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A B S T R A C T

Nonlinear deformations of a two-dimensional gas bubble are investigated in the framework of a Hamiltonian
formulation involving surface variables alone. The Dirichlet–Neumann operator is introduced to accomplish
this dimensional reduction and is expressed via a Taylor series expansion. A recursion formula is derived to
determine explicitly each term in this Taylor series up to an arbitrary order of nonlinearity. Both analytical
and numerical strategies are proposed to deal with this nonlinear free-boundary problem under forced or
freely oscillating conditions. Simplified models are established in various approximate regimes, including a
Rayleigh–Plesset equation for the time evolution of a purely circular pulsating bubble, and a second-order
Stokes wave solution for weakly nonlinear shape oscillations that rotate steadily on the bubble surface. In
addition, a numerical scheme is developed to simulate the full governing equations, by exploiting the efficient
and accurate treatment of the Dirichlet–Neumann operator via the fast Fourier transform. Extensive tests are
conducted to assess the numerical convergence of this operator as a function of various parameters. The
performance of this direct solver is illustrated by applying it to the simulation of cycles of compression–
dilatation for a purely circular bubble under uniform forcing, and to the computation of freely evolving shape
distortions represented by steadily rotating waves and time-periodic standing waves. The former solutions
are validated against predictions by the Rayleigh–Plesset model, while the latter solutions are compared to
laboratory measurements in the case of mode-2 standing waves.
1. Introduction

Gas bubble dynamics has been the subject of intensive research
in recent decades due to its prominent role in a number of physical
phenomena. For example, bubble formation during gas entrainment
into water by breaking waves produces sound over large distances
which contributes to ambient noise in the ocean. Oscillations of bubble
volume may lead to collapse and generate shock waves with damaging
effects on the submerged machinery in cavitation problems. Large
distortions of bubble shape may lead to break-up and contribute to
increasing bubble population in the surrounding fluid. Related phenom-
ena such as sonoluminescence (Brenner et al., 2002), and applications
involving the ultrasonic excitation of microbubbles for medical imag-
ing (Lindner, 2004) or the implosion of deuterium–tritium capsules for
inertial confinement fusion (Hurricane et al., 2014), have drawn a lot
of attention in recent years. We are aware of a similar large literature
on the dynamics of fluid droplets, which is closely related to the present
subject, but for convenience we will restrict the following introduction
to gas bubbles.

In theoretical studies of cavitation for a single bubble, a common
approach relies on the Rayleigh–Plesset (RP) model which is a second-
order nonlinear ordinary differential equation (ODE) describing the

E-mail address: guyenne@udel.edu.

time evolution of the bubble radius under the influence of surface
tension, viscosity and an external pressure field (Plesset and Prosperetti,
1977). In general, the latter is meant to represent a source of distur-
bances from the surrounding environment (e.g. internal variations of
the fluid flow, perturbations due to atmospheric pressure or waves at
the sea surface, noise generated by submerged machinery or by other
bubbles). The resulting oscillations of the bubble radius are usually
referred to as radial or volume oscillations. The RP model can be
derived from the incompressible Navier–Stokes equations by assuming
spherical symmetry (i.e. angular invariance) with appropriate boundary
conditions. Its simple closed form as compared to the full Navier–Stokes
equations makes it well suited for both mathematical analysis and nu-
merical simulation. In particular, bifurcation theory for nonlinear ODEs
has been successfully applied to characterizing the rich behavior of
solutions under external forcing. Reviews on this model with a detailed
discussion on its properties, predictions and extensions (incorporating
e.g. compressible or thermal effects) can be found in Feng and Leal
(1997), Plesset and Prosperetti (1977) and Prosperetti (2017).

For radial pulsations of sufficiently large amplitude, distortions of
the bubble shape (with angular variation) tend to develop, induced
by parametric instability as reported in experimental observations.
Investigation of these shape oscillations has also produced an abundant
vailable online 1 February 2024
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literature, with earlier mathematical results focusing on the linear case
for small distortions (Plesset and Prosperetti, 1977) or the weakly non-
linear case without radial motion (Tsamopoulos and Brown, 1983). The
problem of bubble dynamics with a nontrivial geometry is significantly
more difficult to analyze than the RP framework, and the vast majority
of theoretical studies have considered three-dimensional axisymmetric
bubbles in potential flow, meaning that their shape is assumed to be
invariant with respect to the azimuthal angle in spherical coordinates.
Seeking a weakly nonlinear solution in the form of an asymptotic series
for small- to moderate-amplitude distortions and employing the method
of multiple scales, a hierarchy of inhomogeneous linear equations can
be established to determine each order of approximation as a func-
tion of previous orders. Then, by expanding each order in terms of
Legendre polynomials relative to the inclination angle (owing to the
axisymmetry) and by exploiting their orthogonality property, explicit
expressions can be obtained for the shape modes (i.e. the coefficients
in factor of the Legendre polynomials) at any order in the time-periodic
setting. These perturbation calculations are particularly tedious because
the inhomogeneous equations become increasingly complicated with
the level of approximation, and for this reason, they have usually been
restricted to a few leading orders.

In earlier work, Tsamopoulos and Brown (1983) derived such an
asymptotic solution up to second order in wave amplitude for the
first four shape modes in the freely oscillating regime (without radial
motion or external forcing). Their analysis reveals the natural wave
frequencies at first order (i.e. in the linear approximation) as well
as effects from nonlinear wave interactions at higher order. More
intriguing phenomena can occur if both volume and shape modes are
coupled together, especially under resonant or near-resonant condi-
tions, with one or more shape modes being excited. On one hand,
radial oscillations driven by an external acoustic field can trigger
shape distortions via parametric instability. This stability problem for a
pulsating spherical bubble has been extensively investigated at lowest
order in the asymptotic procedure, where the volume mode typically
obeys the RP equation while the distortion modes satisfy a Mathieu-
type equation with non-autonomous coefficients depending on the
radial motion (Brenner et al., 2002; Plesset and Prosperetti, 1977).
xponential growth is predicted for this instability at the linear level,
ut the inclusion of higher-order nonlinear corrections has been found
o promote its saturation (Guédra and Inserra, 2018; Harkin et al.,
013). On the other hand, second-order interactions among shape
odes can transfer energy to the volume mode, potentially leading to
monopole emission of sound (Longuet-Higgins, 1989) or an erratic
otion of the bubble (Benjamin and Ellis, 1990; Doinikov, 2004).
Aside from theoretical results based on asymptotic solutions or

educed models, there is also a large literature on direct numerical
imulations of bubble dynamics, owing to advances in computer power
nd numerical methods over the last few decades. Typically solving the
avier–Stokes equations and using interface reconstruction techniques
n Cartesian grids, these studies have considered a variety of config-
rations involving multiple bubbles and complex flow conditions or
omplex surrounding domains, e.g. Bußmann et al. (2023), Esmaeeli
nd Tryggvason (1999), Fuster and Popinet (2018), Garoosi et al.
2022) and Hua and Lou (2007) to cite a few references. While such
omputations have produced impressive results, being able to handle
xtreme situations such as bubble merging or break-up, they may not
e the best option when it comes to accurately simulating shape oscilla-
ions of a bubble because the computed solution is particularly prone to
umerical diffusion. Moreover, their computational cost is usually high
ecause they require solving the governing equations over the entire
hysical domain. If advective inertial effects are assumed to be small
ompared to viscous effects, then the Navier–Stokes equations can be
implified to those for Stokes flow and boundary integral methods have
een developed for their simulation, e.g. in view of medical applica-
ions to microbubbles for drug delivery in blood flow (Guckenberger
2

nd Gekle, 2018). However, the flow linearity associated with this
pproach makes it inadequate for the description of nonlinear bubble
eformations.
Closer to the present problem, direct numerical simulations based

n nonlinear potential flow theory have also been performed via bound-
ry integral and conformal mapping methods (Li et al., 2021; Mc-
ougald and Leal, 1999b; Pozrikidis, 2004; Tong, 1997; Wang and

Blake, 2010; Zhang and Liu, 2015). These exploit coordinate transfor-
mations that are motivated by complex analysis or by the bubble geom-
etry, and they only involve dynamical variables representing the bubble
surface. Both methods can resolve strong shape distortions (without
change in topology), with boundary integral techniques being more
adaptable to various flow configurations, while the conformal mapping
approach is restricted to the two-dimensional setting. In particular,
the latter method enables the exact derivation of steady solutions or
the time-dependent computation of rotating and standing waves for
nonlinear oscillations on a bubble surface, similar to Crapper’s solutions
for the capillary water wave problem (Crowdy, 1999; Dyachenko, 2021;
Wegmann and Crowdy, 2000). Using a series expansion in Legendre
polynomials without assuming small amplitudes, McDougald and Leal
(1999a) solved numerically the nonlinear system of ordinary differen-
tial equations for the radial and shape modes of a three-dimensional
axisymmetric bubble. However, the computational cost was high and
these authors only examined the interaction of a few leading modes.

In this paper, we present a combination of mathematical and nu-
merical results on the surface dynamics of a gas bubble immersed in a
two-dimensional liquid of infinite extent. Volume and shape oscillations
of the bubble are considered under forced or unforced conditions by
a far-field pressure. The starting point is the Hamiltonian formulation
for nonlinear potential flow around a deformable bubble under the
influence of surface tension without gravity, as proposed by Benjamin
(1987). The corresponding conjugate variables turn out to be natural
choices of surface quantities in Eulerian coordinates, thus allowing for
dimensional reduction of this free-boundary problem. In this theoretical
framework, our new contributions include:

1. Detailed restatement of this Hamiltonian formulation by intro-
ducing the Dirichlet–Neumann operator (DNO) to express the
full governing equations as a closed system in terms of surface
variables alone. In doing so, the connection between these gov-
erning equations and the conserved Hamiltonian is also clarified.
Specifics of this two-dimensional problem were not treated by
Benjamin (1987).

2. Taylor series representation of the DNO associated with the
Laplace problem in polar coordinates. Each term in this Taylor
series is determined explicitly by a recursion formula involving
the bubble deformations relative to a quiescent circular state.

3. Analytical calculation of a second-order Stokes wave solution
for steadily rotating shape oscillations in the weakly nonlin-
ear regime, without volume change. Asymptotic expressions are
obtained for the surface displacement, velocity potential and
angular wave speed.

4. Derivation of a two-dimensional inviscid version of the RP equa-
tion in the purely circular geometry. Its independent Hamilto-
nian structure and linear dispersion relation for radial pulsations
driven by a uniform pressure field are also established.

5. Development of an accurate and efficient numerical scheme for
the direct simulation of nonlinear bubble deformations, coupling
shape oscillations and radial pulsations together. It is applicable
to surface distortions of moderate steepness, nonetheless the
computations can be performed up to an arbitrary order of
nonlinearity with an arbitrary number of shape modes in an
automatic manner via the fast Fourier transform.

6. Extensive tests to examine the numerical convergence of the
DNO. Validation against predictions by the RP equation is also
provided in the purely circular case under uniform pressure

forcing.
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7. Computations of nonlinear shape oscillations represented by
steadily rotating waves and time-periodic standing waves on the
bubble surface in the unforced regime without volume change.
For the latter solutions, comparison with existing laboratory
measurements is presented on the frequency of mode-2 oscilla-
tions as a function of the bubble’s maximum aspect ratio.

While the DNO has been a common tool in the formulation, analysis
and simulation of the water wave problem (Craig et al., 2021; Craig
and Sulem, 1993; Guyenne, 2019; Nicholls and Reitich, 2001; Xu and
Guyenne, 2009), its applications have focused mostly on cases where
the reference geometry is rectangular with Cartesian coordinates. We
are only aware of a few exceptions. de la Llave and Panayotaros
(1996) considered nonlinear gravity waves on the surface of a sphere
and derived a series expansion for this operator in terms of spherical
coordinates. Their study was strictly mathematical and did not produce
any numerical result. Guyenne and Părău (2016) adopted a similar
approach in the axisymmetric cylindrical setting to compute solitary
waves on the surface of a ferrofluid jet. This formalism has also been
applied to scattering problems in acoustics and electromagnetics with
non-Cartesian (e.g. polar or spherical) parameterizations of the irreg-
ular domain (Fang et al., 2007; Nicholls and Nigam, 2004). However,
these investigations have been restricted to linear time-harmonic waves
in the presence of a stationary object with a fixed shape. To our
knowledge, it is the first time here that the DNO is introduced to de-
scribe this nonlinear hydrodynamic problem with a moving boundary
in polar coordinates. Furthermore, unlike all previous applications, the
DNO in this case contains an additional component to allow for radial
pulsations of the bubble (i.e. volume changes such as compression or
dilatation).

While the problem under consideration is two-dimensional in space,
this is not a limitation of the mathematical formulation and numerical
procedure that we advocate to analyze it. The present study contributes
to their development in this idealized situation before tackling the more
general three-dimensional case in the future. This two-dimensional
problem is challenging and interesting in its own right, but has not been
examined much in previous modeling work as opposed to e.g. the three-
dimensional axisymmetric configuration. Indeed, experimental obser-
vations have revealed possible significant differences in bubble dynam-
ics between the two- and three-dimensional geometries, e.g. regarding
the condensation, collapse and sonoluminescence of explosive bub-
bles (Duplat, 2019). Even for the three-dimensional axisymmetric prob-
lem which essentially reduces to a planar analysis, there are qualitative
and quantitative differences as compared to the purely two-dimensional
case. The present results may thus serve as benchmark solutions to test
other mathematical or numerical models in this area. Lastly, under-
standing the dynamics of two-dimensional bubbles may be relevant in
applications to Hele–Shaw flows (Hou et al., 1994) and microfluidics
where the technology is based on small thin devices (e.g. PDMS chips).
Recent research has investigated ways to remove unwanted air bub-
bles from microfluidic systems (He et al., 2021) or, on the contrary,
to exploit their presence for various purposes such as micropumps,
micromixers, microvalves and microactuators (Khoshmanesh et al.,
2015).

The remainder of this paper is organized as follows. In Section 2, we
present the mathematical formulation of this two-dimensional problem
on the nonlinear deformations of a gas bubble, and we elaborate
on its Hamiltonian structure by introducing the DNO to accomplish
the reduction to surface variables. In Section 3, we derive a Taylor
series representation for the DNO with two distinct components to
enable both shape distortions and volume variations of the bubble.
In Section 4, we discuss various analytical approximations including
a second-order Stokes wave solution for steadily rotating shape oscil-
lations and a RP model for purely circular pulsations. In Section 5,
we describe the numerical methods for space discretization and time
3

integration to solve the full governing equations in Hamiltonian form.
In Section 6, we show numerical tests on the convergence of the DNO
as well as direct computations of rotating and standing waves on
the bubble surface. For standing waves, a comparison with laboratory
measurements and other theoretical results is provided. Compression–
dilatation cycles under the excitation of a far-field pressure are also
simulated and validated against predictions by the RP model. Finally,
concluding remarks are given in Section 7.

