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Abstract 35 

Social systems vary enormously across the animal kingdom, with important implications for 36 

ecological and evolutionary processes such as infectious disease dynamics, anti-predator 37 

defense, and the evolution of cooperation. Comparing social network structures between 38 

species offers a promising route to help disentangle the ecological and evolutionary 39 

processes that shape this diversity. Comparative analyses of networks like these are 40 

challenging and have been used relatively little in ecology, but are becoming increasingly 41 

feasible as the number of empirical datasets expands. Here, we provide an overview of 42 

multispecies comparative social network studies in ecology and evolution. We identify a 43 

range of advancements that these studies have made and key challenges that they face, and 44 

we use these to guide methodological and empirical suggestions for future research. Overall, 45 

we hope to motivate wider publication and analysis of open social network datasets in animal 46 

ecology. 47 

 48 

  49 



3 

 

 

Introduction 50 

The social lives of animals vary immensely and across many axes (Hinde 1976; Whitehead 51 

1997; Hobson et al. 2019; Prox & Farine 2020). In some species, individuals live 52 

predominantly solitary lives, only interacting with others sporadically, while others form 53 

spectacular aggregations of many thousands. Similarly, while some species live in stable 54 

groups and form social bonds that last a lifetime (Mitani 2009; Bruck 2013; Dakin & Ryder 55 

2020), in others social preferences can be weaker and the identity of social partners 56 

relatively unimportant. Variation among social systems is closely tied to ecological and 57 

evolutionary pressures faced by different populations (Kurvers et al. 2014; He et al. 2019; 58 

Evans et al. 2020; Cantor et al. 2021b). Variation in well-studied benefits (e.g. access to 59 

information, avoidance of predation) and costs (e.g. competition, parasitism) of social 60 

interactions across species therefore creates associations between particular social systems 61 

and specific environments (Leu et al. 2016) or taxonomic groups (Chak et al. 2017). 62 

However, given the ecological environment can also cause variation in social structure within 63 

populations (e.g. (Jordán et al. 2021)), it is important to decompose intra- and inter-specific 64 

variation in social structure. Because social structure alters the course of evolution (Fisher & 65 

McAdam 2017, 2019), determines the outcome of ecological processes like disease spread 66 

(Keeling & Eames 2005; White et al. 2017), and potentially influences a species’ resilience to 67 

global change (Fisher et al. 2021), understanding drivers of inter-specific variation in social 68 

structure has important implications and applications. Comparative approaches are popular 69 

ways for researchers examining the evolutionary ecology of sociality to understand these 70 

processes (Lukas & Clutton-Brock 2013; Lukas & Huchard 2014; Kappeler & Pozzi 2019). 71 

Nevertheless, there are substantial challenges applying comparative approaches in 72 

socioecology, of which a major one is classifying or quantifying variation in social systems. 73 

Recent work (e.g. (Lang & Farine 2017; Prox & Farine 2020)) has begun to provide higher-74 

dimensional classifications of sociality, but there remain limitations in the power and 75 
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universality of these approaches, as qualitative classifications only provide coarse 76 

approximations. Further, in many contexts, it is the specific pattern of interactions that plays 77 

a role rather than the type of social system per se. With the popularisation of social network 78 

analyses in behavioural ecology, the time is ripe to apply more quantitative cross-species 79 

comparisons that address diverse questions around interspecific variation in social structure 80 

and dynamics. 81 

Social networks are an integral part of a behavioural ecologist’s toolkit (Farine & 82 

Whitehead 2015; Webber & Vander Wal 2019). By linking individual behaviour to group- and 83 

population-level structure and outcomes (Fig. 1), they have helped study diverse aspects of 84 

animal behaviour including dominance (Shizuka & McDonald 2012; Hobson et al. 2021a), 85 

cultural evolution (Voelkl & Noë 2008; Cantor et al. 2021a), and epidemiology (Keeling & 86 

Eames 2005; Bansal et al. 2007; White et al. 2017). Applications of network approaches in 87 

socioecology have grown rapidly and now encompass substantial geographic and taxonomic 88 

diversity, albeit with remaining biases (Webber & Vander Wal 2019).  89 

Despite the growth in animal social network analyses, few studies have undertaken 90 

multispecies comparisons of social networks or used meta-analytic approaches to test 91 

broader evolutionary or ecological patterns. Nevertheless, multispecies analyses of social 92 

networks have multiple advantages for comparative analysis in social ecology, offering 93 

valuable tools to summarise the diversity of animal social systems and tease apart inter-94 

specific variation in social structure. These benefits emerge from network descriptions 95 

providing: diverse measures to succinctly quantify different aspects of social structure; the 96 

ability to quantify fine-scale variation in social systems beyond features like group size; and a 97 

way to unify analyses across social scales, from individual- to group-, and population-level 98 

features. For example, network approaches have moved discussion about sociality and the 99 

costs of parasitism beyond group size to factor in combined effects of group structure and 100 

individual social relationships (Nunn et al. 2015; Briard & Ezenwa 2021). This provides 101 

insight into the strategies with which animal societies balance the trade-offs between 102 
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parasitism and the benefits of sociality. Similarly, network approaches’ ability to quantify 103 

social structure across scales has revealed multilevel social systems in taxonomically diverse 104 

species, demonstrating variation in the mechanisms underlying these structures 105 

(Papageorgiou et al. 2019; Camerlenghi et al. 2022). Two main issues have limited 106 

comparative analyses of social networks: i) it is challenging to compare the structure of 107 

networks of different sizes (Faust 2006), especially when they are generated by different 108 

behavioural processes (Hobson et al. 2021b); and ii) there has been a shortage of animal 109 

social network datasets available to compare.  110 

With the recent development of multi-species repositories of social network data (Box 111 

1) and an increasingly advanced statistical toolkit, there is now the potential to overcome 112 

these issues and exploit comparative social network analyses in ecology and evolution. 113 

Here, we review existing studies that have undertaken such analyses. We then identify 114 

outstanding challenges to successfully employing comparative and meta-analytic 115 

approaches with social network data, suggesting potential solutions and highlighting specific 116 

areas in need of methodological research, as well as identifying promising areas for future 117 

empirical research. Overall, our paper provides a roadmap for conducting these analyses 118 

and aims to inspire the development of new statistical tools to increase their accessibility, as 119 

well as motivating the collection and publication of further open social network datasets. 120 

 121 

The current state of comparative network analysis 122 

The Data: As of 3rd November 2022 we uncovered 49 studies that compared multiple 123 

species’ social networks, spanning 16 years (2007-2022; Table S1). Initially, these studies 124 

typically compared a small number of species and networks; however, over time, these 125 

numbers have increased exponentially (Figure 1). While some studies still compare only a 126 

few species, there are now many that incorporate several hundred networks encompassing 127 

dozens of species – three of which also included humans. These larger studies often 128 
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featured replication of several networks within each species, (potentially) allowing estimation 129 

of within- and between-species variation in network structure. On three occasions 130 

researchers developed (or are developing) substantial publicly available databases (Box 1). 131 

