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Abstract

We develop a two-stage computational method to assimilate linear viscoelastic material functions (LMFs), viz., stress relaxation modulus,
creep compliance, and the complex modulus, by inferring a consensus discrete relaxation spectrum (DRS) that simultaneously fits all three
LMFs. In the first stage, the DRS corresponding to the different LMFs is deduced independently, before they are combined heuristically to
generate an initial guess for the consensus DRS. In the second stage, this initial guess is refined using nonlinear least squares regression. The
effectiveness of this method for data fusion and validation is demonstrated by analyzing experimental data collected on two different polymer
melt systems. We also investigate the performance of the method when the timescales probed by the LMFs do not overlap, or are limited to
4–6 decades, as is typically the case for thermorheologically complex materials. To explore these questions, we generate synthetic datasets by
obscuring information from one of the experimental datasets. We find that the computational protocol works quite well. As expected, the
quality of the inferred DRS is marginally impaired because information is suppressed.© 2024 Published under an exclusive license by
Society of Rheology. https://doi.org/10.1122/8.0000869

I. INTRODUCTION

The three most common linear viscoelastic (LVE) tests
are stress relaxation, creep, and small amplitude oscillatory
shear (SAOS) experiments. Each of these LVE tests yields
a LVE material function (LMF), which is a function of
either time (t) or angular frequency (ω). Stress relaxation
and creep experiments provide the time-dependent LMFs
relaxation modulus G(t) and creep compliance J(t), respec-
tively. SAOS experiments provide the complex modulus
G*(ω) ¼ G0(ω)þ iG00(ω), where G0(ω) and G00(ω) are the
elastic and viscous moduli, respectively [1]. Formally, these
LMFs are equivalent—perfect knowledge of any single LMF
is sufficient to infer all other LMFs [2]. Unfortunately, the
LMFs obtained from experiments or simulations are not
perfect: they suffer from noise and other measurement artifacts
and probe only a limited window of timescales or frequencies.

Thus, each LVE test offers an imperfect and limited view
of underlying dynamics, like the parable of the blind man
and the elephant [3]. In this work, it is helpful to think of the
underlying relaxation spectrum (RS) as the metaphorical
“elephant” or object of interest. The primary aim of this
paper is to develop a computational protocol that uses mathe-
matical relations between the LMFs and the RS (described in
Sec. II A) to integrate the results of different LVE tests and
provide a more reliable characterization of a material’s linear

rheology. This endeavor simultaneously serves two important
goals: data fusion and validation.

1. Data fusion: Examples of data fusion, where different
measurements are assimilated into master plots by appeal-
ing to universality, are quite familiar to rheologists [4–6].
Perhaps, the most ubiquitous example is time-temperature
superposition (TTS) [7], where data collected from LVE
tests conducted at different temperatures are shifted along
the time and modulus axes and superposed. TTS can dra-
matically extend the dynamic range of timescales over
which a material is probed.

Integrating data from independent experiments or LVE
tests is another form of data fusion [8–10]. Different LVE
tests often have complementary strengths. For example,
J(t) and G(t) measurements at short timescales may exhibit
artifacts from sudden stress or strain jumps. However,
G*(ω) does not suffer from these limitations due to contin-
uous deformation and is more reliable for probing short
timescales. On the other hand, probing long timescales
using G(t) and G*(ω) is inconvenient because the torque
produced in the rheometer can fall below the threshold of
instrument sensitivity [11]. Fortunately, J(t) measurements
are reliable in this regime [1,2,12].

As demonstrated in this work, it is possible to combine
TTS and data fusion of different LVE tests to further widen
the dynamic range probed. However, it is well known that
TTS fails for many technologically important materials
such as polymer blends, block copolymers, covalent adapt-
able networks [13,14], and systems that undergo phase
transitions or temperature-induced structural change [1,7].
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For such materials integrating data from different LVE tests
at a fixed temperature can become particularly important.

2. Data validation: The task of reconciling different LMFs is
also helpful for data validation, which can identify and
isolate potential inconsistencies in experimental measure-
ments. Since different LMFs are manifestations of the
same underlying RS, they are mathematically constrained.
In particular, G(t) and J(t) are linked by the convolution
relation [1,2,15],

t ¼
ðt
0
J(t0)G(t � t0) dt0 ¼

ðt
0
G(t0) J(t � t0) dt0, t � 0, (1)

from which it can be shown that J(t) and G(t) asymptoti-
cally share a reciprocal relationship, i.e.,

G(0)J(0) ¼ G(1)J(1) ¼ 1: (2)

Similarly, the elastic and viscous moduli, G0(ω) and
G00(ω), are constrained by Kramers–Kronig relations
(KKRs) [16,17],

G0(ω)� Ge ¼ � 2ω2

π

ð1
0

G00(u)=u
u2 � ω2

du,

G00(ω) ¼ 2ω
π

ð1
0

G0(u)� G0

u2 � ω2
du,

(3)

where Ge ¼ G0(ω ! 0) is the equilibrium modulus or
low-frequency plateau in the storage modulus. Ge = 0 for
viscoelastic solids, and Ge ¼ 0 for viscoelastic liquids.
Potential violations of KKR may arise when mastercurves
are created by the superposition of several independent
datasets [18–20].
The extent to which experimentally obtained LMFs are

consistent with each other can be assessed by the degree
to which they obey or deviate from the convolution rela-
tion and KKR. A standard test to determine compliance
of dynamic moduli with KKR is to infer an RS by simul-
taneously fitting a set of Maxwell modes to the storage
and loss moduli [21–24]. Similarly, the consistency of
J(t) and G(t) data with the convolution relation can be
assessed by fitting a common RS to these two LMFs.

