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Abstract

Social systems vary enormously across the animal kingdom, with important implications for
ecological and evolutionary processes such as infectious disease dynamics, anti-predator
defense, and the evolution of cooperation. Comparing social network structures between
species offers a promising route to help disentangle the ecological and evolutionary
processes that shape this diversity. Comparative analyses of networks like these are
challenging and have been used relatively little in ecology, but are becoming increasingly
feasible as the number of empirical datasets expands. Here, we provide an overview of
multispecies comparative social network studies in ecology and evolution. We identify a
range of advancements that these studies have made and key challenges that they face, and
we use these to guide methodological and empirical suggestions for future research. Overall,
we hope to motivate wider publication and analysis of open social network datasets in animal

ecology.
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Introduction

The social lives of animals vary immensely and across many axes (Hinde 1976; Whitehead
1997; Hobson et al. 2019; Prox & Farine 2020). In some species, individuals live
predominantly solitary lives, only interacting with others sporadically, while others form
spectacular aggregations of many thousands. Similarly, while some species live in stable
groups and form social bonds that last a lifetime (Mitani 2009; Bruck 2013; Dakin & Ryder
2020), in others social preferences can be weaker and the identity of social partners
relatively unimportant. Variation among social systems is closely tied to ecological and
evolutionary pressures faced by different populations (Kurvers et al. 2014; He et al. 2019;
Evans et al. 2020; Cantor et al. 2021b). Variation in well-studied benefits (e.g. access to
information, avoidance of predation) and costs (e.g. competition, parasitism) of social
interactions across species therefore creates associations between particular social systems
and specific environments (Leu et al. 2016) or taxonomic groups (Chak et al. 2017).
However, given the ecological environment can also cause variation in social structure within
populations (e.g. (Jordan et al. 2021)), it is important to decompose intra- and inter-specific
variation in social structure. Because social structure alters the course of evolution (Fisher &
McAdam 2017, 2019), determines the outcome of ecological processes like disease spread
(Keeling & Eames 2005; White et al. 2017), and potentially influences a species’ resilience to
global change (Fisher et al. 2021), understanding drivers of inter-specific variation in social
structure has important implications and applications. Comparative approaches are popular
ways for researchers examining the evolutionary ecology of sociality to understand these
processes (Lukas & Clutton-Brock 2013; Lukas & Huchard 2014; Kappeler & Pozzi 2019).
Nevertheless, there are substantial challenges applying comparative approaches in
socioecology, of which a major one is classifying or quantifying variation in social systems.
Recent work (e.g. (Lang & Farine 2017; Prox & Farine 2020)) has begun to provide higher-

dimensional classifications of sociality, but there remain limitations in the power and
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universality of these approaches, as qualitative classifications only provide coarse
approximations. Further, in many contexts, it is the specific pattern of interactions that plays
a role rather than the type of social system per se. With the popularisation of social network
analyses in behavioural ecology, the time is ripe to apply more quantitative cross-species
comparisons that address diverse questions around interspecific variation in social structure
and dynamics.

Social networks are an integral part of a behavioural ecologist’s toolkit (Farine &
Whitehead 2015; Webber & Vander Wal 2019). By linking individual behaviour to group- and
population-level structure and outcomes (Fig. 1), they have helped study diverse aspects of
animal behaviour including dominance (Shizuka & McDonald 2012; Hobson et al. 2021a),
cultural evolution (Voelkl & Noé 2008; Cantor et al. 2021a), and epidemiology (Keeling &
Eames 2005; Bansal et al. 2007; White et al. 2017). Applications of network approaches in
socioecology have grown rapidly and now encompass substantial geographic and taxonomic
diversity, albeit with remaining biases (Webber & Vander Wal 2019).

Despite the growth in animal social network analyses, few studies have undertaken
multispecies comparisons of social networks or used meta-analytic approaches to test
broader evolutionary or ecological patterns. Nevertheless, multispecies analyses of social
networks have multiple advantages for comparative analysis in social ecology, offering
valuable tools to summarise the diversity of animal social systems and tease apart inter-
specific variation in social structure. These benefits emerge from network descriptions
providing: diverse measures to succinctly quantify different aspects of social structure; the
ability to quantify fine-scale variation in social systems beyond features like group size; and a
way to unify analyses across social scales, from individual- to group-, and population-level
features. For example, network approaches have moved discussion about sociality and the
costs of parasitism beyond group size to factor in combined effects of group structure and
individual social relationships (Nunn et al. 2015; Briard & Ezenwa 2021). This provides

insight into the strategies with which animal societies balance the trade-offs between
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parasitism and the benefits of sociality. Similarly, network approaches’ ability to quantify
social structure across scales has revealed multilevel social systems in taxonomically diverse
species, demonstrating variation in the mechanisms underlying these structures
(Papageorgiou et al. 2019; Camerlenghi et al. 2022). Two main issues have limited
comparative analyses of social networks: i) it is challenging to compare the structure of
networks of different sizes (Faust 2006), especially when they are generated by different
behavioural processes (Hobson et al. 2021b); and ii) there has been a shortage of animal
social network datasets available to compare.

With the recent development of multi-species repositories of social network data (Box
1) and an increasingly advanced statistical toolkit, there is now the potential to overcome
these issues and exploit comparative social network analyses in ecology and evolution.
Here, we review existing studies that have undertaken such analyses. We then identify
outstanding challenges to successfully employing comparative and meta-analytic
approaches with social network data, suggesting potential solutions and highlighting specific
areas in need of methodological research, as well as identifying promising areas for future
empirical research. Overall, our paper provides a roadmap for conducting these analyses
and aims to inspire the development of new statistical tools to increase their accessibility, as

well as motivating the collection and publication of further open social network datasets.

