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Keywords: Nonlinear deformations of a two-dimensional gas bubble are investigated in the framework of a Hamiltonian
Dirichlet-Neumann operator formulation involving surface variables alone. The Dirichlet-Neumann operator is introduced to accomplish
Gas bubbles

this dimensional reduction and is expressed via a Taylor series expansion. A recursion formula is derived to
determine explicitly each term in this Taylor series up to an arbitrary order of nonlinearity. Both analytical
and numerical strategies are proposed to deal with this nonlinear free-boundary problem under forced or
freely oscillating conditions. Simplified models are established in various approximate regimes, including a
Rayleigh-Plesset equation for the time evolution of a purely circular pulsating bubble, and a second-order
Stokes wave solution for weakly nonlinear shape oscillations that rotate steadily on the bubble surface. In
addition, a numerical scheme is developed to simulate the full governing equations, by exploiting the efficient
and accurate treatment of the Dirichlet-Neumann operator via the fast Fourier transform. Extensive tests are
conducted to assess the numerical convergence of this operator as a function of various parameters. The
performance of this direct solver is illustrated by applying it to the simulation of cycles of compression—
dilatation for a purely circular bubble under uniform forcing, and to the computation of freely evolving shape
distortions represented by steadily rotating waves and time-periodic standing waves. The former solutions
are validated against predictions by the Rayleigh—Plesset model, while the latter solutions are compared to
laboratory measurements in the case of mode-2 standing waves.

Hamiltonian systems
Pseudo-spectral method
Rayleigh-Plesset equation

1. Introduction

Gas bubble dynamics has been the subject of intensive research
in recent decades due to its prominent role in a number of physical
phenomena. For example, bubble formation during gas entrainment
into water by breaking waves produces sound over large distances
which contributes to ambient noise in the ocean. Oscillations of bubble
volume may lead to collapse and generate shock waves with damaging
effects on the submerged machinery in cavitation problems. Large
distortions of bubble shape may lead to break-up and contribute to
increasing bubble population in the surrounding fluid. Related phenom-
ena such as sonoluminescence (Brenner et al., 2002), and applications
involving the ultrasonic excitation of microbubbles for medical imag-
ing (Lindner, 2004) or the implosion of deuterium-tritium capsules for
inertial confinement fusion (Hurricane et al., 2014), have drawn a lot
of attention in recent years. We are aware of a similar large literature
on the dynamics of fluid droplets, which is closely related to the present
subject, but for convenience we will restrict the following introduction
to gas bubbles.

In theoretical studies of cavitation for a single bubble, a common
approach relies on the Rayleigh-Plesset (RP) model which is a second-
order nonlinear ordinary differential equation (ODE) describing the
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time evolution of the bubble radius under the influence of surface
tension, viscosity and an external pressure field (Plesset and Prosperetti,
1977). In general, the latter is meant to represent a source of distur-
bances from the surrounding environment (e.g. internal variations of
the fluid flow, perturbations due to atmospheric pressure or waves at
the sea surface, noise generated by submerged machinery or by other
bubbles). The resulting oscillations of the bubble radius are usually
referred to as radial or volume oscillations. The RP model can be
derived from the incompressible Navier-Stokes equations by assuming
spherical symmetry (i.e. angular invariance) with appropriate boundary
conditions. Its simple closed form as compared to the full Navier-Stokes
equations makes it well suited for both mathematical analysis and nu-
merical simulation. In particular, bifurcation theory for nonlinear ODEs
has been successfully applied to characterizing the rich behavior of
solutions under external forcing. Reviews on this model with a detailed
discussion on its properties, predictions and extensions (incorporating
e.g. compressible or thermal effects) can be found in Feng and Leal
(1997), Plesset and Prosperetti (1977) and Prosperetti (2017).

For radial pulsations of sufficiently large amplitude, distortions of
the bubble shape (with angular variation) tend to develop, induced
by parametric instability as reported in experimental observations.
Investigation of these shape oscillations has also produced an abundant
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literature, with earlier mathematical results focusing on the linear case
for small distortions (Plesset and Prosperetti, 1977) or the weakly non-
linear case without radial motion (Tsamopoulos and Brown, 1983). The
problem of bubble dynamics with a nontrivial geometry is significantly
more difficult to analyze than the RP framework, and the vast majority
of theoretical studies have considered three-dimensional axisymmetric
bubbles in potential flow, meaning that their shape is assumed to be
invariant with respect to the azimuthal angle in spherical coordinates.
Seeking a weakly nonlinear solution in the form of an asymptotic series
for small- to moderate-amplitude distortions and employing the method
of multiple scales, a hierarchy of inhomogeneous linear equations can
be established to determine each order of approximation as a func-
tion of previous orders. Then, by expanding each order in terms of
Legendre polynomials relative to the inclination angle (owing to the
axisymmetry) and by exploiting their orthogonality property, explicit
expressions can be obtained for the shape modes (i.e. the coefficients
in factor of the Legendre polynomials) at any order in the time-periodic
setting. These perturbation calculations are particularly tedious because
the inhomogeneous equations become increasingly complicated with
the level of approximation, and for this reason, they have usually been
restricted to a few leading orders.

In earlier work, Tsamopoulos and Brown (1983) derived such an
asymptotic solution up to second order in wave amplitude for the
first four shape modes in the freely oscillating regime (without radial
motion or external forcing). Their analysis reveals the natural wave
frequencies at first order (i.e. in the linear approximation) as well
as effects from nonlinear wave interactions at higher order. More
intriguing phenomena can occur if both volume and shape modes are
coupled together, especially under resonant or near-resonant condi-
tions, with one or more shape modes being excited. On one hand,
radial oscillations driven by an external acoustic field can trigger
shape distortions via parametric instability. This stability problem for a
pulsating spherical bubble has been extensively investigated at lowest
order in the asymptotic procedure, where the volume mode typically
obeys the RP equation while the distortion modes satisfy a Mathieu-
type equation with non-autonomous coefficients depending on the
radial motion (Brenner et al., 2002; Plesset and Prosperetti, 1977).
Exponential growth is predicted for this instability at the linear level,
but the inclusion of higher-order nonlinear corrections has been found
to promote its saturation (Guédra and Inserra, 2018; Harkin et al.,
2013). On the other hand, second-order interactions among shape
modes can transfer energy to the volume mode, potentially leading to
a monopole emission of sound (Longuet-Higgins, 1989) or an erratic
motion of the bubble (Benjamin and Ellis, 1990; Doinikov, 2004).

Aside from theoretical results based on asymptotic solutions or
reduced models, there is also a large literature on direct numerical
simulations of bubble dynamics, owing to advances in computer power
and numerical methods over the last few decades. Typically solving the
Navier-Stokes equations and using interface reconstruction techniques
on Cartesian grids, these studies have considered a variety of config-
urations involving multiple bubbles and complex flow conditions or
complex surrounding domains, e.g. Bumann et al. (2023), Esmaeeli
and Tryggvason (1999), Fuster and Popinet (2018), Garoosi et al.
(2022) and Hua and Lou (2007) to cite a few references. While such
computations have produced impressive results, being able to handle
extreme situations such as bubble merging or break-up, they may not
be the best option when it comes to accurately simulating shape oscilla-
tions of a bubble because the computed solution is particularly prone to
numerical diffusion. Moreover, their computational cost is usually high
because they require solving the governing equations over the entire
physical domain. If advective inertial effects are assumed to be small
compared to viscous effects, then the Navier—Stokes equations can be
simplified to those for Stokes flow and boundary integral methods have
been developed for their simulation, e.g. in view of medical applica-
tions to microbubbles for drug delivery in blood flow (Guckenberger
and Gekle, 2018). However, the flow linearity associated with this
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approach makes it inadequate for the description of nonlinear bubble
deformations.

Closer to the present problem, direct numerical simulations based
on nonlinear potential flow theory have also been performed via bound-
ary integral and conformal mapping methods (Li et al., 2021; Mec-
Dougald and Leal, 1999b; Pozrikidis, 2004; Tong, 1997; Wang and
Blake, 2010; Zhang and Liu, 2015). These exploit coordinate transfor-
mations that are motivated by complex analysis or by the bubble geom-
etry, and they only involve dynamical variables representing the bubble
surface. Both methods can resolve strong shape distortions (without
change in topology), with boundary integral techniques being more
adaptable to various flow configurations, while the conformal mapping
approach is restricted to the two-dimensional setting. In particular,
the latter method enables the exact derivation of steady solutions or
the time-dependent computation of rotating and standing waves for
nonlinear oscillations on a bubble surface, similar to Crapper’s solutions
for the capillary water wave problem (Crowdy, 1999; Dyachenko, 2021;
Wegmann and Crowdy, 2000). Using a series expansion in Legendre
polynomials without assuming small amplitudes, McDougald and Leal
(1999a) solved numerically the nonlinear system of ordinary differen-
tial equations for the radial and shape modes of a three-dimensional
axisymmetric bubble. However, the computational cost was high and
these authors only examined the interaction of a few leading modes.

In this paper, we present a combination of mathematical and nu-
merical results on the surface dynamics of a gas bubble immersed in a
two-dimensional liquid of infinite extent. Volume and shape oscillations
of the bubble are considered under forced or unforced conditions by
a far-field pressure. The starting point is the Hamiltonian formulation
for nonlinear potential flow around a deformable bubble under the
influence of surface tension without gravity, as proposed by Benjamin
(1987). The corresponding conjugate variables turn out to be natural
choices of surface quantities in Eulerian coordinates, thus allowing for
dimensional reduction of this free-boundary problem. In this theoretical
framework, our new contributions include:

1. Detailed restatement of this Hamiltonian formulation by intro-
ducing the Dirichlet-Neumann operator (DNO) to express the
full governing equations as a closed system in terms of surface
variables alone. In doing so, the connection between these gov-
erning equations and the conserved Hamiltonian is also clarified.
Specifics of this two-dimensional problem were not treated by
Benjamin (1987).

2. Taylor series representation of the DNO associated with the
Laplace problem in polar coordinates. Each term in this Taylor
series is determined explicitly by a recursion formula involving
the bubble deformations relative to a quiescent circular state.

3. Analytical calculation of a second-order Stokes wave solution
for steadily rotating shape oscillations in the weakly nonlin-
ear regime, without volume change. Asymptotic expressions are
obtained for the surface displacement, velocity potential and
angular wave speed.

4. Derivation of a two-dimensional inviscid version of the RP equa-
tion in the purely circular geometry. Its independent Hamilto-
nian structure and linear dispersion relation for radial pulsations
driven by a uniform pressure field are also established.

5. Development of an accurate and efficient numerical scheme for
the direct simulation of nonlinear bubble deformations, coupling
shape oscillations and radial pulsations together. It is applicable
to surface distortions of moderate steepness, nonetheless the
computations can be performed up to an arbitrary order of
nonlinearity with an arbitrary number of shape modes in an
automatic manner via the fast Fourier transform.

6. Extensive tests to examine the numerical convergence of the
DNO. Validation against predictions by the RP equation is also
provided in the purely circular case under uniform pressure
forcing.
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7. Computations of nonlinear shape oscillations represented by
steadily rotating waves and time-periodic standing waves on the
bubble surface in the unforced regime without volume change.
For the latter solutions, comparison with existing laboratory
measurements is presented on the frequency of mode-2 oscilla-
tions as a function of the bubble’s maximum aspect ratio.