A. Strategy and layout

In this work, we seek a common RS that simultaneously
describes all experimental observations. This representation
is theoretically guaranteed to obey both KKR and the convo-
lution relation, by design. Thus, it concurrently addresses the
goals of data fusion and validation. While it is straightfor-
ward to integrate G(t) and G*(ω), incorporation of creep mea-
surements is more challenging because J(t) is naturally
parameterized by a retardation spectrum (see Sec. II A),
rather than an RS. Thus, assimilation of J(t) requires
methods for interconversion of compliance to modulus.
Several numerical methods based on the convolution relation
have been proposed [2,25–40], a subset of which is based on

interconversion of retardation and RS [2,32–40]. Unlike
methods that perform direct interconversion, we prefer
methods based on RS because this choice closely aligns with
the goal of this work which is to infer a common RS.
Furthermore, these methods strictly obey both KKR and the
convolution relation, which is not the case for methods based
on numerical discretization for approximating derivatives or
integrals. Recently, an efficient and robust computer program
called PSI (for Prony series interconversion) that uses the
convolution relation to convert a discrete retardation spec-
trum to a discrete RS and vice versa was developed [41].
This free and open-source program improves the stability of a
method previously proposed by Loy et al. [40] by numeri-
cally bypassing potential singularities. The speed and robust-
ness of PSI are instrumental in our ability to simultaneously
fit different LMFs because it is required at every iteration
during optimization to compute how well a candidate RS fits
the observed J(t) (see Sec. II C).

We begin by describing the mathematical relations that
bind the different LMFs in Sec. II A. Experimental data in
which all three LMFs are measured for the same material
over a wide range of overlapping timescales are surprisingly
limited. Therefore, we report LMFs for two different com-
mercial polymers in Sec. II B. We use one of these datasets
to illustrate the computational method developed here in
Sec. II C. In this work, we equally weight the three LMFs to
infer a common RS. This poses the risk of potentially con-
taminating high quality measurements with low quality ones.
We attempt to mitigate this risk by standardizing experimen-
tally measured LMFs so that they are of comparable quality
(Sec. II C). If a common RS that fits the LMFs cannot be
found, further investigation may be required to separate low
and high-quality LMFs. If the appropriate statistical weight
for each dataset or data point can be ascertained a priori,
then the assumption of equal weighting used in this work
can be relaxed. After demonstrating the effectiveness of the
protocol in Sec. III, we explore how well this method per-
forms when experimental data are limited in Sec. IV.

II. METHODS

We begin by recapitulating the mathematical formulae
that relate the RS and LMFs. After that we describe the tests
performed on two different commercial polymer melts: (1)
polystyrene (PS) and (2) poly(4-methylstyrene) (P4MS).
Finally, we outline the computational protocol used to inte-
grate LVE functions using the PS dataset for illustration.

A. Mathematical relations

The relaxation modulus is related to the RS via

G(t)� Ge ¼
ð1
�1

H(τ) e�t=τd log τ ¼
Xn
i¼1

gi e
�t=τ i , (4)

where the first equality defines the continuous RS H(τ) via a
Fredholdm integral equation of the first kind [42], and the
second equality defines an equivalent n-mode Maxwell
model or discrete RS (DRS) Hn ¼ {gi, τ i}

n
i¼1.
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It is well known that both these equalities lead to ill-posed
problems because they violate at least one of the following
three Hadamard conditions for well-posedness [42–44]:
(i) existence (at least one solution), (ii) uniqueness (at most
one solution), and (iii) stability (continuous dependence on
data). In the case of H(τ), condition (iii) is violated. In the
case of Hn, conditions (ii) and (iii) are both violated.
Therefore, extraction of H(τ) or Hn leads to an ill-posed
problem even though H(τ) is unique and Hn is not [44–46].
Regularization is a common strategy used to counter condi-
tion (iii) and stabilize the extraction of the RS. However,
there is no universal strategy to determine the optimal type
and amount of regularization to use. Different algorithms
make different choices that lead to different RS. Furthermore,
other factors such as finite time and frequency windows,
noise, and other measurement artifacts ensure that H(τ), like
Hn, is nonunique in practice.

Fortunately, nonuniqueness is immaterial for the goals of
this work, viz., data validation and fusion. The existence of
any common RS that fits the LMFs (it does not have to be
unique) is sufficient to assert consistency with both the KKR
and the convolution relation. Furthermore, a common DRS
helps with extrapolation of LMFs and expanding the
dynamic range of experiments. A common heuristic used to
aid generalization and avoid overfitting is parsimony or spar-
sity, which is the idea that fewer Maxwell modes are prefera-
ble to more. Practically, the shapes of H(τ) and Hn are
similar [21], and comparable physical insights can be
gleaned from either RS. The choice of which RS to use is
dictated by the application, e.g., the DRS is preferred for cali-
brating multimode constitutive models to LVE data [47].

The elastic and viscous moduli are related to the RS via

G0(ω)� Ge ¼
ð
H(τ)

(ωτ)2

1þ (ωτ)2
d log τ ¼

Xn
i¼1

gi
(ωτ)2

1þ (ωτ)2
,

G00(ω) ¼
ð
H(τ)

(ωτ)

1þ (ωτ)2
d log τ ¼

Xn
i¼1

gi
(ωτ)

1þ (ωτ)2
:

(5)

Given an RS, G(t) and G*(ω) can be calculated using
Eqs. (4) and (5). The inverse problem of extracting the RS
from G(t) or G*(ω) is poorly conditioned and hence more
difficult. Nevertheless, given its fundamental importance in
linear rheology, a number of computer programs that appeal
to parsimony or use some form of regularization have been
developed. These include DISCRETE [48], PYRESPECT
[49–51], CONTIN [52], FTIKREG [53,54], NLREG [55,56],
GENEREG [57], BAYESRELAX [58], IRIS [33], etc.