The current state of comparative network analysis

The Data: As of 3 November 2022 we uncovered 49 studies that compared multiple
species’ social networks, spanning 16 years (2007-2022; Table S1). Initially, these studies
typically compared a small number of species and networks; however, over time, these
numbers have increased exponentially (Figure 1). While some studies still compare only a
few species, there are now many that incorporate several hundred networks encompassing

dozens of species — three of which also included humans. These larger studies often
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featured replication of several networks within each species, (potentially) allowing estimation
of within- and between-species variation in network structure. On three occasions
researchers developed (or are developing) substantial publicly available databases (Box 7).
Otherwise, larger studies tended to produce their network datasets through literature
searches and independently contacting researchers to request data (Nunn et al. 2015;
Rocha et al. 2021), or by aggregating datasets that the authors themselves collected (Bhadra
et al. 2009; Pasquaretta et al. 2014). Given the few independent datasets, substantial reuse
of said datasets, and growing exploitation of the animal social network repository (ASNR;
Box 1), there has been encouragingly little duplication of effort in producing network meta-
datasets. In the near future, researchers carrying out comparative behavioural analyses will
be well-placed to use much of the available data, rather than encountering issues with
dataset harmonisation and unification — as has been the case with datasets of host-pathogen

associations, for example (Gibb et al. 2021).

Taxonomic skew: Many studies (19/49; 39%) focused primarily or entirely on primates, with
a particular focus on macaques (Macaca sp.; e.g. (Sueur et al. 2011; Ciani et al. 2012;
Balasubramaniam et al. 2020)). Otherwise, there was broad coverage of different taxonomic
classes, including fish (Roose et al. 2022), hymenoptera (Bhadra et al. 2009), and elephants
(de Silva & Wittemyer 2012), as well as large-scale studies that included diverse vertebrate
classes and some invertebrates (Sah et al. 2017; Rocha et al. 2021). It is unclear how this

taxonomic skew could influence the results of pan-dataset analyses.

Species-level analyses: Many comparative papers (11/49=22%) examined how species’
traits correlated with their social network topology with others doing so qualitatively. For
example, several analyses linked primates’ cognition or behaviour with the structure of their
networks (Sueur et al. 2011; Pasquaretta et al. 2014). Conversely, two studies used the

ASNR to examine how species’ contact network structures were associated with their
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parasite communities, focusing on parasite species richness (Poulin & Filion 2021) or the
evolution of parasite species transmitted over the focal host’s contact networks (Collier et al.
2022). These studies incorporated external databases of host-parasite associations
(Stephens et al. 2017) and human parasite traits (Richardson et al. 2001; European Centre

for Disease Control 2016), as illustrated in Figure 2.

Generative models: Two papers (2/49=4%) developed generative models for social network
formation, which they validated using multi-species network datasets. For example, (llany &
Akcay 2016) developed a model for network formation by social inheritance, validating their

predicted networks using data from four species.

Methodological studies: Several studies (6/49=12%) used animal social network meta-
datasets to illustrate new methods or confirm trends in network science or related fields.
These included identifying novel scaling trends (Rocha et al. 2021; Ward 2021; Ojer &
Pastor-Satorras 2022), producing new approaches (Shizuka & Farine 2016; McDonald &
Hobson 2018; Ward 2021; Ojer & Pastor-Satorras 2022), or deriving new network traits

(Péron 2023).

Dynamical simulations: A particularly common approach (13/49 studies; 27%) to
comparative social network analysis was the simulation of transmission dynamics (e.g.
(Nunn et al. 2015; Sah et al. 2017, 2018; Romano et al. 2018; Collier et al. 2022; Fountain-
Jones et al. 2022)). This approach may be so popular because, so far, networks have been
used to test general ideas for a broad set of potential pathogens. This reduces the
importance of disparity in data collection methods and timescales, as (to some extent) the
networks are providing a substrate to test ideas in network epidemiology rather than to

provide broader ecological insights. These approaches have also often used unweighted
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(binary) versions of networks, mitigating the impact of variable edge weighting across

different studies (see below).

Individual-level meta-analyses: Finally, among our identified studies, there was only one
(1/49=2%) “true” meta-analysis — i.e., one that did not use raw data, but rather analysed a
series of model estimates published in other studies (Briard & Ezenwa 2021). All other
papers derived network-level traits and carried out species-level comparative analyses. We

capture the distinction between these approaches in Box 2.

Biological overview of comparative network studies

The 49 studies we found tackle diverse research questions across multiple ecological
disciplines. We identify the major themes addressed so far, providing a synthesis within each

theme based on the objectives and findings of comparative network studies.

In behavioural ecology: Comparative network analyses in behavioural ecology (23 studies)
have predominantly been used to provide insights into the structure and dynamics of animal
groups, addressing these questions across social scales. Frequently, it has been applied to
quantify population-level social structure for taxonomically similar species (e.g. bats: (August
et al. 2014); elephants: (de Silva & Wittemyer 2012); equids: (Sundaresan et al. 2007;
Rubenstein et al. 2015)). In these cases, using a comparative approach can reveal fine-scale
differences in social structure that were previously undetected (e.g. (Sundaresan et al.
2007)). These studies have often demonstrated how ecological differences between closely
related species explain variation in network structure. For example, different social network
structures between Australian snubfin Orcaella heinsohni and Indo-Pacific humpback
dolphins Sousa chinensis were attributed to differences in diet, prey availability and feeding

behaviour (Parra et al. 2011). Similarly, the role of mating systems (Matsuda et al. 2012) and
8
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variation in individual traits, such as cognitive capabilities (Pasquaretta et al. 2014), have
also been investigated. One underused approach is applying comparative network analyses
to find general rules for animal social structure. For example, (Rocha et al. 2021) found a
potential power law relationship between group size and social connectivity, with evidence

that it varied depending on social interaction type.

At a finer social scale, comparative network analyses have also been used for within-
group social dynamics, including dominance hierarchies (Balasubramaniam et al. 2018;
Hobson et al. 2021a) and social stability (Sueur et al. 2010, 2011). Here comparing between
species can identify general patterns in within-group interactions. For example, (Hobson et
al. 2021a) compared dominance networks across 172 groups from 85 species to show most
species distributed aggressive interactions evenly across all lower-ranked individuals rather
than on either close competitors or the weakest individuals. This has implications for
quantifying individual variation in the costs and benefits of social strategies. Comparative
studies in macaques (Macaca sp.) have investigated how social networks influence fission-
fusion dynamics and collective behaviour, for example demonstrating how the importance of
kinship differs between socially tolerant and intolerant species (Sueur et al. 2010). These
types of study naturally extend into collective behaviour, including group fission events and
departures (Sueur & Petit 2008). Correspondingly, comparative network approaches have
also been used in theoretical models of collective behaviour by demonstrating how more
differentiated relationships in within-group social networks lead to reduced when modelling

flocking dynamics (Ojer & Pastor-Satorras 2022).