While the DNO has been a common tool in the formulation, analysis
and simulation of the water wave problem (Craig et al., 2021; Craig
and Sulem, 1993; Guyenne, 2019; Nicholls and Reitich, 2001; Xu and
Guyenne, 2009), its applications have focused mostly on cases where
the reference geometry is rectangular with Cartesian coordinates. We
are only aware of a few exceptions. de la Llave and Panayotaros
(1996) considered nonlinear gravity waves on the surface of a sphere
and derived a series expansion for this operator in terms of spherical
coordinates. Their study was strictly mathematical and did not produce
any numerical result. Guyenne and Parau (2016) adopted a similar
approach in the axisymmetric cylindrical setting to compute solitary
waves on the surface of a ferrofluid jet. This formalism has also been
applied to scattering problems in acoustics and electromagnetics with
non-Cartesian (e.g. polar or spherical) parameterizations of the irreg-
ular domain (Fang et al., 2007; Nicholls and Nigam, 2004). However,
these investigations have been restricted to linear time-harmonic waves
in the presence of a stationary object with a fixed shape. To our
knowledge, it is the first time here that the DNO is introduced to de-
scribe this nonlinear hydrodynamic problem with a moving boundary
in polar coordinates. Furthermore, unlike all previous applications, the
DNO in this case contains an additional component to allow for radial
pulsations of the bubble (i.e. volume changes such as compression or
dilatation).

While the problem under consideration is two-dimensional in space,
this is not a limitation of the mathematical formulation and numerical
procedure that we advocate to analyze it. The present study contributes
to their development in this idealized situation before tackling the more
general three-dimensional case in the future. This two-dimensional
problem is challenging and interesting in its own right, but has not been
examined much in previous modeling work as opposed to e.g. the three-
dimensional axisymmetric configuration. Indeed, experimental obser-
vations have revealed possible significant differences in bubble dynam-
ics between the two- and three-dimensional geometries, e.g. regarding
the condensation, collapse and sonoluminescence of explosive bub-
bles (Duplat, 2019). Even for the three-dimensional axisymmetric prob-
lem which essentially reduces to a planar analysis, there are qualitative
and quantitative differences as compared to the purely two-dimensional
case. The present results may thus serve as benchmark solutions to test
other mathematical or numerical models in this area. Lastly, under-
standing the dynamics of two-dimensional bubbles may be relevant in
applications to Hele-Shaw flows (Hou et al., 1994) and microfluidics
where the technology is based on small thin devices (e.g. PDMS chips).
Recent research has investigated ways to remove unwanted air bub-
bles from microfluidic systems (He et al., 2021) or, on the contrary,
to exploit their presence for various purposes such as micropumps,
micromixers, microvalves and microactuators (Khoshmanesh et al.,
2015).

The remainder of this paper is organized as follows. In Section 2, we
present the mathematical formulation of this two-dimensional problem
on the nonlinear deformations of a gas bubble, and we elaborate
on its Hamiltonian structure by introducing the DNO to accomplish
the reduction to surface variables. In Section 3, we derive a Taylor
series representation for the DNO with two distinct components to
enable both shape distortions and volume variations of the bubble.
In Section 4, we discuss various analytical approximations including
a second-order Stokes wave solution for steadily rotating shape oscil-
lations and a RP model for purely circular pulsations. In Section 5,
we describe the numerical methods for space discretization and time
integration to solve the full governing equations in Hamiltonian form.
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In Section 6, we show numerical tests on the convergence of the DNO
as well as direct computations of rotating and standing waves on
the bubble surface. For standing waves, a comparison with laboratory
measurements and other theoretical results is provided. Compression—
dilatation cycles under the excitation of a far-field pressure are also
simulated and validated against predictions by the RP model. Finally,
concluding remarks are given in Section 7.

2. Mathematical formulation
2.1. Governing equations

We consider the motion of a single gas bubble immersed in a two-
dimensional liquid (e.g. water) spanning a domain D of infinite extent.
Given the geometry of this problem, we adopt a polar coordinate system
(r, 0) whose origin coincides with the bubble center such that

D=R>*\{0<60<2x,0<r<R+n50,0)},

where R > 0 is the radius of the unperturbed circular bubble and 7(6, r)
denotes the surface perturbation relative to this simple configuration at
any time 7. We disregard any motion of the bubble center and restrict
our attention to its surface dynamics, which implies in particular that
body forces such as gravity or buoyancy are neglected. The exterior
flow is assumed to be incompressible, inviscid and irrotational so that
the fluid velocity is given by u(r, 8, 1) = Vo where the velocity potential

@(r, 0,1) satisfies the Laplace equation
V=0, in D, (€))

and where V = (9,,7719,)T = e,0, +e, 7", denotes the spatial gradient
in polar coordinates, with e, and e, being the associated unit basis
vectors. At the free surface

S={0<0<2x,r=s0,1=R+n0,0},
there are two boundary conditions, namely the kinematic condition
91 = 0,0 — 5> (9gm)(0 ).

and the dynamic (or Bernoulli’s) condition

on S, 2

6,(p:—l|V(p|2+£K+lAp, on S, 3
2 p p
where
2 2 2
7+ 2(0gn)° — s05n
K'=—9 0 s “

(s2+ @)™

denotes the mean curvature at any point on the free surface. Keep in
mind that d,s = 9,7, dys = dyn and similarly for higher derivatives in
(2)-(4). The parameters ¢ and p represent the surface tension and fluid
density respectively. Typical values are 6 =75 dyncm™l and p =1 g
cm~3 for water. Because the bubble interior is not empty, the contri-
bution 4p = p,, — pp in (3) denotes the difference between the fluid
pressure p in the far field and the bubble pressure p exerted by the
internal gas. The competition between these two pressure disturbances
drives the bubble deformations. More details on p,, and pp will be
provided in a subsequent section. Finally, the vanishing condition

|[Vop| -0, as r— +oo, (5)

is imposed in the far field. Note that the boundary conditions in 6 are
naturally periodic in this geometric configuration. The present problem
is nonlocal and nonlinear due to the dependence on S and associated
boundary conditions (2)-(3).

An interesting situation arises in the absence of pressure distur-
bances, i.e. Ap = constant, which may be set to 4p = 0 without loss
of generality through a gauge transformation on the velocity potential
¢ (Craig et al., 2021). If so, this system of equations possesses a number
of invariants of motion, notably the energy

H=/1|v¢|2dA+/5df=1<+P, 6)
D2 sP
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where dA = rdrdd is the elementary area over D and d¢ =

52 + (0pn)?d0 is the elementary arclength along S. The first term K
in (6) is the kinetic part associated with fluid motion, while the second
term P is the potential part associated with surface tension. Other
invariants include the mean surface level

2z
Q0= / sdo, @
0
the mass (or volume)
V= / dA, (8)
D

and the angular momentum (or impulse)

Iz/(rxV(p)dA, ©
D

where r = re, denotes the position vector. It turns out that

+o0 o
I= /(09(()) rdrdf = / <(p| ) rdr =0,
D K 0

by virtue of the periodic boundary conditions in #. Furthermore, be-
cause the fluid mass as defined in (8) is clearly infinite, it may be
substituted by its complement over the bounded area of the gas bubble,
more specifically

2 s 2 1
V=/ / rdrd6’=/ ~s%de, 10)
o Jo 0o 2

which is conserved over time with a finite value and may be used to
check accuracy in numerical simulations (see Section 6.4).

2.2. Hamiltonian formulation

As shown by Benjamin (1987), Egs. (1)-(5) with 4p = 0 can be
re-expressed as a canonical Hamiltonian system

ny _ (0 -1 d,H
2 (0)=0 ) Gm)- an
in terms of the two conjugate variables #(0, ) and

£@0.1) = @(s(0,1),0,1), (12)

the latter being the trace of the velocity potential evaluated at the
free surface S. Note the sign difference in the symplectic matrix of
(11) as compared to the standard canonical form (see e.g. the water
wave problem Zakharov, 1968), which is explained by the fact that
S is the inner boundary of the fluid domain D with respect to the
coordinate system. The Hamiltonian H in (11) coincides with the
energy (6). Because Benjamin (1987) did not specifically cover this two-
dimensional case in polar coordinates, we will elaborate further on it
here. In doing so, we provide a new perspective on this problem by
introducing the Dirichlet-Neumann operator (DNO)

GE = (~L.s™'9ym" - Vo| _ = \/1+520m>(Ve-m)| _ . a3

which is the singular integral operator that takes Dirichlet data ¢ on
S, solves the Laplace equation (1) subject to (5), and returns the
corresponding Neumann data (i.e. the normal fluid velocity on ).
Recalling that (—1,s71dyn)T = —e, + ¢, 571y, the outward unit vector
n normal to S is given by
—15 T
ne LS % _ S (=157 9,mT . a4
VI+5720gm2 /52 + (9pn)?

which points in the opposite r-direction, consistent with the sign dif-
ference in the canonical form (11) as mentioned above. The choice of
definition (13) for the DNO will become more evident in subsequent
calculations. It is a linear operator in ¢ but depends nonlinearly on .
Similar to studies on water waves (Craig and Sulem, 1993; Guyenne,
2017; Guyenne and Nicholls, 2007; Xu and Guyenne, 2009), an ad-
vantage of using the DNO is that the dependence on # and &, which
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are the two conjugate variables, is made more explicit in the equations
of motion (2)-(3) and in the Hamiltonian (6). Indeed, the variable
appears as part of the domain of integration D in the original form (6)
of H, while the variable ¢ does not even appear explicitly there, and so
it is not clear at this stage what the variational derivatives of H with
respect to (17,¢) mean as indicated by (11).

In the following, we will write (11) more explicitly via the DNO.
With the definitions (12) and (13) at hand, we get the identities

0,6 = 0,0 +(OmM©,0)| _ . 9 =90+ @ymQ,0)| _ . (15)

by differentiating (12) and applying the chain rule. Together with

GnE = =0, + 572 0ym0y9)| _ . 16)
from (13), we deduce

0p9| _ = 99 — @gm0, )| _ . a7
and

0,0|_ = ~GE+57 00| _

—GE + 570y [0 ~ @y Q0] | _ -

—GE + 5720y (9pE) — 52O 0, )| _

which implies

1
r=s 14 572(dgn)?
Then substituting (18) back into (15) and (17), we find

) [s72(0gm)(9p) — G()E] . 1s)

R

— _ 69'7 -2 _
%9, = %08~ T I @) — 6]
1
= Tre % + GG, 19)
and
00| _ = ag-0mo.e)|_ .

Gn)é
1+ 572(0pn)?

where we have used the relation
0,1 = 0,0 = 5(0gm0p)| _ = ~Gme,

according to the kinematic condition (2) and the definition (16) of the
DNO. Combining the squares of (18) and (19), i.e.

1 _ _
= ————— |5 0P 000 — 25720y 0y G )
= (1T+5720n)?)

+(Gme)’ |,

=0¢+ [s72(0pm)(048) — Gn)E] (20

0,0

(9y®)*

. m [ @2 + 200160
- + 572(0yn

+Opn? (GE)” |,
yields

L [+ 570 0,

@9+ 0P| = —————
= (14 572(0gm)?)

