showed an overall positive association
1110 between social centrality and parasite burden across 210 effect sizes covering 16
1111 host species, but they could not explain variation in this relationship using other host
1112 traits. While this study was in the context of disease ecology, there is no reason
1113 similar methodologies could not be applied to other questions of interest such as the
1114 relationship between social network position and fitness (Silk 2007; Snyder-Mackler
1115 *et al.* 2020).

1116

1117 We provide a schematic (Figure 3) to display model construction for these three main types
1118 of comparative network analyses: 1) analyses examining the relationship between *different*
1119 network traits across a range of studies (e.g. How does modularity depend on network or
1120 group size? How does network efficiency depend on degree heterogeneity?); 2) analyses of
1121 network properties (either topological or the outcome of dynamical processes operating on
1122 the network) as an outcome of both network traits and species traits (e.g. How does
1123 modularity depend on group size and longevity? How does mean outbreak size depend on
1124 fragmentation and body size?); 3) a full meta-analysis to test how relationships between

1125 network traits and individual traits vary across species and networks (e.g. Does the
1126 relationship weighted degree and fitness depend on species life-history and network
1127 modularity?)

1128

1129

1130 Tables

1131 Table 1. Summary of existing social network databases.

Database	Number of networks	Number of species	Behaviours	Access
ASNR	790	76	Dominance; Foraging; Grooming; Group membership; Non-physical social interaction; Physical contact; Social projection bipartite; Spatial proximity; Trophallaxis; Mixed	https://bansallab.github.io/asnr/
MacaqueNet	761	14	Spatial proximity Body contact; Grooming; Contact aggression; Non-contact aggression	https://macaquenet.github.io/database/
DomArchive	436	135	Dominance interactions; Submissive interactions; Aggression (151 subtypes identified)	https://github.com/DomArchive/DomArchive
SocioPatterns	14*	2	Proximity	http://www.sociopatterns.org/datasets/

1132

1133

1134 **Figure Legends**

1135 **Figure 1.** Coverage of our identified comparative social network studies. A) increase in
1136 number of species over time; B) increase in number of compared networks over time; C)
1137 positive correlation between the number of species investigated and the number of
1138 compared networks. Each point represents one of 49 studies; the line represents a Loess
1139 smooth fitted to the data. The rug on either axis displays the distribution of the data.

1140

1141 **Figure 2.** A conceptual overview of the value of how comparative social network analyses fit
1142 within a broader framework for social ecology and evolution. We illustrate selected
1143 relationships between species- and individual-level traits and social network structure and
1144 draw attention to key comparative databases for the main traits illustrated. Github¹ refers to
1145 <https://github.com/CharlotteAnaisOLIVIER/Social-organization-of-primates>.

1146

1147 **Figure 3.** An overview of different types of comparative analyses that can be applied to
1148 social network datasets. 1) Network-level analyses that connect network-derived traits with
1149 the structure of the network themselves. 2) Network-level analyses that connect network-
1150 derived traits or simulation outputs with other traits of the networks and the species that
1151 comprise them. 3) Node-level analyses across N networks that involve connecting node and
1152 individual-level traits within each system (inside brackets) and then connecting these
1153 estimates with species- and network-level traits in a meta-analytical context.

1154

1155 **Figure 4.** An illustration of our recommended workflow for comparative network analyses,
1156 identifying key questions for researchers to consider at each of the three stages of the
1157 process: data selection, scale of investigation and model design.