In conservation and applied animal behaviour: Comparative social network analyses
have also occasionally been used in applied ecology and conservation (5 studies), moving
beyond group-based analyses to simultaneously incorporate the importance of social

relationships and the wider social environment in these contexts. For example, in the context
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of human-wildlife interactions, (Balasubramaniam et al. 2020) showed differences among
macaque species in how within-group social network centrality was associated with the
tendency to interact with humans, with implications for pathogen spread. In the context of
conservation welfare, comparative network analyses have revealed long-term social bonds
in captive population that could inform husbandry decisions (Rose & Croft 2017) or evaluated

impacts of environmental enrichment (Dufour et al. 2011).

In disease ecology: Comparative social network analyses in disease ecology (15 studies)
have quantified the role of both individuals and emergent group- or population-level social
structures in infectious disease transmission. They have also provided a more generalizable
understanding of epidemiologically-relevant features of animal social networks that provides

insight at both ecological and evolutionary timescales.

Some studies have combined comparative network data with empirical
epidemiological data: for example, (Briard & Ezenwa 2021) used a meta-analysis to show
consistent positive effects of network centrality on infection probability, with the pattern
stronger for local rather than global measures of social centrality, and (Poulin & Filion 2021)
demonstrated correlations between some aspects of group social network structure and
parasite species richness in parasite groups. As more simultaneously collected network and
epidemiological data becomes available, these types of study will provide further tests of key

hypotheses in disease ecology.

Of studies to apply comparative analysis to the outputs of simulated network
epidemiological models on multi-species social network datasets, a small number (e.g.
(Carne et al. 2013)) have focused at an individual level, comparing the role of individual
heterogeneity and/or the value of network-targeted vaccination between species. Many more
studies have examined how different aspects of network structure impact epidemiological

dynamics, for example: providing and testing new methods to quantify the vulnerability of

10
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different hosts to outbreaks (Colman et al. 2021; Fountain-Jones et al. 2022), linking them to
key epidemiological concepts such as density-dependence in transmission (Colman et al.
2021) and offering insight into how network structure for different interaction types could
influence pathogen evolution (Collier et al. 2022). An area of particular interest has been the
role of modular social structures (Griffin & Nunn 2012; Nunn et al. 2015; Sah et al. 2017),
providing insight into how group living shapes disease risk. One study extended these

insights to other contagions (Romano et al. 2018).

Principal challenges for comparative network

analysis

Based on our methodological synthesis, we identified key challenges facing comparative
analyses of social network structure and classified them into three main groups: meta-
analytical choices, between-study comparability, and network features. We generated a
framework to help researchers with the principal decisions at each stage of a comparative
social network analysis (Figure 4), and provide a number of solutions, many of which
address several interrelated issues (Figure 5). Addressing these methodological issues will
be critical to tackling research questions across the themes identified in our biological
synthesis, in particular by enabling comparisons that incorporate more diverse social

systems, data collection approaches and social behaviours.

Analytical choices for comparison

Sample sizes: In our review, the median number of networks compared was 12, and the
median number of species was 4. Especially for more powerful comparative approaches

(e.g. controlling for phylogeny, machine-learning approaches etc.), this sample size
11
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substantially limits the power to deal with confounding variables and reduces the diversity of
questions can be answered. A key solution, which the field is well-placed to achieve, is the
coordination and centralisation of publicly accessible databases to facilitate sufficient sample
sizes. This could generate issues related to managing a large open dataset and ensuring its
continuity, but social network researchers could learn from other efforts to maintain open,
partially-automated updating datasets (e.g. (Carlson et al. 2022)). Increased power could
also be achieved through greater replication per species (e.g. see MacaqueNet; Box 1),
which would allow quantification of within- versus between-species variation in network
structure. This could arise through renewed research effort, wider data acquisition, or
incorporating networks at a range of temporal resolutions (e.g. weekly, monthly, yearly)

where appropriate.

Taxonomic biases: We identified an overpowering focus on non-human primates, especially
macaques, across comparative studies. This was present in both the studies themselves and
in aggregated datasets; with substantial overrepresentation of primates in the ASNR, for
example (Sah et al. 2019). A fear of overcoming the challenges of big taxonomic divides may
have driven researchers to focus on small subsets and within-subgroup analyses rather than
analysing across the animal kingdom. As such, it remains an open question how comparable
these systems are, and whether generalisable rules shape social structure across these
divides. This limits how general the insights provided can be across the diverse social
systems present in nature.

There are other subtle biases present. For example, because ant colonies are
relatively easy to replicate and observe, the ASNR contains many replicate ant networks,
such that ants are overrepresented at the network level rather than a higher taxonomic level
(Sah et al. 2019). Because sociality is often studied at different intensities across taxonomic
groups (Sah et al. 2018), other well-studied taxa may be similarly overrepresented. Studies’

findings could be swayed by these taxonomic skews. In the short-term, following the lead of
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previous studies can help mitigate these issues, for example by subsampling networks for
over-represented species (Collier et al. 2022) or re-analysing without them (Fountain-Jones
et al. 2022). In the longer term, targeted addition of new datasets can address taxonomic
biases, perhaps using innovative approaches to exploit existing social or movement data,

such as approximating proximity networks using Movebank data (Kays et al. 2022).

Choosing networks relevant to the question: Careful selection of networks from
databases is required to ensure they are relevant for the question posed (Figure 4). For
example, there is little value in using networks based on indirect contacts to model the
transmission of many contagious pathogens (Albery et al. 2021). Similarly, the relevance of
wild and captive network datasets will depend on the question asked and the taxa
investigated. Importantly, taxonomic biases may interact with these problems: for example,
how does the effect of captivity on network structure differ between ants and macaques?
One particularly difficult incarnation of this problem lies in comparing species with
qualitatively different social systems: for example, is it meaningful to compare species with
well-mixed fission-fusion societies to ones that lives in stable groups? A potential solution is
to use existing frameworks (Prox & Farine 2020) to inform decisions about which types of
social systems to compare for any given question. These frameworks can be used to
summarise networks based on multidimensional traits, employing emergent continuous
variables rather than discrete a priori “social organisation” categories. Also relevant here are
decisions about which behaviours (and so networks) are relevant to a particular research

question (see “Between-Study comparability” section below).