Creep compliance is related to the retardation spectra via

J(t)� Je ¼ η�1
0 t �

ð1
�1

L(τ) e�t=τd log τ

¼ η�1
0 t �

Xn
k¼1

jke
�t=λk , (6)

where L(τ) is the continuous retardation spectrum,
and Ln ¼ {jk, λk}

n
k¼1 is the discrete retardation spectrum.

The inverse viscosity η�1
0 is zero for solids and nonzero for

liquids. Je is the common symbol used to denote the equilib-
rium compliance J(t ! 1) for solids and the steady-state
compliance, limt!1 J(t)� η�1

0 t for liquids. Many of the
computer programs used to extract H(τ) or Hn from G(t) can
be repurposed to extract the retardation spectrum from creep
compliance. In this work, we use the program PYJT to extract
Ln, Je, and η�1

0 from J(t).1

The convolution theorem links J(t) and G(t). Using it,
H(τ) can be related to L(τ), Je, and η�1

0 via [1],

H(τ) ¼ Je � η�1
0 τ þ

ð1
�1

L(s)
τ=s� 1

d log s: (7)

However, numerical integration of Eq. (7) is computationally
challenging due to the singularity at s ¼ τ in the integrand.
Fortunately, if a parsimonious discrete retardation spectrum Ln
with well-separated retardation times is available, it is empiri-
cally observed to suppress numerical instability, making it feasi-
ble to compute Hn from Ln [28,35,36,59–61]. The mathematical
relations to obtain Ge and Hn from Je, η�1

0 , and Ln, and vice
versa, are explicitly described in [40] and [41], and imple-
mented in the computer program PSI that is used in this work.

B. Materials and experimental methods

1. Materials

Polystyrene (PS, Mn ¼ 220 kg/mol, Mw ¼ 354 kg/mol,
Đ = 1.6), poly(4-methylstyrene) (P4MS, Mn ¼ 60 kg/mol,
Mw ¼ 137 kg/mol, Đ = 2.3), pentaerythritol tetrakis (3-(3,5-
di-tert-butyl-4-hydroxyphenyl)propionate) (Irganox 1010), and
dichloromethane (DCM) were purchased from Sigma-Aldrich.
The sample preparation and rheology of PS were previously
described in [11].

2. Sample preparation of P4MS

3 g of P4MS were mixed with 15 ml of a solution contain-
ing 0.03 g of Irganox 1010 dissolved in DCM and then
stirred for 2 h. Excess solvent was removed under reduced
pressure using rotary evaporation. The sample was then trans-
ferred to a scintillation vial and dried under reduced pressure
at 50 �C for 18 h to yield 2.7 g of P4MS containing 1 wt. %
Irganox 1010.

3. Size exclusion chromatography (SEC)

SEC of polymer samples was conducted using an
Agilent-Wyatt combination triple-detection SEC instrument,
which featured three successive Agilent PL-gel Mixed C
columns (25 �C THF mobile phase). The instrument was
equipped with an Agilent 1260 infinity series pump, degas-
ser, autosampler, and thermostatted column chamber. The
triple-detection unit included the following: a MiniDawn
TREOS three-angle light scattering detector, Optilab TrEX

1S. Shanbhag, pyJt: A python program to extract the continuous and discrete
retardation spectra from creep compliance measurements, https://github.com/
shane5ul/pyJt (2023)
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refractive index detector, and a Viscostart II differential vis-
cometer. SEC traces are shown in Fig. 1. To determine abso-
lute molar masses, refractive index increments of 0.19 and
0.18 were used for PS and P4MS, respectively [62,63].

4. Rheology measurements

Linear viscoelasticity of P4MS was investigated using an
Anton Paar MCR302e rotational rheometer with parallel
plate geometry. The upper geometry was an aluminum dis-
posable profiled plate (8 or 25 mm in diameter), while the
lower geometry was a 25 mm stainless steel profiled plate
with Peltier temperature control. Profiled surfaces were
employed to reduce sample slip. The plate geometry was
enclosed in a hood under a 200 l/h nitrogen flow to limit
thermal degradation. The geometry achieved a temperature
control accuracy of +0.1 �C. During measurements, a
normal force between 0.1N and 1N was applied to maintain
contact between the sample and upper plate. P4MS samples
were melt pressed into disk shapes (8 or 25 mm diameter,
and 1 mm thickness) using stainless steel frames, with an
applied load of 1 ton at 150 �C for 5 min.

Strain amplitude sweeps, small-amplitude oscillatory shear
(SAOS), and creep measurements were conducted on the
8 mm diameter samples. Stress relaxation experiments were
performed on both 8 and 25mm diameter samples. Strain
amplitude sweeps were conducted to identify the linear visco-
elastic regime (LVE) at temperatures of 205 and 130 �C. For
SAOS and stress relaxation, measurements on P4MS samples
at all temperatures were performed at strain values within the
LVE regimes identified at 205 and 130 �C. SAOS measure-
ments were run at angular frequencies (ω) ranging from 100 to
0.01 rad/s. Stress relaxation and creep measurements were run

for 0.5 h for temperatures ranging from 205 to 160 �C, 3 h at
145 �C, and 8 h at 130 �C. TTS was performed on SAOS,
creep, and stress relaxation data using a reference temperature
TR ¼ 160 �C. Horizontal shift factors (aT ) were first applied to
the SAOS tan δ versus ω plot to collapse the data into a con-
tinuous curve. Next, the horizontal shift factors were further
refined by using the Williams–Landel–Ferry (WLF) equation

log aTð Þ ¼ �C1(T � TR)
C2 þ (T � TR)

, (8)

where C1 and C2 are empirical parameters. The horizontal
shift factors determined using the WLF equation were
applied to SAOS, stress relaxation, and creep data. Vertical
shift factors (bT ) were determined by manually superposing
the storage and loss moduli data of SAOS, stress relaxation,
and creep. Results of TTS for PS and P4MS are shown in
Figs. 2 and 3, respectively.