2. Mathematical formulation

2.1. Governing equations

We consider the motion of a single gas bubble immersed in a two-
dimensional liquid (e.g. water) spanning a domain  of infinite extent.
Given the geometry of this problem, we adopt a polar coordinate system
(𝑟, 𝜃) whose origin coincides with the bubble center such that

 = R2 ⧵ {0 ≤ 𝜃 < 2𝜋, 0 ≤ 𝑟 < 𝑅 + 𝜂(𝜃, 𝑡)},

where 𝑅 > 0 is the radius of the unperturbed circular bubble and 𝜂(𝜃, 𝑡)
denotes the surface perturbation relative to this simple configuration at
any time 𝑡. We disregard any motion of the bubble center and restrict
our attention to its surface dynamics, which implies in particular that
body forces such as gravity or buoyancy are neglected. The exterior
flow is assumed to be incompressible, inviscid and irrotational so that
the fluid velocity is given by 𝐮(𝑟, 𝜃, 𝑡) = ∇𝜑 where the velocity potential
𝜑(𝑟, 𝜃, 𝑡) satisfies the Laplace equation

∇2𝜑 = 0 , in  , (1)

and where ∇ = (𝜕𝑟, 𝑟−1𝜕𝜃)⊤ = 𝐞𝑟𝜕𝑟+ 𝐞𝜃 𝑟−1𝜕𝜃 denotes the spatial gradient
in polar coordinates, with 𝐞𝑟 and 𝐞𝜃 being the associated unit basis
vectors. At the free surface

 = {0 ≤ 𝜃 < 2𝜋, 𝑟 = 𝑠(𝜃, 𝑡) = 𝑅 + 𝜂(𝜃, 𝑡)},

there are two boundary conditions, namely the kinematic condition

𝜕𝑡𝜂 = 𝜕𝑟𝜑 − 𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜑) , on  , (2)

and the dynamic (or Bernoulli’s) condition

𝜕𝑡𝜑 = −1
2
|∇𝜑|2 + 𝜎

𝜌
𝜅 + 1

𝜌
𝛥𝑝 , on  , (3)

where

𝜅 =
𝑠2 + 2(𝜕𝜃𝜂)2 − 𝑠𝜕2𝜃𝜂
(

𝑠2 + (𝜕𝜃𝜂)2
)3∕2

, (4)

denotes the mean curvature at any point on the free surface. Keep in
mind that 𝜕𝑡𝑠 = 𝜕𝑡𝜂, 𝜕𝜃𝑠 = 𝜕𝜃𝜂 and similarly for higher derivatives in
2)–(4). The parameters 𝜎 and 𝜌 represent the surface tension and fluid
ensity respectively. Typical values are 𝜎 = 75 dyn cm−1 and 𝜌 = 1 g
m−3 for water. Because the bubble interior is not empty, the contri-
ution 𝛥𝑝 = 𝑝∞ − 𝑝𝐵 in (3) denotes the difference between the fluid
ressure 𝑝∞ in the far field and the bubble pressure 𝑝𝐵 exerted by the
nternal gas. The competition between these two pressure disturbances
rives the bubble deformations. More details on 𝑝∞ and 𝑝𝐵 will be
rovided in a subsequent section. Finally, the vanishing condition

∇𝜑| → 0 , as 𝑟 → +∞ , (5)

s imposed in the far field. Note that the boundary conditions in 𝜃 are
aturally periodic in this geometric configuration. The present problem
s nonlocal and nonlinear due to the dependence on  and associated
oundary conditions (2)–(3).
An interesting situation arises in the absence of pressure distur-

ances, i.e. 𝛥𝑝 = constant, which may be set to 𝛥𝑝 = 0 without loss
f generality through a gauge transformation on the velocity potential
(Craig et al., 2021). If so, this system of equations possesses a number
f invariants of motion, notably the energy

= 1
|∇𝜑|2𝑑𝐴 + 𝜎 𝑑𝓁 = 𝐾 + 𝑃 , (6)
∫ 2 ∫ 𝜌
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where 𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜃 is the elementary area over  and 𝑑𝓁 =
𝑠2 + (𝜕𝜃𝜂)2𝑑𝜃 is the elementary arclength along . The first term 𝐾

in (6) is the kinetic part associated with fluid motion, while the second
term 𝑃 is the potential part associated with surface tension. Other
invariants include the mean surface level

𝑄 = ∫

2𝜋

0
𝑠 𝑑𝜃 , (7)

the mass (or volume)

𝑉 = ∫
𝑑𝐴 , (8)

and the angular momentum (or impulse)

𝐼 = ∫
(𝐫 × ∇𝜑) 𝑑𝐴 , (9)

where 𝐫 = 𝑟 𝐞𝑟 denotes the position vector. It turns out that

𝐼 = ∫
(𝜕𝜃𝜑) 𝑟𝑑𝑟𝑑𝜃 = ∫

+∞

𝑠

(

𝜑||
|

2𝜋

0

)

𝑟𝑑𝑟 = 0,

y virtue of the periodic boundary conditions in 𝜃. Furthermore, be-
ause the fluid mass as defined in (8) is clearly infinite, it may be
ubstituted by its complement over the bounded area of the gas bubble,
ore specifically

= ∫

2𝜋

0 ∫

𝑠

0
𝑟𝑑𝑟𝑑𝜃 = ∫

2𝜋

0

1
2
𝑠2𝑑𝜃 , (10)

which is conserved over time with a finite value and may be used to
check accuracy in numerical simulations (see Section 6.4).

2.2. Hamiltonian formulation

As shown by Benjamin (1987), Eqs. (1)–(5) with 𝛥𝑝 = 0 can be
re-expressed as a canonical Hamiltonian system

𝜕𝑡

(

𝜂
𝜉

)

=
(

0 −1
1 0

)(

𝜕𝜂𝐻
𝜕𝜉𝐻

)

, (11)

in terms of the two conjugate variables 𝜂(𝜃, 𝑡) and

𝜉(𝜃, 𝑡) = 𝜑(𝑠(𝜃, 𝑡), 𝜃, 𝑡) , (12)

the latter being the trace of the velocity potential evaluated at the
free surface . Note the sign difference in the symplectic matrix of
(11) as compared to the standard canonical form (see e.g. the water
wave problem Zakharov, 1968), which is explained by the fact that
 is the inner boundary of the fluid domain  with respect to the
coordinate system. The Hamiltonian 𝐻 in (11) coincides with the
energy (6). Because Benjamin (1987) did not specifically cover this two-
dimensional case in polar coordinates, we will elaborate further on it
here. In doing so, we provide a new perspective on this problem by
introducing the Dirichlet–Neumann operator (DNO)

𝐺(𝜂)𝜉 = (−1, 𝑠−1𝜕𝜃𝜂)⊤ ⋅ ∇𝜑||
|𝑟=𝑠

=
√

1 + 𝑠−2(𝜕𝜃𝜂)2(∇𝜑 ⋅ 𝐧)||
|𝑟=𝑠

, (13)

which is the singular integral operator that takes Dirichlet data 𝜉 on
, solves the Laplace equation (1) subject to (5), and returns the
orresponding Neumann data (i.e. the normal fluid velocity on ).
ecalling that (−1, 𝑠−1𝜕𝜃𝜂)⊤ = −𝐞𝑟 + 𝐞𝜃 𝑠−1𝜕𝜃𝜂, the outward unit vector
normal to  is given by

=
(−1, 𝑠−1𝜕𝜃𝜂)⊤
√

1 + 𝑠−2(𝜕𝜃𝜂)2
= 𝑠

√

𝑠2 + (𝜕𝜃𝜂)2
(−1, 𝑠−1𝜕𝜃𝜂)⊤ , (14)

which points in the opposite 𝑟-direction, consistent with the sign dif-
erence in the canonical form (11) as mentioned above. The choice of
definition (13) for the DNO will become more evident in subsequent
calculations. It is a linear operator in 𝜉 but depends nonlinearly on 𝜂.
imilar to studies on water waves (Craig and Sulem, 1993; Guyenne,
017; Guyenne and Nicholls, 2007; Xu and Guyenne, 2009), an ad-
vantage of using the DNO is that the dependence on 𝜂 and 𝜉, which
4

are the two conjugate variables, is made more explicit in the equations
of motion (2)–(3) and in the Hamiltonian (6). Indeed, the variable 𝜂
ppears as part of the domain of integration  in the original form (6)
f 𝐻 , while the variable 𝜉 does not even appear explicitly there, and so
t is not clear at this stage what the variational derivatives of 𝐻 with
espect to (𝜂, 𝜉) mean as indicated by (11).
In the following, we will write (11) more explicitly via the DNO.
ith the definitions (12) and (13) at hand, we get the identities

𝑡𝜉 = 𝜕𝑡𝜑 + (𝜕𝑡𝜂)(𝜕𝑟𝜑)
|

|

|𝑟=𝑠
, 𝜕𝜃𝜉 = 𝜕𝜃𝜑 + (𝜕𝜃𝜂)(𝜕𝑟𝜑)

|

|

|𝑟=𝑠
, (15)

y differentiating (12) and applying the chain rule. Together with

(𝜂)𝜉 = −𝜕𝑟𝜑 + 𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜑)
|

|

|𝑟=𝑠
, (16)

rom (13), we deduce

𝜃𝜑
|

|

|𝑟=𝑠
= 𝜕𝜃𝜉 − (𝜕𝜃𝜂)(𝜕𝑟𝜑)

|

|

|𝑟=𝑠
, (17)

nd

𝑟𝜑
|

|

|𝑟=𝑠
= −𝐺(𝜂)𝜉 + 𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜑)

|

|

|𝑟=𝑠

= −𝐺(𝜂)𝜉 + 𝑠−2(𝜕𝜃𝜂)
[

𝜕𝜃𝜉 − (𝜕𝜃𝜂)(𝜕𝑟𝜑)
]

|

|

|𝑟=𝑠
,

= −𝐺(𝜂)𝜉 + 𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜉) − 𝑠−2(𝜕𝜃𝜂)2(𝜕𝑟𝜑)
|

|

|𝑟=𝑠
,

hich implies

𝑟𝜑
|

|

|𝑟=𝑠
= 1

1 + 𝑠−2(𝜕𝜃𝜂)2
[

𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜉) − 𝐺(𝜂)𝜉
]

. (18)

Then substituting (18) back into (15) and (17), we find

𝜕𝜃𝜑
|

|

|𝑟=𝑠
= 𝜕𝜃𝜉 −

𝜕𝜃𝜂
1 + 𝑠−2(𝜕𝜃𝜂)2

[

𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜉) − 𝐺(𝜂)𝜉
]

,

= 1
1 + 𝑠−2(𝜕𝜃𝜂)2

[

𝜕𝜃𝜉 + (𝜕𝜃𝜂)𝐺(𝜂)𝜉
]

, (19)

and

𝜕𝑡𝜑
|

|

|𝑟=𝑠
= 𝜕𝑡𝜉 − (𝜕𝑡𝜂)(𝜕𝑟𝜑)

|

|

|𝑟=𝑠
,

= 𝜕𝑡𝜉 +
𝐺(𝜂)𝜉

1 + 𝑠−2(𝜕𝜃𝜂)2
[

𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜉) − 𝐺(𝜂)𝜉
]

, (20)

where we have used the relation

𝜕𝑡𝜂 = 𝜕𝑟𝜑 − 𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜑)
|

|

|𝑟=𝑠
= −𝐺(𝜂)𝜉,

according to the kinematic condition (2) and the definition (16) of the
DNO. Combining the squares of (18) and (19), i.e.

(𝜕𝑟𝜑)2
|

|

|𝑟=𝑠
= 1

(

1 + 𝑠−2(𝜕𝜃𝜂)2
)2

[

𝑠−4(𝜕𝜃𝜂)2(𝜕𝜃𝜉)2 − 2𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜉)𝐺(𝜂)𝜉

+
(

𝐺(𝜂)𝜉
)2

]

,

𝜕𝜃𝜑)2
|

|

|𝑟=𝑠
= 1

(

1 + 𝑠−2(𝜕𝜃𝜂)2
)2

[

(𝜕𝜃𝜉)2 + 2(𝜕𝜃𝜂)(𝜕𝜃𝜉)𝐺(𝜂)𝜉

+(𝜕𝜃𝜂)2
(

𝐺(𝜂)𝜉
)2

]

,

yields

(𝜕𝑟𝜑)2 + 𝑠−2(𝜕𝜃𝜑)2
|

|

|𝑟=𝑠
= 1

(

1 + 𝑠−2(𝜕𝜃𝜂)2
)2

[

𝑠−2
(

1 + 𝑠−2(𝜕𝜃𝜂)2
)

(𝜕𝜃𝜉)2

+
(

1 + 𝑠−2(𝜕𝜃𝜂)2
)(

𝐺(𝜂)𝜉
)2
]

,

= 1
1 + 𝑠−2(𝜕𝜃𝜂)2

[

𝑠−2(𝜕𝜃𝜉)2 +
(

𝐺(𝜂)𝜉
)2
]

.

inally, putting all these expressions together in (2)–(3) leads to a
losed system of two equations

𝑡𝜂 = −𝐺(𝜂)𝜉 , (21)

𝜕𝑡𝜉 = − 1
2
(

1 + 𝑠−2(𝜕𝜃𝜂)2
)

[

𝑠−2(𝜕𝜃𝜉)2 + 2𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜉)𝐺(𝜂)𝜉 −
(

𝐺(𝜂)𝜉
)2
]

+ 𝜎 𝜅 , (22)

𝜌
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for 𝜂 and 𝜉, which gives a more explicit form of (11) and is completely
quivalent to the original nonlinear formulation (1)–(5) (with 𝛥𝑝 = 0).
ecall that, by definition, the solution of the Laplace equation (1)
ubject to the far-field vanishing condition (5) is encoded in the DNO.
e also point out that, in addition to being Hamiltonian, Eqs. (21)–(22)
re a lower-dimensional version of (1)–(5) in terms of surface variables
lone. They are thus more appealing for mathematical analysis and
umerical simulation. In this spirit, a numerical model will be proposed
ere to solve (21)–(22). Of course, the contribution 𝛥𝑝 can be added
o (22) as in (3), but then the Hamiltonian structure would not be
reserved in general.