Combining network data with external data: Combining comparative network analyses
with external data on individual, group or species level traits considerably expands research
scope across diverse areas. However, only rarely have studies combined network data with

external data sources (Figure 2), with exceptions including cognitive traits (Pasquaretta et al.
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2014) and parasite richness (Poulin & Filion 2021). These examples illustrate how integrating
comparative network data with other traits provides increased power to identify the diverse
factors that shape social structure and testing hypotheses related to the variable ecological
and evolutionary consequences of these structures (Fig. 2). Indeed, one reason that
simulations are so regularly used is because they allow approximation of epidemiological
consequences of network structures without necessitating additional empirical sources of
information.

One limiting factor for some comparative analyses will be the availability of other
species-level traits. In general, basic life-history data will likely be available for species that
have been sufficiently well-studied to collect social network data, and these types of
information have been collated into existing databases such as PanTHERIA (Jones et al.
2009). However, other data types may be more limited. For example, a recent integration of
the ASNR and global mammal parasite database (Stephens et al. 2017; Sah et al. 2019)
resulted in a sample size of 18 primates with available infection data (Poulin & Filion 2021). It
remains likely that comparative projects will need to compile external, non-network datasets
themselves for some traits. Similarly, while existing databases (see Box 1) do contain limited
individual-level data (e.g. age, sex) for some networks, this may also limit the number of
networks that can be included without contacting the authors of original studies. This
highlights the importance of authors providing attribute data alongside their networks to help

answer individual-based questions.

Between-study comparability

Variable methods of data collection: Networks in multi-species datasets are collected
using diverse and occasionally difficult-to-compare methodologies, and little methodological
research has critically considered how this impacts comparative analyses. In some cases,

there are clear issues with comparisons: for example, group-based methods of network
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construction will typically cause much denser social networks than other forms of data
collection. However, in others comparability can be less clear. Additionally, different data
collection strategies can be confounded with taxonomy and social system. For example,
rodents may be disproportionately trapped, large mammals GPS-tracked, birds ringed or
PIT-tagged, and ungulates censused. Similarly, behavioural interactions are easier to
observe in species living in stable groups, while network data for less social species may
typically be collected using bio-loggers (Smith & Pinter-Wollman 2021). Further challenges

will occur if sampling intensities differ across forms of data collection (e.g. more proximity

interactions will be missed using focal sampling than if most individuals are carrying proximity

loggers). All of these challenges create limitations that explain the taxonomic scale and
narrow research focus of many existing comparative network analyses.
Dealing with the difficulties imposed by data collection methods represents a major

challenge. Great care is required, especially because interactions with other study or netwo

rk

features are likely and effects may not be linear. The most conservative solution is to be strict

with inclusion criteria (Figure 4) and avoid comparing networks collected in different ways.
However, the impacts may also be mitigated by the solutions highlighted in other sections,
especially when data collection method is confounded with the type of behaviour studied or
scale of interaction. In these cases, dealing with interactive effects of these confounding
variables will be key. Ultimately, the best approach will be not to avoid comparing them, but
to compare them explicitly — both with empirical data and simulations — with the aim of
discovering such biases. This approach may be particularly powerful where multiple data

collection approaches are used in a single system (e.g. (Castles et al. 2014)).

Social/spatial/temporal scale of observation: Studies vary substantially in their scale,
whether social (e.g. within-group vs. multigroup), spatial (study area size), or temporal. For
example, studies may choose a geographic area and follow (a proportion of) a population

there (Firth & Sheldon 2016; Testard et al. 2021), or choose certain individuals across a
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series of groups (Silk et al. 2018; Papageorgiou & Farine 2020), or identify a specific group
and follow all its members (Kulahci et al. 2018). Terminology can exacerbate challenges
here; some studies use “group” and “network” interchangeably, while others do not. A key
challenge is identifying if and when we can compare studies focused on groups with those
focused on entire populations/multiple groups. Compounding this challenge, other issues
such as data collection method and network size are often confounded. Further, the spatial
or temporal scale of studies may also be correlated with the proportion of individuals that are
tracked or identified, which can also impact topological measures (Gilbertson et al. 2021). All
these differences could introduce disparities that are difficult to overcome during analysis and
may either exacerbate or mask interspecific variability in social structure.

A crucial methodological development would therefore be to identify combinations of
sampling approach and types of network measure that can be used more robustly in these
contexts, and which should be avoided entirely. Similarly, comparing studies that occur over
different timeframes represents a considerable challenge. On the one hand, network data
collected over longer durations can lead to greater confidence that the observed network
structure is a good representation of reality (Farine & Strandburg-Peshkin 2015; Davis et al.
2018; Hart et al. 2023). On the other, observing networks for longer will lead to more densely
connected networks as more infrequent or random interactions are observed. This will be a
greater problem for some data types (e.g. proximity, group-based) than others (e.g.
grooming). Networks aggregated over long periods also risk overlooking network dynamics
(see subsequent section).

In the short term, careful screening of studies is again important in ensuring the
networks used employ a relevant scale. Ensuring that metadata in databases accurately
indicates this information (e.g. (Sah et al. 2019)) is therefore vital. Heading towards
incorporating data into these databases as dynamic edge lists or at various temporal
resolutions would allow researchers greater flexibility on whether to include a study or not. It

will also be beneficial to apply other previously identified solutions such as (with caution)
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controlling for the scale of the study within the statistical model (e.g. (Sah et al. 2018)), or
analysing separately for networks measured at different social scales (e.g. group vs.
population) and integrating the results qualitatively or meta-analytically. As with data
collection methods, what is most needed is a renewed effort to employ simulations using
well-known study systems to more accurately quantify when and how problems will arise

when comparing networks across scales.