C. Computational protocol

The schematic diagram in Fig. 4 illustrates our overall
approach for assimilating different LMFs by seeking a
common RS. It proceeds in two stages. In the first stage, we
use data collected from different LVE tests to independently
infer the corresponding independent DRS and are denoted
subsequently as iDRS. Subsequently, we attempt to heuristi-
cally merge the iDRS into a common spectra. Thus, the first
stage provides an initial guess, H0

n , for the joint spectrum.
This is iteratively refined in the second stage using nonlin-
ear least squares regression. During the jth iteration of the
nonlinear regression, we compute the LMFs corresponding
to a potential solution H j

n. For G(t) and G*(ω), we use

FIG. 1. SEC traces for the (a) PS (Đ = 1.6) and (b) P4MS (Đ = 2.3) samples.
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Eq. (4) and (5), respectively. For J(t), we first compute the
retardation spectrum corresponding to H j

n using PSI and
then evaluate creep compliance using Eq. (6). We then use
nonlinear regression to compare the predicted LMFs with
the measured LMFs and iterate until convergence.

1. Stage 1: Generating an initial guess

It is helpful to present the details of the computational proto-
col with a concrete example. Therefore, we consider the PS
dataset to animate the description. The posture we adopt in this
work is to equally weigh the three measured LMFs (G, J, and
G*) and infer a common DRS from them. Therefore, raw data
obtained from LVE tests have to be standardized and processed
before they can be used to infer the RS to prevent contamina-
tion of high-quality signals by low quality signals.

The first few samples corresponding to short timescales
collected during the measurement of G(t) or J(t) are unreli-
able due to inertial effects. Similarly, the signal in a stress
relaxation measurement falls below instrument sensitivity at

long times [11]. Therefore, for G(t), we discard all data col-
lected at times t , 1 s, with the knowledge that G* is better
at probing short timescales. We discard all long time G(t)
data after the relative error (noise-to-signal ratio) permanently
exceeds 10%, with the knowledge that J(t) offers a more reli-
able probe of this regime.

In addition to inertial effects, the J(t) signal is weak at
short times. Therefore, we use a more conservative threshold
and discard all creep data collected at times t , 3 s. We do
not trim long-time creep data or any of the SAOS data.
The timescales interrogated by the different LMFs are visual-
ized in Fig. 5(a) for PS, where the solid, dotted, and dashed
lines represent G(t), J(t), and G*(ω), respectively. The top
panel shows how measurements at different temperatures
extend the dynamic range of the timescales probed. The
color scheme used to identify different temperatures in Fig. 5
is consistent with Figs. 2 and 3. Measurements at higher tem-
peratures probe longer timescales.

The bottom panel compares the window of timescales
examined by the three LMFs after TTS. For G*(ω), the range

FIG. 2. TTS for PS using Tref ¼ 160 �C as the reference temperature. A common set of shift factors (d) are used for superpose three different LMFs (a) stress
relaxation, (b) creep compliance, and (c) complex modulus, where closed and open symbols denote G0(ω) and G00(ω), respectively.

CONSENSUS RELAXATION SPECTRUM 5
 14 N

ovem
ber 2024 17:09:19



of timescales is identified as [2π=ωmax, 2π=ωmin], where ωmin

and ωmax are the minimum and maximum frequencies probed
in Fig. 2(c), respectively. For PS, SAOS probes the shortest
timescales �10�4 s, while creep accesses the longest time-
scales �105 s, extending the overall range to approximately 9
decades. All three LMFs overlap over a broad range of inter-
mediate timescales (�10�2–103 s) that spans nearly 5
decades. A qualitatively similar pattern is observed for P4MS
in Fig. 5(b).

We down-sample the LMFs using linear interpolation on
a logarithmically equispaced grid with N ¼ 100 points.
This is illustrated by blue crosses in Fig. 6. This transforma-
tion is motivated by two factors:

(i) Due to TTS, the density of data points in the master-
curves is nonuniform. Using raw data to infer a RS is
equivalent to unintentionally weighing overlapping por-
tions of the curves more strongly. If we believe that the
mastercurves obtained from TTS approximate true mate-
rial behavior, weighing different portions of the curve

differently is unreasonable. Interpolation is required to
weigh the mastercurve uniformly. In other words, inter-
polation is equivalent to unbiasing the arbitrary weights
that result from TTS.

(ii) Using the same number of points (N ¼ 100) to represent
different LMFs equalizes the influence they have on the
inferred cDRS. Otherwise, J(t) [which has O(104) raw
data points] is weighed approximately 100 times more
strongly than SAOS [O(102) raw data points]. This is
also computationally helpful because the cost scales with
the number of observations.

These sanitized and interpolated data are subsequently
used for computation of the spectra. Ultimately, the useful-
ness of the DRS inferred from these data can be ascertained
by how well they describe the original raw data. Using this
benchmark, the proposed protocol works satisfactorily as
shown in Fig. 6.

We use the open source programs PYRESPECT-time and
PYRESPECT-freq to independently infer the iDRS from G(t)

FIG. 3. TTS for P4MS using Tref ¼ 160 �C as the reference temperature. A common set of shift factors (d) are used for superpose three different LMFs
(a) stress relaxation, (b) creep compliance, and (c) complex modulus, where closed and open symbols denote G0(ω) and G00(ω), respectively.
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and G*(ω), respectively. PYRESPECT uses a Bayesian crite-
rion to determine the level of regularization required and
performs nonlinear Tikhonov regression to infer the contin-
uous RS. This informs the inference of a parsimonious DRS.
The underlying methods are discussed in more detail in 50
and 51. We use PYJT to infer the discrete retardation spectrum
Ln from J(t). It is based on the same algorithm as PYRESPECT
and is also available for public download. We use PSI to
convert the Ln to an iDRS. Fits obtained with the inferred
iDRS are shown in Fig. 6.