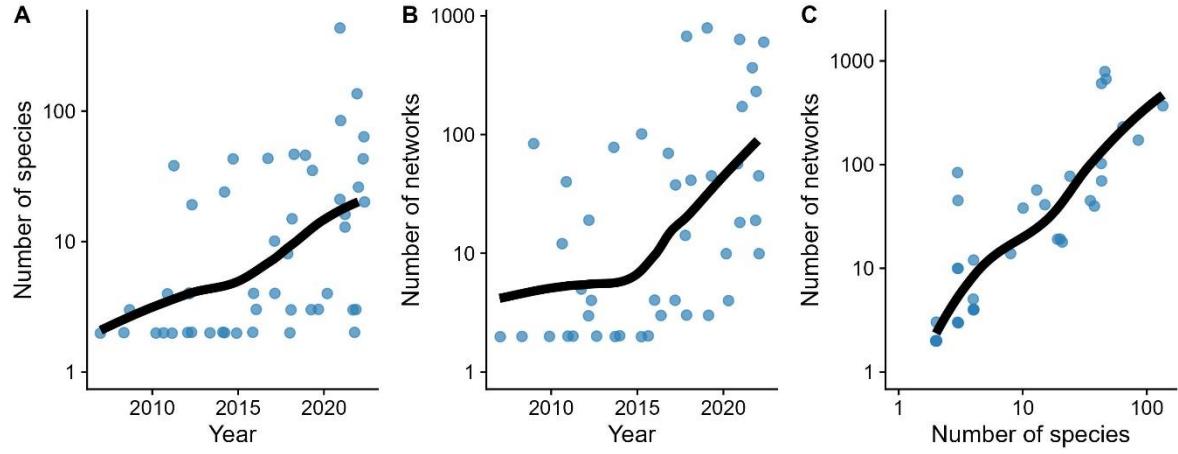
1158

1159 **Figure 5.** Common problems in comparative social network analyses (left) and solutions that
1160 may help to address them (right). Links between problems and solutions are those identified
1161 in the *Principal challenges for comparative network analysis* section of the main text as an
1162 outcome of the literature review and judgement of the authors. Solutions are sized according
1163 to the number of links they have – i.e., the number of problems they are likely to help solve.