.3. Variational derivatives of the Hamiltonian

We now apply Benjamin’s formalism (Benjamin, 1987) together
ith the DNO introduced above to show the connection between the
ariational derivatives of 𝐻 in (11) and the lower-dimensional system
21)–(22) that we just derived. For this purpose, we rewrite the kinetic
art of the Hamiltonian (6) as

= ∫
1
2
|∇𝜑|2𝑑𝐴 = ∫

1
2
[

∇ ⋅ (𝜑∇𝜑) − 𝜑∇2𝜑
]

𝑑𝐴 ,

where the last term vanishes due to (1). Then using the divergence
theorem, we obtain

2𝐾 = ∫
∇ ⋅ (𝜑∇𝜑) 𝑑𝐴 = ∫

𝜑(∇𝜑 ⋅ 𝐧) 𝑑𝓁 ,

= ∫
𝜑(∇𝜑 ⋅ 𝐧)

√

𝑠2 + (𝜕𝜃𝜂)2 𝑑𝜃 = ∫

2𝜋

0
𝜉𝐺(𝜂)𝜉 𝑠𝑑𝜃 ,

by virtue of (12) and (13). Following Benjamin (1987), a crucial step is
to introduce the weighted element 𝑑𝜇 =

√

∕11𝑑𝜃 = 𝑠𝑑𝜃 along some
nterval , where  = 𝑟2 and 11 = 1 are respectively the determinant
and first diagonal entry of the metric tensor for polar coordinates,
evaluated on . The Hamiltonian then reads

𝐻 = 𝐾 + 𝑃 = 1
2 ∫

𝜉𝐺(𝜂)𝜉 𝑑𝜇 + 𝜎
𝜌 ∫

2𝜋

0

√

𝑠2 + (𝜕𝜃𝜂)2 𝑑𝜃 , (23)

in terms of the DNO and the two conjugate variables (𝜂, 𝜉). Given such
a functional, the variation 𝜕𝑢𝐻 is defined via the Gâteaux derivative

𝜕𝑢𝐻, 𝑣⟩ = 𝑑
𝑑𝜆

𝐻(𝑢 + 𝜆𝑣)||
|𝜆=0

, (24)

with respect to the inner product ⟨𝑓, ℎ⟩ = ∫ 𝑓ℎ 𝑑𝜇 for any functions
𝑢, 𝑣 in some Hilbert space. From the alternate form (23) of 𝐻 and the
definition (24) of the variational derivative, we deduce

𝜕𝜉𝐻 = 𝜕𝜉𝐾 = 𝐺(𝜂)𝜉 , (25)

𝜕𝜂𝐾 = − 1
2
(

1 + 𝑠−2(𝜕𝜃𝜂)2
)

[

𝑠−2(𝜕𝜃𝜉)2 + 2𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜉)𝐺(𝜂)𝜉 −
(

𝐺(𝜂)𝜉
)2
]

.

Eq. (25) for 𝜕𝜉𝐻 follows from the self-adjointness of the DNO (Fang
et al., 2007; Nicholls and Nigam, 2004; Nicholls and Reitich, 2001).
Establishing the other identity for 𝜕𝜂𝐾 is a lengthy calculation but is
closely related to that for the water wave problem. Therefore, we refer
the reader to Craig et al. (2021) for more details.

Regarding the capillary component, we note that 𝜕𝑢𝐻 can be ex-
pressed alternatively as

∫
(𝜕𝑢𝐻)𝑣 𝑑𝜇 = ⟨𝜕𝑢𝐻, 𝑣⟩ = ∫

2𝜋

0
(𝜕𝑢𝐻)∗𝑣 𝑑𝜃,

which implies that 𝜕𝑢𝐻 = 𝑠−1(𝜕𝑢𝐻)∗ where (𝜕𝑢𝐻)∗ is the variational
derivative (24) with respect to the inner product ⟨𝑓, ℎ⟩ = ∫ 2𝜋

0 𝑓ℎ 𝑑𝜃.
Applying this idea to the potential part of (23), we find

𝜌
𝜎
(𝜕𝜂𝑃 )∗ =

𝑠3 + 2𝑠(𝜕𝜃𝜂)2 − 𝑠2𝜕2𝜃𝜂
(

𝑠2 + (𝜕𝜃𝜂)2
)3∕2

,

ence 𝜕𝜂𝑃 = 𝑠−1(𝜕𝜂𝑃 )∗ = 𝜎𝜅∕𝜌 with 𝜅 as presented in (4). Combining
these results for 𝜕𝜂𝐻 = 𝜕𝜂𝐾+𝜕𝜂𝑃 together with (25) for 𝜕𝜉𝐻 shows the
equivalence between (11) and (21)–(22).
5

2.4. Variational derivatives of the momentum

For completeness and reference in a subsequent section, we use
the same formalism to evaluate variational derivatives of the angular
momentum (9) with respect to the surface variables (𝜂, 𝜉). Similar to 𝐻 ,
we first rewrite 𝐼 explicitly in terms of these variables as follows

𝐼 = ∫
𝜕𝜃𝜑𝑑𝐴 = ∫

∇(𝑟2𝜑) ⋅ ∇𝜃 𝑑𝐴 = ∫
∇ ⋅ (𝑟2𝜑∇𝜃) 𝑑𝐴,

by virtue of the identity

∇ ⋅ (𝑟2𝜑∇𝜃) = ∇(𝑟2𝜑) ⋅ ∇𝜃 + 𝑟2𝜑∇2𝜃,

together with the fact that ∇2𝜃 = 0. The divergence theorem implies

𝐼 = ∫
𝑠2𝜑(∇𝜃 ⋅ 𝐧) 𝑑𝓁 = ∫

𝑠2𝜑(∇𝜃 ⋅ 𝐧)
√

𝑠2 + (𝜕𝜃𝜂)2 𝑑𝜃 ,

= ∫

2𝜋

0
𝜉𝜕𝜃𝜂 𝑠𝑑𝜃 = ∫

𝜉𝜕𝜃𝜂 𝑑𝜇 , (26)

via (12) and (14), after recognizing that ∇𝜃 = (0, 𝑟−1)⊤. It is then a
straightforward calculation to show that

𝜕𝜉𝐼 = 𝜕𝜃𝜂 , 𝜕𝜂𝐼 = −𝜕𝜃𝜉 , (27)

based on the definition (24). For 𝜕𝜂𝐼 , because Eq. (26) involves 𝜕𝜃𝜂 and
also depends on 𝜂 through 𝑠, an integration by parts in 𝜃 is required to
obtain its expression in (27).

Likewise, we easily see that

𝜕𝜉𝑄 = 0 , 𝜕𝜂𝑄 = 1 . (28)

3. Dirichlet–Neumann operator

The question now is how to calculate the DNO given the boundary
𝜂 and Dirichlet data 𝜉 at any time 𝑡, in order to solve (21)–(22).
The approach that we advocate here is of boundary perturbation type
and is based on the fact that the DNO is analytic in 𝜂 under cer-
tain (relatively mild) regularity conditions, as first shown by Coifman
and Meyer (1985). Rigorous proofs of this analyticity property can
be found in Nicholls and Nigam (2004) and Fang et al. (2007) for
the two-dimensional circular and three-dimensional spherical cases,
respectively.

The starting point is the Laplace equation (1) in polar coordinates

𝜕2𝑟𝜑 + 𝑟−1𝜕𝑟𝜑 + 𝑟−2𝜕2𝜃𝜑 = 0,

for which we consider two different elementary solutions

𝜑1 = ln 𝑟 , 𝜑2 = 𝑟−𝑛𝑒i𝑛𝜃 , (29)

with 𝑛 ∈ N (non-negative integers). The time dependence is omitted
because the Laplace equation is solved in a frozen domain at each time
𝑡. The first solution 𝜑1 describes bubble motion in the 𝑟-direction alone
(i.e. purely circular compression or dilatation) while the second solu-
tion 𝜑2 allows for wave development on the bubble surface (i.e. shape
distortions) in the 𝜃-direction. Both phenomena are physically relevant,
hence the importance to examine both solutions. In particular, the
radial motion is inherent to this physical problem (even in the absence
of waves on the bubble surface) owing to surface tension associated
with the bubble curvature.

Note that both 𝜑1 and 𝜑2 satisfy the periodic boundary conditions
in 𝜃 as well as the vanishing condition (5) as 𝑟 → +∞. This explains
why the option 𝜑2 with 𝑛 < 0 is ruled out. There is no singularity at
𝑟 = 0 for either 𝜑1 or 𝜑2 because this location is outside of the fluid
domain .

Next we exploit the analyticity property of the DNO by seeking a
Taylor series representation in 𝜂, namely

𝐺(𝜂) =
+∞
∑

𝐺𝑗 (𝜂) , (30)

𝑗=0
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about the reference circular geometry 𝜂 = 0, i.e. 𝑟 = 𝑅 with 𝑅 being
a constant. By construction, each term 𝐺𝑗 in (30) is homogeneous
of degree 𝑗 in 𝜂 and its action as an operator on any basis function
𝑒i𝑛𝜃 (associated with Fourier mode or wavenumber 𝑛) can be deter-
mined in a recursive manner. This derivation of the DNO relies on
the choice of harmonic function (i.e. solution to the Laplace equation)
and, because 𝜑1 and 𝜑2 are two different harmonic functions, we will
present details for each case separately. We will first consider 𝜑2 which
has both (𝑟, 𝜃)-dependences, before inspecting the univariate case with
𝜑1. Incidentally, we recognize that 𝜑2 should be specified as a real-
valued function (corresponding to a velocity potential). However, its
complex-valued form in (29) is more convenient for the purposes of our
derivation and, because the DNO is a linear operator in 𝜉, it is sufficient
to write 𝑒i𝑛𝜃 . Contributions from its complex conjugate 𝑒−i𝑛𝜃 would be
redundant.

Substituting (29) and (30) for 𝜑2 into (16) yields
(

+∞
∑

𝑗=0
𝐺𝑗 (𝜂)

)

(𝑅 + 𝜂)−|𝑛|𝑒i𝑛𝜃 =
[

(𝑅 + 𝜂)−|𝑛|−1|𝑛| + i(𝜕𝜃𝜂)(𝑅 + 𝜂)−|𝑛|−2𝑛
]

𝑒i𝑛𝜃 ,

which implies
(

+∞
∑

𝑗=0
𝐺𝑗 (𝜂)

)(

1 +
𝜂
𝑅

)−|𝑛|
𝑒i𝑛𝜃 = 𝑅−1

[(

1 +
𝜂
𝑅

)−|𝑛|−1
|𝑛|

−
(

𝐷
𝜂
𝑅

)(

1 +
𝜂
𝑅

)−|𝑛|−2
𝑛
]

𝑒i𝑛𝜃 ,

here 𝐷 = −i 𝜕𝜃 and the absolute value |𝑛| is employed to enforce
xponent positivity for 𝑛 ∈ Z (all integers over the full spectrum), as
otivated above. In terms of the binomial expansion

1 +
𝜂
𝑅

)−𝑛
=

+∞
∑

𝓁=0

( 𝜂
𝑅

)𝓁
𝐶−𝑛
𝓁 ,

with coefficient

𝐶−𝑛
𝓁 =

(

−𝑛
𝓁

)

= (−1)𝓁
(

𝑛 + 𝓁 − 1
𝓁

)

= (−1)𝓁
𝑛(𝑛 + 1)(𝑛 + 2)⋯ (𝑛 + 𝓁 − 1)

𝓁!
,

(31)

this equation becomes
(

+∞
∑

𝑗=0
𝐺𝑗 (𝜂)

)(

+∞
∑

𝓁=0

( 𝜂
𝑅

)𝓁
𝐶−|𝑛|
𝓁

)

𝑒i𝑛𝜃 = 𝑅−1
[

+∞
∑

𝓁=0

( 𝜂
𝑅

)𝓁
𝐶−|𝑛|−1
𝓁 |𝑛|

−
(

𝐷
𝜂
𝑅

)

+∞
∑

𝓁=0

( 𝜂
𝑅

)𝓁
𝐶−|𝑛|−2
𝓁 𝑛

]

𝑒i𝑛𝜃 .

By inspection, the first term for 𝑗 = 0 in (30) is given by

𝐺0𝑒
i𝑛𝜃 =

|𝑛|
𝑅

𝑒i𝑛𝜃 ,

which can be viewed as the Fourier symbol of the pseudo-differential
operator

𝐺0 =
|𝐷|

𝑅
, (32)

acting on any function that has a Fourier series decomposition in 𝜃.
Recall that, by definition, the Fourier symbol associated with 𝐷 is 𝑛.
or 𝑗 > 0, collecting terms of the same degree in 𝜂 leads to

𝑗 (𝜂)𝑒i𝑛𝜃 = −
𝑗−1
∑

𝓁=0
𝐺𝓁(𝜂)

( 𝜂
𝑅

)𝑗−𝓁
𝐶−|𝑛|
𝑗−𝓁 𝑒

i𝑛𝜃

+𝑅−1
[( 𝜂

𝑅

)𝑗
𝐶−|𝑛|−1
𝑗 |𝑛| −

( 𝜂
𝑅

)𝑗−1(
𝐷

𝜂
𝑅

)

𝐶−|𝑛|−2
𝑗−1 𝑛

]

𝑒i𝑛𝜃 ,

which can also be expressed symbolically as

𝐺𝑗 (𝜂) = −
𝑗−1
∑

𝓁=0
𝐺𝓁(𝜂)

( 𝜂
𝑅

)𝑗−𝓁
𝐶−|𝐷|

𝑗−𝓁

+𝑅−1
[( 𝜂 )𝑗

𝐶−|𝐷|−1
|𝐷| −

( 𝜂 )𝑗−1(
𝐷

𝜂 )

𝐶−|𝐷|−2𝐷
]

.

6

𝑅 𝑗 𝑅 𝑅 𝑗−1
By convention, unless parentheses are specified, any operator acts on
all functions to its right in the same term. Pseudo-differential operators
like 𝐷, |𝐷| or 𝐶−|𝐷|

𝑗 are also called Fourier multipliers due to their
multiplicative action in the Fourier space (dual to the physical 𝜃-space).
In particular, the definition (31) for 𝐶−𝑛

𝓁 applies directly to 𝐶−|𝐷|

𝑗 by
hanging 𝓁 to 𝑗 and 𝑛 to |𝐷|. Then recognizing that
( 𝜂
𝑅

)𝑗
𝐷 = 𝑗

( 𝜂
𝑅

)𝑗−1(
𝐷

𝜂
𝑅

)

𝐷 +
( 𝜂
𝑅

)𝑗
𝐷2 , 𝐷2 = |𝐷|

2,

together with the property

𝐶−|𝐷|−1
𝑗 = −𝐶−|𝐷|−2

𝑗−1
|𝐷| + 1

𝑗
= −1

𝑗
𝐶−|𝐷|−2
𝑗−1 |𝐷| − 1

𝑗
𝐶−|𝐷|−2
𝑗−1 ,

or the binomial coefficient, we arrive at

𝑗 (𝜂) = −1
𝑗

[

𝐷
( 𝜂
𝑅

)𝑗 𝐷
𝑅

+
( 𝜂
𝑅

)𝑗
𝐺0

]

𝐶−|𝐷|−2
𝑗−1 −

𝑗−1
∑

𝓁=0
𝐺𝓁(𝜂)

( 𝜂
𝑅

)𝑗−𝓁
𝐶−|𝐷|

𝑗−𝓁 .