Otherwise, larger studies tended to produce their network datasets through literature 132 

searches and independently contacting researchers to request data (Nunn et al. 2015; 133 

Rocha et al. 2021), or by aggregating datasets that the authors themselves collected (Bhadra 134 

et al. 2009; Pasquaretta et al. 2014). Given the few independent datasets, substantial reuse 135 

of said datasets, and growing exploitation of the animal social network repository (ASNR; 136 

Box 1), there has been encouragingly little duplication of effort in producing network meta-137 

datasets. In the near future, researchers carrying out comparative behavioural analyses will 138 

be well-placed to use much of the available data, rather than encountering issues with 139 

dataset harmonisation and unification – as has been the case with datasets of host-pathogen 140 

associations, for example (Gibb et al. 2021). 141 

 142 

Taxonomic skew: Many studies (19/49; 39%) focused primarily or entirely on primates, with 143 

a particular focus on macaques (Macaca sp.; e.g. (Sueur et al. 2011; Ciani et al. 2012; 144 

Balasubramaniam et al. 2020)). Otherwise, there was broad coverage of different taxonomic 145 

classes, including fish (Roose et al. 2022), hymenoptera (Bhadra et al. 2009), and elephants 146 

(de Silva & Wittemyer 2012), as well as large-scale studies that included diverse vertebrate 147 

classes and some invertebrates (Sah et al. 2017; Rocha et al. 2021). It is unclear how this 148 

taxonomic skew could influence the results of pan-dataset analyses. 149 

 150 

Species-level analyses: Many comparative papers (11/49=22%) examined how species’ 151 

traits correlated with their social network topology with others doing so qualitatively. For 152 

example, several analyses linked primates’ cognition or behaviour with the structure of their 153 

networks (Sueur et al. 2011; Pasquaretta et al. 2014). Conversely, two studies used the 154 

ASNR to examine how species’ contact network structures were associated with their 155 
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parasite communities, focusing on parasite species richness (Poulin & Filion 2021) or the 156 

evolution of parasite species transmitted over the focal host’s contact networks (Collier et al. 157 

2022). These studies incorporated external databases of host-parasite associations 158 

(Stephens et al. 2017) and human parasite traits (Richardson et al. 2001; European Centre 159 

for Disease Control 2016), as illustrated in Figure 2. 160 

 161 

Generative models: Two papers (2/49=4%) developed generative models for social network 162 

formation, which they validated using multi-species network datasets. For example, (Ilany & 163 

Akcay 2016) developed a model for network formation by social inheritance, validating their 164 

predicted networks using data from four species. 165 

 166 

Methodological studies: Several studies (6/49=12%) used animal social network meta-167 

datasets to illustrate new methods or confirm trends in network science or related fields. 168 

These included identifying novel scaling trends (Rocha et al. 2021; Ward 2021; Ojer & 169 

Pastor-Satorras 2022), producing new approaches (Shizuka & Farine 2016; McDonald & 170 

Hobson 2018; Ward 2021; Ojer & Pastor-Satorras 2022), or deriving new network traits 171 

(Péron 2023). 172 

 173 

Dynamical simulations: A particularly common approach (13/49 studies; 27%) to 174 

comparative social network analysis was the simulation of transmission dynamics (e.g. 175 

(Nunn et al. 2015; Sah et al. 2017, 2018; Romano et al. 2018; Collier et al. 2022; Fountain-176 

Jones et al. 2022)). This approach may be so popular because, so far, networks have been 177 

used to test general ideas for a broad set of potential pathogens. This reduces the 178 

importance of disparity in data collection methods and timescales, as (to some extent) the 179 

networks are providing a substrate to test ideas in network epidemiology rather than to 180 

provide broader ecological insights. These approaches have also often used unweighted 181 
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(binary) versions of networks, mitigating the impact of variable edge weighting across 182 

different studies (see below). 183 

 184 

Individual-level meta-analyses: Finally, among our identified studies, there was only one 185 

(1/49=2%) “true” meta-analysis – i.e., one that did not use raw data, but rather analysed a 186 

series of model estimates published in other studies (Briard & Ezenwa 2021). All other 187 

papers derived network-level traits and carried out species-level comparative analyses. We 188 

capture the distinction between these approaches in Box 2. 189 

 190 

Biological overview of comparative network studies 191 

The 49 studies we found tackle diverse research questions across multiple ecological 192 

disciplines. We identify the major themes addressed so far, providing a synthesis within each 193 

theme based on the objectives and findings of comparative network studies. 194 

 195 

In behavioural ecology: Comparative network analyses in behavioural ecology (23 studies) 196 

have predominantly been used to provide insights into the structure and dynamics of animal 197 

groups, addressing these questions across social scales. Frequently, it has been applied to 198 

quantify population-level social structure for taxonomically similar species (e.g. bats: (August 199 

et al. 2014); elephants: (de Silva & Wittemyer 2012); equids: (Sundaresan et al. 2007; 200 

Rubenstein et al. 2015)). In these cases, using a comparative approach can reveal fine-scale 201 

differences in social structure that were previously undetected (e.g. (Sundaresan et al. 202 

2007)). These studies have often demonstrated how ecological differences between closely 203 

related species explain variation in network structure. For example, different social network 204 

structures between Australian snubfin Orcaella heinsohni and Indo-Pacific humpback 205 

dolphins Sousa chinensis were attributed to differences in diet, prey availability and feeding 206 

behaviour (Parra et al. 2011). Similarly, the role of mating systems (Matsuda et al. 2012) and 207 
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variation in individual traits, such as cognitive capabilities (Pasquaretta et al. 2014), have 208 

also been investigated. One underused approach is applying comparative network analyses 209 

to find general rules for animal social structure. For example, (Rocha et al. 2021) found a 210 

potential power law relationship between group size and social connectivity, with evidence 211 

that it varied depending on social interaction type.  212 

At a finer social scale, comparative network analyses have also been used for within-213 

group social dynamics, including dominance hierarchies (Balasubramaniam et al. 2018; 214 