+(1+5720pm7) (Ge)’]
1

= T @+ )]
(4

Finally, putting all these expressions together in (2)-(3) leads to a
closed system of two equations

on = =G)¢, 2D

1 -2 2 -2 2
0 = —-—-----—7-— 0, 2 0on)(09E)G - (G
4 = T o) 5720002 + 2572 @066 - (Gae)

L% 22)
p
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for n and &, which gives a more explicit form of (11) and is completely
equivalent to the original nonlinear formulation (1)—(5) (with 4p = 0).
Recall that, by definition, the solution of the Laplace equation (1)
subject to the far-field vanishing condition (5) is encoded in the DNO.
We also point out that, in addition to being Hamiltonian, Egs. (21)-(22)
are a lower-dimensional version of (1)-(5) in terms of surface variables
alone. They are thus more appealing for mathematical analysis and
numerical simulation. In this spirit, a numerical model will be proposed
here to solve (21)-(22). Of course, the contribution 4p can be added
to (22) as in (3), but then the Hamiltonian structure would not be
preserved in general.

2.3. Variational derivatives of the Hamiltonian

We now apply Benjamin’s formalism (Benjamin, 1987) together
with the DNO introduced above to show the connection between the
variational derivatives of H in (11) and the lower-dimensional system
(21)—(22) that we just derived. For this purpose, we rewrite the kinetic
part of the Hamiltonian (6) as

1 1
K=/ 5|Vrp|2dA=/ 5V @Ve) - oViglda,
D D

where the last term vanishes due to (1). Then using the divergence
theorem, we obtain

2K :/V~((pV(p)dA:/go(V(p-n)df,
D S

2z
= /(ﬂ(Vc0~n)\/S2+(0gi1)2d9=/ EG(n)E sdb,
S 0

by virtue of (12) and (13). Following Benjamin (1987), a crucial step is
to introduce the weighted element dyu = 1/G/G,,d0 = sdf along some
interval C, where G = r? and G,; = | are respectively the determinant
and first diagonal entry of the metric tensor for polar coordinates,
evaluated on S. The Hamiltonian then reads

- -1 o 2”,/2 2
H—K+P—2/C§G(i1)§d/4+p/o §% + (0gn)- do, (23)

in terms of the DNO and the two conjugate variables (5, £). Given such
a functional, the variation d,H is defined via the Gateaux derivative

d
(@H.0) = ZHu+ )| _. (24)

with respect to the inner product (f,h) = [. fhdu for any functions
u, v in some Hilbert space. From the alternate form (23) of H and the
definition (24) of the variational derivative, we deduce
0:H = 0:K = G(né, (25)
1 [ 2 2 2 2

[ 20,0° + 250006 E ~ (Gune)?]
2(1+ s72(9pn)?) ’ e (Ge)
Eq. (25) for 9;H follows from the self-adjointness of the DNO (Fang
et al., 2007; Nicholls and Nigam, 2004; Nicholls and Reitich, 2001).
Establishing the other identity for d,K is a lengthy calculation but is
closely related to that for the water wave problem. Therefore, we refer
the reader to Craig et al. (2021) for more details.

Regarding the capillary component, we note that J,H can be ex-
pressed alternatively as

9,K = -

2
/(auH)udyzwuH,u):/ 0, H)*vdo,
C 0

which implies that 9,H = s~'(d,H)* where (d,H)* is the variational
derivative (24) with respect to the inner product (f,h) = 02” fhdo.
Applying this idea to the potential part of (23), we find
3+ 2s(09n)2 - szagr]

(s2+ (0971)2)3/2

hence 9, P = s‘l(a,,P)* = ok /p with k as presented in (4). Combining
these results for 9, H = 9, K +9, P together with (25) for 9. H shows the
equivalence between (11) and (21)—(22).

P *
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2.4. Variational derivatives of the momentum

For completeness and reference in a subsequent section, we use
the same formalism to evaluate variational derivatives of the angular
momentum (9) with respect to the surface variables (, £). Similar to H,
we first rewrite I explicitly in terms of these variables as follows

I= / dgpdA = / V(?p)-VOdA = / V. (2pVo)dA,
D D D

by virtue of the identity

V- (rz(pVG) = V(rz(p) -Vo + rz(pVZG,

together with the fact that V26 = 0. The divergence theorem implies

I = /sz(p(VH-n)df:/sz(p(V9~n)\/s2+(09n)2d9,
S S

27
= | opnsdo = / Epmdu, (26)
0 C

via (12) and (14), after recognizing that V6 = (0,r~")T. It is then a
straightforward calculation to show that

0l =0gn. 0,1 =05, @7

based on the definition (24). For 9,1, because Eq. (26) involves d,n and
also depends on 7 through s, an integration by parts in 6 is required to
obtain its expression in (27).

Likewise, we easily see that

0:0=0, 9,0=1. (28)

3. Dirichlet-Neumann operator

The question now is how to calculate the DNO given the boundary
n and Dirichlet data ¢ at any time ¢, in order to solve (21)-(22).
The approach that we advocate here is of boundary perturbation type
and is based on the fact that the DNO is analytic in # under cer-
tain (relatively mild) regularity conditions, as first shown by Coifman
and Meyer (1985). Rigorous proofs of this analyticity property can
be found in Nicholls and Nigam (2004) and Fang et al. (2007) for
the two-dimensional circular and three-dimensional spherical cases,
respectively.

The starting point is the Laplace equation (1) in polar coordinates

65@ + r_ldr(p + r_26§(p =0,
for which we consider two different elementary solutions

@ =Inr, ¢@,= Fhein? (29)

with n € N (non-negative integers). The time dependence is omitted
because the Laplace equation is solved in a frozen domain at each time
t. The first solution ¢, describes bubble motion in the r-direction alone
(i.e. purely circular compression or dilatation) while the second solu-
tion ¢, allows for wave development on the bubble surface (i.e. shape
distortions) in the #-direction. Both phenomena are physically relevant,
hence the importance to examine both solutions. In particular, the
radial motion is inherent to this physical problem (even in the absence
of waves on the bubble surface) owing to surface tension associated
with the bubble curvature.

Note that both ¢, and ¢, satisfy the periodic boundary conditions
in 0 as well as the vanishing condition (5) as r — +oo. This explains
why the option ¢, with n < 0 is ruled out. There is no singularity at
r = 0 for either ¢, or ¢, because this location is outside of the fluid
domain D.

Next we exploit the analyticity property of the DNO by seeking a
Taylor series representation in #, namely

+o0
G =Y, G, (30)
j=0
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about the reference circular geometry n = 0, i.e. »r = R with R being
a constant. By construction, each term Gj in (30) is homogeneous
of degree j in 5 and its action as an operator on any basis function
e"? (associated with Fourier mode or wavenumber n) can be deter-
mined in a recursive manner. This derivation of the DNO relies on
the choice of harmonic function (i.e. solution to the Laplace equation)
and, because ¢; and ¢, are two different harmonic functions, we will
present details for each case separately. We will first consider ¢, which
has both (r, #)-dependences, before inspecting the univariate case with
¢,. Incidentally, we recognize that ¢, should be specified as a real-
valued function (corresponding to a velocity potential). However, its
complex-valued form in (29) is more convenient for the purposes of our
derivation and, because the DNO is a linear operator in ¢&, it is sufficient
to write ¢?. Contributions from its complex conjugate ¢~ would be
redundant.
Substituting (29) and (30) for ¢, into (16) yields

+0o
(X 6,0 R+ my e = [(R+ )71 jal +i(@pm)(R + )2 e
7=0

which implies

In]-1

(f G,m)(1+ %)""'e‘"o A
=0
- (D%)<1 + %)_lnl_zn]einﬁ’

where D = —-id, and the absolute value |n| is employed to enforce
exponent positivity for n € Z (all integers over the full spectrum), as
motivated above. In terms of the binomial expansion

YT (Y oo
(o) -5 () e

with coefficient

cr = (—;) -1y <n+Z— 1) _py Mt 1)(n+2;!---(n+f— b
(31
this equation becomes
v N (1 el N (1N el
(Som)(E(z) o= [E(2)
- (p%) f(%)'fc{;wl—zn] oo

£=0
By inspection, the first term for j = 0 in (30) is given by

Goeinﬂ — Meiné’
which can be viewed as the Fourier symbol of the pseudo-differential
operator
1D|
R
acting on any function that has a Fourier series decomposition in 6.
Recall that, by definition, the Fourier symbol associated with D is n.
For j > 0, collecting terms of the same degree in # leads to

Gy = s (32)

j—1 )
. =t _ .
Gjme" = = X G(g) ¢l
=0

J Jj-1 .
()G () (o) e,

which can also be expressed symbolically as
j-1 .
n 1\~ -ip|
G =-% cm(%) ¢l
=0

J j-1
+R (LY P p - (LY (pL ) P2 p] .
R J R R j—1
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By convention, unless parentheses are specified, any operator acts on
all functions to its right in the same term. Pseudo-differential operators
like D, |D| or C;'D I are also called Fourier multipliers due to their
multiplicative action in the Fourier space (dual to the physical #-space).
In particular, the definition (31) for C." applies directly to Cj_lD ! by
changing # to j and n to | D|. Then recognizing that

(&) o=(2) " (02)o+ (2], =10
together with the property

—|D|— _ D|+1 —|D|— _|D|—
;P = 7P ~2[Pl+ 1 —lc._'?' 2|D|—£C.Jf' 2,
J J j j i j i
for the binomial coefficient, we arrive at

o= [o(3) 4+ (3l

ZG (% )j_fcj-_lgl.

Finally, we invoke the self-adjointness of the DNO to obtain

G(n) = —% [D(LY 2+ (L) 6]

Jj—1 iy
—|D|< n )’
C —= G s
R R ~ j—t R f(rl)

(33)

after reversing the sequence of application for the various operations
in the summation above (Fang et al., 2007; Nicholls and Nigam, 2004;
Nicholls and Reitich, 2001). Note that Gy, C |D| -2 and C_lfI are all
self-adjoint, while D is skew-adjoint. The reason for doing so will be
made more clear when discussing the numerical scheme in a subsequent
section.

We now repeat this calculation by using (29) with ¢,. For this
purpose, we slightly tweak the harmonic function as follows ¢, =
In(R,,/r) where the constant radius R,, is chosen sufficiently large such
that R,, > R. Because ¢, only depends on r, it may be associated with
the zeroth Fourier mode n = 0 in 6. Accordingly, Eq. (16) reduces to

1

+0o R
m inf _ inf
(;)Gj(n)>IPoln<R rl>e" _P0R+nen ,

(g(;j(n))wo [m (%) —ln(l + %)

where P, denotes the projection onto the zeroth mode n = 0, i.e. the
DNO only affects this specific mode here. Then Taylor expanding about
n =0 gives

(ZG(n))[PO [m( > Z( 1)f+1(%> ] .

For j = 0, we readily infer

R,\ .
GyPyIn <T'”> en?