Finally, we invoke the self-adjointness of the DNO to obtain

𝐺𝑗 (𝜂) = −1
𝑗

[

𝐷
( 𝜂
𝑅

)𝑗 𝐷
𝑅

+
( 𝜂
𝑅

)𝑗
𝐺0

]

𝐶−|𝐷|−2
𝑗−1 −

𝑗−1
∑

𝓁=0
𝐶−|𝐷|

𝑗−𝓁

( 𝜂
𝑅

)𝑗−𝓁
𝐺𝓁(𝜂) ,

(33)

fter reversing the sequence of application for the various operations
n the summation above (Fang et al., 2007; Nicholls and Nigam, 2004;
Nicholls and Reitich, 2001). Note that 𝐺0, 𝐶

−|𝐷|−2
𝑗−1 and 𝐶−|𝐷|

𝑗−𝓁 are all
self-adjoint, while 𝐷 is skew-adjoint. The reason for doing so will be
made more clear when discussing the numerical scheme in a subsequent
section.

We now repeat this calculation by using (29) with 𝜑1. For this
purpose, we slightly tweak the harmonic function as follows 𝜑1 =
ln(𝑅𝑚∕𝑟) where the constant radius 𝑅𝑚 is chosen sufficiently large such
that 𝑅𝑚 ≫ 𝑅. Because 𝜑1 only depends on 𝑟, it may be associated with
the zeroth Fourier mode 𝑛 = 0 in 𝜃. Accordingly, Eq. (16) reduces to

(

+∞
∑

𝑗=0
𝐺𝑗 (𝜂)

)

P0 ln
(

𝑅𝑚
𝑅 + 𝜂

)

𝑒i𝑛𝜃 = P0
1

𝑅 + 𝜂
𝑒i𝑛𝜃 ,

(

+∞
∑

𝑗=0
𝐺𝑗 (𝜂)

)

P0

[

ln
(

𝑅𝑚
𝑅

)

− ln
(

1 +
𝜂
𝑅

)

]

𝑒i𝑛𝜃 = 𝑅−1P0

(

1 +
𝜂
𝑅

)−1
𝑒i𝑛𝜃 ,

here P0 denotes the projection onto the zeroth mode 𝑛 = 0, i.e. the
NO only affects this specific mode here. Then Taylor expanding about
= 0 gives
+∞
∑

𝑗=0
𝐺𝑗 (𝜂)

)

P0

[

ln
(

𝑅𝑚
𝑅

)

−
+∞
∑

𝓁=1

(−1)𝓁+1

𝓁

( 𝜂
𝑅

)𝓁
]

𝑒i𝑛𝜃

= 𝑅−1P0

+∞
∑

𝑗=0
(−1)𝑗

( 𝜂
𝑅

)𝑗
𝑒i𝑛𝜃 .

For 𝑗 = 0, we readily infer

𝐺0P0 ln
(

𝑅𝑚
𝑅

)

𝑒i𝑛𝜃 = 𝑅−1P0𝑒
i𝑛𝜃 ,

𝐺0P0𝑒
i𝑛𝜃 = 1

𝑅 ln(𝑅𝑚∕𝑅)
P0𝑒

i𝑛𝜃 ,

which can be written symbolically as

𝐺0P0 =
1

𝑅 ln(𝑅𝑚∕𝑅)
P0 . (34)

or 𝑗 > 0, by identifying terms of the same degree in 𝜂, we get

𝑗 (𝜂)P0𝑒
i𝑛𝜃 = 1

𝑅 ln(𝑅𝑚∕𝑅)
P0(−1)𝑗

( 𝜂
𝑅

)𝑗
𝑒i𝑛𝜃

+ 1
ln(𝑅𝑚∕𝑅)

𝑗−1
∑

𝓁=0
𝐺𝓁(𝜂)P0

(−1)𝑗−𝓁+1

𝑗 − 𝓁

( 𝜂
𝑅

)𝑗−𝓁
𝑒i𝑛𝜃 ,

nd thus we can define its action symbolically as

𝑗 (𝜂)P0 =
1 P0(−1)𝑗

( 𝜂 )𝑗
𝑅 ln(𝑅𝑚∕𝑅) 𝑅
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+ 1
ln(𝑅𝑚∕𝑅)

𝑗−1
∑

𝓁=0
P0

(−1)𝑗−𝓁+1

𝑗 − 𝓁

( 𝜂
𝑅

)𝑗−𝓁
𝐺𝓁(𝜂) , (35)

after invoking again the self-adjointness property (to reverse the se-
quence of operations in the inner summation). It now makes sense why
𝑅𝑚 ≫ 𝑅 was introduced in such a way, otherwise we would end up
with a possible logarithmic singularity when 𝑅𝑚 = 𝑅 (or equivalently
when 𝑅 = 1 in some dimensional or dimensionless units for the choice
𝜑1 = ln 𝑟). The range 𝑅𝑚 ≫ 𝑅 is preferable over 0 < 𝑅𝑚 ≪ 𝑅 because it
is inside the fluid domain  and thus complies with the mathematical
formulation (1)–(5) for the fluid flow. Moreover, in that upper range,
n(𝑅𝑚∕𝑅) is positive and its variation is relatively mild.
Eqs. (32)–(33) or (34)–(35) provide recursion formulas to evaluate

he DNO in its series form (30) given 𝜂 and 𝜉. Depending on the
hysical situation under consideration, each set may be used separately,
.e. either formulas (32)–(33) or (34)–(35). More generally, they may
e combined by superposition as follows. The zeroth-order operator
𝑗 = 0) takes the form

0 = 𝐺(1)
0 + 𝐺(2)

0 =
|𝐷|

𝑅
+ 1

𝑅 ln(𝑅𝑚∕𝑅)
P0 , (36)

from (32) and (34), while the higher-order contributions (𝑗 > 0) read

𝐺𝑗 (𝜂) = 𝐺(1)
𝑗 (𝜂) + 𝐺(2)

𝑗 (𝜂) , (37)

with 𝐺(1)
𝑗 and 𝐺(2)

𝑗 determined by (33) and (35) respectively. This
superposition enables the coupling between radial pulsations and shape
distortions. Note in particular how 𝐺(1)

0 and 𝐺(2)
0 complement each

other in (36) over the full spectrum 𝑛 ∈ Z, considering that 𝐺(1)
0 =

𝐷|∕𝑅 has a trivial effect on the zeroth mode 𝑛 = 0, while 𝐺(2)
0 =

−1P0∕ ln(𝑅𝑚∕𝑅) has a nontrivial effect there. Compared to the water
ave problem in the perturbed rectangular geometry where the DNO
as been commonly involved (Guyenne, 2019), the additional compo-
ent 𝐺(2)

𝑗 represents a distinctive new feature of the present formulation
n polar coordinates.

. Approximate regimes

Several analytical approximations can be made in order to simplify
he full nonlinear problem.

.1. Linearized problem

We first investigate the linearized problem for small-amplitude
eformations about 𝜂 = 0, relative to the equilibrium state 𝑟 = 𝑅 (with
fixed). As can be deduced from (3), by setting all derivatives to zero,

his equilibrium corresponds to
𝜎
𝑅

+ 𝛥𝑝 = 0 , (38)

in light of the expansion

𝜅 = 1
𝑅

− 1
𝑅2

(𝜕2𝜃𝜂 + 𝜂) + 𝑂(𝜂2).

q. (38), also known as the Young–Laplace equation, states that the
ressure jump 𝛥𝑝 across the bubble boundary is balanced by the
onstant curvature due to surface tension. In this case, Eqs. (1)–(5) via
heir lower-dimensional form (21)–(22) simplify to

𝑡𝜂 = −𝐺0𝜉 , 𝜕𝑡𝜉 = − 𝜎
𝜌𝑅2

(𝜕2𝜃𝜂 + 𝜂) , (39)

with only contributions from up to first order in (𝜂, 𝜉), which can be
combined as

𝜕2𝑡 𝜂 −
𝜎

𝜌𝑅2
𝐺0(𝜕2𝜃𝜂 + 𝜂) = 0 , (40)

nd similarly for 𝜉. Having rotating wave solutions of the form 𝜂, 𝜉 ∼
i(𝑛𝜃−𝜔0𝑡) in mind here, it is sufficient to choose 𝐺0 = 𝐺(1)

0 from (32).
q. (40) then implies the linear dispersion relation
2 = 𝜎

|𝑛|(𝑛2 − 1) , (41)
7

0 𝜌𝑅3
between the angular frequency 𝜔0 and wavenumber 𝑛. For all 𝑛 ∈ Z,
e see that 𝜔2

0 ≥ 0 and thus 𝜔0 is real. Assuming 𝑛, 𝜔0 > 0, the angular
hase speed can be derived from (41) as

0 =
𝜔0
𝑛

=

√

𝜎(𝑛2 − 1)
𝜌𝑅3𝑛

. (42)

Dyachenko (2021) obtained the same result using a different mathe-
matical formulation of this problem. The modes 𝑛 = ±1 would corre-
spond to a rigid translation of the bubble as in the three-dimensional
case (Tsamopoulos and Brown, 1983), but this mechanism is ignored
here.

4.2. Second-order Stokes approximation for rotating waves

Extending this linear analysis to the weakly nonlinear regime, we
focus our attention on wave solutions of the form

𝜂(𝜃, 𝑡) = 𝜂(𝛩) , 𝜉(𝜃, 𝑡) = 𝜉(𝛩) , 𝛩 = 𝜃 − 𝑐 𝑡 , (43)

which rotate counter-clockwise at constant angular speed 𝑐 under static
pressure (38). Eqs. (21)–(22) then reduce to the nonlinear system of
ordinary differential equations (ODEs)

0 = 𝑐 𝜂′ − 𝐺(𝜂)𝜉 , (44)

0 = 𝑐 𝜉′ − 1
2(1 + 𝑠−2𝜂′2)

[

𝑠−2𝜉′2 + 2𝑠−2𝜂′𝜉′𝐺(𝜂)𝜉 −
(

𝐺(𝜂)𝜉
)2
]

+ 𝜎
𝜌

(

𝜅 − 1
𝑅

)

, (45)

by the chain rule, where the primes denote differentiation with respect
to 𝛩. Similarly, Fourier multipliers with respect to 𝜃 in 𝐺(𝜂) are re-
laced by their counterparts with respect to 𝛩. The change of variables
43) is equivalent to reformulating this problem in a reference frame
otating at constant speed 𝑐.
Alternatively, from the Hamiltonian viewpoint, such rotating solu-

ions can be interpreted as fixed points of the renormalized Hamiltonian
̂ = 𝐻 − 𝑐 𝐼 − 𝜎𝑄∕(𝜌𝑅) where 𝑄 (mean surface level) and 𝐼 (angular
momentum) are also invariants of motion as defined by (7) and (9). In
other words, these solutions satisfy
(

0 −1
1 0

)

(

𝜕𝜂𝐻̂
𝜕𝜉𝐻̂

)

=
(

0
0

)

,

which coincide with (44)–(45). This equivalence can be checked di-
rectly by invoking (25), (27) and (28), modulo the substitution of 𝛩
for 𝜃.

Along the lines of Stokes theory for the water wave problem (Fen-
ton, 1985), we seek (𝜂, 𝜉) perturbatively via an asymptotic series

𝜂 = 𝜀𝜂0 + 𝜀2𝜂1 +⋯ , 𝜉 = 𝜀𝜉0 + 𝜀2𝜉1 +⋯ , (46)

together with 𝑐 = 𝑐0 + 𝜀𝑐1 + ⋯, where the perturbation parameter
𝜀 ≪ 1 is a dimensionless measure of the wave amplitude (e.g. the wave
steepness). In their work on analyticity of traveling wave solutions to
Euler’s equations, Nicholls and Reitich (2005) showed that transformed
versions of these expansions are better than asymptotic and converge
strongly in an appropriate function space. Inserting (46) in (44)–(45)
nd equating coefficients in factor of the same power in 𝜀, we find

0𝜂
′
0 − 𝐺0𝜉0 = 0 , 𝑐0𝜉

′
0 −

𝜎
𝜌𝑅2

(𝜂′′0 + 𝜂0) = 0,

for (𝜂0, 𝜉0) at first order 𝑂(𝜀), which is nothing but the homogeneous
linear system (39) in terms of 𝛩 with 𝑐0 given by (42). We may take a
general solution of the form

𝜂0 = 𝑎0 cos(𝑛𝛩) , 𝜉0 = −𝑎0𝑐0𝑅 sin(𝑛𝛩) , 𝑛 > 1 , (47)

which sets the amplitude and phase of this Stokes wave. As stated in
the previous section, only the contributions (32)–(33) are implemented
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here for the DNO. At second order 𝑂(𝜀2), we obtain the inhomogeneous
linear system

𝑐0𝜂
′
1 − 𝐺0𝜉1 = −𝑐1𝜂′0 + 𝐺1(𝜂0)𝜉0 , (48)

𝑐0𝜉
′
1 −

𝜎
𝜌𝑅2

(𝜂′′1 + 𝜂1) = −𝑐1𝜉′0 +
1
2

[ 1
𝑅2

𝜉′20 − (𝐺0𝜉0)2
]

− 𝜎
𝜌𝑅3

(

𝜂20 + 2𝜂0𝜂′′0 + 1
2
𝜂′20

)

,

or (𝜂1, 𝜉1) with inhomogeneous terms depending on (𝜂0, 𝜉0). This system
an be merged into the single equation

1 −
𝜎𝐺0

𝑐20𝜌𝑅
2

)

𝜂′′1 −
𝜎𝐺0

𝑐20𝜌𝑅
2
𝜂1 = −

𝑐1
𝑐0

𝜂′′0 +
𝐺1(𝜂′0)
𝑐0

𝜉0 +
𝐺1(𝜂0)
𝑐0

𝜉′0

−
𝐺0

𝑐20

[

𝑐1𝜉
′
0 −

1
2𝑅2

𝜉′20 + 1
2
(𝐺0𝜉0)2

+ 𝜎
𝜌𝑅3

(

𝜂20 + 2𝜂0𝜂′′0 + 1
2
𝜂′20

)

]

,

or 𝜂1 alone after eliminating 𝜉1. Note that

0 =
|𝐷|

𝑅
, 𝐺1(𝜂) = |𝐷|

𝜂
𝑅
𝐺0 −𝐷

𝜂
𝑅2

𝐷 −
𝜂
𝑅
𝐺0 ,

according to (32)–(33). Substitution of (47) for (𝜂0, 𝜉0) leads to
(

1 −
𝜎𝐺0

𝑐20𝜌𝑅
2

)

𝜂′′1 −
𝜎𝐺0

𝑐20𝜌𝑅
2
𝜂1 =

2𝑐1𝑎0𝑛2

𝑐0
cos(𝑛𝛩) +

𝑎20𝑛
2

𝑅
cos(2𝑛𝛩)

+
𝑎20𝑛

3

𝑅
cos(2𝑛𝛩)

+
5𝑎20𝑛

3𝜎

2𝑐20𝜌𝑅
4
cos(2𝑛𝛩) −

𝑎20𝑛𝜎

𝑐20𝜌𝑅
4
cos(2𝑛𝛩) .