Hobson et al. 2021a) and social stability (Sueur et al. 2010, 2011). Here comparing between 215 

species can identify general patterns in within-group interactions. For example, (Hobson et 216 

al. 2021a) compared dominance networks across 172 groups from 85 species to show most 217 

species distributed aggressive interactions evenly across all lower-ranked individuals rather 218 

than on either close competitors or the weakest individuals. This has implications for 219 

quantifying individual variation in the costs and benefits of social strategies. Comparative 220 

studies in macaques (Macaca sp.) have investigated how social networks influence fission-221 

fusion dynamics and collective behaviour, for example demonstrating how the importance of 222 

kinship differs between socially tolerant and intolerant species (Sueur et al. 2010). These 223 

types of study naturally extend into collective behaviour, including group fission events and 224 

departures (Sueur & Petit 2008). Correspondingly, comparative network approaches have 225 

also been used in theoretical models of collective behaviour by demonstrating how more 226 

differentiated relationships in within-group social networks lead to reduced when modelling 227 

flocking dynamics (Ojer & Pastor-Satorras 2022).  228 

 229 

In conservation and applied animal behaviour: Comparative social network analyses 230 

have also occasionally been used in applied ecology and conservation (5 studies), moving 231 

beyond group-based analyses to simultaneously incorporate the importance of social 232 

relationships and the wider social environment in these contexts. For example, in the context 233 
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of human-wildlife interactions, (Balasubramaniam et al. 2020) showed differences among 234 

macaque species in how within-group social network centrality was associated with the 235 

tendency to interact with humans, with implications for pathogen spread. In the context of 236 

conservation welfare, comparative network analyses have revealed long-term social bonds  237 

in captive population that could inform husbandry decisions (Rose & Croft 2017) or evaluated 238 

impacts of environmental enrichment (Dufour et al. 2011). 239 

 240 

In disease ecology: Comparative social network analyses in disease ecology (15 studies) 241 

have quantified the role of both individuals and emergent group- or population-level social 242 

structures in infectious disease transmission. They have also provided a more generalizable 243 

understanding of epidemiologically-relevant features of animal social networks that provides 244 

insight at both ecological and evolutionary timescales. 245 

Some studies have combined comparative network data with empirical 246 

epidemiological data: for example, (Briard & Ezenwa 2021) used a meta-analysis to show 247 

consistent positive effects of network centrality on infection probability, with the pattern 248 

stronger for local rather than global measures of social centrality, and (Poulin & Filion 2021) 249 

demonstrated correlations between some aspects of group social network structure and 250 

parasite species richness in parasite groups. As more simultaneously collected network and 251 

epidemiological data becomes available, these types of study will provide further tests of key 252 

hypotheses in disease ecology. 253 

Of studies to apply comparative analysis to the outputs of simulated network 254 

epidemiological models on multi-species social network datasets, a small number (e.g. 255 

(Carne et al. 2013)) have focused at an individual level, comparing the role of individual 256 

heterogeneity and/or the value of network-targeted vaccination between species. Many more 257 

studies have examined how different aspects of network structure impact epidemiological 258 

dynamics, for example: providing and testing new methods to quantify the vulnerability of 259 
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different hosts to outbreaks (Colman et al. 2021; Fountain-Jones et al. 2022), linking them to 260 

key epidemiological concepts such as density-dependence in transmission (Colman et al. 261 

2021) and offering insight into how network structure for different interaction types could 262 

influence pathogen evolution (Collier et al. 2022). An area of particular interest has been the 263 

role of modular social structures (Griffin & Nunn 2012; Nunn et al. 2015; Sah et al. 2017), 264 

providing insight into how group living shapes disease risk. One study extended these 265 

insights to other contagions (Romano et al. 2018). 266 

 267 

Principal challenges for comparative network 268 

analysis  269 

Based on our methodological synthesis, we identified key challenges facing comparative 270 

analyses of social network structure and classified them into three main groups: meta-271 

analytical choices, between-study comparability, and network features. We generated a 272 

framework to help researchers with the principal decisions at each stage of a comparative 273 

social network analysis (Figure 4), and provide a number of solutions, many of which 274 

address several interrelated issues (Figure 5). Addressing these methodological issues will 275 

be critical to tackling research questions across the themes identified in our biological 276 

synthesis, in particular by enabling comparisons that incorporate more diverse social 277 

systems, data collection approaches and social behaviours. 278 

 279 

Analytical choices for comparison 280 

Sample sizes: In our review, the median number of networks compared was 12, and the 281 

median number of species was 4. Especially for more powerful comparative approaches 282 

(e.g. controlling for phylogeny, machine-learning approaches etc.), this sample size 283 
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substantially limits the power to deal with confounding variables and reduces the diversity of 284 

questions can be answered. A key solution, which the field is well-placed to achieve, is the 285 

coordination and centralisation of publicly accessible databases to facilitate sufficient sample 286 

sizes. This could generate issues related to managing a large open dataset and ensuring its 287 

continuity, but social network researchers could learn from other efforts to maintain open, 288 

partially-automated updating datasets (e.g. (Carlson et al. 2022)). Increased power could 289 

also be achieved through greater replication per species (e.g. see MacaqueNet; Box 1), 290 

which would allow quantification of within- versus between-species variation in network 291 

structure. This could arise through renewed research effort, wider data acquisition, or 292 

incorporating networks at a range of temporal resolutions (e.g. weekly, monthly, yearly) 293 

where appropriate. 294 

 295 

Taxonomic biases: We identified an overpowering focus on non-human primates, especially 296 

macaques, across comparative studies. This was present in both the studies themselves and 297 

in aggregated datasets; with substantial overrepresentation of primates in the ASNR, for 298 

example (Sah et al. 2019). A fear of overcoming the challenges of big taxonomic divides may 299 

have driven researchers to focus on small subsets and within-subgroup analyses rather than 300 

analysing across the animal kingdom. As such, it remains an open question how comparable 301 

these systems are, and whether generalisable rules shape social structure across these 302 

divides. This limits how general the insights provided can be across the diverse social 303 

systems present in nature. 304 

There are other subtle biases present. For example, because ant colonies are 305 

relatively easy to replicate and observe, the ASNR contains many replicate ant networks, 306 

such that ants are overrepresented at the network level rather than a higher taxonomic level 307 

(Sah et al. 2019). Because sociality is often studied at different intensities across taxonomic 308 

groups (Sah et al. 2018), other well-studied taxa may be similarly overrepresented. Studies’ 309 

findings could be swayed by these taxonomic skews. In the short-term, following the lead of 310 
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previous studies can help mitigate these issues, for example by subsampling networks for 311 

over-represented species (Collier et al. 2022) or re-analysing without them (Fountain-Jones 312 

et al. 2022). In the longer term, targeted addition of new datasets can address taxonomic 313 

biases, perhaps using innovative approaches to exploit existing social or movement data, 314 

such as approximating proximity networks using Movebank data (Kays et al. 2022). 315 

 316 

Choosing networks relevant to the question: Careful selection of networks from 317 

databases is required to ensure they are relevant for the question posed (Figure 4). For 318 

example, there is little value in using networks based on indirect contacts to model the 319 

transmission of many contagious pathogens (Albery et al. 2021). Similarly, the relevance of 320 

wild and captive network datasets will depend on the question asked and the taxa 321 

investigated. Importantly, taxonomic biases may interact with these problems: for example, 322 

how does the effect of captivity on network structure differ between ants and macaques? 323 