GO HJ)O einO

" = RIPB, (1 " %>_1 oinf |

R—] PO ein9
_ 1
" RIn(R,/R)
which can be written symbolically as
1

GyPp = ———P,

%0~ Rin(R,,/R) °
For j > 0, by identifying terms of the same degree in 7, we get

1 NIRRT
~ RIn(R,, TRy oD (R) ¢

1 - 1)/ N g
+ln(Rm/R); GeBo——7 (E) e

[P() ein0
(€0

G;(nPye™

and thus we can define its action symbolically as

- po (Y
GF = Finr, 7RO DJ(R)
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1 Jj—1 (=1)/=C+1 g NIt

* IR, /B Z;)PO =7 (E) Ge). (35)
after invoking again the self-adjointness property (to reverse the se-
quence of operations in the inner summation). It now makes sense why
R,, > R was introduced in such a way, otherwise we would end up
with a possible logarithmic singularity when R,, = R (or equivalently
when R =1 in some dimensional or dimensionless units for the choice
@, =Inr). The range R,, > R is preferable over 0 < R,, < R because it
is inside the fluid domain D and thus complies with the mathematical
formulation (1)-(5) for the fluid flow. Moreover, in that upper range,
In(R,,/R) is positive and its variation is relatively mild.

Egs. (32)—(33) or (34)-(35) provide recursion formulas to evaluate
the DNO in its series form (30) given 5 and &. Depending on the
physical situation under consideration, each set may be used separately,
i.e. either formulas (32)-(33) or (34)—(35). More generally, they may
be combined by superposition as follows. The zeroth-order operator

(j = 0) takes the form
W, ~@ _ 1Dl 1
Gy =G"+G6" ="+ ——P,,
0=% "% TR T RIn(R,/R) °

from (32) and (34), while the higher-order contributions (j > 0) read

(36)

G;0m =G+ 6P, (37)

with G;l) and 652) determined by (33) and (35) respectively. This
superposition enables the coupling between radial pulsations and shape
distortions. Note in particular how Gél) and G((f) complement each
other in (36) over the full spectrum n € Z, considering that G(()”

|D|/R has a trivial effect on the zeroth mode n = 0, while G(()z) =
R™'P,/In(R,,/R) has a nontrivial effect there. Compared to the water
wave problem in the perturbed rectangular geometry where the DNO
has been commonly involved (Guyenne, 2019), the additional compo-
nent G;z) represents a distinctive new feature of the present formulation
in polar coordinates.

4. Approximate regimes

Several analytical approximations can be made in order to simplify
the full nonlinear problem.

4.1. Linearized problem

We first investigate the linearized problem for small-amplitude
deformations about 5 = 0, relative to the equilibrium state r = R (with
R fixed). As can be deduced from (3), by setting all derivatives to zero,
this equilibrium corresponds to

(o3
S +Ap=0, (38)

in light of the expansion

1 1
K= F(agn +1) +007%).
Eq. (38), also known as the Young-Laplace equation, states that the
pressure jump Ap across the bubble boundary is balanced by the
constant curvature due to surface tension. In this case, Egs. (1)-(5) via

their lower-dimensional form (21)-(22) simplify to
(o2
on=-Gop&, 0= —ngn +n), (39)

with only contributions from up to first order in (, &), which can be
combined as

?n— pichow;n +n) =0, (40)

and similarly for £. Having rotating wave solutions of the form #,& ~
¢i-2" in mind here, it is sufficient to choose G, = G(()” from (32).
Eq. (40) then implies the linear dispersion relation

2_ O 2
Wy = WW(" -D, 41
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between the angular frequency w, and wavenumber . For all n € Z,
we see that w(z) > 0 and thus w, is real. Assuming n, w, > 0, the angular
phase speed can be derived from (41) as

o o(n?—1)
=2 = = 2
©=% T\ R (42)

Dyachenko (2021) obtained the same result using a different mathe-
matical formulation of this problem. The modes n = +1 would corre-
spond to a rigid translation of the bubble as in the three-dimensional
case (Tsamopoulos and Brown, 1983), but this mechanism is ignored
here.

4.2. Second-order Stokes approximation for rotating waves

Extending this linear analysis to the weakly nonlinear regime, we
focus our attention on wave solutions of the form

n@.n=n@), &0.)=£60), O=0-ct, 43

which rotate counter-clockwise at constant angular speed ¢ under static
pressure (38). Egs. (21)-(22) then reduce to the nonlinear system of
ordinary differential equations (ODEs)

0=cn —GmE, (44)
gL Toaem 2 1 B 2
0= e s [ v 257 oz ~ (Gone)'|
o 1
+ ;(K - =) (45)

by the chain rule, where the primes denote differentiation with respect
to O. Similarly, Fourier multipliers with respect to 6 in G() are re-
placed by their counterparts with respect to ©. The change of variables
(43) is equivalent to reformulating this problem in a reference frame
rotating at constant speed c.

Alternatively, from the Hamiltonian viewpoint, such rotating solu-
tions can be interpreted as fixed points of the renormalized Hamiltonian
H=H-cI- 6Q/(pR) where Q (mean surface level) and I (angular
momentum) are also invariants of motion as defined by (7) and (9). In
other words, these solutions satisfy

0 -1\ (o, HY_ (0

10 /)\oi) \o)’
which coincide with (44)-(45). This equivalence can be checked di-
rectly by invoking (25), (27) and (28), modulo the substitution of ©
for 6.

Along the lines of Stokes theory for the water wave problem (Fen-
ton, 1985), we seek (5, &) perturbatively via an asymptotic series

n:&no+£2111 + e, §:s§0+£2§, + e, (46)

together with ¢ = ¢j + €¢; + ---, where the perturbation parameter
e < 1 is a dimensionless measure of the wave amplitude (e.g. the wave
steepness). In their work on analyticity of traveling wave solutions to
Euler’s equations, Nicholls and Reitich (2005) showed that transformed
versions of these expansions are better than asymptotic and converge
strongly in an appropriate function space. Inserting (46) in (44)-(45)
and equating coefficients in factor of the same power in ¢, we find

-
oty — Goéo =0, ¢o&) — W(n{,’ +19) =0,

for (5, &) at first order O(e), which is nothing but the homogeneous
linear system (39) in terms of © with ¢, given by (42). We may take a
general solution of the form

o = agcos(n®), & = —apcoRsin(n®), n>1, 47)

which sets the amplitude and phase of this Stokes wave. As stated in
the previous section, only the contributions (32)-(33) are implemented
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here for the DNO. At second order O(¢2), we obtain the inhomogeneous
linear system

cotly — Go& = —¢y + G (19)éo » (48)
/ 2 " _ ! L7 1 .p 2
o) — E(nl +n) = -y + E[ﬁ o — (Gobo) J
c

1
2 " 2
- p_R3(r,0 + 2oy + 570 ),

for (n;, &) with inhomogeneous terms depending on (1, &). This system
can be merged into the single equation

cG 6G ¢ Gy Gy(np)
I-= 02 n == 02"1 =~ + —— b+ — )
cypR cypR ) c c
Gy p_ 1 on 1 2
-3 ot~ s+ 300
0
o

PR3

1
+ (71(2) + 2nony + 511(’,2)] ,

for #; alone after eliminating &;. Note that

|D|
Gy =,
7R

according to (32)-(33). Substitution of (47) for (5, &) leads to

n n n
G =|D|—-Gy— D—D - =G,
1) = | lR 0 R2 RO

G G 2¢,agn’ azn?
1- j 02 ny - g 02 n = C1907 cos(n@) + —>— cos(2nO)
c; PR ;PR [ R
@
+ = cos(2nO)
5a(2)n30' agno
cos(2n@®) — cos(2n@).
ZC§pR4 cSpR4
(49)

In doing so, we have applied the identities

D cos(n@)\ in sin(n@®) ID| cos(n@)\ _ " cos(nB®)

sin(n®) ) —cos(n®) /)’ sin(n®) ) sin(n®) /’
for n > 0. Because the second-order corrections are supposed to be
bound to the first-order components, we choose the particular form

1y = a; cos(2n0),

as suggested by the right-hand side of (49). Then equating the coef-
ficients in factor of cos(n®) and cos(2n®) implies ¢, = 0 for a; # 0
(nontrivial solutions) and
a3@n® +7n% = 2n—4)
a =
4R(2n2 + 1)

5

respectively. Once 7, is known, ¢, can be determined from (48), namely

a2
Goé| = conf| = Gy ()& = —con <2a1 + ﬁ sin(2n@), (50)

which yields

a2
& =—¢ <a1R + 70) sin(2r0),

as dictated by the right-hand side of (50). In principle, this procedure
can be pursued up to an arbitrary order at the expense that the
equations become increasingly more complicated (involving higher-
order terms G,) as the level of approximation rises. Collecting all these
expressions in (46) given a, and n provides an explicit weakly nonlinear
estimate, accurate up to second order in Stokes theory, for steadily
rotating waves at angular speed c. It may serve as a validation test
for two-dimensional numerical solvers including the present one, when
applied to wave speeds near c,. Numerical illustrations will be shown
in a subsequent section.
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4.3. Rayleigh—Plesset model

The Rayleigh-Plesset (RP) equation and its variants have been
an important model to understand the dynamics of cavitation bub-
bles (Feng and Leal, 1997; Prosperetti, 2017). For a single bubble in
an infinite body of incompressible fluid and under the assumption of
spherical symmetry, a second-order ODE can be derived for the time
evolution of its radius. Because this model has been mostly considered
for three-dimensional spherical applications in the literature, we find
it suitable to present its detailed derivation in the two-dimensional cir-
cular configuration so as to make this paper sufficiently self-contained.
We also restrict ourselves to the inviscid limit, although the RP equation
typically includes a viscous term.

Based on the potential-flow formulation (1)—(5) in the special case
with circular symmetry, we take a harmonic function of the form

R
(,,:Bm<7"’>, Or(p:—g, (51)

as in Section 3, and define the free surface by S = {0 < 0 < 2z, r = s(t)}.
Here we prefer to employ the variable s (full surface deformation)
rather than 5 (surface perturbation relative to r = R) in order to
comply with the typical formulation of the RP equation. The kinematic
boundary condition (2) then simplifies to ds/dt = 0, on S, which
implies that B = —s ds/dt. The dynamic boundary condition (3) reduces
to
1 2 [ 1
0,90 =—=(0,9)" +—+—4p, (52)
2 ps p

where

ds ds\>  d%s R
do=2, dp=- (—) +s m( =2, s.
= ® [ dt Sdﬂ] n( s on

To complete this boundary condition, we need to specify the pressure
jump A4p = p, — pg. The bubble pressure is assumed to obey the static
law

V. 14
m=(ra+2) () 720

for a polytropic process so that it satisfies (38) at equilibrium r = R,
where the circular bubble volume is given by V' = zs? at any time ¢
according to (10) and ¥, = 7 R? denotes its equilibrium value (Longuet-
Higgins, 1989). With all these substitutions, Eq. (52) becomes

2 R 2 R
(s (B +<ﬂ> m(En\_1] 0 | P
dr? s dt s 2 ps p

L) () -0

This two-dimensional version of the RP equation is somewhat different
from its typical three-dimensional counterpart, due to the different
forms of harmonic function between these two geometries.