(49)

n doing so, we have applied the identities
(

cos(𝑛𝛩)
sin(𝑛𝛩)

)

= i 𝑛
(

sin(𝑛𝛩)
− cos(𝑛𝛩)

)

, |𝐷|

(

cos(𝑛𝛩)
sin(𝑛𝛩)

)

= 𝑛
(

cos(𝑛𝛩)
sin(𝑛𝛩)

)

,

or 𝑛 > 0. Because the second-order corrections are supposed to be
ound to the first-order components, we choose the particular form

1 = 𝑎1 cos(2𝑛𝛩),

s suggested by the right-hand side of (49). Then equating the coef-
icients in factor of cos(𝑛𝛩) and cos(2𝑛𝛩) implies 𝑐1 = 0 for 𝑎0 ≠ 0
(nontrivial solutions) and

𝑎1 =
𝑎20(2𝑛

3 + 7𝑛2 − 2𝑛 − 4)

4𝑅(2𝑛2 + 1)
,

espectively. Once 𝜂1 is known, 𝜉1 can be determined from (48), namely

0𝜉1 = 𝑐0𝜂
′
1 − 𝐺1(𝜂0)𝜉0 = −𝑐0𝑛

(

2𝑎1 +
𝑎20
2𝑅

)

sin(2𝑛𝛩) , (50)

which yields

𝜉1 = −𝑐0

(

𝑎1𝑅 +
𝑎20
4

)

sin(2𝑛𝛩),

s dictated by the right-hand side of (50). In principle, this procedure
an be pursued up to an arbitrary order at the expense that the
quations become increasingly more complicated (involving higher-
rder terms 𝐺𝑗) as the level of approximation rises. Collecting all these
xpressions in (46) given 𝑎0 and 𝑛 provides an explicit weakly nonlinear
stimate, accurate up to second order in Stokes theory, for steadily
otating waves at angular speed 𝑐. It may serve as a validation test
or two-dimensional numerical solvers including the present one, when
pplied to wave speeds near 𝑐0. Numerical illustrations will be shown
8

n a subsequent section.
.3. Rayleigh–Plesset model

The Rayleigh–Plesset (RP) equation and its variants have been
n important model to understand the dynamics of cavitation bub-
les (Feng and Leal, 1997; Prosperetti, 2017). For a single bubble in
n infinite body of incompressible fluid and under the assumption of
pherical symmetry, a second-order ODE can be derived for the time
volution of its radius. Because this model has been mostly considered
or three-dimensional spherical applications in the literature, we find
t suitable to present its detailed derivation in the two-dimensional cir-
ular configuration so as to make this paper sufficiently self-contained.
e also restrict ourselves to the inviscid limit, although the RP equation
ypically includes a viscous term.
Based on the potential-flow formulation (1)–(5) in the special case

ith circular symmetry, we take a harmonic function of the form

= 𝐵 ln
(

𝑅𝑚
𝑟

)

, 𝜕𝑟𝜑 = −𝐵
𝑟
, (51)

as in Section 3, and define the free surface by  = {0 ≤ 𝜃 < 2𝜋, 𝑟 = 𝑠(𝑡)}.
Here we prefer to employ the variable 𝑠 (full surface deformation)
rather than 𝜂 (surface perturbation relative to 𝑟 = 𝑅) in order to
comply with the typical formulation of the RP equation. The kinematic
boundary condition (2) then simplifies to 𝑑𝑠∕𝑑𝑡 = 𝜕𝑟𝜑 on , which
mplies that 𝐵 = −𝑠 𝑑𝑠∕𝑑𝑡. The dynamic boundary condition (3) reduces
o

𝑡𝜑 = −1
2
(𝜕𝑟𝜑)2 +

𝜎
𝜌𝑠

+ 1
𝜌
𝛥𝑝 , (52)

here

𝑟𝜑 = 𝑑𝑠
𝑑𝑡

, 𝜕𝑡𝜑 = −
[

(𝑑𝑠
𝑑𝑡

)2
+ 𝑠 𝑑

2𝑠
𝑑𝑡2

]

ln
(

𝑅𝑚
𝑠

)

, on  .

To complete this boundary condition, we need to specify the pressure
jump 𝛥𝑝 = 𝑝∞ − 𝑝𝐵 . The bubble pressure is assumed to obey the static
law

𝑝𝐵 =
(

𝑝∞ + 𝜎
𝑅

)

(

𝑉0
𝑉

)𝛾
, 𝛾 ≥ 0,

or a polytropic process so that it satisfies (38) at equilibrium 𝑟 = 𝑅,
where the circular bubble volume is given by 𝑉 = 𝜋𝑠2 at any time 𝑡
according to (10) and 𝑉0 = 𝜋𝑅2 denotes its equilibrium value (Longuet-
Higgins, 1989). With all these substitutions, Eq. (52) becomes

𝑠 𝑑
2𝑠

𝑑𝑡2
ln
(

𝑅𝑚
𝑠

)

+
(𝑑𝑠
𝑑𝑡

)2 [

ln
(

𝑅𝑚
𝑠

)

− 1
2

]

+ 𝜎
𝜌𝑠

+
𝑝∞
𝜌

− 1
𝜌

(

𝑝∞ + 𝜎
𝑅

)(𝑅
𝑠

)2𝛾
= 0 . (53)

This two-dimensional version of the RP equation is somewhat different
from its typical three-dimensional counterpart, due to the different
forms of harmonic function between these two geometries.

In three dimensions and in the absence of viscosity, the RP equation
is known to possess a canonical Hamiltonian structure assuming a uni-
form far-field pressure 𝑝∞ (Feng and Leal, 1997). Such a mathematical
formulation is suitable for a phase-plane stability analysis of solutions
about fixed points when varying the parameter 𝑝∞ (Ma and Wang,
1962). We now reveal a similar Hamiltonian structure for the two-
dimensional model (53) by following Feng and Leal (1997) with a key
adjustment of their change of variables. If we set

q = ln
(

𝑅𝑚
𝑠

)

, p = −𝑠3 𝑑𝑠
𝑑𝑡

ln
(

𝑅𝑚
𝑠

)

, (54)

as motivated by (51), then Eq. (53) is equivalent to the system of two
first-order ODEs
𝑑q
𝑑𝑡

=
p 𝑒4q

q𝑅4
𝑚
, (55)

𝑑p
= −

2p2 𝑒4q
4

+
p2 𝑒4q
2 4

+
𝜎𝑅𝑚 𝑒−q
𝑑𝑡 q𝑅𝑚 2q 𝑅𝑚 𝜌
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+
𝑝∞𝑅2

𝑚
𝜌

𝑒−2q −
𝑅2
𝑚
𝜌

(

𝑝∞ + 𝜎
𝑅

)

(

𝑅
𝑅𝑚

)2𝛾
𝑒−2(1−𝛾)q . (56)

The first equation is simply an identity from the definitions (54) of q
and p. The second equation is an alternate form of (53) in terms of these
uxiliary variables. Moreover, this system can be expressed as
𝑑q
𝑑𝑡

= 𝜕p ,
𝑑p
𝑑𝑡

= −𝜕q,

hich are canonical Hamiltonian equations for the two conjugate
oordinates q and p, associated with the Hamiltonian

=
p2 𝑒4q

2𝑞 𝑅4
𝑚
+

𝜎𝑅𝑚
𝜌

𝑒−q +
𝑝∞𝑅2

𝑚
2𝜌

𝑒−2q

−
𝑅2
𝑚

2𝜌(1 − 𝛾)

(

𝑝∞ + 𝜎
𝑅

)

(

𝑅
𝑅𝑚

)2𝛾
𝑒−2(1−𝛾)q . (57)

All these relations can be verified by direct calculation given (54) and
(57). This Hamiltonian structure for (53) is of interest in its own right
because it is not directly related to the Hamiltonian formulation (11) of
the full system. It is not a straightforward extension of that in the three-
dimensional case due to the presence of the logarithm function ln(𝑅𝑚∕𝑠)
n this two-dimensional problem. As a result, the new Hamiltonian
57) and associated evolution Eqs. (55)–(56) exhibit both rational and
exponential dependences on 𝑞.

Note that the possible singularity in (57) at 𝛾 = 1 for an isothermal
process is consistent with the fact that such conditions typically occur
when a system is in contact with an outside thermal reservoir, allowing
e.g. for heat exchange in order to maintain a constant temperature.
Accordingly, energy conservation is not expected in this system. On the
other hand, for a general isentropic process (𝛾 ≠ 1) where the condi-
tions are adiabatic and reversible, energy conservation as represented
by (57) is realizable.

The linearized problem for the RP equation (53) about equilibrium
𝑟 = 𝑅 also requires an examination. Substituting 𝑠(𝑡) = 𝑅+𝜂(𝑡) into (53)
and retaining terms of up to first order in 𝜂 gives

𝑑2𝜂
𝑑𝑡2

+𝛺2
0 𝜂 = 0 , (58)

or a harmonic oscillator at frequency

2
0 =

2𝛾
(

𝑝∞ + 𝜎
𝑅

)

− 𝜎
𝑅

𝜌𝑅2 ln(𝑅𝑚∕𝑅)
, (59)

if the far-field pressure 𝑝∞ is assumed to be uniform. This expression for
the linear fundamental frequency of radial oscillations shares similari-
ties with the three-dimensional version (Plesset and Prosperetti, 1977).
Not surprisingly, Eqs. (58)–(59) coincide exactly with (40) for 𝛾 = 0 and
nder circular symmetry (i.e. 𝜃-invariance) when 𝐺0 = 𝐺(2)

0 according
o (34). The fact that 𝛺2

0 < 0 in this situation (𝛾 = 0, 𝑅𝑚 ≫ 𝑅) is
ndicative of an instability triggering bubble collapse due to surface
ension in the absence of internal pressure.

. Numerical methods

We present a numerical scheme to compute the DNO and discretize
21)–(22) in space and time. We emphasize that, while the DNO is given
y a Taylor series expansion, the full system (21)–(22) is directly solved
or the time evolution problem (as opposed to invoking a reduced
symptotic model).

.1. Space discretization

Considering the periodic boundary conditions in 𝜃, we use a pseudo-
pectral method to discretize the DNO and equations of motion (21)–
22) in space (Canuto et al., 1988). This is a natural choice for the
omputation of 𝐺(𝜂) because each term in its Taylor series (30) is
9

valuated via recursion formulas (36)–(37) involving concatenations
f Fourier multipliers with powers of 𝜂∕𝑅. More specifically, both
unctions 𝜂 and 𝜉 are expressed as truncated Fourier series

𝜂𝑗
𝜉𝑗

)

=
𝑁∕2−1
∑

𝑛=−𝑁∕2

(

𝜂𝑛
𝜉𝑛

)

𝑒i𝑛𝜃𝑗 , 𝜃𝑗 =
2𝜋
𝑁

𝑗 , 𝑗 = 0,… , 𝑁 − 1.

Applications of spatial derivatives or Fourier multipliers are performed
in the Fourier space, while nonlinear products are calculated in the
physical space on a regular grid of 𝑁 collocation points. For example,
if we wish to apply the zeroth-order operator 𝐺(1)

0 to a function 𝜉 in the
physical space, we implement it as follows

𝐺(1)
0 𝜉 = −1

(

|𝑛|
𝑅

 (𝜉)
)

= −1
(

|𝑛|
𝑅

𝜉𝑛

)

.

imilarly, the projection P0 in 𝐺(2)
𝑗 can be computed as

0𝜉 = −1(𝜉0
)

,

here  (resp. −1) denotes the direct (resp. inverse) Fourier trans-
orm. All operations from the physical to Fourier space and vice versa
re carried out via the fast Fourier transform (FFT).
The Taylor series of the DNO is also truncated to a finite number of

erms

(𝜂) ≃ 𝐺(𝑀)(𝜂) =
𝑀
∑

𝑗=0
𝐺𝑗 (𝜂) , (60)

for which the choice of truncation order 𝑀 will be discussed in more
detail in a subsequent section when showing convergence tests. Due to
the analyticity property, a small number of terms would be sufficient
(typically 𝑀 < 10 ≪ 𝑁) to achieve highly accurate results. For this
computation, the adjoint formulas (33) and (35) are more efficient
than the original ones (those before reversing the sequence of inner
operations) because they allow us to save and re-use the 𝐺𝓁 ’s on 𝜉 as
vectors, without having to re-compute these operators at each order
𝑗 when applied to concatenations of Fourier multipliers and powers
of 𝜂∕𝑅. In this adjoint form, the computational cost for evaluating
(60) can be estimated to be 𝑂(𝑀2𝑁 ln𝑁) via the FFT. This point
highlights another advantage of the present approach where the Taylor
series representation of the DNO together with the recursive calculation
of its constitutive terms avoids setting up and solving a large or
dense matrix system (related to the Laplace problem (1)–(5)), which
contrasts with the classical strategy in other numerical solvers such
as boundary integral methods or volumetric finite-difference/element
methods (Guyenne and Grilli, 2006).

5.2. Time integration

Time integration of (21)–(22) is performed in the Fourier space
so that linear terms can be solved exactly by the integrating factor
technique. To do so, we first split these equations into

𝜕𝑡𝒗 = 𝒗 + (𝒗) , (61)

for 𝒗 = (𝜂, 𝜉)⊤, where the linear part is given by

𝒗 =

(

0 −𝐺(1)
0

− 𝜎
𝜌𝑅2 (𝜕2𝜃 + 1) 0

)

(

𝜂
𝜉

)

, (62)

according to (39), and the nonlinear part takes the form  (𝒗) =
1,2)⊤ with

1 = −
(

𝐺(𝜂) − 𝐺(1)
0
)

𝜉 ,

2 = − 1
2
(

1 + 𝑠−2(𝜕𝜃𝜂)2
)

[

𝑠−2(𝜕𝜃𝜉)2 + 2𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜉)𝐺(𝜂)𝜉 −
(

𝐺(𝜂)𝜉
)2
]

+ 𝜎
𝜌

[

𝜅 + 1
𝑅2

(𝜕2𝜃𝜂 + 𝜂)
]

+ 1
𝜌
𝛥𝑝 .

he pressure difference 𝛥𝑝 is also included in 2 to tackle out-of-
quilibrium regimes. The subtraction of −𝐺(1)

0 𝜉 in 1 and of −𝜎(𝜕2𝜃𝜂 +
𝜂)∕(𝜌𝑅2) in  is meant to compensate for their presence in the linear
2
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part 𝒗. Curvature terms are known to cause stiffness in the numerical
simulation of capillarity-dominated flows (Hou et al., 1994), hence
treating their linear contributions exactly will help mitigate this issue.