One particularly difficult incarnation of this problem lies in comparing species with 324 

qualitatively different social systems: for example, is it meaningful to compare species with 325 

well-mixed fission-fusion societies to ones that lives in stable groups? A potential solution is 326 

to use existing frameworks (Prox & Farine 2020) to inform decisions about which types of 327 

social systems to compare for any given question. These frameworks can be used to 328 

summarise networks based on multidimensional traits, employing emergent continuous 329 

variables rather than discrete a priori “social organisation” categories. Also relevant here are 330 

decisions about which behaviours (and so networks) are relevant to a particular research 331 

question (see “Between-Study comparability” section below). 332 

 333 

Combining network data with external data: Combining comparative network analyses 334 

with external data on individual, group or species level traits considerably expands research 335 

scope across diverse areas. However, only rarely have studies combined network data with 336 

external data sources (Figure 2), with exceptions including cognitive traits (Pasquaretta et al. 337 
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2014) and parasite richness (Poulin & Filion 2021). These examples illustrate how integrating 338 

comparative network data with other traits provides increased power to identify the diverse 339 

factors that shape social structure and testing hypotheses related to the variable ecological 340 

and evolutionary consequences of these structures (Fig. 2). Indeed, one reason that 341 

simulations are so regularly used is because they allow approximation of epidemiological 342 

consequences of network structures without necessitating additional empirical sources of 343 

information.  344 

One limiting factor for some comparative analyses will be the availability of other 345 

species-level traits. In general, basic life-history data will likely be available for species that 346 

have been sufficiently well-studied to collect social network data, and these types of 347 

information have been collated into existing databases such as PanTHERIA (Jones et al. 348 

2009). However, other data types may be more limited. For example, a recent integration of 349 

the ASNR and global mammal parasite database (Stephens et al. 2017; Sah et al. 2019) 350 

resulted in a sample size of 18 primates with available infection data (Poulin & Filion 2021). It 351 

remains likely that comparative projects will need to compile external, non-network datasets 352 

themselves for some traits. Similarly, while existing databases (see Box 1) do contain limited 353 

individual-level data (e.g. age, sex) for some networks, this may also limit the number of 354 

networks that can be included without contacting the authors of original studies. This 355 

highlights the importance of authors providing attribute data alongside their networks to help 356 

answer individual-based questions. 357 

 358 

Between-study comparability 359 

Variable methods of data collection: Networks in multi-species datasets are collected 360 

using diverse and occasionally difficult-to-compare methodologies, and little methodological 361 

research has critically considered how this impacts comparative analyses. In some cases, 362 

there are clear issues with comparisons: for example, group-based methods of network 363 
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construction will typically cause much denser social networks than other forms of data 364 

collection. However, in others comparability can be less clear. Additionally, different data 365 

collection strategies can be confounded with taxonomy and social system. For example, 366 

rodents may be disproportionately trapped, large mammals GPS-tracked, birds ringed or 367 

PIT-tagged, and ungulates censused. Similarly, behavioural interactions are easier to 368 

observe in species living in stable groups, while network data for less social species may 369 

typically be collected using bio-loggers (Smith & Pinter-Wollman 2021). Further challenges 370 

will occur if sampling intensities differ across forms of data collection (e.g. more proximity 371 

interactions will be missed using focal sampling than if most individuals are carrying proximity 372 

loggers). All of these challenges create limitations that explain the taxonomic scale and 373 

narrow research focus of many existing comparative network analyses.  374 

Dealing with the difficulties imposed by data collection methods represents a major 375 

challenge. Great care is required, especially because interactions with other study or network 376 

features are likely and effects may not be linear. The most conservative solution is to be strict 377 

with inclusion criteria (Figure 4) and avoid comparing networks collected in different ways. 378 

However, the impacts may also be mitigated by the solutions highlighted in other sections, 379 

especially when data collection method is confounded with the type of behaviour studied or 380 

scale of interaction. In these cases, dealing with interactive effects of these confounding 381 

variables will be key. Ultimately, the best approach will be not to avoid comparing them, but 382 

to compare them explicitly – both with empirical data and simulations – with the aim of 383 

discovering such biases. This approach may be particularly powerful where multiple data 384 

collection approaches are used in a single system (e.g. (Castles et al. 2014)). 385 

 386 

Social/spatial/temporal scale of observation: Studies vary substantially in their scale, 387 

whether social (e.g. within-group vs. multigroup), spatial (study area size), or temporal. For 388 

example, studies may choose a geographic area and follow (a proportion of) a population 389 

there (Firth & Sheldon 2016; Testard et al. 2021), or choose certain individuals across a 390 



16 

 

 

series of groups (Silk et al. 2018; Papageorgiou & Farine 2020), or identify a specific group 391 

and follow all its members (Kulahci et al. 2018). Terminology can exacerbate challenges 392 

here; some studies use “group” and “network” interchangeably, while others do not. A key 393 

challenge is identifying if and when we can compare studies focused on groups with those 394 

focused on entire populations/multiple groups. Compounding this challenge, other issues 395 

such as data collection method and network size are often confounded. Further, the spatial 396 

or temporal scale of studies may also be correlated with the proportion of individuals that are 397 

tracked or identified, which can also impact topological measures (Gilbertson et al. 2021). All 398 

these differences could introduce disparities that are difficult to overcome during analysis and 399 

may either exacerbate or mask interspecific variability in social structure.  400 

A crucial methodological development would therefore be to identify combinations of 401 

sampling approach and types of network measure that can be used more robustly in these 402 

contexts, and which should be avoided entirely. Similarly, comparing studies that occur over 403 

different timeframes represents a considerable challenge. On the one hand, network data 404 

collected over longer durations can lead to greater confidence that the observed network 405 

structure is a good representation of reality (Farine & Strandburg-Peshkin 2015; Davis et al. 406 

2018; Hart et al. 2023). On the other, observing networks for longer will lead to more densely 407 

connected networks as more infrequent or random interactions are observed. This will be a 408 

greater problem for some data types (e.g. proximity, group-based) than others (e.g. 409 

grooming). Networks aggregated over long periods also risk overlooking network dynamics 410 

(see subsequent section). 411 

In the short term, careful screening of studies is again important in ensuring the 412 

networks used employ a relevant scale. Ensuring that metadata in databases accurately 413 

indicates this information (e.g. (Sah et al. 2019)) is therefore vital. Heading towards 414 

incorporating data into these databases as dynamic edge lists or at various temporal 415 

resolutions would allow researchers greater flexibility on whether to include a study or not. It 416 

will also be beneficial to apply other previously identified solutions such as (with caution) 417 
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controlling for the scale of the study within the statistical model (e.g. (Sah et al. 2018)), or 418 

analysing separately for networks measured at different social scales (e.g. group vs. 419 

population) and integrating the results qualitatively or meta-analytically. As with data 420 

collection methods, what is most needed is a renewed effort to employ simulations using 421 

well-known study systems to more accurately quantify when and how problems will arise 422 

when comparing networks across scales. 423 

 424 

Disparate edge types: There is substantial variation among networks in how edges 425 

are defined (Table 1): some use specific behavioural interactions such as grooming, while 426 

others use coarser approaches such as association within a group, or spatial proxies such as 427 

home range overlap. Frequently these networks will not be directly comparable (Castles et 428 

al. 2014). In other cases, it is not necessarily clear to what extent different observations 429 

represent different behaviours per se. Some may be nested: for example, sexual contact 430 

requires spatiotemporal proximity, and so the former network may represent a subset of the 431 

latter. Similarly, it will be challenging to work out what represents comparable behaviour 432 

types in taxa with very different ethograms. For example, DomArchive (see Box 1) only 433 

includes data on dominance networks but includes >150 different “behaviours”, some of 434 

which are rather distinct. Some network types will also have very different topologies: for 435 

example, fluid exchange networks are generally very sparse and skewed, exhibiting different 436 

topologies to direct contact networks (Collier et al. 2022). This issue is also confounded with 437 

differences in data collection methodologies outlined above, further reducing comparability: 438 

for example, GPS tracks might be used to detect grouping, while short-range proximity 439 

collars are used to identify direct contacts (Albery et al. 2021; Smith & Pinter-Wollman 2021). 440 