The iDRS is shown in Fig. 7. The spectra obtained from
G(t), G*(ω), and J(t) have 10, 12, and 6 modes, respectively.
In the region where they overlap, these iDRS have similar
shapes. As expected, SAOS probes short timescales, while
creep measurements probe long timescales. These data help
to extend the range of timescales represented by the RS
beyond the region where the iDRS overlap. The shortest
relaxation time identified in Fig. 7 (�10�6 s), which origi-
nates from G*(ω), is smaller than the shortest timescale
probed by SAOS (�10�5 s) in Fig. 5(a). While some skepti-
cism is warranted, it is not unusual for some of the relaxation
times in a DRS to lie outside the window of timescales
probed in an LVE test. Traces of a relaxation mode can
persist for a decade or more, which allows us to detect and
interpret them.

This claim can be crystallized using a simple example.
Consider a hypothetical material that is well described
using single mode Maxwell model with modulus G and
relaxation time τ. The storage and loss moduli are given by
G0(ω) ¼ Gω2τ2=(1þ ω2τ2) and G00(ω) ¼ Gωτ=(1þ ω2τ2),
respectively. Suppose the relaxation time is long, and we are
experimentally able to access only the large frequency

FIG. 4. Schematic diagram showing the two stages of the method used to
infer the consensus DRS: (a) the DRS from different LMFs is independently
computed and merged into an initial guess H0

n ; (b) this guess is refined until
the least squares error is minimized.

FIG. 5. The range of reliable timescales probed by different LVE experiments at different temperatures (top panels) for (a) PS and (b) P4MS. The reference
temperature Tref ¼ 160 �C. The overall ranges in Figs. 2(a)–2(c) and 3(a)–3(c) are shown in the bottom panels. Solid, dotted, and dashed lines represent the
range of timescales probed by stress relaxation, creep, and SAOS experiments, respectively.
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response (ω � 1=τ) in a SAOS test. In this regime,
G0(ω) � G is roughly constant, and G00(ω) � G(ωτ)�1 is
inversely proportional to frequency. We can nonetheless esti-
mate the location τ and strength G of the Maxwell mode, even
though the range of frequencies does not straddle τ�1.

After determining the three iDRS, we attempt to merge
them into a single DRS. We start by considering the super-set
of all the modes obtained, sort them according to relaxation
time, and merge consecutive modes whose relaxation times
differ by less than a factor of two. That is, when τ iþ1=τ i � 2,
we replace the two “old” modes with a single “new” mode
that averages the two contributions. Specifically, we set

τnewi ¼ τoldi þτoldiþ1
2 , gnewi ¼ goldi þgoldiþ1

2 ,

τoldiþ1=τ
old
i � 2:

(9)

We recursively repeat this process of sorting and merging
relaxation times, until no two relaxation timescales in the
resulting spectrum are closer than a factor of two. This result-
ing initial guess, H0

n , is shown by red crosses in Fig. 7.
Starting from 28 initial modes between the RS corresponding
to different LMFs, the resulting H0

n only has 14 modes.
While H0

n depends on the order in which modes are merged
(e.g., first to last, last to first, or closest to farthest), it does
not matter in practice because H0

n only serves as an initial
guess for the second stage.

2. Stage 2: Nonlinear regression

We denote experimental data with a “tilde,” viz.,n
~tGj , ~Gj

oN

j¼1
,
n
~tJj , ~J j

oN

j¼1
, and

n
~ωj, ~G

0
j

oN

j¼1
and

n
~ωj, ~G

00
j

oN

j¼1
.

Recall that we used N ¼ 100 for all the LMFs when we
interpolated the data on a uniform grid. This is not strictly
required and may be relaxed, but it simplifies the following
exposition. We pack the moduli and compliances into N
dimensional vectors ~G, ~J, ~G

0
, and ~G

00
, so that the jth element

of ~G, for example, is ~Gj. Finally, we stack these vectors into
a 4N dimensional data vector ~X ¼ [~G, ~J, ~G

0
, ~G

00
].

During the computation, the DRS Hn is internally represented
by a 2n dimensional vector p ¼ [g1, . . . , gn, τ1, . . . , τn] by
concatenating the strengths and relaxation times. The stress
relaxation modulus Gj ¼ G(~tGj , p), and the elastic and loss
moduli G0

j ¼ G0(~ωj, p) and G00
j ¼ G00(~ωj, p) corresponding to

the DRS are computed at the experimental times (~tGj ) and fre-
quencies (~ωj) using Eqs. (4) and (5), respectively. Similarly,
the creep compliance corresponding to p is evaluated by first
computing Ln using PSI. Then, Jj ¼ J(~tJj ) is calculated using
Eq. (6). We stack these predicted moduli and compliances
into vectors G, J, G0, and G00 and eventually into a 4N
dimensional prediction vector X(Hn) ¼ [G, J, G0, G00]T .

We can define a residual vector r based on the relative dif-
ference between the prediction and corresponding data
vectors as

ri ¼ Xi � ~Xi

~Xi
, i ¼ 1, 2, . . . , 4N, (10)

FIG. 6. A subset of the superposed raw data (gray symbols) from Fig. 2 is re-interpolated on a uniform time/frequency grid (blue crosses). Interpolated data
are used independently to infer the discrete relaxation (a) and (c) and retardation (b) spectra from the moduli and creep measurements, respectively. The fits
obtained from these spectra are shown using black lines.