More specifically, we take the Fourier transform of (61) and make
the change of variables

𝒗𝑛(𝑡) = 𝛷𝑛(𝑡)𝒘̂𝑛(𝑡) , (63)

in terms of the integrating factor

𝛷𝑛(𝑡) =
⎛

⎜

⎜

⎝

cos(𝜔0𝑡) − |𝑛|
𝜔0𝑅

sin(𝜔0𝑡)
𝜎(𝑛2−1)
𝜔0𝑅2 sin(𝜔0𝑡) cos(𝜔0𝑡)

⎞

⎟

⎟

⎠

, (64)

here 𝜔0 is given by (41). This integrating factor is the fundamental
atrix of the linear system

𝑡𝒗̂𝑛 = ̂𝑛𝒗̂𝑛 =

(

0 − |𝑛|
𝑅𝜎

𝜌𝑅2 (𝑛2 − 1) 0

)

(

𝜂𝑛
𝜉𝑛

)

,

associated with the linear part (62). It thus encodes the exact linear
olution of (61). Because 𝜔0 vanishes at 𝑛 = {0,±1}, there may be some
ndetermination at these modes for either one of the off-diagonal entries
n 𝛷𝑛(𝑡), as suggested by (64). Via l’Hôpital’s rule, we find

0(𝑡) =
(

1 0
− 𝜎𝑡

𝑅2 1

)

,

for 𝑛 = 0, and

𝛷±1(𝑡) =
(

1 − 𝑡
𝑅

0 1

)

,

for 𝑛 = ±1.
This leads to a strictly nonlinear system

𝜕𝑡𝒘̂𝑛 = 𝛷𝑛(𝑡)−1̂𝑛
[

𝛷𝑛(𝑡)𝒘̂𝑛
]

,

for the new variable 𝒘̂𝑛, which is solved numerically in time using the
fourth-order Runge–Kutta method with constant step 𝛥𝑡. The resulting
scheme can be inverted back to 𝒗̂𝑛 by virtue of (63), yielding

𝒗𝑘+1𝑛 = 𝛷𝑛(𝛥𝑡)𝒗̂
𝑘
𝑛 +

𝛥𝑡
6
𝛷𝑛(𝛥𝑡)(𝑓1 + 2𝑓2 + 2𝑓3 + 𝑓4),

for the numerical solution at time 𝑡𝑘+1 = 𝑡𝑘 + 𝛥𝑡, where

𝑓1 = ̂𝑛(𝒗̂
𝑘
𝑛) ,

𝑓2 = 𝛷𝑛

(

−𝛥𝑡
2

)

̂𝑛

[

𝛷𝑛

(𝛥𝑡
2

)(

𝒗̂𝑘𝑛 +
𝛥𝑡
2
𝑓1
)]

,

3 = 𝛷𝑛

(

−𝛥𝑡
2

)

̂𝑛

[

𝛷𝑛

(𝛥𝑡
2

)(

𝒗̂𝑘𝑛 +
𝛥𝑡
2
𝑓2
)]

,

4 = 𝛷𝑛(−𝛥𝑡) ̂𝑛

[

𝛷𝑛(𝛥𝑡)
(

𝒗̂𝑘𝑛 + 𝛥𝑡 𝑓3
)

]

.

ere we have exploited the fact that 𝛷𝑛(𝑡) is a semigroup that satisfies
he properties

𝑛(𝑡)−1 = 𝛷𝑛(−𝑡) , 𝛷𝑛(𝑡 + 𝜏) = 𝛷𝑛(𝑡)𝛷𝑛(𝜏).

hese identities can be verified by direct calculation. Again, in this
ime-integration process, the FFT makes it possible to go back and forth
etween 𝒗 and 𝒗̂𝑛 in an efficient manner.

5.3. De-aliasing and filtering

For pseudo-spectral methods applied to nonlinear problems, numer-
ical errors may stem from the aliasing phenomenon (Canuto et al.,
1988). In the present algorithm, aliasing may occur when evaluating
the equations of motion and the DNO with the FFT. The 𝑗th-order term
𝐺𝑗 (𝜂)𝜉 involves nonlinearities of degree 𝑗 + 1 as indicated by (33) or
(35), therefore aliasing may be severe for large 𝑗. To deal with this
issue, the zero-padding technique is a simple and effective option. Typ-
ically, for a quadratic nonlinearity and given resolution 𝑁 , this amounts
to doubling the size of the discretized spectra of (𝜂, 𝜉) and setting the
10

Fourier coefficients for the extra modes to zero, consistent with the 2∕3 t
ule for de-aliasing in this configuration (Canuto et al., 1988). Because
onlinearities are of polynomial or rational type in (21)–(22) and (30),
e accommodate each nonlinear term by breaking it up into successive
roducts of two functions and by applying the aforementioned de-
liasing technique at each multiplicative step. We have successfully
mployed such a procedure in other physical settings (Guyenne and
ărău, 2012; Guyenne and Părău, 2016; Xu and Guyenne, 2009) where
nonlinear surface waves were simulated. It comes along with increased
memory storage but this turns out not to be a major concern in the
present two-dimensional case via the FFT.

For shape distortions of appreciable steepness, we have found it
necessary to filter the numerical solution in order to stabilize the
computation so that it can run over a sufficiently long period of time.
Otherwise, spurious high-wavenumber oscillations tend to develop,
eventually leading to the computation breakdown. Possible causes for
this phenomenon include numerical ill-conditioning of the DNO in its
series form (60) (which will be further assessed in a subsequent sec-
ion), or the ill-posed character of the governing equations. A detailed
athematical analysis on these points is outside the scope of this study.
s a remedy, we apply a hyperviscosity-type filter of the form

xp
(

−36
|

|

|

|

𝑛
𝑁∕2

|

|

|

|

36)

,

to both Fourier coefficients 𝜂𝑛 and 𝜉𝑛 at each time step, where 𝑁∕2
s the largest wavenumber resolved by the spatial discretization. Such
filter has been commonly adopted in numerical simulations of non-
inear fluid flows by spectral methods (Canuto et al., 1988; Hou and
i, 2007; Hou et al., 1994; Guyenne and Nicholls, 2007; Xu and
Guyenne, 2009). Its smooth but steep behavior near 𝑛 = 𝑁∕2 en-
sures that only Fourier coefficients at high wavenumbers are affected.
Accordingly, for a sufficiently high resolution, this filtering strategy
should help suppress spurious instabilities while preserving the overall
solution. Combined with zero-padding, it contributes further to control
of aliasing errors.

6. Numerical results

We present numerical results to illustrate the performance of this
numerical model. These include convergence tests on the DNO com-
putation and direct simulations of time-dependent nonlinear solutions.
For the latter, we explore purely circular motions under transient
excitation as well as shape deformations that rotate steadily or oscillate
periodically on the bubble surface.

All variables are non-dimensionalized with respect to the character-
istic length 𝑅, mass 𝜌𝑅3 and time

√

𝜌𝑅3∕𝜎 so that 𝑅 = 1, 𝜌 = 1 and
𝜎 = 1 in the resulting dimensionless equations. For convenience, we
will use the same notations but it is now understood that values of any
variable or parameter are dimensionless.

6.1. Convergence tests on the DNO

Because we approximate the DNO in terms of a Taylor series as
justified by its analyticity property, it is suitable to assess its numer-
ical convergence which is expected to be exponential with respect to
𝑀 for sufficiently smooth deformations 𝜂. This question is especially
relevant considering that such a representation has been shown to be
ill-conditioned numerically in related problems (Guyenne and Părău,
2016; Nicholls and Reitich, 2001; Xu and Guyenne, 2009). Indeed,
he series expansion (60) relies on cancellation of terms to guarantee
onvergence but in practice an exact cancellation never happens due to
ound-off errors. As indicated by (33), the higher the order 𝑗 of 𝐺𝑗 , the
tronger the exponentiation power of |𝐷| in such Fourier multipliers
s 𝐶−|𝐷|

𝑗 . Therefore, numerical errors can be amplified dramatically
hrough the recursive process as the order 𝑗 increases in (60). Needless

o say that this error amplification will contaminate the numerical
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solution during the time integration of (21)–(22), and may precipitate
the accuracy deterioration or promote spurious instabilities.

Here time is frozen and Eqs. (61)–(62) are not solved yet. Instead,
we inspect the numerical convergence of (60) by testing this approx-
imation against an exact expression that can be derived based on the
harmonic function 𝜑2 from (29) together with a specific profile of 𝜂.
This is the method of manufactured solutions (Burggraf, 1966; Roache,
2002; Roy, 2005). More precisely, using the real-valued form

2 = 𝑟−𝑛 sin(𝑛𝜃) , 𝑛 > 0 , (65)

nd substituting it into the definition (16), we obtain
(𝐸)(𝜂)𝜉 = −𝜕𝑟𝜑2 + 𝑠−2(𝜕𝜃𝜂)(𝜕𝜃𝜑2)

|

|

|𝑟=𝑠
,

= 𝑛(𝑅 + 𝜂)−𝑛−2
[

(𝑅 + 𝜂) sin(𝑛𝜃) + (𝜕𝜃𝜂) cos(𝑛𝜃)
]

. (66)

e perform tests for two different surface profiles

= 𝑎1 cos(𝑛𝜃) , (67)

nd

= 𝑎2

[

𝜃4(2𝜋 − 𝜃)4 − 128𝜋8

315

]

, (68)

n combination with (60) (numerical approximation) or (66) (exact
xpression) for the DNO. The choice (67) corresponds to a smooth
oundary (𝐶∞ profile) while (68) represents a rougher boundary (with
inite smoothness) (Nicholls and Reitich, 2001). Both profiles are pre-
cribed in such a way that their mean value is zero. Note also that, as
pposed to (67) which is more symmetric, the profile (68) tends to be
ore eccentric to the left, with a more ovate shape, as 𝑎2 is increased.
he maximum distortion is ‖𝜂‖∞ = 𝑎1 (at any crest or trough) for (67),
hile it is given by ‖𝜂‖∞ = 𝑎2187𝜋8∕315 for (68) and is achieved at
= 𝜋 (left side of the bubble). Recalling that the DNO (13) is linear in
but depends nonlinearly on 𝜂, any constant coefficient in (65) would
e superfluous while the amplitudes 𝑎1, 𝑎2 in (67), (68) are expected
o be relevant.
In all our computations, we set the parameter 𝑅𝑚 = 1000𝑅 so

hat 𝑅𝑚 ≫ 𝑅 as mentioned earlier. We have checked that results are
nsensitive to the specific value of 𝑅𝑚 in this range.
Fig. 1(a) plots the relative 𝐿2 error

rror =
‖𝐺(𝑀)(𝜂)𝜉 − 𝐺(𝐸)(𝜂)𝜉‖2

‖𝐺(𝐸)(𝜂)𝜉‖2
, (69)

etween (60) and (66) as a function of truncation order 𝑀 for varying
amplitude 𝑎1 in the case of a smooth profile (67) with wavenumber
𝑛 = 2 and resolution𝑁 = 256 (i.e. angular grid size 𝛥𝜃 = 2𝜋∕𝑁 = 0.024).
A first observation concerns the convergence with respect to 𝑎1 which
is demonstrated by the lower error curves for smaller 𝑎1, spanning
multiple orders of magnitude. Given 𝑎1, exponential convergence seems
to take place over only the first few values of 𝑀 (as indicated by the
near-linear slope in these semilog plots). Past 𝑀 ≃ 2, the errors quickly
stagnate, though they remain small in general. For large amplitudes,
say 𝑎1 = 0.9 (which is comparable to the radius 𝑅 = 1 of the
unperturbed circular bubble), the errors are large and reach 100%. After
some stagnation, we see a dramatic error growth past some critical
value of𝑀 (past𝑀 ≃ 5 for 𝑎1 = 0.9). This phenomenon is characteristic
of the numerical ill-conditioning for the DNO computation via its series
form (60), as reported by previous studies on free-surface flows in dif-
ferent geometric configurations (Guyenne, 2017; Guyenne and Părău,
2016; Nicholls and Reitich, 2001; Xu and Guyenne, 2009). To help
the reader visualize the present geometry, Fig. 1(b) portrays various
possible bubble shapes when varying 𝑎1. For 𝑎1 = 0.9 (with 𝑛 = 2),
the bubble is so strongly pinched along the central vertical axis that
two lobes are generated. The surface profile 𝜂 is clearly an important
factor influencing the accuracy of the DNO computation, as pointed out
earlier, and this is further illustrated in our next tests.

The fact that convergence promptly stagnates with respect to 𝑀
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is likely another outcome of this numerical ill-conditioning. A similar
phenomenon has been observed in the axisymmetric cylindrical case for
surface deformations of a ferrofluid jet (Guyenne and Părău, 2016), but
it differs somewhat from results in the rectangular geometry with Carte-
sian coordinates (Guyenne, 2017; Nicholls and Reitich, 2001; Xu and
Guyenne, 2009) where faster (i.e. exponential) convergence is achieved
over several values of 𝑀 before a sudden deterioration occurs. This
difference may be explained here by the action of binomial-type Fourier
multipliers like 𝐶−|𝐷|

𝑗 (aside from 𝐺0), which are more complicated
than the mere power-type |𝐷|

𝑗 in the Cartesian coordinate setting. As
a consequence, the present recursion formula (33) for each 𝐺𝑗 contains
more nonlinear terms (without counting contributions from (34)), and
their number increases with 𝑗. This promotes stronger amplification of
numerical errors, even at low values of 𝑀 .

Fig. 2 shows 𝐿2 errors (69) versus 𝑀 for varying 𝑛 (with 𝑎1 = 0.1,
𝑁 = 256) and varying 𝑁 (with 𝑎1 = 0.1, 𝑛 = 2). Here a moderately
large amplitude 𝑎1 = 0.1 is selected as a compromise so we can expect
small errors while possibly capturing ill-conditioning effects. In fact,
quite large surface steepnesses 𝜀 = (𝑎1𝑛)∕𝑅 are examined in Fig. 2(a),
e.g. 𝜀 = {0.5, 1.0, 1.2} for 𝑛 = {5, 10, 12} respectively. Overall, we discern
similar features to Fig. 1. The higher the steepness of 𝜂 (i.e. the larger
𝑎1 or 𝑛), the slower the convergence and the sooner it deteriorates
(i.e. the smaller the critical value of𝑀 at which a rapid loss of accuracy
occurs). This issue is especially pronounced when increasing 𝑁 , which
is compatible with a previous statement that the higher the order
𝑗 of 𝐺𝑗 (combined with higher resolution 𝑁), the more drastically
Fourier multipliers such as 𝐶−|𝐷|

𝑗 can amplify round-off errors. This
result suggests that prescribing unnecessarily fine resolutions is not
recommended.

From Fig. 3, the same observations can be made on error plots
for the surface profile (68). Because the bubble shape is oval-like in
this case with 𝜂 being independent of 𝑛, we simply set 𝑛 = 2 in
(66) and skip any convergence test by varying 𝑛. As expected, for this
rougher boundary, the numerical issues appear to be more severe when
increasing 𝑎2 or 𝑁 . For reference, the maximum distortion associated
with 𝑎2 = {10−6,… , 10−4} is ‖𝜂‖∞ = {5×10−3,… , 5×10−1} respectively,
as depicted in Fig. 3(a). Finally, we illustrate in Fig. 4 the effectiveness
of our de-aliasing procedure for both (67) and (68) by comparing the
corresponding 𝐿2 errors with those obtained from aliased computa-
tions (without zero-padding). Because aliasing typically arises when
evaluating nonlinear terms and affects the high-wavenumber tail of
the discretized spectrum, not surprisingly it accentuates ill-conditioning
effects at large values of 𝑀 and is more pronounced for higher surface
steepnesses. Representative cases are displayed in Fig. 4 for (𝑎1, 𝑛) =
(0.1, 10) and (𝑎2, 𝑛) = (5 × 10−5, 2) with 𝑁 = 256.