Because these methods exhibit different sensitivities and sampling frequencies, two 441 

networks may have different topologies purely because of methodology rather than biological 442 

differences. 443 
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In the short term, careful use of selection criteria can prevent these potential issues 444 

(Figures 4 & 5). For example, questions related to within-group social stability may use data 445 

on grooming, dominance, social foraging or trophallaxis from the ASNR and combine this 446 

with relevant data from DomArchive or MacaqueNet. Researchers can also include data 447 

collection methods as fixed or random effects in comparative analyses (e.g. (Albery et al. 448 

2022)). However, in many cases, it can be more effective to repeat the analysis for different 449 

data collection methodologies and then either qualitatively or quantitatively compare the 450 

results. This can even be used as the strength of a study (Collier et al. 2022). One could 451 

even examine if the results of a comparative analysis are sensitive to inclusion/exclusion of 452 

particular behavioural types. In the future, methodological research that uses the 453 

comparability of different networks from the same species can help identify interaction types 454 

that are more comparable and perhaps use advances in latent network modelling (Young et 455 

al. 2021; Ross et al. 2022) to combine insights from multiple data sources. 456 

 457 

Disparate network size: Network size also differs considerably between studies. 458 

Historically, differences in network size have been identified as a key problem for 459 

comparisons (Faust 2006), by creating several overlapping issues. First and most simply, 460 

raw values of many social network measures depend on network size and how best to 461 

correct for its effect will differ between measures and is not always intuitive. For example, 462 

while degree is best normalised by dividing through by the number of possible partners and 463 

betweenness is best normalised by dividing by the number of possible paths, for other 464 

measures this choice is less clear. Second, the value of using size-corrected measures can 465 

depend on both the research question and the generative process determining network 466 

structure. For example, network size in existing databases could be reflective of either 467 

sampling effort or social group size. In the latter case, it can be biologically meaningful that 468 

individuals in larger groups have more social connections. Similarly, if the number of 469 

connections an individual forms has an upper bound regardless of group size, then 470 
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correcting for group size effects will remove biological signals. However, this will not 471 

universally be the case, and in some contexts failing to control for group size could drive 472 

misleading conclusions if interpreted incautiously.  473 

Because i) differences in network size may also be driven by variation in sampling 474 

(e.g. edge effects or the inability to identify all individuals) and ii) how network measures 475 

covary with network size may differ between systems and approaches, great care in 476 

interpretation is necessary when network size varies considerably between studies. As such, 477 

this is an area in need of methodological research. For example, the advent of Bayesian 478 

approaches to impute missing network data (Young et al. 2021) and generate uncertainty 479 

around edge weights and network measures (Hart et al. 2023) can help mitigate issues 480 

directly related to sampling differences and allow the focus to be on analytical decisions 481 

around the biological effect of group size. One option is to fit network (or group) size as a 482 

covariate within comparative models; however, how this is done (e.g. whether it is included 483 

as a linear effect) would require careful consideration and cautious interpretation. 484 

Differences in confounding effects of network size and sampling intensity also 485 

represent a challenge to comparative analyses assessing the relationship between 486 

conditional traits and individual network position (Box 2). In these cases, employing Bayesian 487 

methods that propagate uncertainty from this initial stage of the analysis through to the 488 

cross-system comparative analytic stage would be an ideal solution, especially by enabling 489 

studies with better-sampled or larger networks to have greater weight. This is likely to 490 

become increasingly feasible as new methods allow uncertainty around social network metric 491 

calculations in animal societies (Hart et al. 2023).  492 

 493 

Network features (and information loss) 494 

Researchers must also decide what level of information loss is acceptable, especially for 495 

network dynamics, edge weights and edge sizes (Figures 4 & 5). Accepting more information 496 
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loss allows for comparative analyses across more diverse species, but limits the ability to 497 

detect variation in network structure and reduces the diversity of questions one can ask. 498 

 499 

Dynamic networks: Social interaction patterns typically change over time and/or between 500 

ecological contexts (Silk et al. 2017; Smith et al. 2018; Shizuka & Johnson 2020) meaning 501 

social networks are rarely static, and snapshots or aggregations captured in adjacency 502 

matrices are a simplification of reality. Currently very few papers have considered network 503 

dynamics within a comparative framework (but see (Rubenstein et al. 2015; Chase et al. 504 

2022)), in part because dynamic network data is less readily available (e.g. not in the ASNR; 505 

(Sah et al. 2019)). However, even when conducting comparative analyses using static 506 

networks it is important to consider the impact of social dynamics. 507 

Generally, researchers define data collection periods based on their research 508 

question (e.g. matching the transmission dynamics of a pathogen (White et al. 2017)) and 509 

biological knowledge. However, the duration of data collection can also be constrained by 510 

convenience factors (e.g. battery performance of bio-loggers, duration of presence in a study 511 

location, etc. (Gilbertson et al. 2021; Smith & Pinter-Wollman 2021)). Similar considerations 512 

and constraints also apply to the frequency of network data collection. This creates a 513 

challenge when conducting comparative analyses because the potential for variation in social 514 

dynamics between systems means it is not straightforward to control for study duration. For 515 

example, if the rate at which individuals of species A change their interaction partners is 516 

much slower than that same rate in species B, then any correction for study duration will 517 

introduce bias related to genuine biological differences, rather than achieving what is 518 

intended. The potential impact can be limited by focusing a comparative analysis on a subset 519 

of social systems (or taxonomic relatives) in which changes in network structure over time 520 

are more similar. Alternatively, if using network duration as a control variable, then allowing 521 

its effect to vary according to social system, behaviour type, method of data collection, etc. 522 

may mitigate this issue to some extent. In the longer run, another effective solution will be 523 
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storing data as dynamic edge lists so that researchers can make their own decisions whether 524 

to use a dynamic or static approach, and the duration over which to aggregate static 525 

networks. However, moving towards these higher-resolution datasets may reduce 526 

researchers’ willingness to share network data, as they contain more information about their 527 

study system.    528 

 529 

Disparate edge weightings: Variation in edge weight definitions represents another key 530 

challenge for comparative analyses, especially when they covary with taxonomy, social 531 

system and data collection methods. For example, many studies have used association 532 

indices like the simple ratio index (Hoppitt & Farine 2018), and the popularity of alternatives 533 

has varied over time and between research communities. In contrast, many contact-based 534 

networks use bio-logging devices to measure the duration or frequency of encounters. This 535 

creates problems for a comparative analyst because edge weights in different studies can 536 

mean very different things. Previous studies have typically used only a subset of networks 537 

that use a similar approach (limiting statistical power), extracted binary networks (losing 538 

information on connection strength), or fitted a network’s weighted/unweighted status as a 539 

covariate in the comparative analyses (Collier et al. 2022). One potential alternative would be 540 

to use a simple correction to make edge weights in different networks more comparable (e.g. 541 

by dividing all edges by the maximum edge weight to generate a standardised index). 542 