In three dimensions and in the absence of viscosity, the RP equation
is known to possess a canonical Hamiltonian structure assuming a uni-
form far-field pressure p,, (Feng and Leal, 1997). Such a mathematical
formulation is suitable for a phase-plane stability analysis of solutions
about fixed points when varying the parameter p,, (Ma and Wang,
1962). We now reveal a similar Hamiltonian structure for the two-
dimensional model (53) by following Feng and Leal (1997) with a key
adjustment of their change of variables. If we set

R R
q=1n<—m>, p=—s3E n(—m>, (54)
s dt s

as motivated by (51), then Eq. (53) is equivalent to the system of two
first-order ODEs

dq pe4q
Py 69
dp 2p2etd  pZetd oR,, _
. aRrt Tra t e
1 qRY T 2¢2RL T p
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2 2 2y
pooRm _2 Rm o R —2(1—,
Lo q__< _,__) R (1-na 56
; e ) Pt g R, e (56)
The first equation is simply an identity from the definitions (54) of q
and p. The second equation is an alternate form of (53) in terms of these
auxiliary variables. Moreover, this system can be expressed as
d d
Doon, L-_gn
dt P dt q
which are canonical Hamiltonian equations for the two conjugate
coordinates q and p, associated with the Hamiltonian

p2 €4q O'Rm poo R%n

= + 14 2 M
2q R} p 2p

R2 2y
__m N[ R 200 57
2p(1—y>("°°+R)<Rm> c ©7

All these relations can be verified by direct calculation given (54) and
(57). This Hamiltonian structure for (53) is of interest in its own right
because it is not directly related to the Hamiltonian formulation (11) of
the full system. It is not a straightforward extension of that in the three-
dimensional case due to the presence of the logarithm function In(R,,/s)
in this two-dimensional problem. As a result, the new Hamiltonian
(57) and associated evolution Egs. (55)-(56) exhibit both rational and
exponential dependences on g.

Note that the possible singularity in (57) at y = 1 for an isothermal
process is consistent with the fact that such conditions typically occur
when a system is in contact with an outside thermal reservoir, allowing
e.g. for heat exchange in order to maintain a constant temperature.
Accordingly, energy conservation is not expected in this system. On the
other hand, for a general isentropic process (y # 1) where the condi-
tions are adiabatic and reversible, energy conservation as represented
by (57) is realizable.

The linearized problem for the RP equation (53) about equilibrium
r = R also requires an examination. Substituting s(r) = R+#(z) into (53)
and retaining terms of up to first order in # gives

2
% +Qn=0, (58)
for a harmonic oscillator at frequency

(2 (2
- 2}’(1700‘";)—;
0 pR2In(R,,/R)

if the far-field pressure p_, is assumed to be uniform. This expression for
the linear fundamental frequency of radial oscillations shares similari-
ties with the three-dimensional version (Plesset and Prosperetti, 1977).
Not surprisingly, Egs. (58)-(59) coincide exactly with (40) for y = 0 and
under circular symmetry (i.e. f-invariance) when G, = G(()Z) according
to (34). The fact that .(23 < 0 in this situation (y = 0, R, > R) is
indicative of an instability triggering bubble collapse due to surface

tension in the absence of internal pressure.

(59

5. Numerical methods

We present a numerical scheme to compute the DNO and discretize
(21)—(22) in space and time. We emphasize that, while the DNO is given
by a Taylor series expansion, the full system (21)-(22) is directly solved
for the time evolution problem (as opposed to invoking a reduced
asymptotic model).

5.1. Space discretization

Considering the periodic boundary conditions in 6, we use a pseudo-
spectral method to discretize the DNO and equations of motion (21)-
(22) in space (Canuto et al., 1988). This is a natural choice for the
computation of G(n) because each term in its Taylor series (30) is
evaluated via recursion formulas (36)-(37) involving concatenations
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of Fourier multipliers with powers of n/R. More specifically, both
functions n and ¢ are expressed as truncated Fourier series

. N/2-1 7 5
i) = In einﬂj , 0, = _7’7] ,
<§j> ,,:_z]:\//z <§n> ! N

Applications of spatial derivatives or Fourier multipliers are performed
in the Fourier space, while nonlinear products are calculated in the
physical space on a regular grid of N collocation points. For example,
if we wish to apply the zeroth-order operator G(()l) to a function ¢ in the
physical space, we implement it as follows

Cym— ]| _ et [ Inl2
G, ¢=F <R7’"(§)>—7’ (R§n>-

Similarly, the projection P, in Gﬁz) can be computed as

j=0,...,N—1

Poé =F~! (Eo),

where F (resp. F~!) denotes the direct (resp. inverse) Fourier trans-
form. All operations from the physical to Fourier space and vice versa
are carried out via the fast Fourier transform (FFT).

The Taylor series of the DNO is also truncated to a finite number of
terms

M
G = GM () = Y G;(n). (60)
j=0

for which the choice of truncation order M will be discussed in more
detail in a subsequent section when showing convergence tests. Due to
the analyticity property, a small number of terms would be sufficient
(typically M < 10 < N) to achieve highly accurate results. For this
computation, the adjoint formulas (33) and (35) are more efficient
than the original ones (those before reversing the sequence of inner
operations) because they allow us to save and re-use the G,’s on ¢ as
vectors, without having to re-compute these operators at each order
j when applied to concatenations of Fourier multipliers and powers
of n/R. In this adjoint form, the computational cost for evaluating
(60) can be estimated to be O(M2NInN) via the FFT. This point
highlights another advantage of the present approach where the Taylor
series representation of the DNO together with the recursive calculation
of its constitutive terms avoids setting up and solving a large or
dense matrix system (related to the Laplace problem (1)—(5)), which
contrasts with the classical strategy in other numerical solvers such
as boundary integral methods or volumetric finite-difference/element
methods (Guyenne and Grilli, 2006).

5.2. Time integration

Time integration of (21)-(22) is performed in the Fourier space
so that linear terms can be solved exactly by the integrating factor
technique. To do so, we first split these equations into

ov=_Lv+N®), (61)

for v = (,€)", where the linear part is given by

0 -G\ (n
Lv= @) 0 (5) , (62)

according to (39), and the nonlinear part takes the form N'(v) =

(N1, N>)T with
Ny = —-(Gm-G)e,

1
Ny=o L
2 2(14s20n?)

(572000 + 2572006160 — (G )]

[ 1 2 1
+—[r<+—0 + ]+—A .
p 72 o+ m 4P

The pressure difference 4p is also included in W), to tackle out-of-
equilibrium regimes. The subtraction of —G(()l)g in V; and of —a(agn +
n/(pR?) in N, is meant to compensate for their presence in the linear
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part Lv. Curvature terms are known to cause stiffness in the numerical
simulation of capillarity-dominated flows (Hou et al.,, 1994), hence
treating their linear contributions exactly will help mitigate this issue.

More specifically, we take the Fourier transform of (61) and make
the change of variables

B,(1) = @, (1), (63)
in terms of the integrating factor
Inl
cos(wt) —— sin(wyt)
2,0 =] ,eor) @k (64)
R sin(w?) cos(wyt)
0

where w, is given by (41). This integrating factor is the fundamental
matrix of the linear system

. 0 —N
09, = £,p, = ) (2).
tYn n%n {,LRZ(nz_l) 0 én

associated with the linear part (62). It thus encodes the exact linear
solution of (61). Because w, vanishes at n = {0, =1}, there may be some
indetermination at these modes for either one of the off-diagonal entries
in @,(1), as suggested by (64). Via I’Hopital’s rule, we find

1 0
Dy(1) = <_o'_t 1) s
R2

for n =0, and

1 -L
‘Dil(t) = <0 IR) >

for n = +1.
This leads to a strictly nonlinear system

i, = @, N, [@,(0,)],

for the new variable &,, which is solved numerically in time using the
fourth-order Runge-Kutta method with constant step Ar. The resulting
scheme can be inverted back to ¥, by virtue of (63), yielding

~k+1

v, = d),‘(At)?;l; + %@n(m)(f, +2/+2f3+ f4)s

for the numerical solution at time 7, =1, + A, where

fi = N@h.

= (=) N [2(F) @+ 30)]
1=, (-5) %, [o. (3) (7 50)]
f4 = @, (AN, [@,,(At)(ﬁ’; F A f3)] .

Here we have exploited the fact that @,(r) is a semigroup that satisfies
the properties

&, =@, (-1, B(t+71)=D,OP,(7).

These identities can be verified by direct calculation. Again, in this
time-integration process, the FFT makes it possible to go back and forth
between v and 7, in an efficient manner.

5.3. De-aliasing and filtering

For pseudo-spectral methods applied to nonlinear problems, numer-
ical errors may stem from the aliasing phenomenon (Canuto et al.,
1988). In the present algorithm, aliasing may occur when evaluating
the equations of motion and the DNO with the FFT. The jth-order term
G;(n¢ involves nonlinearities of degree j + 1 as indicated by (33) or
(35), therefore aliasing may be severe for large j. To deal with this
issue, the zero-padding technique is a simple and effective option. Typ-
ically, for a quadratic nonlinearity and given resolution N, this amounts
to doubling the size of the discretized spectra of (1,£) and setting the
Fourier coefficients for the extra modes to zero, consistent with the 2/3
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rule for de-aliasing in this configuration (Canuto et al., 1988). Because
nonlinearities are of polynomial or rational type in (21)-(22) and (30),
we accommodate each nonlinear term by breaking it up into successive
products of two functions and by applying the aforementioned de-
aliasing technique at each multiplicative step. We have successfully
employed such a procedure in other physical settings (Guyenne and
Parau, 2012; Guyenne and Parau, 2016; Xu and Guyenne, 2009) where
nonlinear surface waves were simulated. It comes along with increased
memory storage but this turns out not to be a major concern in the
present two-dimensional case via the FFT.

For shape distortions of appreciable steepness, we have found it
necessary to filter the numerical solution in order to stabilize the
computation so that it can run over a sufficiently long period of time.
Otherwise, spurious high-wavenumber oscillations tend to develop,
eventually leading to the computation breakdown. Possible causes for
this phenomenon include numerical ill-conditioning of the DNO in its
series form (60) (which will be further assessed in a subsequent sec-
tion), or the ill-posed character of the governing equations. A detailed
mathematical analysis on these points is outside the scope of this study.
As a remedy, we apply a hyperviscosity-type filter of the form

n 3
)
to both Fourier coefficients 7, and E,, at each time step, where N /2
is the largest wavenumber resolved by the spatial discretization. Such
a filter has been commonly adopted in numerical simulations of non-
linear fluid flows by spectral methods (Canuto et al., 1988; Hou and
Li, 2007; Hou et al.,, 1994; Guyenne and Nicholls, 2007; Xu and
Guyenne, 2009). Its smooth but steep behavior near n = N/2 en-
sures that only Fourier coefficients at high wavenumbers are affected.
Accordingly, for a sufficiently high resolution, this filtering strategy
should help suppress spurious instabilities while preserving the overall
solution. Combined with zero-padding, it contributes further to control
of aliasing errors.

6. Numerical results

We present numerical results to illustrate the performance of this
numerical model. These include convergence tests on the DNO com-
putation and direct simulations of time-dependent nonlinear solutions.
For the latter, we explore purely circular motions under transient
excitation as well as shape deformations that rotate steadily or oscillate
periodically on the bubble surface.

All variables are non-dimensionalized with respect to the character-
istic length R, mass pR> and time \/pR3/c so that R = 1, p = 1 and
o = 1 in the resulting dimensionless equations. For convenience, we
will use the same notations but it is now understood that values of any
variable or parameter are dimensionless.