Disparate edge types: There is substantial variation among networks in how edges
are defined (Table 1): some use specific behavioural interactions such as grooming, while
others use coarser approaches such as association within a group, or spatial proxies such as
home range overlap. Frequently these networks will not be directly comparable (Castles et
al. 2014). In other cases, it is not necessarily clear to what extent different observations
represent different behaviours per se. Some may be nested: for example, sexual contact
requires spatiotemporal proximity, and so the former network may represent a subset of the
latter. Similarly, it will be challenging to work out what represents comparable behaviour
types in taxa with very different ethograms. For example, DomArchive (see Box 1) only
includes data on dominance networks but includes >150 different “behaviours”, some of
which are rather distinct. Some network types will also have very different topologies: for
example, fluid exchange networks are generally very sparse and skewed, exhibiting different
topologies to direct contact networks (Collier et al. 2022). This issue is also confounded with
differences in data collection methodologies outlined above, further reducing comparability:
for example, GPS tracks might be used to detect grouping, while short-range proximity
collars are used to identify direct contacts (Albery et al. 2021; Smith & Pinter-Wollman 2021).
Because these methods exhibit different sensitivities and sampling frequencies, two
networks may have different topologies purely because of methodology rather than biological

differences.
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In the short term, careful use of selection criteria can prevent these potential issues
(Figures 4 & 5). For example, questions related to within-group social stability may use data
on grooming, dominance, social foraging or trophallaxis from the ASNR and combine this
with relevant data from DomArchive or MacaqueNet. Researchers can also include data
collection methods as fixed or random effects in comparative analyses (e.g. (Albery et al.
2022)). However, in many cases, it can be more effective to repeat the analysis for different
data collection methodologies and then either qualitatively or quantitatively compare the
results. This can even be used as the strength of a study (Collier et al. 2022). One could
even examine if the results of a comparative analysis are sensitive to inclusion/exclusion of
particular behavioural types. In the future, methodological research that uses the
comparability of different networks from the same species can help identify interaction types
that are more comparable and perhaps use advances in latent network modelling (Young et

al. 2021; Ross et al. 2022) to combine insights from multiple data sources.

Disparate network size: Network size also differs considerably between studies.
Historically, differences in network size have been identified as a key problem for
comparisons (Faust 2006), by creating several overlapping issues. First and most simply,
raw values of many social network measures depend on network size and how best to
correct for its effect will differ between measures and is not always intuitive. For example,
while degree is best normalised by dividing through by the number of possible partners and
betweenness is best normalised by dividing by the number of possible paths, for other
measures this choice is less clear. Second, the value of using size-corrected measures can
depend on both the research question and the generative process determining network
structure. For example, network size in existing databases could be reflective of either
sampling effort or social group size. In the latter case, it can be biologically meaningful that
individuals in larger groups have more social connections. Similarly, if the number of

connections an individual forms has an upper bound regardless of group size, then
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correcting for group size effects will remove biological signals. However, this will not
universally be the case, and in some contexts failing to control for group size could drive
misleading conclusions if interpreted incautiously.

Because i) differences in network size may also be driven by variation in sampling
(e.g. edge effects or the inability to identify all individuals) and ii) how network measures
covary with network size may differ between systems and approaches, great care in
interpretation is necessary when network size varies considerably between studies. As such,
this is an area in need of methodological research. For example, the advent of Bayesian
approaches to impute missing network data (Young et al. 2021) and generate uncertainty
around edge weights and network measures (Hart et al. 2023) can help mitigate issues
directly related to sampling differences and allow the focus to be on analytical decisions
around the biological effect of group size. One option is to fit network (or group) size as a
covariate within comparative models; however, how this is done (e.g. whether it is included
as a linear effect) would require careful consideration and cautious interpretation.

Differences in confounding effects of network size and sampling intensity also
represent a challenge to comparative analyses assessing the relationship between
conditional traits and individual network position (Box 2). In these cases, employing Bayesian
methods that propagate uncertainty from this initial stage of the analysis through to the
cross-system comparative analytic stage would be an ideal solution, especially by enabling
studies with better-sampled or larger networks to have greater weight. This is likely to
become increasingly feasible as new methods allow uncertainty around social network metric

calculations in animal societies (Hart et al. 2023).

Network features (and information loss)

Researchers must also decide what level of information loss is acceptable, especially for

network dynamics, edge weights and edge sizes (Figures 4 & 5). Accepting more information
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loss allows for comparative analyses across more diverse species, but limits the ability to

detect variation in network structure and reduces the diversity of questions one can ask.

Dynamic networks: Social interaction patterns typically change over time and/or between
ecological contexts (Silk et al. 2017; Smith et al. 2018; Shizuka & Johnson 2020) meaning
social networks are rarely static, and snapshots or aggregations captured in adjacency
matrices are a simplification of reality. Currently very few papers have considered network
dynamics within a comparative framework (but see (Rubenstein et al. 2015; Chase et al.
2022)), in part because dynamic network data is less readily available (e.g. not in the ASNR;
(Sah et al. 2019)). However, even when conducting comparative analyses using static
networks it is important to consider the impact of social dynamics.

Generally, researchers define data collection periods based on their research
question (e.g. matching the transmission dynamics of a pathogen (White et al. 2017)) and
biological knowledge. However, the duration of data collection can also be constrained by
convenience factors (e.g. battery performance of bio-loggers, duration of presence in a study
location, etc. (Gilbertson et al. 2021; Smith & Pinter-Wollman 2021)). Similar considerations
and constraints also apply to the frequency of network data collection. This creates a
challenge when conducting comparative analyses because the potential for variation in social
dynamics between systems means it is not straightforward to control for study duration. For
example, if the rate at which individuals of species A change their interaction partners is
much slower than that same rate in species B, then any correction for study duration will
introduce bias related to genuine biological differences, rather than achieving what is
intended. The potential impact can be limited by focusing a comparative analysis on a subset
of social systems (or taxonomic relatives) in which changes in network structure over time
are more similar. Alternatively, if using network duration as a control variable, then allowing
its effect to vary according to social system, behaviour type, method of data collection, etc.

may mitigate this issue to some extent. In the longer run, another effective solution will be
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storing data as dynamic edge lists so that researchers can make their own decisions whether
to use a dynamic or static approach, and the duration over which to aggregate static
networks. However, moving towards these higher-resolution datasets may reduce
researchers’ willingness to share network data, as they contain more information about their

study system.