However, a potentially more satisfying approach is to use statistical approaches like mixture 543 

models that can classify edges as belonging to different distributions, e.g. “weak”, 544 

“intermediate” and “strong” (Weiss et al. 2019; Ellis et al. 2021). A key advantage would be 545 

that uncertainty in these classifications could be propagated to subsequent stages of the 546 

analysis. Additionally, as is the case with network dynamics, storing network data in raw 547 

edge list format would empower those conducting comparative analyses to make their own 548 

decisions about how to weight edges to be comparable between studies. 549 

 550 
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Higher-order interactions: Another source of lost information in all comparative social 551 

network studies conducted so far – and existing data repositories – is that data is stored as 552 

dyadic networks, even when this is a simplification (e.g. group-based data). This loses 553 

information on interaction size that can be captured using higher-order network approaches 554 

(Silk et al. 2022). While these have only rarely been used in behavioural ecology (Musciotto 555 

et al. 2022), they are gaining popularity as a tool in network science (Battiston et al. 2021). It 556 

would be valuable to move towards also storing higher-order network data in repositories 557 

(e.g. as group-by-individual or incidence matrices) to facilitate approaches that explicitly 558 

incorporate this higher-order structure.  559 

 560 

Future opportunities for comparative social network 561 

analysis  562 

Comparative social network analysis has displayed wide informative power across diverse 563 

topics, and offers a tool to link social structure to varied ecological and evolutionary 564 

processes (Fig. 2). Building on and expanding this literature, there remain numerous 565 

research areas that are as yet relatively underexplored, especially once methodological 566 

approaches facilitate effective comparisons across diverse social systems. Here we continue 567 

to focus on disease ecology, behavioural ecology and conservation, as well as the interface 568 

between these topics. However, we encourage others to develop additional applications of 569 

these approaches (see Fig. 2), especially as a tool to unify across ecological disciplines. 570 

 571 

Social behaviour and disease 572 

Transmission and contagion processes: While transmission has been a focus of existing 573 

comparative network analyses, there remain many unanswered questions. For example, 574 

most simulation studies of transmission dynamics examined traits of the networks 575 

themselves, rather than using the results to explain between-species differences, despite the 576 
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potential added by integrating additional data (Fig. 2). A prominent example of this lies in our 577 

improved understanding of modularity (Griffin & Nunn 2012; Sah et al. 2017), which although 578 

highly informative, has largely not been related to species traits themselves. Similar studies 579 

could also extend beyond concepts such as modularity to further explore what species- and 580 

population-level traits explain important network properties revealed by existing comparative 581 

analyses (Colman et al. 2021; Fountain-Jones et al. 2022). Conducting more nuanced 582 

comparative analyses that examine differences across multiple types of social association 583 

and interaction (Collier et al. 2022) could also be extended to better quantify the expected 584 

dynamics of diverse zoonotic and agricultural diseases in their wild hosts. 585 

Moving beyond pathogen spread, there are few explorations of how other social 586 

contagions (e.g. behaviour spread) manifest across systems. Because other contagions are 587 

often complex (e.g. non-dyadic), their spread can differ from that of pathogens (Firth 2020), 588 

with implications for social system evolution (Evans et al. 2020). For example, (Evans et al. 589 

2021) showed that only modular networks with small sub-groups favoured conformist 590 

behavioural contagions over pathogen spread. Comparative network analyses represent an 591 

opportunity to explore the consequences of different social systems for pathogen and 592 

behaviour spread, as well as to link this to species traits.  A nice example of how this could 593 

be applied to multi-network comparisons is provided by (Beck et al. 2023), who compared 594 

different social contagions across multiple great tit Parus major social networks, showing 595 

how individual network position linked to the order of behaviour acquisition. Extending these 596 

types of study to multispecies comparisons could help generalise across diverse taxa. 597 

 598 

Health and immunity: Applications of comparative network analyses in disease ecology 599 

could also include better quantifying cross-species social drivers of health and immunity. 600 

While the consequences of network structure for outbreak dynamics are relatively well 601 

understood (theoretically at least), an individual’s social interactions can also influence their 602 

stress physiology (MacLeod et al. 2023) and health (Snyder-Mackler et al. 2020). 603 
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Consequently, comparative network analyses could examine the importance of social 604 

network structure for the manifestation of individual and population-level disease (or health) 605 

itself. To provide a specific example, because mechanisms of immunity are expected to 606 

evolve in response to infection (Graham et al. 2011), species- and population-level 607 

differences in social network structure should manifest in realised differences in immunity 608 

across species via their effects on infection prevalence. Comparative network analyses offer 609 

an ideal way to test these predicted relationships that moves beyond coarse measures of 610 

sociality like group size (Côté & Poulin 1995; Patterson & Ruckstuhl 2013). Future work 611 

could integrate individual-level social network position with group- or population-level network 612 

structure and explicitly incorporate physiological markers of health or immunity. It should be 613 

noted that comparative studies of immunity are also difficult due to issues such as the 614 

variable sensitivity of the available eco-immunological tools (Boughton et al. 2011), but 615 

nevertheless even coarse and generalisable measures may prove informative when 616 

integrated with social networks. 617 

 618 

Integrative behavioural ecology 619 

Socio-spatial ecology and behavioural integration: individuals’ spatial and social 620 

behaviours are tightly intertwined (Webber et al. 2023), with spatial behaviour often being 621 

important in explaining social network structure (Mourier et al. 2012; Pinter-Wollman 2015; 622 

Firth & Sheldon 2016). Comparative network analyses offer an exciting opportunity to look at 623 

how the role of the ecological environment and movement behaviour in explaining social 624 

structure varies among populations and species (Fig. 2), testing whether variation in these 625 

relationships can be linked to species traits such a body mass, mobility, and kin structure. 626 

Examining how spatial and social network types are linked across and within species could 627 

inform a wide range of empirical questions, e.g. refining our ability to quantify individual 628 

variation in optimal group size and structure (Webber et al. 2023), as well as encouraging 629 
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integration of spatial data types into social network workflows using spatio-temporally 630 

parameterised telemetry tracks (Robitaille et al. 2019).  631 

 632 

Group structure and dynamics: Existing applications of comparative social network 633 

analyses have focused on comparing group- and population-level social structure and 634 

patterns of group stability. However, typically this has involved small numbers of closely-635 

related species. Extending these approaches across diverse social systems offers the 636 

potential to start teasing apart the importance of the ecological environment, evolutionary 637 

history and species-level traits (e.g. life history, mode of movement, migratory tendency, 638 

mating system etc.; Fig. 2) in explaining broad patterns in animal social structure. Using a 639 

comparative network approach provides a more flexible way to capture nuanced variation in 640 

social structure and its temporal dynamics than historical approaches. Moving to finer social 641 

scales, there is considerable scope to answer novel questions as more social network 642 

datasets become available. For example, different relationships between the costs of 643 

aggression and dominance rank have been documented (Silk et al. 2019; Hobson et al. 644 