1164

1165

1166 **Figures**



1167

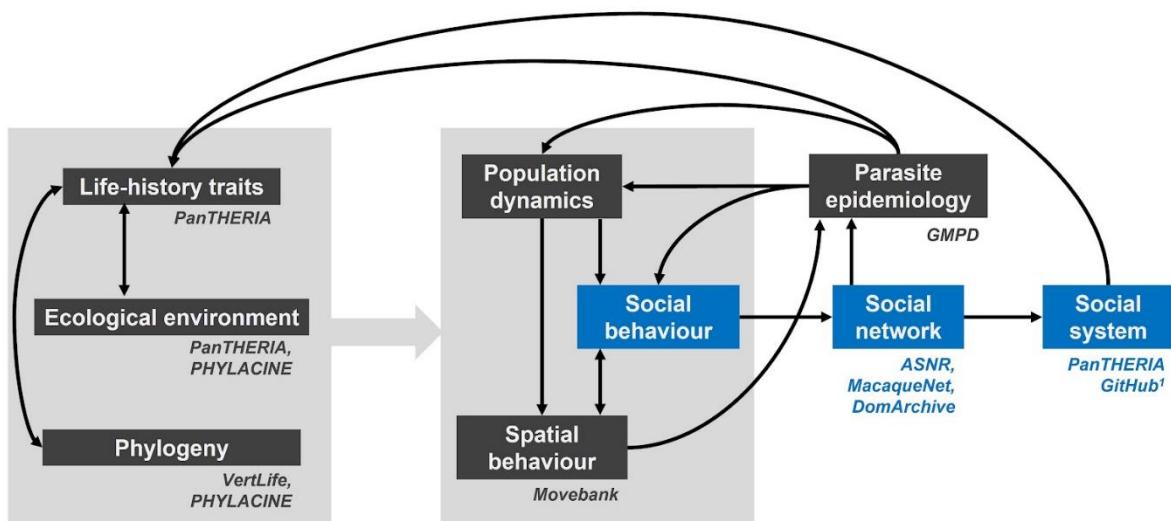
1168

1169

Figure 1

1170

1171



1172

1173

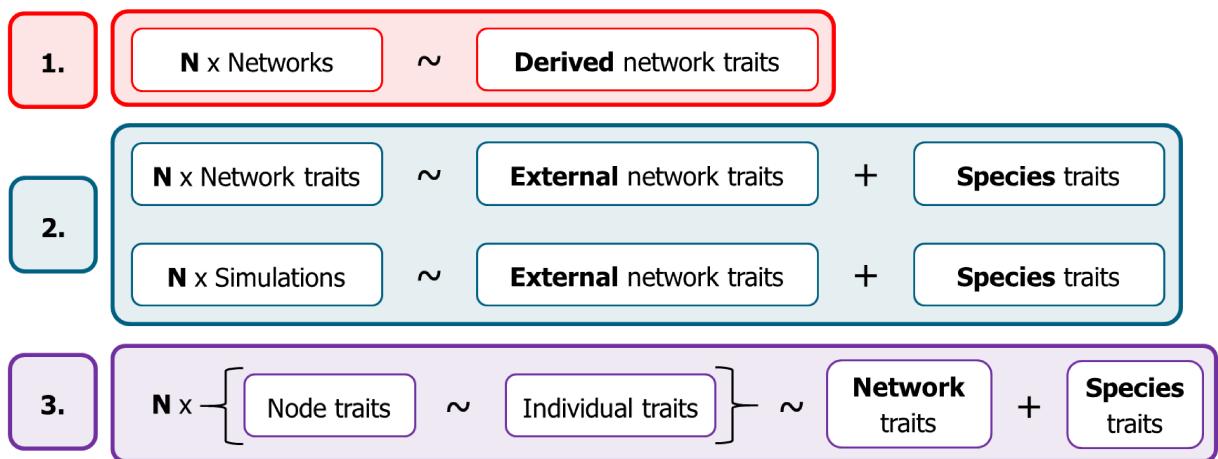
Figure 2

1174

1175

1176