6.1. Convergence tests on the DNO

Because we approximate the DNO in terms of a Taylor series as
justified by its analyticity property, it is suitable to assess its numer-
ical convergence which is expected to be exponential with respect to
M for sufficiently smooth deformations 5. This question is especially
relevant considering that such a representation has been shown to be
ill-conditioned numerically in related problems (Guyenne and Parau,
2016; Nicholls and Reitich, 2001; Xu and Guyenne, 2009). Indeed,
the series expansion (60) relies on cancellation of terms to guarantee
convergence but in practice an exact cancellation never happens due to
round-off errors. As indicated by (33), the higher the order j of G i the
stronger the exponentiation power of |D| in such Fourier multipliers
as C~'P!. Therefore, numerical errors can be amplified dramatically
through the recursive process as the order j increases in (60). Needless
to say that this error amplification will contaminate the numerical
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solution during the time integration of (21)—(22), and may precipitate
the accuracy deterioration or promote spurious instabilities.

Here time is frozen and Egs. (61)-(62) are not solved yet. Instead,
we inspect the numerical convergence of (60) by testing this approx-
imation against an exact expression that can be derived based on the
harmonic function ¢, from (29) together with a specific profile of #.
This is the method of manufactured solutions (Burggraf, 1966; Roache,
2002; Roy, 2005). More precisely, using the real-valued form

@, =r"sin(nf), n>0, (65)
and substituting it into the definition (16), we obtain
GPE = ~0,02 + 570 Op02)| _ -

= n(R+n) "2 [(R + 1) sin(nd) + (yn) cos(ne)] . (66)
We perform tests for two different surface profiles
n = ay cos(nd), 67)
and
n=a [04(27[ —0) - %;‘8] , (68)

in combination with (60) (numerical approximation) or (66) (exact
expression) for the DNO. The choice (67) corresponds to a smooth
boundary (C* profile) while (68) represents a rougher boundary (with
finite smoothness) (Nicholls and Reitich, 2001). Both profiles are pre-
scribed in such a way that their mean value is zero. Note also that, as
opposed to (67) which is more symmetric, the profile (68) tends to be
more eccentric to the left, with a more ovate shape, as a, is increased.
The maximum distortion is |||, = a, (at any crest or trough) for (67),
while it is given by ||5|l,, = a,187x%/315 for (68) and is achieved at
0 = = (left side of the bubble). Recalling that the DNO (13) is linear in
& but depends nonlinearly on #, any constant coefficient in (65) would
be superfluous while the amplitudes a,, a, in (67), (68) are expected
to be relevant.

In all our computations, we set the parameter R,, = 1000R so
that R,, > R as mentioned earlier. We have checked that results are
insensitive to the specific value of R,, in this range.

Fig. 1(a) plots the relative L? error

IGM e - G B miélly
NGB mEll,

between (60) and (66) as a function of truncation order M for varying
amplitude a; in the case of a smooth profile (67) with wavenumber
n =2 and resolution N = 256 (i.e. angular grid size 40 = 2z /N = 0.024).
A first observation concerns the convergence with respect to a; which
is demonstrated by the lower error curves for smaller a;, spanning
multiple orders of magnitude. Given a,, exponential convergence seems
to take place over only the first few values of M (as indicated by the
near-linear slope in these semilog plots). Past M ~ 2, the errors quickly
stagnate, though they remain small in general. For large amplitudes,
say a; = 09 (which is comparable to the radius R = 1 of the
unperturbed circular bubble), the errors are large and reach 100%. After
some stagnation, we see a dramatic error growth past some critical
value of M (past M ~ 5 for a; = 0.9). This phenomenon is characteristic
of the numerical ill-conditioning for the DNO computation via its series
form (60), as reported by previous studies on free-surface flows in dif-
ferent geometric configurations (Guyenne, 2017; Guyenne and Pardu,
2016; Nicholls and Reitich, 2001; Xu and Guyenne, 2009). To help
the reader visualize the present geometry, Fig. 1(b) portrays various
possible bubble shapes when varying a,. For a; = 0.9 (with n = 2),
the bubble is so strongly pinched along the central vertical axis that
two lobes are generated. The surface profile 5 is clearly an important
factor influencing the accuracy of the DNO computation, as pointed out
earlier, and this is further illustrated in our next tests.

The fact that convergence promptly stagnates with respect to M
is likely another outcome of this numerical ill-conditioning. A similar

Error = (69)
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phenomenon has been observed in the axisymmetric cylindrical case for
surface deformations of a ferrofluid jet (Guyenne and Pardu, 2016), but
it differs somewhat from results in the rectangular geometry with Carte-
sian coordinates (Guyenne, 2017; Nicholls and Reitich, 2001; Xu and
Guyenne, 2009) where faster (i.e. exponential) convergence is achieved
over several values of M before a sudden deterioration occurs. This
difference may be explained here by the action of binomial-type Fourier
multipliers like Cj_lD I (aside from G,), which are more complicated
than the mere power-type | D}’ in the Cartesian coordinate setting. As
a consequence, the present recursion formula (33) for each G ; contains
more nonlinear terms (without counting contributions from (34)), and
their number increases with j. This promotes stronger amplification of
numerical errors, even at low values of M.

Fig. 2 shows L? errors (69) versus M for varying n (with a; = 0.1,
N = 256) and varying N (with a; = 0.1, n = 2). Here a moderately
large amplitude a; = 0.1 is selected as a compromise so we can expect
small errors while possibly capturing ill-conditioning effects. In fact,
quite large surface steepnesses € = (a;n)/R are examined in Fig. 2(a),
e.g. £ ={0.5,1.0,1.2} for n = {5, 10, 12} respectively. Overall, we discern
similar features to Fig. 1. The higher the steepness of 5 (i.e. the larger
a, or n), the slower the convergence and the sooner it deteriorates
(i.e. the smaller the critical value of M at which a rapid loss of accuracy
occurs). This issue is especially pronounced when increasing N, which
is compatible with a previous statement that the higher the order
j of G g (combined with higher resolution N), the more drastically
Fourier multipliers such as CJ."D I can amplify round-off errors. This
result suggests that prescribing unnecessarily fine resolutions is not
recommended.

From Fig. 3, the same observations can be made on error plots
for the surface profile (68). Because the bubble shape is oval-like in
this case with n being independent of n, we simply set n = 2 in
(66) and skip any convergence test by varying n. As expected, for this
rougher boundary, the numerical issues appear to be more severe when
increasing a, or N. For reference, the maximum distortion associated
with a, = {1076, ..., 107} is |||l = {5x1073,...,5x 10"} respectively,
as depicted in Fig. 3(a). Finally, we illustrate in Fig. 4 the effectiveness
of our de-aliasing procedure for both (67) and (68) by comparing the
corresponding L? errors with those obtained from aliased computa-
tions (without zero-padding). Because aliasing typically arises when
evaluating nonlinear terms and affects the high-wavenumber tail of
the discretized spectrum, not surprisingly it accentuates ill-conditioning
effects at large values of M and is more pronounced for higher surface
steepnesses. Representative cases are displayed in Fig. 4 for (a;,n) =
(0.1,10) and (a,,n) = (5 x 1075,2) with N = 256.

In summary, it may be inferred from these convergence tests that
choosing a value around M = 6 (say, 4 < M < 8) would generally be
a good compromise between accuracy and efficiency for the DNO ap-
proximation. Similar values of M have been successfully implemented
in other physical contexts (Guyenne and Nicholls, 2007; Guyenne and
Parau, 2012; Guyenne and Parau, 2016; Xu and Guyenne, 2009).

6.2. Comparison with the Rayleigh—Plesset equation

In this section, we further assess the performance of our boundary
perturbation approach by comparing time-dependent simulations of
(61)-(62) against predictions from the RP equation (53). For this
purpose, the second-order nonlinear ODE is transformed to a system
of two first-order ODEs

ds _
S=u (70)
dv _ 1 [2<1 (Rm>> 6 P
— = — (v z—-In|{ — -— -
dt sIn(R,,/s) 2 N ps p
1 o\ [ R\¥
e+ 1) (F) ] =

which is integrated numerically in time via the fourth-order Runge-
Kutta scheme as applied to (61)-(62). Egs. (70)—(71) thus lead to a



P. Guyenne

L[ O ———— T
a; =101
—&—a; =107 kN
——a =107 T
——a,=10" L *
100+ —F
o
o
-
&
‘ —
10°
° o
10710
0 2 4 6 8 10 12
M
(a)

International Journal of Multiphase Flow 173 (2024) 104749

90

——a; =09
a =05 [120 2 60
——a; =03
— a1 =01 1.5
—a; =0.01

210

240

270

(b)

Fig. 1. (a) Relative L? error on the DNO vs. truncation order M for 5 given by (67). (b) Surface profile s in polar coordinates (r,). Angles are indicated in degrees. In each

panel, graphs are shown for varying amplitude @, with n=2 and N = 256.
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Fig. 3. Relative L? error on the DNO vs. truncation order M for 5 given by (68). Graphs are shown for (a) varying amplitude a, (with n =2, N =256) and (b) varying resolution

N (with a, =5% 1075, n=2).

direct numerical solver for this nonlinear problem, modulo the restric-
tion to purely circular motions. Accordingly, the present tests may
be viewed as complementary to those from the previous section in
the sense that the focus now is on (34)—(35) for G® as it is the
relevant contribution to the DNO. Note that Egs. (70)-(71) are com-
pletely equivalent to their Hamiltonian counterparts (55)—(56) but were
preferred for our simulations because they directly yield the variable

12

s as an output. For the sake of comparison, the same time step At
is used when solving (61)-(62) and (70)-(71). The same choice of
non-dimensionalization is adopted for both systems of equations.

In the following illustrative experiments, we set y = 1.4 under isen-
tropic conditions (Doinikov, 2004; Longuet-Higgins, 1989) and assume
a uniform far-field pressure, say p,, = 1 in dimensionless units, for
simplicity. Again, the parameter R,, = 1000R is prescribed sufficiently
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Fig. 4. Relative L? error on the DNO vs. truncation order M for 7 given by (a) profile (67) (with a; =0.1, n=10) and (b) profile (68) (with a, =5x 107, n=2). In each panel,
the aliased and de-aliased results are compared. In all these cases, the resolution is N = 256.

large to avoid any possible logarithmic singularity in (71). Fig. 5 shows
the relative error

R +n(0,1) — s(t)

s(0)

between 7 from (61)-(62) and s from (70)-(71), as a function of time
t. Due to angular invariance in this case, data on 5 from (61)-(62) can
be taken at any arbitrary angle 6, say 6 = 0, when evaluating (72). For
both systems of equations, the same initial conditions are specified at
t = 0, namely

(1(6,0),£(8,0)) = (a3,0),

with 47 = 0.01 to integrate in time. Errors (72) are plotted in Fig. 5(a)
for varying a; (with M = 8, N = 256) and in Fig. 5(b) for varying
M (with a3 = 03, N 256). Convergence with respect to surface
amplitude (here the initial amplitude ;) or truncation order M is
confirmed by these results, i.e. the lower a; or the larger M, the smaller
the error at any time 7. This contrasts with the quick stagnation of
errors when increasing M, as reported in Section 6.1 for §-dependent
surface profiles. Along the lines of our previous comment on this
point, the better outcome here may be attributed to G) being inactive
and the absence of such Fourier multipliers as C]TID I from (35), thus
making G® better conditioned for purely circular applications. Even
in the large-deflection regime a; = 1 (being on the order of R), the
errors remain below 100%. Because Egs. (61)—(62) are tested against
the RP system (70)-(71) which is itself solved numerically (and thus
is also affected by truncation or round-off errors, though to a lesser
extent), error fluctuations over time are expected as displayed in Fig. 5.
Beside the low levels of these instantaneous errors, their overall stable
behavior over time attests further to the accuracy and effectiveness
of our boundary perturbation approach. The computations were not
found to be particularly sensitive to N in this regular #-independent
geometry, so convergence tests with varying N are not shown here for
convenience.