FIG. 7. The iDRS corresponding to G(t) (circles), J(t) (triangles), and
G*(ω) (squares) are shown by filled gray symbols. The initial guess (red
crosses) for the common DRS is obtained by merging neighboring modes of
the independent DRS. This initial guess is refined using nonlinear regression
to simultaneously fit all the LMFs. The resulting cDRS (LSQ) is shown by
black circles and connected by a line for clarity. Error bars are standard
errors estimated from the covariance matrix estimated from the Jacobian
matrix evaluated at the LSQ solution.
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where the subscript i denotes to the ith element of a vector.
We can then define the joint least squares (LSQs) cost func-
tion as the sum of squared residuals

χ2(p) ¼ 1
2

X4N
i¼1

r2i : (11)

We minimize the cost function χ2 using the trust region
reflective algorithm in SCIPY’s optimization library [64,65]
with H0

n as the initial guess. This modified Newton method
is suitable for constrained optimization and allows us to set
lower bounds on the relaxation strengths and times. This is
important since physically gi and τ i cannot be negative. The
(i, j)th element of the 4N � 2n Jacobian matrix Jij ¼ @ri=@pj
is estimated numerically in the method. With a good initial
guess H0

n , convergence is swift.
During the minimization, the number of modes n is

unchanged, but the location and strengths of the DRS
change. Sometimes, after the optimization step converges,
two neighboring modes move close to each other and may be
subsumed into a single mode. Therefore, after minimizing
χ2, we sort the relaxation timescales {τ i} again and attempt
to merge neighboring modes that are less than a factor of two
apart. The motivation for dispersing relaxation modes is to
(i) improve the numerical conditioning of the interconversion
problem and (ii) impose parsimony, the most common heu-
ristic used to deal with the nonuniqueness of the DRS. Small
changes to this threshold (1.5–3) do not change results signif-
icantly, although it may be possible to improve the spacing
of relaxation modes using a more systematic approach [66].
Using a factor of two as the threshold still allows for a rea-
sonably high density of modes in the DRS. For context, even
continuous H(τ) are typically resolved with �10 modes per
decade, such that the spacing of neighboring modes is
101=10 � 1:26. Since the solution is perturbed by this opera-
tion, the minimization step is repeated with the perturbed
DRS as the initial guess. This sequence of minimization and
merger of nearby modes is repeated until all the relaxation
times are separated by a factor greater than two. This optimal
solution H*

n is labeled “cDRS” (for consensus or common
DRS) in Fig. 7.

For the PS dataset, two cycles of minimization were
required. The first minimization, H(1)

n required 18 iterations
and 36 function evaluations. This implies that PSI was called
36 times during the optimization process. Two modes that
drifted close were subsumed, and the number of modes
decreased from 14 to 13. A second minimization step with
21 iterations and 23 function evaluations was required to
refine this solution and obtain the final LSQ solution p* cor-
responding to H*

n ¼ H(2)
n . This entire process took less than

10 s on an old 2.3 GHz Intel Xeon CPU.
The uncertainty in the estimated solution is estimated by

linearizing χ2 near the LSQ solution to obtain the covariance
matrix of the estimated parameters p* as

cov(p*) ¼
χ2(p*)
4N� 2n

JT*J*
� ��1

(12)

where J* is the Jacobian matrix evaluated at the LSQ solu-
tion p*. The error bars shown in the Fig. 7 are standard devi-
ations determined by taking the square-roots of the diagonal
elements of this covariance matrix. It is useful to point out
that the these error bars depict the uncertainty in model
parameters and primarily reflect the nonuniqueness of the
DRS rather than the mismatch between observations and the
multimode Maxwell model.

III. RESULTS

We present results on the inference of the cDRS for the
PS and P4MS samples in this section. Partial analysis of the
PS sample was already presented in illustrating the algorithm
for computing the cDRS. In the subsequent “Discussion”
section, we re-analyze the PS data in a different way to get
some insight into how this computational technique might
generalize.

A. PS

Figure 8 shows how well the cDRS estimated for the PS
sample fits experimental observations (symbols). The dashed
red lines depict the predictions using H0

n , the initial guess,
which is shown by red crosses in Fig. 7. Even the initial

FIG. 8. Fits to the LVE data (symbols) obtained using the initially guessed RS (dashed red lines) and the optimal DRS obtained using nonlinear regression
(solid black line). The shaded uncertainty band is estimated using Monte Carlo simulation as described in the text.
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guess does an acceptable job of simultaneously describing
the three LMFs, especially over the range of the experimental
data. Upon close inspection, it slightly overpredicts G(t) and
G00(ω) and underpredicts J(t) over intermediate timescales.
These deviations are correlated: overestimation of G(t) neces-
sarily leads to underestimation of J(t) because of the convo-
lution relation.

The black lines depict the predictions using the cDRS
over the entire range of timescales [Fig. 5(a)] spanned by the
LVE data. These predictions fix the slight over/under predic-
tion obtained using H0

n . Additionally, the mode correspond-
ing to the longest relaxation time in H0

n is discarded in the
cDRS. This corrects a spurious long-time shoulder observed
in the G(t) prediction using the initial guess. The relative
error between the experimental and estimated LMFs can be
quantified by the mean absolute value of the residual vector
[Eq. (10)], which is of order �0:1 (see the supplementary
material). We perform Monte Carlo simulations (MCSs) to
estimate the prediction error of the LSQ solution, which is
shown by the gray shaded regions in Fig. 8. These uncer-
tainty bands are estimated from 100 independent samples of
the DRS drawn from a multidimensional Gaussian distribu-
tion with mean p* and covariance given by Eq. (12).

The standard error of the predicted LMFs is used to compute
the width of the uncertainty band. Note that this estimate,
with relative error of order �0:3, accounts for the uncertainty
in the fitted parameters.