1177

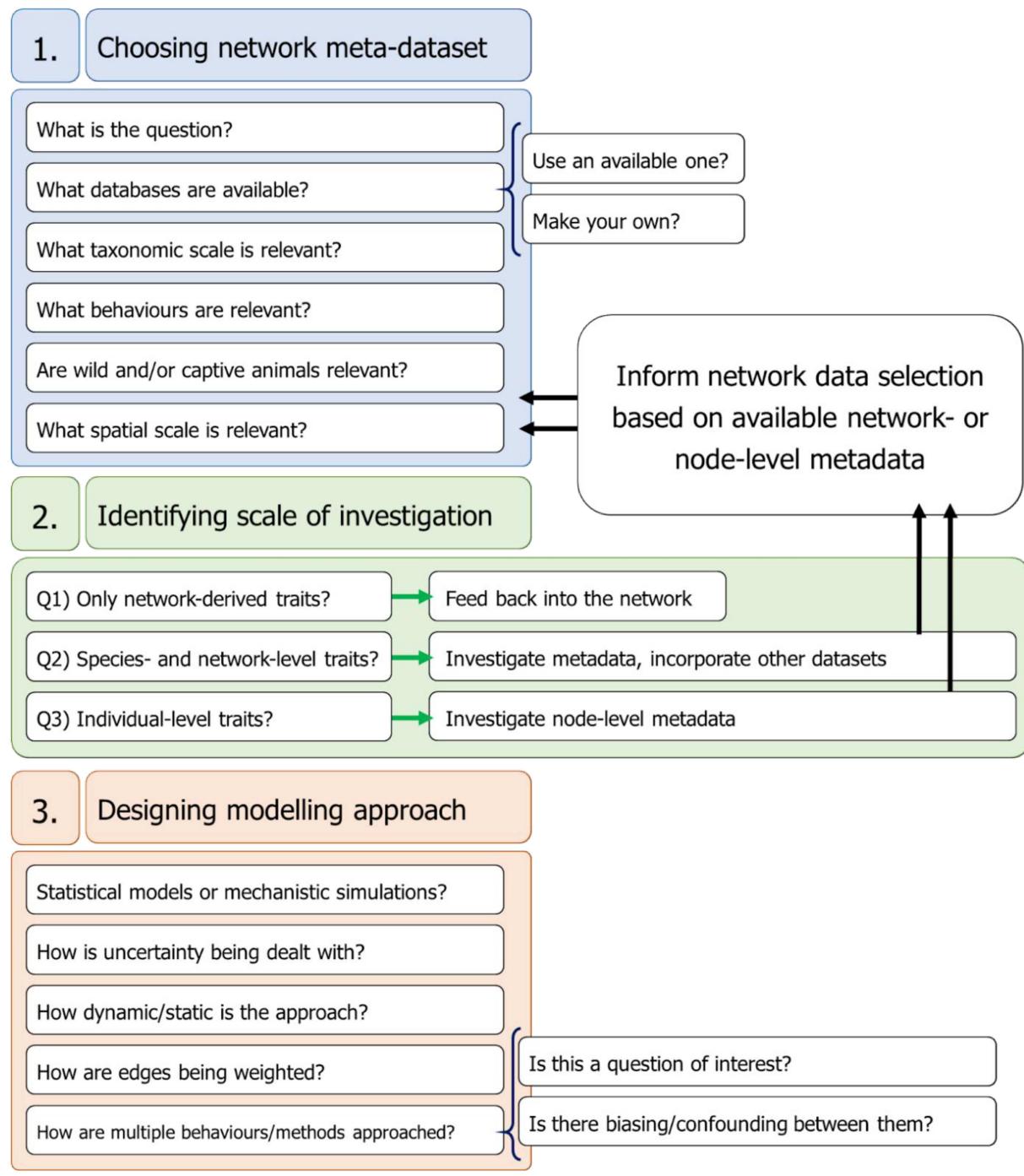


1178

Figure 3

1179

1180



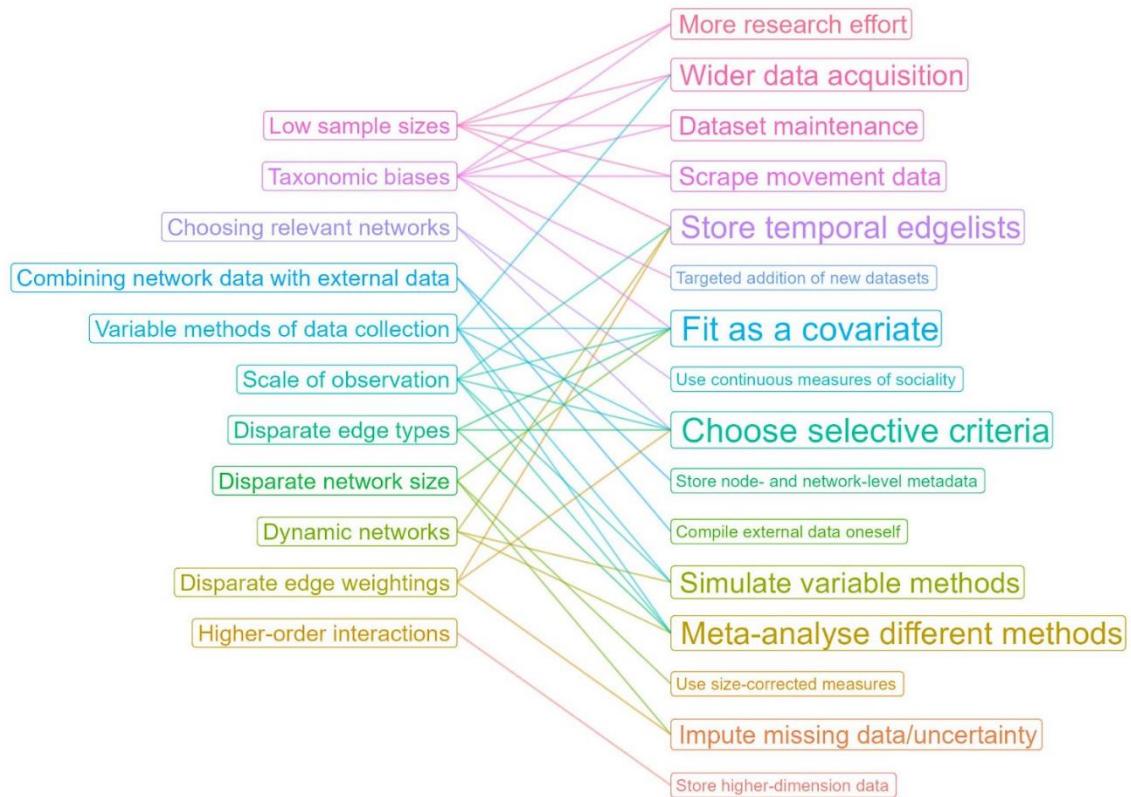
1181

1182

1183

1184

Figure 4



1185

1186

Figure 5

1187

1188

1189