Graphs of the bubble radii predicted by these two models during
the time evolution are compared in Fig. 6 for a; = 0.3 and 1.0 (with
M =38, N 256). The competition between p,, and pp induces a
cycle of compression—dilatation around the equilibrium state r = R,
with surface deflections of maximum amplitude a; (as determined by
the initial amplitude) occurring at the dilatation peaks. This cycle
of compression—dilatation is asymmetric in the sense that the surface
amplitude (relative to r R) at the compression dips is slightly
smaller than a;. Moreover, the dynamics during compression seems to
be faster than that during dilatation, as suggested by the steeper dips
and smoother peaks along the curves of Fig. 6. A small discrepancy
between these two estimated radii is discernible around ¢ = 14 (near a
compression dip) for a; = 1.0, which is consistent with the larger error

Error = R (72)

(5(0),0(0)) = (R+a3,0), (73)
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as revealed by Fig. 5(a) in this case. The cyclic period is graphically
inferred to be r = 8.0 and 9.8 for a; = 0.3 and 1.0 respectively, which is
comparable to the linear fundamental period 7, = 27/, = 7.7 of radial
oscillations, with £, given by (59) for y = 1.4 and p,, = 1 based on
the RP equation (53). The slight deviation is attributable to nonlinear
effects, considering that r is found to increase with a;. If the far-field
pressure p was amplified, the bubble dynamics would retain similar
features but the cyclic period would be shorter, in accordance with the
dependence of (59) on p,. We point out that filtering was not used in
any of these simulations, for either (61)-(62) or (70)-(71).

The canonical conjugate variables (q,p) for the RP equation (53)
can be reconstructed from the simulated variables (s, v) according to
(54), so that the associated Hamiltonian (57) can be evaluated. The
conservation of this Hamiltonian H is confirmed by Fig. 7 which plots
the time evolution of the error
H—-H,

0
relative to the initial value H,, for a; = 0.3 and 1.0. Recall that this
Hamiltonian structure is specific to the RP equation (53) and is not a
direct consequence of the Hamiltonian property (11) exhibited by the
full system. In particular, H remains a conserved quantity under the
action of Ap (with uniform p_ ) as given by (57), while the original
Hamiltonian formulation (11) with (23) does not extend to such a
forced regime.

For computations in this purely circular setting, the RP model (70)—
(71) is clearly a better option than (61)—(62), owing to its simpler and
more explicit form. Nevertheless, this discussion helps validate (61)—
(62) as a viable alternative to the RP equation, highlighting the role
of G;z) which can be readily incorporated into the DNO (36)—(37) for
the general problem (1)-(5), to produce a nonlinear model capable of
describing a variety of bubble shapes.

Error =

5

6.3. Simulation of nonlinear rotating waves

Further examining the range of applicability of this boundary per-
turbation approach, we now turn our attention to the simulation of
nonlinear waves rotating steadily on the bubble surface. Unlike the
previous case, these shape distortions exhibit angular dependence ac-
cording to (43). Egs. (44)—(45) constitute a boundary value problem
with periodic boundary conditions in © € [0, 2z). Via a pseudo-spectral
method as outlined in Section 5.1, 2N discrete equations arise for
2N unknowns (1;,¢;). They are solved iteratively after specifying ¢
along with the initial guess (46) based on second-order Stokes theory.
Through this initial guess, the parameter n selects the wavenumber of
the nonlinear wave. The initial amplitude a, may be tuned depending
on the choice of ¢ to help find the fixed-point solution. This task is
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Fig. 6. Bubble radius s vs. time ¢ for far-field pressure p,, = 1 and initial conditions given by (73). Graphs are shown for (a) a; = 0.3 and (b) a; = 1.0 (with M =8, N = 256). For
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accomplished by using the Matlab routine fsolve, which is essentially a
quasi-Newton method with a numerical approximation of the Jacobian
matrix. We have successfully employed this Matlab routine in previous
work (Guyenne, 2006; Guyenne and Parau, 2014; Xu and Guyenne,
2022) to obtain numerical predictions from nonlinear algebraic or
differential equations. Given a value of n > 1, we look here for a
nonlinear wave rotating at speed ¢ > ¢,. By analogy with the water
wave problem (Fenton, 1985), an asymptotic behavior of the form

c:c0(1+%£2)zc0[1+%( )2],

may be anticipated according to Stokes theory up to third order (recall
that the second-order contribution ¢; = 0 as shown in Section 4.2),
which offers the following estimate

R c
ay~ —4/2| ——-1]),
0" n (Co >

for a, in terms of ¢ and n, to be prescribed in the initial guess (46).
Fig. 8 depicts the bubble shapes produced by such rotating waves
for wavenumber »n = 3 and angular speeds ¢ = {1.64,1.70,1.75,1.86}. In
this case, the linear phase speed is ¢, = 1.63. These nonlinear solutions
were computed using N =256 and M = 4 or 6 for (60) with (32)—(33).
Indeed, for wave speeds higher than ¢ = 1.70, it was necessary to specify
a lower truncation order of the DNO (M = 4 rather than M = 6) in
order to ensure convergence of the fixed-point iterative scheme. This
issue is likely related to ill-conditioning of the DNO computation as

agn
R
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Fig. 8. Bubble shape s in polar coordinates (r, ©) for steadily rotating waves with n =3 and N = 256. The different panels correspond to angular speeds (a) ¢ = 1.64, (b) ¢ = 1.70,

(¢) ¢ =1.75, (d) ¢ = 1.86. As a reference, the red circle represents the unperturbed bubble of radius R = 1. Angles are indicated in degrees.
to color in this figure legend, the reader is referred to the web version of this article.)

discussed in Section 6.1. For high wave speeds, we also needed to
include intermediate steps (with intermediate wave speeds) as part of
the iterative process going from the initial ¢, to the target ¢, where the
initial guess at each step is given by the converged solution from the
previous step. This strategy improves the convergence as compared to
a single fsolve search from ¢, to c. We can discern in Fig. 8 that the
higher ¢, the larger the wave amplitude and steepness (with steeper
crests vs. smoother troughs). More quantitatively, the amplitude of
steadily rotating waves can be evaluated as a = |#,,x — min|/2- For ¢ =
{1.64,1.70,1.75,1.86}, we find a = {0.02,0.07,0.09,0.12} respectively,
hence wave steepness ¢ = (an)/R = {0.07,0.22,0.28,0.37} which
is a measure of the nonlinearity strength. These features are clearly
revealed by Fig. 10(a) where the bubble’s surface deformations are
plotted versus O in a rectangular format. These graphs also indicate
that the wave steepening is accompanied by a decrease of mean surface
level Q, hence a decrease of bubble volume V.

Similar observations can be made when inspecting computations
of mode-4 (n = 4) rotating waves as portrayed in Figs. 9 and 10(b).
For ¢ = {1.95,2.00,2.10,2.29} > ¢, = 1.93 in this setting, we find a =
{0.02,0.04,0.07,0.09} and £ = {0.09,0.19,0.29,0.39} respectively. While
the bubble under » = 3 wave excitation tends to exhibit a triangular-like
shape as ¢ increases, the limiting geometry for n = 4 is more square-
like. In either case, we were not able to achieve convergence for wave
speeds higher than those considered in Fig. 10.
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We further check the accuracy of our fixed-point iterative algorithm
for (44)-(45) by prescribing its converged solutions as initial conditions
for (61)-(62) and by solving these evolution equations via the time
integration method described in Section 5.2. Under the same conditions
as in Section 4.2, their implementation is restricted to (32)-(33) for
G(n) and to (38) for Ap. The steady character of these rotating waves
is confirmed by Fig. 11 where snapshots of the bubble deformation are
shown at 7 = 0, 20 in the two highly nonlinear regimes ¢ = 1.86 (n = 3)
and ¢ = 2.29 (n = 4). For both solutions, the surface profiles at r = 0 and
t = 20 look indistinguishable, modulo a phase shift due to the uniform
wave propagation. While these snapshots happen to be located close
together in either plot, it should be kept in mind that the wave has
actually rotated multiple times across the computational domain over
the span of the simulation, because of the periodic boundary conditions.
The associated numerical parameters are At = 0.00l, M = 4 and
N = 256. For such high wave speeds, filtering was required to run the
time-dependent computations as explained earlier (see Section 5.3).

A more quantitative assessment of these rotating wave solutions is
provided in Fig. 12 which plots the relative errors

H-H, 0-0, V-V
H, Q )
on energy H, mean surface level O and volume V versus time ¢ for
186 (n = 3) and ¢ = 229 (n = 4) as presented by Fig. 11.
The quantities H,, Q,, V; denote the corresponding initial values at

5 5 5

Error = '

c =
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Fig. 9. Bubble shape s in polar coordinates (r, @) for steadily rotating waves with n =4 and N = 256. The different panels correspond to angular speeds (a) ¢ = 1.95, (b) ¢ = 2.00,

(¢) ¢ =2.10, (d) ¢ =2.29. As a reference, the red circle represents the unperturbed bubble of radius R = 1. Angles are indicated in degrees.

to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Bubble deformation s vs. angle © for steadily rotating waves with (a) n =3 and (b) n = 4. In each panel, graphs are shown for varying speed ¢ with N = 256.

t = 0. The trapezoidal rule was employed to evaluate integrals in the
definitions (7), (10), (23) of these invariants. Overall, the minuscule
values of these errors (in particular near machine precision for Q and
V) as well as their stable evolution over time confirms that H, Q, V
are very well conserved numerically and that steadily rotating waves
are simulated accurately. The computation of H being more prone to
inaccuracy than Q or V is likely due to its more complicated expression
(23) which directly involves the DNO approximation. Moreover, the
slightly larger errors for ¢ = 2.29 (n = 4, ¢ = 0.39) as compared to
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¢ =1.86 (n = 3, £ = 0.37) are expected considering that our boundary
perturbation approach is better suited for milder bubble deformations.

6.4. Simulation of nonlinear standing waves

Another class of interesting nonlinear solutions is that of time-
periodic standing waves. Such solutions have been much investigated
in the three-dimensional axisymmetric configuration, especially by
means of analytical perturbation calculations (Tsamopoulos and Brown,
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Fig. 11. Bubble deformation s vs. angle 0 at r = 0 (red line) and 7 = 20 (blue line) during the propagation of steadily rotating waves for (a) ¢ =1.86, n=3 and (b) ¢ =2.29, n=4

(with M =4, N =256).
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Fig. 12. Relative errors on H, Q, V vs. time ¢ during the propagation of steadily rotating waves for (a) ¢ = 1.86, n=3 and (b) ¢ =229, n =4 (with M =4, N =256).

1983). Their direct numerical computation is particularly challenging
in the nonlinear regime, which may be tackled by solving the associated
constrained problem via an adjoint method, and thus is envisioned
for future work. Alternatively, a standing wave can be produced by
superimposing two identical constant-amplitude waves that rotate in
opposite directions.