Disparate edge weightings: Variation in edge weight definitions represents another key
challenge for comparative analyses, especially when they covary with taxonomy, social
system and data collection methods. For example, many studies have used association
indices like the simple ratio index (Hoppitt & Farine 2018), and the popularity of alternatives
has varied over time and between research communities. In contrast, many contact-based
networks use bio-logging devices to measure the duration or frequency of encounters. This
creates problems for a comparative analyst because edge weights in different studies can
mean very different things. Previous studies have typically used only a subset of networks
that use a similar approach (limiting statistical power), extracted binary networks (losing
information on connection strength), or fitted a network’s weighted/unweighted status as a
covariate in the comparative analyses (Collier et al. 2022). One potential alternative would be
to use a simple correction to make edge weights in different networks more comparable (e.g.
by dividing all edges by the maximum edge weight to generate a standardised index).
However, a potentially more satisfying approach is to use statistical approaches like mixture
models that can classify edges as belonging to different distributions, e.g. “weak”,
“‘intermediate” and “strong” (Weiss et al. 2019; Ellis et al. 2021). A key advantage would be
that uncertainty in these classifications could be propagated to subsequent stages of the
analysis. Additionally, as is the case with network dynamics, storing network data in raw
edge list format would empower those conducting comparative analyses to make their own

decisions about how to weight edges to be comparable between studies.
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Higher-order interactions: Another source of lost information in all comparative social
network studies conducted so far — and existing data repositories — is that data is stored as
dyadic networks, even when this is a simplification (e.g. group-based data). This loses
information on interaction size that can be captured using higher-order network approaches
(Silk et al. 2022). While these have only rarely been used in behavioural ecology (Musciotto
et al. 2022), they are gaining popularity as a tool in network science (Battiston et al. 2021). It
would be valuable to move towards also storing higher-order network data in repositories
(e.g. as group-by-individual or incidence matrices) to facilitate approaches that explicitly

incorporate this higher-order structure.

Future opportunities for comparative social network

analysis

Comparative social network analysis has displayed wide informative power across diverse
topics, and offers a tool to link social structure to varied ecological and evolutionary
processes (Fig. 2). Building on and expanding this literature, there remain numerous
research areas that are as yet relatively underexplored, especially once methodological
approaches facilitate effective comparisons across diverse social systems. Here we continue
to focus on disease ecology, behavioural ecology and conservation, as well as the interface
between these topics. However, we encourage others to develop additional applications of

these approaches (see Fig. 2), especially as a tool to unify across ecological disciplines.

Social behaviour and disease

Transmission and contagion processes: While transmission has been a focus of existing
comparative network analyses, there remain many unanswered questions. For example,
most simulation studies of transmission dynamics examined traits of the networks

themselves, rather than using the results to explain between-species differences, despite the
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potential added by integrating additional data (Fig. 2). A prominent example of this lies in our
improved understanding of modularity (Griffin & Nunn 2012; Sah et al. 2017), which although
highly informative, has largely not been related to species traits themselves. Similar studies
could also extend beyond concepts such as modularity to further explore what species- and
population-level traits explain important network properties revealed by existing comparative
analyses (Colman et al. 2021; Fountain-Jones et al. 2022). Conducting more nuanced
comparative analyses that examine differences across multiple types of social association
and interaction (Collier et al. 2022) could also be extended to better quantify the expected
dynamics of diverse zoonotic and agricultural diseases in their wild hosts.

Moving beyond pathogen spread, there are few explorations of how other social
contagions (e.g. behaviour spread) manifest across systems. Because other contagions are
often complex (e.g. non-dyadic), their spread can differ from that of pathogens (Firth 2020),
with implications for social system evolution (Evans et al. 2020). For example, (Evans et al.
2021) showed that only modular networks with small sub-groups favoured conformist
behavioural contagions over pathogen spread. Comparative network analyses represent an
opportunity to explore the consequences of different social systems for pathogen and
behaviour spread, as well as to link this to species traits. A nice example of how this could
be applied to multi-network comparisons is provided by (Beck et al. 2023), who compared
different social contagions across multiple great tit Parus major social networks, showing
how individual network position linked to the order of behaviour acquisition. Extending these

types of study to multispecies comparisons could help generalise across diverse taxa.

Health and immunity: Applications of comparative network analyses in disease ecology
could also include better quantifying cross-species social drivers of health and immunity.
While the consequences of network structure for outbreak dynamics are relatively well
understood (theoretically at least), an individual’s social interactions can also influence their
stress physiology (MacLeod et al. 2023) and health (Snyder-Mackler et al. 2020).
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Consequently, comparative network analyses could examine the importance of social
network structure for the manifestation of individual and population-level disease (or health)
itself. To provide a specific example, because mechanisms of immunity are expected to
evolve in response to infection (Graham et al. 2011), species- and population-level
differences in social network structure should manifest in realised differences in immunity
across species via their effects on infection prevalence. Comparative network analyses offer
an ideal way to test these predicted relationships that moves beyond coarse measures of
sociality like group size (Cété & Poulin 1995; Patterson & Ruckstuhl 2013). Future work
could integrate individual-level social network position with group- or population-level network
structure and explicitly incorporate physiological markers of health or immunity. It should be
noted that comparative studies of immunity are also difficult due to issues such as the
variable sensitivity of the available eco-immunological tools (Boughton et al. 2011), but
nevertheless even coarse and generalisable measures may prove informative when

integrated with social networks.

Integrative behavioural ecology

Socio-spatial ecology and behavioural integration: individuals’ spatial and social
behaviours are tightly intertwined (Webber et al. 2023), with spatial behaviour often being
important in explaining social network structure (Mourier et al. 2012; Pinter-Wollman 2015;
Firth & Sheldon 2016). Comparative network analyses offer an exciting opportunity to look at
how the role of the ecological environment and movement behaviour in explaining social
structure varies among populations and species (Fig. 2), testing whether variation in these
relationships can be linked to species traits such a body mass, mobility, and kin structure.
Examining how spatial and social network types are linked across and within species could
inform a wide range of empirical questions, e.g. refining our ability to quantify individual

variation in optimal group size and structure (Webber et al. 2023), as well as encouraging
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integration of spatial data types into social network workflows using spatio-temporally

parameterised telemetry tracks (Robitaille et al. 2019).