B. P4MS

From Fig. 3, it is evident that the quality of TTS for the
P4MS dataset is noisier than that of the PS dataset.
Nevertheless, the computational protocol developed to
compute a cDRS works reasonably well. Figure 9 shows the
iDRS corresponding to the different LMFs, the initial guess
after merging nearby modes and the cDRS obtained by
fitting the LMFs simultaneously.

The iDRS corresponding to stress relaxation, creep, and
SAOS data contained 8, 5, and 10 modes, respectively, for a
total of 23 modes. After merging neighboring modes, this
number was reduced to 12. Estimating the cDRS required 12
iterations and 23 function evaluations. The final number of
modes remained unchanged at 12. As before, the entire
process, which involved repeated calls to PSI, required only a
few seconds on a single CPU.

Figure 10 compares the predictions of H0
n and H*

n . The
agreement of the cDRS predictions and the LVE data appears
reasonable. The slowest relaxation mode (Fig. 9) near
τ � 100 s results in a discernible shoulder in G(t) at long
times, and a noticeable change of slope in G0(ω) at low fre-
quencies. Is this mode real or spurious?

From Fig. 5(b), the timescales probed by SAOS and creep
experiments extend to approximately 103 and 105 s, respec-
tively. Thus, we suspect that there is some signal in the
observations that informs the presence of a small fraction of
polymers that relaxes slowly. Indeed, the shoulder observed
in the SEC trace in Fig. 1(b) indicates the presence of a high-
molecular weight tail. The slopes of the observed G0(ω) and
G00(ω) curves in Fig. 10 are not yet terminal, lending further
support to the idea of a high molecular weight tail.
Interestingly, the origin of this mode can be traced to the
iDRS corresponding to G*(ω) [and G(t)], and not J(t) which
becomes nearly terminal at large t, i.e., J(t)/ t. On balance,
we surmise that the longest relaxation mode identified is real,

FIG. 9. Independent, initial guess, and consensus DRS for P4MS. The
symbols and lines have meanings identical to Fig. 7.

FIG. 10. Fits to the P4MS LVE data using H0
n and H*

n . Symbols and lines have meanings identical to Fig. 8.

10 SHANBHAG et al.
 14 N

ovem
ber 2024 17:09:19

https://doi.org/10.60893/figshare.jor.c.7503741
https://doi.org/10.60893/figshare.jor.c.7503741


although there may be some doubt surrounding its precise
location and strength.

IV. DISCUSSION

We invoked the metaphor of the blind men and the ele-
phant in the introduction to motivate this work. However, it
is clear from Fig. 5 that the timescales probed by different
LMFs overlap over several orders of magnitude, leading to
sharing of information. It is interesting to ask what happens
when this is not the case. How much worse does the cDRS
inferred from LMFs that probe nonoverlapping timescales
get? We probe this question in Sec. IV A. This situation is
qualitatively closer to the metaphor of the blind men and
the elephant, since data are scarce and inference of the
cDRS has to rely on the mathematical relationships that
bind different LMFs.

A separate issue worth investigating is the applicability of
the method to thermorheologically complex materials. Since
PS and P4MS were thermorheologically simple, TTS was
applied before the cDRS was inferred in results presented thus
far. For thermorheologically complex materials, the cDRS has
to be inferred from LMFs obtained at a fixed temperature.
Generally, the range of timescales probed by standard LVE
tests at a fixed temperature only span 4–6 decades, with SAOS
and creep tests providing exclusive information at short and
long timescales, respectively. It is well established that the
inferred RS are least reliable near the ends of the domain [67].
Therefore, in Sec. IV B, we evaluate how the cDRS obtained
at fixed temperatures compares with the original.

In both these scenarios, complete information is obscured
either by revealing only portions of the observations (nonover-
lapping timescales), or by concealing the applicability of TTS.
Thus, we anticipate that the quality of the cDRS obtained in
both these scenarios to worsen. We use the PS dataset to inves-
tigate both these questions. Qualitatively similar results are
obtained using the P4MS dataset.

A. LMFs with nonoverlapping timescales

We generate a synthetic dataset with nonoverlapping time-
scales by cropping the LMFs from the original PS dataset.
As shown in Fig. 5(a), the time intervals (in seconds) probed
by SAOS, stress relaxation, and creep experiments that
were used for inferring iDRS were [6� 10�5, 1:2� 103],
[5� 10�3, 103], and [10�2, 8� 104] , respectively. These are
reproduced at the top of Fig. 11 for context. SAOS (dashed
line) probes the shortest timescales, while creep probes the
longest timescales. There is a broad intermediate region of
about 5 decades where all three LMFs overlap. The cDRS
inferred from this data, previously shown in Fig. 7, is repro-
duced and labeled “full” because it uses all available data for
inference.

We then cropped the experimental data and retained
only the subintervals [6� 10�5, 6� 10�1], [101, 102], and
[103, 8� 104] s from the original SAOS, stress relaxation,
and creep measurements, respectively. These timescales are
visualized at the bottom of Fig. 11. Thus, there are two
“holes” of missing data, [0:6, 10] s and [102, 103] s in these
synthetically altered datasets. Furthermore, in contrast to the

full data, there are no overlapping timescales in this partial
dataset. Nevertheless, we can apply the computational proto-
col, and infer the cDRS shown in Fig. 11.