2021a), and comparative network analyses offer promise in finding general patterns for how 645 

this relationship varies and depends on other species traits. 646 

 647 

The evolution of sociality and cooperation: The evolution of cooperation is a major focus 648 

in behavioural ecology, and has benefited from previous comparative analyses (Cornwallis et 649 

al. 2017; Firman et al. 2020). Despite studies in this area frequently examining the 650 

maintenance of complex sociality (e.g. (Akçay 2018)), they have yet to take full advantage of 651 

comparative network approaches, either theoretically or empirically. Moving network models 652 

of the evolution of cooperation from theoretical network structures (e.g. (Ohtsuki et al. 2006)) 653 

to exploit multi-species data from social network repositories could help generalise findings 654 

to different real-world network structures. These approaches may also help investigate how 655 



26 

 

 

the emergence of cooperation in different network structures is linked to species-level traits, 656 

and how well it aligns with recorded cooperative behaviours. From an empirical perspective, 657 

comparative social network analyses can provide further metrics to help construct 658 

multidimensional projections of social complexity (Prox & Farine 2020), as well as feeding 659 

back to inform the development of social network structures themselves (Akçay 2018). 660 

Identifying consistent features of social networks that differ between cooperative and non-661 

cooperative species, for example, could help quantify how the evolution of cooperation 662 

shapes wider ecological and evolutionary processes.   663 

 664 

Social ageing: Recent interest in social ageing has revealed age-related changes in social 665 

behaviours as older individuals become less socially connected (Siracusa et al. 2022). 666 

Because ageing itself is a complex process that needs to be demonstrated at the individual 667 

level (Nussey et al. 2008), it will greatly benefit from – if not necessitate – comparative 668 

network analyses rather than more classical approaches that look at traits such as group size 669 

and composition. Given that age data is regularly monitored in many long-term study 670 

systems and already available as a node attribute in some social network repositories, 671 

comparative network approaches can play an important role in generalising age-related 672 

changes in social interaction patterns across species and ecological contexts. 673 

 674 

Conservation and behaviour 675 

Human-wildlife interactions and conservation: Another opportunity is to test how species’ 676 

social networks differ in their responses to anthropogenic disturbance. For group-living 677 

species, social networks may respond in varied ways to these anthropogenic pressures 678 

(Fisher et al. 2021; Blumstein et al. 2023). For example, endangered mountain gorillas’ social 679 

networks became more cohesive when tourists were too close (Costa et al. 2023). Testing to 680 
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what extent these dynamics vary according to other species traits could help inform which 681 

social species are most at risk from anthropogenic pressures and how best to protect them 682 

(Snijders et al. 2017). In a similar vein, a generalised, cross-species understanding of group 683 

social network stability or individual social integration and how it is linked to health 684 

(integrating behaviour, disease, and conservation) could help inform population 685 

augmentation or reintroduction attempts if extended to endangered social species. Group 686 

stability and social integration are likely to play a key role in the initial success of such 687 

projects when social relationships strongly determine fitness. 688 

 689 

Concluding Remarks 690 

By providing a tool to compare and contrast diverse social systems across species with 691 

diverse evolutionary histories and highly variable ecologies, comparative social network 692 

analyses have huge untapped potential to further our understanding of the evolutionary 693 

ecology of animal societies and to strengthen the links between different ecological sub-694 

fields. Our synthesis reveals growing interest in comparing network structures and their 695 

ecological consequences across taxonomic divides, as well as the increasing power of 696 

approaches being used. Especially given the apparent trend of increasing data breadth, 697 

depth, and availability over time, we expect that these approaches will only become more 698 

powerful for quantifying the diversity of animal social systems and explaining variability 699 

across species in the near future. Greater use of meta-analyses of within-network trends 700 

alongside these approaches will increase the reach and reliability of comparative approaches 701 

in social network analysis (Spake et al. 2022), and transform the hunt for general patterns 702 

shaping the structure of animal social systems.  703 

 704 
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Box 1: Social network repositories 1034 

A recent development is the creation of large-scale, publicly available databases of social 1035 

network data (Table 1). We introduce three databases for non-human animal social networks 1036 

here and draw attention to similar efforts for human networks too. 1037 

Animal Social Network Repository (ASNR) 1038 

The animal social network repository (ASNR; (Sah et al. 2019)) was first published online in 1039 

2016, although has been regularly updated since then. It has subsequently been used by 7 1040 

of the studies in our review. Of all the current social network datasets, the ASNR captures 1041 

the greatest taxonomic diversity, including insects, fish, birds, reptiles and mammals. Data is 1042 

currently stored as adjacency matrices. It also incorporates substantial variation in network 1043 

size and the types of behaviour monitored. However, care is needed when exploiting the 1044 

ASNR as it also includes networks measured in different ways and over varied social and 1045 

temporal scales, as well as incorporating both free-living and captive populations   1046 

DomArchive 1047 

DomArchive is a newly-available database of dominance interactions (Strauss et al. 2022), 1048 

exploiting the long-term focus on social dominance in the animal behaviour literature. The 1049 

majority of data is available as adjacency matrices (sociomatrices), with a subset stored 1050 

instead as edge lists. The types of interaction incorporate a wide range of aggressive, formal 1051 

dominance or submissive behaviours as well as related behaviours such as threats, 1052 

avoidance and social displacement. The data available will be directly relevant to questions 1053 

related to social stability and group function. 1054 

MacaqueNet 1055 

MacaqueNet (De Moor et al. 2023) is an in-development social network database focused on 1056 

macaques (Macaca sp.) curated for the purpose of comparative analyses in primatology and 1057 

behavioural ecology. By concentrating on a well-studied genus that share similar social 1058 

behaviours, MacaqueNet will offer an exciting opportunity for tackling research questions 1059 
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related to group-living with fewer of the pitfalls of larger datasets. As is the case for the 1060 

ASNR, all data stored in MacaqueNet is formatted consistently so fully ready for comparative 1061 

analyses (although note that data collection methods and edge weights can still differ 1062 

between studies). 1063 

Human contact network databases 1064 

The SocioPatterns team have collected a range of proximity network datasets using 1065 

Bluetooth loggers (e.g. primary school (Stehlé et al. 2011); scientific conference (Cattuto et 1066 

al. 2010); Kenyan village (Kiti et al. 2016); hospital (Vanhems et al. 2013)) in addition to one 1067 

similar dataset from wild baboons. Data are provided as edge lists, and if aggregated as 1068 

adjacency matrices would be directly comparable with networks connected using similar 1069 

methods from the ASNR.  1070 

 1071 

  1072 
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Box 2: Classifying comparative network analyses 1073 