Group structure and dynamics: Existing applications of comparative social network
analyses have focused on comparing group- and population-level social structure and
patterns of group stability. However, typically this has involved small numbers of closely-
related species. Extending these approaches across diverse social systems offers the
potential to start teasing apart the importance of the ecological environment, evolutionary
history and species-level traits (e.g. life history, mode of movement, migratory tendency,
mating system etc.; Fig. 2) in explaining broad patterns in animal social structure. Using a
comparative network approach provides a more flexible way to capture nuanced variation in
social structure and its temporal dynamics than historical approaches. Moving to finer social
scales, there is considerable scope to answer novel questions as more social network
datasets become available. For example, different relationships between the costs of
aggression and dominance rank have been documented (Silk et al. 2019; Hobson et al.
2021a), and comparative network analyses offer promise in finding general patterns for how

this relationship varies and depends on other species traits.

The evolution of sociality and cooperation: The evolution of cooperation is a major focus
in behavioural ecology, and has benefited from previous comparative analyses (Cornwallis et
al. 2017; Firman et al. 2020). Despite studies in this area frequently examining the
maintenance of complex sociality (e.g. (Akgay 2018)), they have yet to take full advantage of
comparative network approaches, either theoretically or empirically. Moving network models
of the evolution of cooperation from theoretical network structures (e.g. (Ohtsuki et al. 2006))
to exploit multi-species data from social network repositories could help generalise findings

to different real-world network structures. These approaches may also help investigate how
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the emergence of cooperation in different network structures is linked to species-level traits,
and how well it aligns with recorded cooperative behaviours. From an empirical perspective,
comparative social network analyses can provide further metrics to help construct
multidimensional projections of social complexity (Prox & Farine 2020), as well as feeding
back to inform the development of social network structures themselves (Akcay 2018).
Identifying consistent features of social networks that differ between cooperative and non-
cooperative species, for example, could help quantify how the evolution of cooperation

shapes wider ecological and evolutionary processes.

Social ageing: Recent interest in social ageing has revealed age-related changes in social
behaviours as older individuals become less socially connected (Siracusa et al. 2022).
Because ageing itself is a complex process that needs to be demonstrated at the individual
level (Nussey et al. 2008), it will greatly benefit from — if not necessitate — comparative
network analyses rather than more classical approaches that look at traits such as group size
and composition. Given that age data is regularly monitored in many long-term study
systems and already available as a node attribute in some social network repositories,
comparative network approaches can play an important role in generalising age-related

changes in social interaction patterns across species and ecological contexts.

Conservation and behaviour

Human-wildlife interactions and conservation: Another opportunity is to test how species’
social networks differ in their responses to anthropogenic disturbance. For group-living
species, social networks may respond in varied ways to these anthropogenic pressures
(Fisher et al. 2021; Blumstein et al. 2023). For example, endangered mountain gorillas’ social

networks became more cohesive when tourists were too close (Costa et al. 2023). Testing to
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what extent these dynamics vary according to other species traits could help inform which
social species are most at risk from anthropogenic pressures and how best to protect them
(Snijders et al. 2017). In a similar vein, a generalised, cross-species understanding of group
social network stability or individual social integration and how it is linked to health
(integrating behaviour, disease, and conservation) could help inform population
augmentation or reintroduction attempts if extended to endangered social species. Group
stability and social integration are likely to play a key role in the initial success of such

projects when social relationships strongly determine fitness.

Concluding Remarks

By providing a tool to compare and contrast diverse social systems across species with
diverse evolutionary histories and highly variable ecologies, comparative social network
analyses have huge untapped potential to further our understanding of the evolutionary
ecology of animal societies and to strengthen the links between different ecological sub-
fields. Our synthesis reveals growing interest in comparing network structures and their
ecological consequences across taxonomic divides, as well as the increasing power of
approaches being used. Especially given the apparent trend of increasing data breadth,
depth, and availability over time, we expect that these approaches will only become more
powerful for quantifying the diversity of animal social systems and explaining variability
across species in the near future. Greater use of meta-analyses of within-network trends
alongside these approaches will increase the reach and reliability of comparative approaches
in social network analysis (Spake et al. 2022), and transform the hunt for general patterns

shaping the structure of animal social systems.
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Box 1: Social network repositories

A recent development is the creation of large-scale, publicly available databases of social
network data (Table 1). We introduce three databases for non-human animal social networks
here and draw attention to similar efforts for human networks too.

Animal Social Network Repository (ASNR)

The animal social network repository (ASNR; (Sah et al. 2019)) was first published online in
2016, although has been regularly updated since then. It has subsequently been used by 7
of the studies in our review. Of all the current social network datasets, the ASNR captures
the greatest taxonomic diversity, including insects, fish, birds, reptiles and mammals. Data is
currently stored as adjacency matrices. It also incorporates substantial variation in network
size and the types of behaviour monitored. However, care is needed when exploiting the
ASNR as it also includes networks measured in different ways and over varied social and
temporal scales, as well as incorporating both free-living and captive populations
DomArchive

DomArchive is a newly-available database of dominance interactions (Strauss et al. 2022),
exploiting the long-term focus on social dominance in the animal behaviour literature. The
majority of data is available as adjacency matrices (sociomatrices), with a subset stored
instead as edge lists. The types of interaction incorporate a wide range of aggressive, formal
dominance or submissive behaviours as well as related behaviours such as threats,
avoidance and social displacement. The data available will be directly relevant to questions
related to social stability and group function.

MacaqueNet

MacaqueNet (De Moor et al. 2023) is an in-development social network database focused on
macaques (Macaca sp.) curated for the purpose of comparative analyses in primatology and
behavioural ecology. By concentrating on a well-studied genus that share similar social

behaviours, MacaqueNet will offer an exciting opportunity for tackling research questions
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related to group-living with fewer of the pitfalls of larger datasets. As is the case for the
ASNR, all data stored in MacaqueNet is formatted consistently so fully ready for comparative
analyses (although note that data collection methods and edge weights can still differ
between studies).