In summary, it may be inferred from these convergence tests that
choosing a value around 𝑀 = 6 (say, 4 ≤ 𝑀 ≤ 8) would generally be
a good compromise between accuracy and efficiency for the DNO ap-
proximation. Similar values of 𝑀 have been successfully implemented
in other physical contexts (Guyenne and Nicholls, 2007; Guyenne and
Părău, 2012; Guyenne and Părău, 2016; Xu and Guyenne, 2009).

6.2. Comparison with the Rayleigh–Plesset equation

In this section, we further assess the performance of our boundary
perturbation approach by comparing time-dependent simulations of
(61)–(62) against predictions from the RP equation (53). For this
purpose, the second-order nonlinear ODE is transformed to a system
of two first-order ODEs
𝑑𝑠
𝑑𝑡

= 𝑣 , (70)

𝑑𝑣
𝑑𝑡

= 1
𝑠 ln(𝑅𝑚∕𝑠)

[

𝑣2
(

1
2
− ln

(

𝑅𝑚
𝑠

))

− 𝜎
𝜌𝑠

−
𝑝∞
𝜌

+1
𝜌

(

𝑝∞ + 𝜎
𝑅

)(𝑅
𝑠

)2𝛾]

, (71)

which is integrated numerically in time via the fourth-order Runge–
Kutta scheme as applied to (61)–(62). Eqs. (70)–(71) thus lead to a
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Fig. 1. (a) Relative 𝐿2 error on the DNO vs. truncation order 𝑀 for 𝜂 given by (67). (b) Surface profile 𝑠 in polar coordinates (𝑟, 𝜃). Angles are indicated in degrees. In each
anel, graphs are shown for varying amplitude 𝑎1 with 𝑛 = 2 and 𝑁 = 256.
Fig. 2. Relative 𝐿2 error on the DNO vs. truncation order 𝑀 for 𝜂 given by (67). Graphs are shown for (a) varying wavenumber 𝑛 (with 𝑎1 = 0.1, 𝑁 = 256) and (b) varying
resolution 𝑁 (with 𝑎1 = 0.1, 𝑛 = 2).
Fig. 3. Relative 𝐿2 error on the DNO vs. truncation order 𝑀 for 𝜂 given by (68). Graphs are shown for (a) varying amplitude 𝑎2 (with 𝑛 = 2, 𝑁 = 256) and (b) varying resolution
(with 𝑎2 = 5 × 10−5, 𝑛 = 2).
𝑠
i

irect numerical solver for this nonlinear problem, modulo the restric-
ion to purely circular motions. Accordingly, the present tests may
e viewed as complementary to those from the previous section in
he sense that the focus now is on (34)–(35) for 𝐺(2) as it is the
elevant contribution to the DNO. Note that Eqs. (70)–(71) are com-
letely equivalent to their Hamiltonian counterparts (55)–(56) but were
referred for our simulations because they directly yield the variable
12
as an output. For the sake of comparison, the same time step 𝛥𝑡
s used when solving (61)–(62) and (70)–(71). The same choice of
non-dimensionalization is adopted for both systems of equations.

In the following illustrative experiments, we set 𝛾 = 1.4 under isen-
tropic conditions (Doinikov, 2004; Longuet-Higgins, 1989) and assume
a uniform far-field pressure, say 𝑝∞ = 1 in dimensionless units, for
simplicity. Again, the parameter 𝑅 = 1000𝑅 is prescribed sufficiently
𝑚
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Fig. 4. Relative 𝐿2 error on the DNO vs. truncation order 𝑀 for 𝜂 given by (a) profile (67) (with 𝑎1 = 0.1, 𝑛 = 10) and (b) profile (68) (with 𝑎2 = 5 × 10−5, 𝑛 = 2). In each panel,
the aliased and de-aliased results are compared. In all these cases, the resolution is 𝑁 = 256.
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large to avoid any possible logarithmic singularity in (71). Fig. 5 shows
the relative error

Error =
|

|

|

|

𝑅 + 𝜂(0, 𝑡) − 𝑠(𝑡)
𝑠(𝑡)

|

|

|

|

, (72)

etween 𝜂 from (61)–(62) and 𝑠 from (70)–(71), as a function of time
. Due to angular invariance in this case, data on 𝜂 from (61)–(62) can
e taken at any arbitrary angle 𝜃, say 𝜃 = 0, when evaluating (72). For
oth systems of equations, the same initial conditions are specified at
= 0, namely

𝜂(𝜃, 0), 𝜉(𝜃, 0)
)

= (𝑎3, 0) ,
(

𝑠(0), 𝑣(0)
)

= (𝑅 + 𝑎3, 0) , (73)

with 𝛥𝑡 = 0.01 to integrate in time. Errors (72) are plotted in Fig. 5(a)
for varying 𝑎3 (with 𝑀 = 8, 𝑁 = 256) and in Fig. 5(b) for varying
𝑀 (with 𝑎3 = 0.3, 𝑁 = 256). Convergence with respect to surface
amplitude (here the initial amplitude 𝑎3) or truncation order 𝑀 is
confirmed by these results, i.e. the lower 𝑎3 or the larger𝑀 , the smaller
the error at any time 𝑡. This contrasts with the quick stagnation of
errors when increasing 𝑀 , as reported in Section 6.1 for 𝜃-dependent
surface profiles. Along the lines of our previous comment on this
point, the better outcome here may be attributed to 𝐺(1) being inactive
and the absence of such Fourier multipliers as 𝐶−|𝐷|

𝑗 from (35), thus
making 𝐺(2) better conditioned for purely circular applications. Even
in the large-deflection regime 𝑎3 = 1 (being on the order of 𝑅), the
errors remain below 100%. Because Eqs. (61)–(62) are tested against
the RP system (70)–(71) which is itself solved numerically (and thus
is also affected by truncation or round-off errors, though to a lesser
extent), error fluctuations over time are expected as displayed in Fig. 5.
Beside the low levels of these instantaneous errors, their overall stable
behavior over time attests further to the accuracy and effectiveness
of our boundary perturbation approach. The computations were not
found to be particularly sensitive to 𝑁 in this regular 𝜃-independent
geometry, so convergence tests with varying 𝑁 are not shown here for
convenience.

Graphs of the bubble radii predicted by these two models during
the time evolution are compared in Fig. 6 for 𝑎3 = 0.3 and 1.0 (with

= 8, 𝑁 = 256). The competition between 𝑝∞ and 𝑝𝐵 induces a
ycle of compression–dilatation around the equilibrium state 𝑟 = 𝑅,
ith surface deflections of maximum amplitude 𝑎3 (as determined by
he initial amplitude) occurring at the dilatation peaks. This cycle
f compression–dilatation is asymmetric in the sense that the surface
mplitude (relative to 𝑟 = 𝑅) at the compression dips is slightly
maller than 𝑎3. Moreover, the dynamics during compression seems to
e faster than that during dilatation, as suggested by the steeper dips
nd smoother peaks along the curves of Fig. 6. A small discrepancy
etween these two estimated radii is discernible around 𝑡 = 14 (near a
13

ompression dip) for 𝑎3 = 1.0, which is consistent with the larger error
s revealed by Fig. 5(a) in this case. The cyclic period is graphically
nferred to be 𝜏 = 8.0 and 9.8 for 𝑎3 = 0.3 and 1.0 respectively, which is
omparable to the linear fundamental period 𝜏0 = 2𝜋∕𝛺0 = 7.7 of radial
scillations, with 𝛺0 given by (59) for 𝛾 = 1.4 and 𝑝∞ = 1 based on
he RP equation (53). The slight deviation is attributable to nonlinear
ffects, considering that 𝜏 is found to increase with 𝑎3. If the far-field
ressure 𝑝∞ was amplified, the bubble dynamics would retain similar
eatures but the cyclic period would be shorter, in accordance with the
ependence of (59) on 𝑝∞. We point out that filtering was not used in
ny of these simulations, for either (61)–(62) or (70)–(71).
The canonical conjugate variables (q, p) for the RP equation (53)

an be reconstructed from the simulated variables (𝑠, 𝑣) according to
54), so that the associated Hamiltonian (57) can be evaluated. The
onservation of this Hamiltonian  is confirmed by Fig. 7 which plots
he time evolution of the error

rror =
|

|

|

|

 −0
0

|

|

|

|

,

relative to the initial value 0, for 𝑎3 = 0.3 and 1.0. Recall that this
Hamiltonian structure is specific to the RP equation (53) and is not a
direct consequence of the Hamiltonian property (11) exhibited by the
full system. In particular,  remains a conserved quantity under the
action of 𝛥𝑝 (with uniform 𝑝∞) as given by (57), while the original
Hamiltonian formulation (11) with (23) does not extend to such a
forced regime.

For computations in this purely circular setting, the RP model (70)–
(71) is clearly a better option than (61)–(62), owing to its simpler and
ore explicit form. Nevertheless, this discussion helps validate (61)–
62) as a viable alternative to the RP equation, highlighting the role
f 𝐺(2)

𝑗 which can be readily incorporated into the DNO (36)–(37) for
he general problem (1)–(5), to produce a nonlinear model capable of
escribing a variety of bubble shapes.

.3. Simulation of nonlinear rotating waves

Further examining the range of applicability of this boundary per-
urbation approach, we now turn our attention to the simulation of
onlinear waves rotating steadily on the bubble surface. Unlike the
revious case, these shape distortions exhibit angular dependence ac-
ording to (43). Eqs. (44)–(45) constitute a boundary value problem
with periodic boundary conditions in 𝛩 ∈ [0, 2𝜋). Via a pseudo-spectral
method as outlined in Section 5.1, 2𝑁 discrete equations arise for
2𝑁 unknowns (𝜂𝑗 , 𝜉𝑗 ). They are solved iteratively after specifying 𝑐
along with the initial guess (46) based on second-order Stokes theory.
Through this initial guess, the parameter 𝑛 selects the wavenumber of
the nonlinear wave. The initial amplitude 𝑎0 may be tuned depending
on the choice of 𝑐 to help find the fixed-point solution. This task is
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Fig. 5. Relative error on bubble radius 𝑠 vs. time 𝑡 for far-field pressure 𝑝∞ = 1 and initial conditions given by (73). Graphs are shown for (a) varying initial amplitude 𝑎3 (with
𝑀 = 8, 𝑁 = 256) and (b) varying truncation order 𝑀 (with 𝑎3 = 0.3, 𝑁 = 256).
Fig. 6. Bubble radius 𝑠 vs. time 𝑡 for far-field pressure 𝑝∞ = 1 and initial conditions given by (73). Graphs are shown for (a) 𝑎3 = 0.3 and (b) 𝑎3 = 1.0 (with 𝑀 = 8, 𝑁 = 256). For
ach 𝑎3, predictions from (61)–(62) (blue circles) and (70)–(71) (red line) are compared. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
2
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Fig. 7. Relative error on  vs. time 𝑡 for far-field pressure 𝑝∞ = 1 and initial conditions
given by (73). Predictions from the RP model (70)–(71) are shown for 𝑎3 = 0.3 (blue
curve) and 𝑎3 = 1 (red curve) with 𝛥𝑡 = 0.01. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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accomplished by using the Matlab routine fsolve, which is essentially a
quasi-Newton method with a numerical approximation of the Jacobian
matrix. We have successfully employed this Matlab routine in previous
work (Guyenne, 2006; Guyenne and Părău, 2014; Xu and Guyenne,
022) to obtain numerical predictions from nonlinear algebraic or
ifferential equations. Given a value of 𝑛 > 1, we look here for a
onlinear wave rotating at speed 𝑐 > 𝑐0. By analogy with the water
ave problem (Fenton, 1985), an asymptotic behavior of the form

≃ 𝑐0
(

1 + 1
2
𝜀2
)

≃ 𝑐0

[

1 + 1
2

(𝑎0𝑛
𝑅

)2
]

,

may be anticipated according to Stokes theory up to third order (recall
that the second-order contribution 𝑐1 = 0 as shown in Section 4.2),
which offers the following estimate

𝑎0 ≃
𝑅
𝑛

√

2
(

𝑐
𝑐0

− 1
)

,

for 𝑎0 in terms of 𝑐 and 𝑛, to be prescribed in the initial guess (46).
Fig. 8 depicts the bubble shapes produced by such rotating waves

for wavenumber 𝑛 = 3 and angular speeds 𝑐 = {1.64, 1.70, 1.75, 1.86}. In
this case, the linear phase speed is 𝑐0 = 1.63. These nonlinear solutions
were computed using 𝑁 = 256 and 𝑀 = 4 or 6 for (60) with (32)–(33).
Indeed, for wave speeds higher than 𝑐 = 1.70, it was necessary to specify
a lower truncation order of the DNO (𝑀 = 4 rather than 𝑀 = 6) in
order to ensure convergence of the fixed-point iterative scheme. This
issue is likely related to ill-conditioning of the DNO computation as
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Fig. 8. Bubble shape 𝑠 in polar coordinates (𝑟, 𝛩) for steadily rotating waves with 𝑛 = 3 and 𝑁 = 256. The different panels correspond to angular speeds (a) 𝑐 = 1.64, (b) 𝑐 = 1.70,
(c) 𝑐 = 1.75, (d) 𝑐 = 1.86. As a reference, the red circle represents the unperturbed bubble of radius 𝑅 = 1. Angles are indicated in degrees. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
𝑐

discussed in Section 6.1. For high wave speeds, we also needed to
include intermediate steps (with intermediate wave speeds) as part of
the iterative process going from the initial 𝑐0 to the target 𝑐, where the
initial guess at each step is given by the converged solution from the
previous step. This strategy improves the convergence as compared to
a single fsolve search from 𝑐0 to 𝑐. We can discern in Fig. 8 that the
higher 𝑐, the larger the wave amplitude and steepness (with steeper
crests vs. smoother troughs). More quantitatively, the amplitude of
steadily rotating waves can be evaluated as 𝑎 = |𝜂max − 𝜂min|∕2. For 𝑐 =
{1.64, 1.70, 1.75, 1.86}, we find 𝑎 = {0.02, 0.07, 0.09, 0.12} respectively,
hence wave steepness 𝜀 = (𝑎 𝑛)∕𝑅 = {0.07, 0.22, 0.28, 0.37} which
is a measure of the nonlinearity strength. These features are clearly
revealed by Fig. 10(a) where the bubble’s surface deformations are
plotted versus 𝛩 in a rectangular format. These graphs also indicate
that the wave steepening is accompanied by a decrease of mean surface
level 𝑄, hence a decrease of bubble volume 𝑉 .