Exploiting this idea here, we numerically solve (61)-(62) in time
together with (38) from initial conditions given by

7(0,0) = n(0) + m(6), £(6,0) = &;(0) - &,(6),

at + = 0, where both pairs (1,,¢,) and (1,,&,) denote steadily rotating
waves with the same speed ¢ > ¢, and wavenumber » > 1, as discussed
in the previous section, but with possibly a phase shift between them.
The minus sign in &(6,0) above is to ensure that these two initial waves
rotate in opposite directions. Their interaction will create a standing
(non-rotating) wave pattern that exhibits the same wavenumber n as
the original rotating waves but oscillates in time at a specific frequency
. Because of this superposition, the resulting standing wave reaches an
amplitude equal to the sum of the initial amplitudes, which makes it a
more nonlinear solution than each individual rotating wave.

Fig. 13 illustrates this process with two initial rotating waves cor-
responding to ¢ = 1.26 and n = 2. They are initially positioned in phase
to interfere with each other in such a way that oblate deformations
associated with the mode-2 standing wave occur along the axis 6 = 0
while prolate deformations occur along the axis § = z/2. The bubble
shapes at various instants are displayed in Fig. 13 during the first cycle
of oblate-prolate oscillation. This cycle indeed repeats itself over time
in our simulations. Note the substantial surface deflection relative to
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the unit circle at the times of maximum oblate (+ = 0.00, 2.52) and
prolate (¢ = 1.26, 3.78) oscillations.

The favorable results on conservation of H, Q, V as demonstrated
by Fig. 14 attest to the computation accuracy in this standing wave
case as well. The idea that we synthetically superimpose two rotating
waves at t+ = 0 (instead of prescribing an actual initial condition for
the standing wave) together with the fact that the resulting solution is
highly nonlinear as pointed out earlier may explain why we see higher
error levels here than say, in Fig. 12 for a single rotating wave.

Finally, we make an attempt to compare our numerical results in
this setting with previous data from the literature. Following
Tsamopoulos and Brown (1983), we plot in Fig. 15 estimates of the
frequency shift (o — wg)/w, relative to w,, the linear angular frequency
(41) with n = 2, versus the aspect ratio L/W of the bubble’s major
axis L to its minor axis W at maximum prolate deformation. We
calculate L/W from our simulations by tracking the bubble radius
s whereas, for the frequency w, we first estimate the period T of a
prolate oscillation and then evaluate w = 2z /T In this two-dimensional
context, the oblate shape dynamics turn out to exactly mirror the
prolate shape dynamics, exhibiting an identical cycle of oscillation
with the same period T and aspect ratio L/W. Fig. 15 shows a com-
parison with laboratory measurements by Trinh and Wang (1982) for
almost neutrally buoyant drops of silicon oil and carbon tetrachloride
suspended in distilled water. Data sets for two different drop radii
R = 0.49 cm and 0.62 cm are reported. Numerical estimates by Foote
(1973) for drops as well as asymptotic predictions by Tsamopoulos
and Brown (1983) for bubbles are also included in Fig. 15. All these
data were extracted from Fig. 4 in Tsamopoulos and Brown (1983).
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Fig. 13. Bubble shape s in polar coordinates (r,6) for a time-periodic standing wave due to the superposition of two steadily rotating waves with ¢ = 1.26 and n =2 (M =4,
N =256). The different panels correspond to times (a) ¢ = 0.00, (b) t =0.34, (c) t+ =0.50, (d) t =0.62, (e) t =0.76, (f) t =0.94, (g) 1 = 1.26, (h) r =2.52, (i) t+ = 3.78. As a reference,

the red circle represents the unperturbed bubble of radius R = 1. Angles are indicated in degrees.

is referred to the web version of this article.)

Note that this assessment is only meant to be qualitative because,
on one hand, we compare two-dimensional simulations with three-
dimensional results for which quantitative differences are expected.
In particular, the numerical or asymptotic results of Foote (1973) and
Tsamopoulos and Brown (1983) assume a three-dimensional spherical
geometry that is invariant under azimuthal rotation. Secondly, our
numerical estimates are based on inviscid potential-flow theory while
laboratory measurements are subject to viscous effects. Furthermore,
drops and bubbles may reveal different behaviors depending on the
situation, and it should also be kept in mind that our computations were
not set up under the same conditions as in the laboratory experiments
(regarding e.g. the wave excitation mechanism).

Our own data in Fig. 15 correspond to ¢ = {1.23,1.24,1.25,1.26,1.27}
representing standing waves of amplitude a = {0.08,0.15,0.19,0.22,
0.25} at maximum deformation. The respective maximum wave steep-
nesses are £ = {0.17,0.30,0.38,0.45,0.50} for n = 2, which is indicative
of the highly nonlinear character of these computed solutions. To this
aim, we specified M = 4, N = 256 with a time step as small as 4r =
0.0002 and 0.00001 for ¢ = 1.26 and 1.27 respectively. Despite this fine
resolution in time, filtering was still required to stabilize the simulation
of such large-amplitude waves during their oscillatory evolution.

It is first remarked that our L/W estimates fall within the range
of values observed by these previous authors. In our situation, the
higher ¢, the larger a (or ¢) and so is the aspect ratio L/W of standing
waves. We were not able to obtain two-dimensional solutions for L/W
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(For interpretation of the references to color in this figure legend, the reader

values as high as those reported in three-dimensional configurations.
However, a striking difference from these previous studies is that we
find a (positive) frequency upshift (v — w,)/w, relative to w,, rather
than a (negative) frequency downshift. Note that the negative ordinate
for our last data point (the one farthest to the right associated with ¢ =
1.27) is likely a numerical artifact. Although our simulation managed
to be completed in this highly nonlinear case (by means of filtering
together with a small time step), producing an acceptable solution
overall, it was particularly subject to errors to the point that spurious
noise was detectable near the wave crests and troughs.

The qualitative agreement between the asymptotic predictions of
Tsamopoulos and Brown (1983) and the other data sets suggests that
the discrepancy with our numerical results may be attributed to the two
different geometries. An argument in favor of this explanation stems
from the different expression of the linear angular frequency

w5=§(n+2)(n2—1), n>1, (74)
for three-dimensional axisymmetric bubbles (Tsamopoulos and Brown,
1983). Clearly, w, from (74) is larger than that from (41) for any n > 1,
so the frequency shift (w—w,)/®w, may be more prone to being negative
in three dimensions than in two dimensions. Another argument is
related to the fact that three-dimensional drops or bubbles undergoing
mode-2 oscillations have been observed to spend a longer part of each
period in a prolate form than in an oblate one, which may be due
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Fig. 15. Frequency shift (w — wy)/w, vs. aspect ratio L/W at maximum deformation
for standing waves corresponding to n =2 and ¢ = {1.23,1.24,1.25,1.26,1.27} (M =4,
N = 256). Our numerical results are compared to experimental data for drops by
Trinh and Wang (1982), numerical estimates for drops by Foote (1973) and asymptotic
predictions for bubbles by Tsamopoulos and Brown (1983).

to the vertical direction (¢ = z/2) being an axis of symmetry in the
axisymmetric case (Tsamopoulos and Brown, 1983). By contrast, our
two-dimensional problem is isotropic, giving rise to identical oblate and
prolate shape dynamics as mentioned earlier. Accordingly, the typical
period T of a nonlinear mode-2 standing wave in three dimensions
may be longer than the linear period, or equivalently the associated
frequency w may be shorter than e, hence a negative frequency shift
(w — wy)/w,. Finally, perhaps a simpler (more intuitive) argument
is that, because a bubble volume is less in two dimensions than in
three dimensions for a given radius R, it thus takes less effort to
excite the bubble surface at a certain mode n. As a consequence, the
excitation frequency w should be larger in two dimensions than in three
dimensions, which promotes a frequency upshift in the former setting
versus a frequency downshift in the latter setting. Overall, this geomet-
rical explanation for the different dynamics depending on the spatial
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dimension is consistent with e.g. recent laboratory measurements by
Duplat (2019) who noticed that, during the late stages of a circular
bubble’s collapse, its radius vanishes like s(t) ~ (,—1)!/? as t — t,, which
contrasts with the faster collapse like s(r) ~ (1, — t)*/° for a spherical
bubble.

7. Conclusions

We consider the two-dimensional problem of free or forced defor-
mations of a gas bubble immersed in a liquid of infinite extent. Based
on nonlinear theory for potential flow in the presence of a moving
boundary under surface tension without gravity, and adopting the
Hamiltonian formulation proposed by Benjamin (1987), we introduce
the DNO to clarify the reduction in terms of surface variables with a
canonical symplectic structure. We propose a Taylor series represen-
tation of the DNO about a quiescent circular state of the bubble. A
recursion formula is devised to evaluate this Taylor series up to an
arbitrary order of nonlinearity, with each term having two distinct
components to describe shape distortions and radial pulsations as well
as their coupling.

In this theoretical framework, we obtain a Stokes wave solution that
is accurate up to second order in wave steepness for steadily rotating
shape oscillations without volume change. Assuming circular symme-
try, we derive an inviscid RP model for the time evolution of the bubble
radius under the excitation of a far-field pressure. We also develop a
direct numerical solver for the full governing equations, where each
term in the DNO series is computed efficiently and accurately by a
pseudo-spectral method with the FFT. Via this Fourier decomposition,
an arbitrary number of shape modes can be specified to contribute to
nonlinear wave interactions.

We show extensive numerical tests on the convergence of the DNO
as a function of the truncation order M for varying bubble shapes,
surface steepnesses and spatial resolutions. While errors remain small
overall, the convergence quickly stagnates past M ~ 2 and even
deteriorates past a critical value of M for severe shape distortions
or fine spatial resolutions. This behavior is consistent with the ill-
conditioning of the DNO series, which has been documented in other
contexts (Guyenne and Parau, 2016; Nicholls and Reitich, 2001; Xu and
Guyenne, 2009).

Despite these numerical issues, computations of bubble deforma-
tions of moderately large amplitude or steepness can be performed with
satisfactory accuracy. We apply this algorithm to simulating cycles of
compression—dilatation for a purely circular bubble driven by a uniform
pressure field. Tests against predictions by the RP model provide mu-
tual validation for these two approaches. Nonlinear shape oscillations
of a non-circular bubble in the unforced regime without volume change
are also investigated. We compute steadily rotating waves and time-
periodic standing waves for a few first modes of the bubble surface. We
compare our estimates for mode-2 standing waves to previous results.
Observed discrepancies are attributed to differences between the two-
and three-dimensional geometries.

The focus here is on the algorithmic development and preliminary
assessment of this numerical solver, in cases where the processes of ra-
dial pulsations and shape distortions do not interact. On the other hand,
the nonlinear coupling between different modes under resonant condi-
tions constitutes an interesting problem in its own right (Guédra and
Inserra, 2018; McDougald and Leal, 1999b). Its in-depth investigation is
envisioned for a subsequent paper. Finally, we emphasize that the pro-
posed methods are not restricted to the two-dimensional setting. Pro-
vided a FFT version in spherical harmonics is available (Mohlenkamp,
1999), we plan to extend the present results to the more general prob-
lem on nonlinear deformations of three-dimensional bubbles. Related
work for three-dimensional water waves can be found in de la Llave
and Panayotaros (1996) and Xu and Guyenne (2009).
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