A diverse set of comparative approaches are possible using social network datasets. Here 1074 

we provide a framework to distinguish between different approaches (Figure 3) 1075 

1. Comparisons of network properties 1076 

A first approach involves comparing the topology of different networks as an outcome 1077 

of other network properties (e.g. network size). This is common in network science 1078 

where understanding the generative processes underlying network formation is a 1079 

major focus (e.g. (Rocha et al. 2021; Ward 2021; Ojer & Pastor-Satorras 2022)). 1080 

However, it is also of interest to ecologists, such as with studies that test the 1081 

relationship between network size and modularity (Griffin & Nunn 2012). 1082 

2. Species-level comparative approaches 1083 

A second type is a conventional species-level comparative approach, in which a 1084 

network property of interest is fitted as a response variable with a series of species-1085 

level traits as explanatory variables, and potentially alongside a phylogeny to control 1086 

for non-independence among closely-related species. The appropriate use of random 1087 

effects can allow multiple observations to be used for a given species. We subdivide 1088 

species-level approaches by the outcome variable of interest.    1089 

 2a) Using network topology 1090 

 Often the outcome of interest is a property of the network itself (e.g. degree 1091 

heterogeneity, modularity). For example, a researcher might want to ask: How does 1092 

the modularity of affiliative networks in animal groups vary with environmental 1093 

harshness? These types of question will be common in behavioural ecology, for 1094 

example in contributing discussions around the role of social complexity in cognitive 1095 

evolution (Barrett et al. 2007) or linking network structure to demographic factors 1096 

(Shizuka & Johnson 2020).  1097 
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 2b) Using the outcome of dynamical processes 1098 

The outcome of interest could also be the ecological consequences of network 1099 

structure, necessitating additional steps prior to the comparative analysis. For 1100 

example, studies in disease ecology often conduct simulations of pathogen spread 1101 

and then use features of the resulting outbreaks as variables in comparative analyses 1102 

(e.g. (Nunn et al. 2015; Sah et al. 2017; Collier et al. 2022; Fountain-Jones et al. 1103 

2022)). Similar approaches are useful in understanding the consequences of social 1104 

structure for information spread and behaviour change (Evans et al. 2020). 1105 

3. Individual-level meta-analyses 1106 

The final category is a meta-analytic approach looking at how relationships between 1107 

social interaction patterns and conditional traits vary among species. For example, 1108 

Briard and Ezenwa (Briard & Ezenwa 2021) showed an overall positive association 1109 

between social centrality and parasite burden across 210 effect sizes covering 16 1110 

host species, but they could not explain variation in this relationship using other host 1111 

traits. While this study was in the context of disease ecology, there is no reason 1112 

similar methodologies could not be applied to other questions of interest such as the 1113 

relationship between social network position and fitness (Silk 2007; Snyder-Mackler 1114 

et al. 2020).  1115 

 1116 

We provide a schematic (Figure 3) to display model construction for these three main types 1117 

of comparative network analyses: 1) analyses examining the relationship between different 1118 

network traits across a range of studies (e.g. How does modularity depend on network or 1119 

group size? How does network efficiency depend on degree heterogeneity?); 2) analyses of 1120 

network properties (either topological or the outcome of dynamical processes operating on 1121 

the network) as an outcome of both network traits and species traits (e.g. How does 1122 

modularity depend on group size and longevity? How does mean outbreak size depend on 1123 

fragmentation and body size?); 3) a full meta-analysis to test how relationships between 1124 
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network traits and individual traits vary across species and networks (e.g. Does the 1125 

relationship weighted degree and fitness depend on species life-history and network 1126 

modularity?) 1127 

 1128 

  1129 
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Tables 1130 

Table 1. Summary of existing social network databases. 1131 

Database Number 
of 
networks 

Number 
of 
species 

Behaviours Access 

ASNR 790 76 Dominance; 
Foraging; 
Grooming; 
Group 
membership; 
Non-
physical 
social 
interaction; 
Physical 
contact; 
Social 
projection 
bipartite; 
Spatial 
proximity; 
Trophallaxis; 
Mixed 

https://bansallab.github.io/asnr/  

MacaqueNet 761 14 Spatial 
proximity 
Body 
contact; 
Grooming; 
Contact 
aggression; 
Non-contact 
aggression 

https://macaquenet.github.io/database/ 

DomArchive 436 135 Dominance 
interactions; 
Submissive 
interactions; 
Aggression 
(151 
subtypes 
identified)  

https://github.com/DomArchive/DomArchive  

SocioPatterns 14* 2 Proximity http://www.sociopatterns.org/datasets/  

 1132 

  1133 

https://bansallab.github.io/asnr/
https://gbr01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmacaquenet.github.io%2Fdatabase%2F&data=05%7C01%7C%7Cf9de344585c845a6cb0c08db35f85d31%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C638163113058658748%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=awBQvFaNqrl1fMD2JKl0cFz5m91aSHFsKPYcqaFhNkw%3D&reserved=0
https://github.com/DomArchive/DomArchive
http://www.sociopatterns.org/datasets/
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Figure Legends 1134 

Figure 1. Coverage of our identified comparative social network studies. A) increase in 1135 

number of species over time; B) increase in number of compared networks over time; C) 1136 

positive correlation between the number of species investigated and the number of 1137 

compared networks. Each point represents one of 49 studies; the line represents a Loess 1138 

smooth fitted to the data. The rug on either axis displays the distribution of the data. 1139 

 1140 

Figure 2. A conceptual overview of the value of how comparative social network analyses fit 1141 

within a broader framework for social ecology and evolution. We illustrate selected 1142 

relationships between species- and individual-level traits and social network structure and 1143 

draw attention to key comparative databases for the main traits illustrated. Github1 refers to 1144 

https://github.com/CharlotteAnaisOLIVIER/Social-organization-of-primates.  1145 

 1146 

Figure 3. An overview of different types of comparative analyses that can be applied to 1147 

social network datasets. 1) Network-level analyses that connect network-derived traits with 1148 

the structure of the network themselves. 2) Network-level analyses that connect network-1149 

derived traits or simulation outputs with other traits of the networks and the species that 1150 

comprise them. 3) Node-level analyses across N networks that involve connecting node and 1151 

individual-level traits within each system (inside brackets) and then connecting these 1152 

estimates with species- and network-level traits in a meta-analytical context. 1153 

 1154 

Figure 4. An illustration of our recommended workflow for comparative network analyses, 1155 

identifying key questions for researchers to consider at each of the three stages of the 1156 

process: data selection, scale of investigation and model design. 1157 

 1158 

https://github.com/CharlotteAnaisOLIVIER/Social-organization-of-primates
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Figure 5. Common problems in comparative social network analyses (left) and solutions that 1159 

may help to address them (right). Links between problems and solutions are those identified 1160 

in the Principal challenges for comparative network analysis section of the main text as an 1161 

outcome of the literature review and judgement of the authors. Solutions are sized according 1162 

to the number of links they have – i.e., the number of problems they are likely to help solve. 1163 

 1164 

  1165 
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Figures 1166 

 1167 

Figure 1 1168 
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