The cDRS obtained from the partial nonoverlapping data
shows remarkable agreement with the cDRS inferred from
the full dataset. Visually, the most conspicuous deviations
between the two cDRS are observed near τ ¼ 1 and 106 s.
The fact that one of these mismatches (τ ¼ 1 s) occurs in one
of the holes in the partial data is not a coincidence.
Furthermore, the slower mode near τ ¼ 106 s is also visible
in the iDRS obtained from creep observations in Fig. 7. In
the full dataset, SAOS measurements inform the removal of
this mode in the cDRS. However, it persists in the cDRS
obtained from the partial dataset because neither SAOS nor
stress relaxation experiments can dispute its placement.
Nevertheless, the absence of overlapping LMFs does not
present an insurmountable obstacle for the proposed compu-
tational protocol.

This is further corroborated in Fig. 12, which compares
fits to experimental observations using the cDRS from the
partial dataset. It should be stressed that only the data
between the dashed blue lines were used for inferring the
iDRS and hence the cDRS. This is clear from the nearly
perfect fits to the data in these narrow regions. While the
agreement outside these slices is far from perfect, it is still
rather impressive. It is a manifestation of the transfer of infor-
mation learned from fitting other LMFs. Even though the fits
in Fig. 12 do not look as good as those in Figs. 8 and 10, it
perhaps more remarkable in light of the scarce information
used to obtain them.

B. Thermorheological complexity

In order to simulate the impact of thermorheological com-
plexity on the inferred cDRS, we re-analyzed the PS data at
different temperatures in a different order. Instead of per-
forming TTS to obtain the superposed plots and shift factors

FIG. 11. The consensus DRS obtained using the full (purple dots) and
partial (black circles) PS LVE datasets. The timescales probed by the LMFs
for the full and partial datasets used to infer the DRS are shown at the top
(purple), and bottom, respectively. Dashed, solid, and dotted lines show the
reliable intervals spanned by SAOS, stress relaxation, and creep tests,
respectively.
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shown in Fig. 2 before inferring the cDRS, we independently
considered the raw LMFs obtained at the five different tem-
peratures between 130 and 190 �C. The timescales spanned
by the LMFs at different temperatures are depicted in the top
panel of Fig. 5(a). Lower temperatures explore shorter time-
scales, while higher temperatures speed up dynamics, and
allow us to probe longer timescales. At a particular tempera-
ture T , all the three LMFs (G(t), J(t), and G*(ω)) were used
to obtain the cDRS H*

n (T) at that temperature. These H*
n (T)

are shown in Fig. 13. These DRS are shifted using the shift
factors shown in Fig. 2(d), so that they can be easily com-
pared with each other, and the original cDRS that used super-
posed data.

We observe three features:

(i) The core of the cDRS inferred at different temperatures
coincides with the core of the original cDRS, as
expected. This provides some confidence that H*

n (T) can
be reliably extracted from datasets that span a smaller
window of timescales. This bodes well for applying this
technique to thermorheologically complex materials.

(ii) However, the modes at the ends of the cDRS inferred at
different temperatures are characterized by large uncer-
tainty. This uncertainty in the DRS modes is induced by
finite-size effects. The slow relaxation modes in H*

n (T)
for T = 130 and 160 �C are particularly noisy and unre-
liable. A practical implication of this observation is that
for materials that obey TTS, it is better to perform TTS
before assimilating different LMFs.

(iii) For most temperatures, the fastest relaxation mode in
H*

n (T) seems to lie above the black line. This anomalous
upturn in the DRS is a well-understood phenomenon. It
arises because the first mode in H*

n (T) at a particular
temperature attempts to capture the (attenuated) effect of
all the modes in the full cDRS (black line) correspond-
ing to faster timescales; i.e., those that lie to its left.

To summarize, the proposed method can be applied to all
materials regardless of whether they obey TTS. However, for
materials that obey TTS, it is better to superpose the LMFs
before inferring the cDRS.

V. SUMMARY AND CONCLUSIONS

We proposed a computational method for assimilation of
different LVE measurements by inferring a common DRS.
This simultaneously meets the goals of data fusion, which
extends or fills gaps in the dynamic range of timescales
probed, and data validation, which automatically tests the
consistency of the LMFs with the convolution and KKRs.
We demonstrated the effectiveness of this protocol perform-
ing experiments and analyzing the LMFs on two different
polymer melt systems (PS and P4MS).

The proposed method proceeds in two stages. In the first
stage, the LMFs are analyzed independently to infer the
respective iDRS. This operation used three open-source pro-
grams: we used PYRESPECT to infer iDRS from G(t) and
G*(ω), while we used PYJT to first obtain the discrete retarda-
tion spectrum from J(t) and then used PSI to convert this to
a DRS. At the end of the first stage, we heuristically com-
bined these independent DRS into an initial guess for the
common DRS. In the second stage, we used nonlinear least
squares regression to refine this initial guess. The cDRS

FIG. 12. Fits to the partial PS LVE data with nonoverlapping LMF timescales. Only the (partial) data between the dashed blue lines was used to infer the
cDRS shown in Fig. 11.

FIG. 13. Best-fit consensus DRS for PS obtained using only data at a partic-
ular temperature shifted to Tref = 160 �C are shown by lines of different
colors. The solid black line is the cDRS previously shown in Fig. 7 that used
superposed data.
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inferred from both datasets fits experimental observations
remarkably well. For the P4MS dataset, the analysis suggests
the possibility of a high-molecular weight tail that prevents
G*(ω) from becoming terminal.

We also investigated the applicability of the method to
data in which the timescales probed by the LMFs are non-
overlapping and to thermorheologically complex materials.
The method works as expected, although the quality of the
inferred cDRS deteriorate because information is suppressed.
Nevertheless, we clearly see the merits of data fusion and
transfer learning for nonoverlapping LMFs and the applica-
bility of the method to thermorheologically complex materi-
als where the range of timescales probed typically spans only
4–6 decades.

SUPPLEMENTARY MATERIAL

See the supplementary material for plots of the relative
error between the experimental and estimated LMFs corre-
sponding to Fig. 8.
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