Human contact network databases

The SocioPatterns team have collected a range of proximity network datasets using
Bluetooth loggers (e.g. primary school (Stehlé et al. 2011); scientific conference (Cattuto et
al. 2010); Kenyan village (Kiti et al. 2016); hospital (Vanhems et al. 2013)) in addition to one
similar dataset from wild baboons. Data are provided as edge lists, and if aggregated as
adjacency matrices would be directly comparable with networks connected using similar

methods from the ASNR.
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Box 2: Classifying comparative network analyses

A diverse set of comparative approaches are possible using social network datasets. Here

we provide a framework to distinguish between different approaches (Figure 3)

1.

Comparisons of network properties

A first approach involves comparing the topology of different networks as an outcome
of other network properties (e.g. network size). This is common in network science
where understanding the generative processes underlying network formation is a
major focus (e.g. (Rocha et al. 2021; Ward 2021; Ojer & Pastor-Satorras 2022)).
However, it is also of interest to ecologists, such as with studies that test the
relationship between network size and modularity (Griffin & Nunn 2012).
Species-level comparative approaches

A second type is a conventional species-level comparative approach, in which a
network property of interest is fitted as a response variable with a series of species-
level traits as explanatory variables, and potentially alongside a phylogeny to control
for non-independence among closely-related species. The appropriate use of random
effects can allow multiple observations to be used for a given species. We subdivide
species-level approaches by the outcome variable of interest.

2a) Using network topology

Often the outcome of interest is a property of the network itself (e.g. degree
heterogeneity, modularity). For example, a researcher might want to ask: How does
the modularity of affiliative networks in animal groups vary with environmental
harshness? These types of question will be common in behavioural ecology, for
example in contributing discussions around the role of social complexity in cognitive
evolution (Barrett et al. 2007) or linking network structure to demographic factors

(Shizuka & Johnson 2020).
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2b) Using the outcome of dynamical processes

The outcome of interest could also be the ecological consequences of network
structure, necessitating additional steps prior to the comparative analysis. For
example, studies in disease ecology often conduct simulations of pathogen spread
and then use features of the resulting outbreaks as variables in comparative analyses
(e.g. (Nunn et al. 2015; Sah et al. 2017; Collier et al. 2022; Fountain-Jones et al.
2022)). Similar approaches are useful in understanding the consequences of social
structure for information spread and behaviour change (Evans et al. 2020).
Individual-level meta-analyses

The final category is a meta-analytic approach looking at how relationships between
social interaction patterns and conditional traits vary among species. For example,
Briard and Ezenwa (Briard & Ezenwa 2021) showed an overall positive association
between social centrality and parasite burden across 210 effect sizes covering 16
host species, but they could not explain variation in this relationship using other host
traits. While this study was in the context of disease ecology, there is no reason
similar methodologies could not be applied to other questions of interest such as the
relationship between social network position and fitness (Silk 2007; Snyder-Mackler

et al. 2020).

We provide a schematic (Figure 3) to display model construction for these three main types
of comparative network analyses: 1) analyses examining the relationship between different
network traits across a range of studies (e.g. How does modularity depend on network or
group size? How does network efficiency depend on degree heterogeneity?); 2) analyses of
network properties (either topological or the outcome of dynamical processes operating on
the network) as an outcome of both network traits and species traits (e.g. How does
modularity depend on group size and longevity? How does mean outbreak size depend on

fragmentation and body size?); 3) a full meta-analysis to test how relationships between

39



1125

1126

1127

1128

1129

network traits and individual traits vary across species and networks (e.g. Does the
relationship weighted degree and fitness depend on species life-history and network

modularity?)
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Tables

Table 1. Summary of existing social network databases.

Database

Number
of
networks

Number
of
species

Behaviours

Access

ASNR

790

76

Dominance;
Foraging;
Grooming;
Group
membership;
Non-
physical
social
interaction;
Physical
contact;
Social
projection
bipartite;
Spatial
proximity;
Trophallaxis;
Mixed

https://bansallab.qgithub.io/asnr/

MacaqueNet

761

14

Spatial
proximity
Body
contact;
Grooming;
Contact
aggression;
Non-contact
aggression

https://macaquenet.github.io/database/

DomArchive

436

135

Dominance
interactions;
Submissive
interactions;
Aggression
(151
subtypes
identified)

https://github.com/DomArchive/DomArchive

SocioPatterns

14*

Proximity

http://www.sociopatterns.org/datasets/
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Figure Legends

Figure 1. Coverage of our identified comparative social network studies. A) increase in
number of species over time; B) increase in number of compared networks over time; C)
positive correlation between the number of species investigated and the number of
compared networks. Each point represents one of 49 studies; the line represents a Loess

smooth fitted to the data. The rug on either axis displays the distribution of the data.

Figure 2. A conceptual overview of the value of how comparative social network analyses fit
within a broader framework for social ecology and evolution. We illustrate selected
relationships between species- and individual-level traits and social network structure and
draw attention to key comparative databases for the main traits illustrated. Github- refers to

https://qgithub.com/CharlotteAnaisOLIVIER/Social-organization-of-primates.

Figure 3. An overview of different types of comparative analyses that can be applied to
social network datasets. 1) Network-level analyses that connect network-derived traits with
the structure of the network themselves. 2) Network-level analyses that connect network-
derived traits or simulation outputs with other traits of the networks and the species that
comprise them. 3) Node-level analyses across N networks that involve connecting node and
individual-level traits within each system (inside brackets) and then connecting these

estimates with species- and network-level traits in a meta-analytical context.

Figure 4. An illustration of our recommended workflow for comparative network analyses,

identifying key questions for researchers to consider at each of the three stages of the

process: data selection, scale of investigation and model design.
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Figure 5. Common problems in comparative social network analyses (left) and solutions that
may help to address them (right). Links between problems and solutions are those identified
in the Principal challenges for comparative network analysis section of the main text as an

outcome of the literature review and judgement of the authors. Solutions are sized according

to the number of links they have — i.e., the number of problems they are likely to help solve.
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