Similar observations can be made when inspecting computations
of mode-4 (𝑛 = 4) rotating waves as portrayed in Figs. 9 and 10(b).
For 𝑐 = {1.95, 2.00, 2.10, 2.29} > 𝑐0 = 1.93 in this setting, we find 𝑎 =
{0.02, 0.04, 0.07, 0.09} and 𝜀 = {0.09, 0.19, 0.29, 0.39} respectively. While
the bubble under 𝑛 = 3 wave excitation tends to exhibit a triangular-like
shape as 𝑐 increases, the limiting geometry for 𝑛 = 4 is more square-
like. In either case, we were not able to achieve convergence for wave
speeds higher than those considered in Fig. 10.
15

T

We further check the accuracy of our fixed-point iterative algorithm
for (44)–(45) by prescribing its converged solutions as initial conditions
for (61)–(62) and by solving these evolution equations via the time
integration method described in Section 5.2. Under the same conditions
as in Section 4.2, their implementation is restricted to (32)–(33) for
𝐺(𝜂) and to (38) for 𝛥𝑝. The steady character of these rotating waves
is confirmed by Fig. 11 where snapshots of the bubble deformation are
shown at 𝑡 = 0, 20 in the two highly nonlinear regimes 𝑐 = 1.86 (𝑛 = 3)
and 𝑐 = 2.29 (𝑛 = 4). For both solutions, the surface profiles at 𝑡 = 0 and
𝑡 = 20 look indistinguishable, modulo a phase shift due to the uniform
wave propagation. While these snapshots happen to be located close
together in either plot, it should be kept in mind that the wave has
actually rotated multiple times across the computational domain over
the span of the simulation, because of the periodic boundary conditions.
The associated numerical parameters are 𝛥𝑡 = 0.001, 𝑀 = 4 and
𝑁 = 256. For such high wave speeds, filtering was required to run the
time-dependent computations as explained earlier (see Section 5.3).

A more quantitative assessment of these rotating wave solutions is
provided in Fig. 12 which plots the relative errors

Error =
|

|

|

|

𝐻 −𝐻0
𝐻0

|

|

|

|

,
|

|

|

|

𝑄 −𝑄0
𝑄0

|

|

|

|

,
|

|

|

|

𝑉 − 𝑉0
𝑉0

|

|

|

|

,

on energy 𝐻 , mean surface level 𝑄 and volume 𝑉 versus time 𝑡 for
= 1.86 (𝑛 = 3) and 𝑐 = 2.29 (𝑛 = 4) as presented by Fig. 11.
he quantities 𝐻 , 𝑄 , 𝑉 denote the corresponding initial values at
0 0 0
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Fig. 9. Bubble shape 𝑠 in polar coordinates (𝑟, 𝛩) for steadily rotating waves with 𝑛 = 4 and 𝑁 = 256. The different panels correspond to angular speeds (a) 𝑐 = 1.95, (b) 𝑐 = 2.00,
(c) 𝑐 = 2.10, (d) 𝑐 = 2.29. As a reference, the red circle represents the unperturbed bubble of radius 𝑅 = 1. Angles are indicated in degrees. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Bubble deformation 𝑠 vs. angle 𝛩 for steadily rotating waves with (a) 𝑛 = 3 and (b) 𝑛 = 4. In each panel, graphs are shown for varying speed 𝑐 with 𝑁 = 256.
𝑐
𝑡 = 0. The trapezoidal rule was employed to evaluate integrals in the
definitions (7), (10), (23) of these invariants. Overall, the minuscule
values of these errors (in particular near machine precision for 𝑄 and
𝑉 ) as well as their stable evolution over time confirms that 𝐻 , 𝑄, 𝑉
re very well conserved numerically and that steadily rotating waves
re simulated accurately. The computation of 𝐻 being more prone to
naccuracy than 𝑄 or 𝑉 is likely due to its more complicated expression
23) which directly involves the DNO approximation. Moreover, the
lightly larger errors for 𝑐 = 2.29 (𝑛 = 4, 𝜀 = 0.39) as compared to
16
= 1.86 (𝑛 = 3, 𝜀 = 0.37) are expected considering that our boundary
perturbation approach is better suited for milder bubble deformations.

6.4. Simulation of nonlinear standing waves

Another class of interesting nonlinear solutions is that of time-
periodic standing waves. Such solutions have been much investigated
in the three-dimensional axisymmetric configuration, especially by
means of analytical perturbation calculations (Tsamopoulos and Brown,
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Fig. 11. Bubble deformation 𝑠 vs. angle 𝜃 at 𝑡 = 0 (red line) and 𝑡 = 20 (blue line) during the propagation of steadily rotating waves for (a) 𝑐 = 1.86, 𝑛 = 3 and (b) 𝑐 = 2.29, 𝑛 = 4
(with 𝑀 = 4, 𝑁 = 256). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Relative errors on 𝐻 , 𝑄, 𝑉 vs. time 𝑡 during the propagation of steadily rotating waves for (a) 𝑐 = 1.86, 𝑛 = 3 and (b) 𝑐 = 2.29, 𝑛 = 4 (with 𝑀 = 4, 𝑁 = 256).
983). Their direct numerical computation is particularly challenging
n the nonlinear regime, which may be tackled by solving the associated
onstrained problem via an adjoint method, and thus is envisioned
or future work. Alternatively, a standing wave can be produced by
uperimposing two identical constant-amplitude waves that rotate in
pposite directions.
Exploiting this idea here, we numerically solve (61)–(62) in time

together with (38) from initial conditions given by

𝜂(𝜃, 0) = 𝜂1(𝜃) + 𝜂2(𝜃) , 𝜉(𝜃, 0) = 𝜉1(𝜃) − 𝜉2(𝜃),

at 𝑡 = 0, where both pairs (𝜂1, 𝜉1) and (𝜂2, 𝜉2) denote steadily rotating
waves with the same speed 𝑐 > 𝑐0 and wavenumber 𝑛 > 1, as discussed
in the previous section, but with possibly a phase shift between them.
The minus sign in 𝜉(𝜃, 0) above is to ensure that these two initial waves
rotate in opposite directions. Their interaction will create a standing
(non-rotating) wave pattern that exhibits the same wavenumber 𝑛 as
the original rotating waves but oscillates in time at a specific frequency
𝜔. Because of this superposition, the resulting standing wave reaches an
amplitude equal to the sum of the initial amplitudes, which makes it a
more nonlinear solution than each individual rotating wave.

Fig. 13 illustrates this process with two initial rotating waves cor-
responding to 𝑐 = 1.26 and 𝑛 = 2. They are initially positioned in phase
to interfere with each other in such a way that oblate deformations
associated with the mode-2 standing wave occur along the axis 𝜃 = 0
while prolate deformations occur along the axis 𝜃 = 𝜋∕2. The bubble
shapes at various instants are displayed in Fig. 13 during the first cycle
of oblate-prolate oscillation. This cycle indeed repeats itself over time
in our simulations. Note the substantial surface deflection relative to
17
the unit circle at the times of maximum oblate (𝑡 = 0.00, 2.52) and
prolate (𝑡 = 1.26, 3.78) oscillations.

The favorable results on conservation of 𝐻 , 𝑄, 𝑉 as demonstrated
by Fig. 14 attest to the computation accuracy in this standing wave
case as well. The idea that we synthetically superimpose two rotating
waves at 𝑡 = 0 (instead of prescribing an actual initial condition for
the standing wave) together with the fact that the resulting solution is
highly nonlinear as pointed out earlier may explain why we see higher
error levels here than say, in Fig. 12 for a single rotating wave.

Finally, we make an attempt to compare our numerical results in
this setting with previous data from the literature. Following
Tsamopoulos and Brown (1983), we plot in Fig. 15 estimates of the
frequency shift (𝜔−𝜔0)∕𝜔0 relative to 𝜔0, the linear angular frequency
(41) with 𝑛 = 2, versus the aspect ratio 𝐿∕𝑊 of the bubble’s major
axis 𝐿 to its minor axis 𝑊 at maximum prolate deformation. We
calculate 𝐿∕𝑊 from our simulations by tracking the bubble radius
𝑠 whereas, for the frequency 𝜔, we first estimate the period 𝑇 of a
prolate oscillation and then evaluate 𝜔 = 2𝜋∕𝑇 . In this two-dimensional
context, the oblate shape dynamics turn out to exactly mirror the
prolate shape dynamics, exhibiting an identical cycle of oscillation
with the same period 𝑇 and aspect ratio 𝐿∕𝑊 . Fig. 15 shows a com-
parison with laboratory measurements by Trinh and Wang (1982) for
almost neutrally buoyant drops of silicon oil and carbon tetrachloride
suspended in distilled water. Data sets for two different drop radii
𝑅 = 0.49 cm and 0.62 cm are reported. Numerical estimates by Foote
(1973) for drops as well as asymptotic predictions by Tsamopoulos
and Brown (1983) for bubbles are also included in Fig. 15. All these

data were extracted from Fig. 4 in Tsamopoulos and Brown (1983).
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Fig. 13. Bubble shape 𝑠 in polar coordinates (𝑟, 𝜃) for a time-periodic standing wave due to the superposition of two steadily rotating waves with 𝑐 = 1.26 and 𝑛 = 2 (𝑀 = 4,
𝑁 = 256). The different panels correspond to times (a) 𝑡 = 0.00, (b) 𝑡 = 0.34, (c) 𝑡 = 0.50, (d) 𝑡 = 0.62, (e) 𝑡 = 0.76, (f) 𝑡 = 0.94, (g) 𝑡 = 1.26, (h) 𝑡 = 2.52, (i) 𝑡 = 3.78. As a reference,
he red circle represents the unperturbed bubble of radius 𝑅 = 1. Angles are indicated in degrees. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
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ote that this assessment is only meant to be qualitative because,
n one hand, we compare two-dimensional simulations with three-
imensional results for which quantitative differences are expected.
n particular, the numerical or asymptotic results of Foote (1973) and
samopoulos and Brown (1983) assume a three-dimensional spherical
eometry that is invariant under azimuthal rotation. Secondly, our
umerical estimates are based on inviscid potential-flow theory while
aboratory measurements are subject to viscous effects. Furthermore,
rops and bubbles may reveal different behaviors depending on the
ituation, and it should also be kept in mind that our computations were
ot set up under the same conditions as in the laboratory experiments
regarding e.g. the wave excitation mechanism).
Our own data in Fig. 15 correspond to 𝑐 = {1.23, 1.24, 1.25, 1.26, 1.27}

epresenting standing waves of amplitude 𝑎 = {0.08, 0.15, 0.19, 0.22,
.25} at maximum deformation. The respective maximum wave steep-
esses are 𝜀 = {0.17, 0.30, 0.38, 0.45, 0.50} for 𝑛 = 2, which is indicative
f the highly nonlinear character of these computed solutions. To this
im, we specified 𝑀 = 4, 𝑁 = 256 with a time step as small as 𝛥𝑡 =
.0002 and 0.00001 for 𝑐 = 1.26 and 1.27 respectively. Despite this fine
esolution in time, filtering was still required to stabilize the simulation
f such large-amplitude waves during their oscillatory evolution.
It is first remarked that our 𝐿∕𝑊 estimates fall within the range

f values observed by these previous authors. In our situation, the
igher 𝑐, the larger 𝑎 (or 𝜀) and so is the aspect ratio 𝐿∕𝑊 of standing
18

aves. We were not able to obtain two-dimensional solutions for 𝐿∕𝑊 p
alues as high as those reported in three-dimensional configurations.
owever, a striking difference from these previous studies is that we
ind a (positive) frequency upshift (𝜔 − 𝜔0)∕𝜔0 relative to 𝜔0, rather
han a (negative) frequency downshift. Note that the negative ordinate
or our last data point (the one farthest to the right associated with 𝑐 =
.27) is likely a numerical artifact. Although our simulation managed
o be completed in this highly nonlinear case (by means of filtering
ogether with a small time step), producing an acceptable solution
verall, it was particularly subject to errors to the point that spurious
oise was detectable near the wave crests and troughs.
The qualitative agreement between the asymptotic predictions of

samopoulos and Brown (1983) and the other data sets suggests that
he discrepancy with our numerical results may be attributed to the two
ifferent geometries. An argument in favor of this explanation stems
rom the different expression of the linear angular frequency
2
0 =

𝜎
𝜌𝑅3

(𝑛 + 2)(𝑛2 − 1) , 𝑛 > 1 , (74)

for three-dimensional axisymmetric bubbles (Tsamopoulos and Brown,
1983). Clearly, 𝜔0 from (74) is larger than that from (41) for any 𝑛 > 1,
o the frequency shift (𝜔−𝜔0)∕𝜔0 may be more prone to being negative
n three dimensions than in two dimensions. Another argument is
elated to the fact that three-dimensional drops or bubbles undergoing
ode-2 oscillations have been observed to spend a longer part of each

eriod in a prolate form than in an oblate one, which may be due
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Fig. 14. Relative errors on 𝐻 , 𝑄, 𝑉 vs. time 𝑡 during the evolution of a time-periodic
tanding wave due to the superposition of two steadily rotating waves with 𝑐 = 1.26
nd 𝑛 = 2 (𝑀 = 4, 𝑁 = 256).

Fig. 15. Frequency shift (𝜔 − 𝜔0)∕𝜔0 vs. aspect ratio 𝐿∕𝑊 at maximum deformation
for standing waves corresponding to 𝑛 = 2 and 𝑐 = {1.23, 1.24, 1.25, 1.26, 1.27} (𝑀 = 4,
𝑁 = 256). Our numerical results are compared to experimental data for drops by
Trinh and Wang (1982), numerical estimates for drops by Foote (1973) and asymptotic
redictions for bubbles by Tsamopoulos and Brown (1983).

to the vertical direction (𝜃 = 𝜋∕2) being an axis of symmetry in the
xisymmetric case (Tsamopoulos and Brown, 1983). By contrast, our
wo-dimensional problem is isotropic, giving rise to identical oblate and
rolate shape dynamics as mentioned earlier. Accordingly, the typical
eriod 𝑇 of a nonlinear mode-2 standing wave in three dimensions
ay be longer than the linear period, or equivalently the associated
requency 𝜔 may be shorter than 𝜔0, hence a negative frequency shift
𝜔 − 𝜔0)∕𝜔0. Finally, perhaps a simpler (more intuitive) argument
s that, because a bubble volume is less in two dimensions than in
hree dimensions for a given radius 𝑅, it thus takes less effort to
xcite the bubble surface at a certain mode 𝑛. As a consequence, the
xcitation frequency 𝜔 should be larger in two dimensions than in three
imensions, which promotes a frequency upshift in the former setting
ersus a frequency downshift in the latter setting. Overall, this geomet-
ical explanation for the different dynamics depending on the spatial
19
imension is consistent with e.g. recent laboratory measurements by
uplat (2019) who noticed that, during the late stages of a circular
ubble’s collapse, its radius vanishes like 𝑠(𝑡) ∼ (𝑡0−𝑡)1∕2 as 𝑡 → 𝑡0, which
ontrasts with the faster collapse like 𝑠(𝑡) ∼ (𝑡0 − 𝑡)2∕5 for a spherical
ubble.

. Conclusions

We consider the two-dimensional problem of free or forced defor-
ations of a gas bubble immersed in a liquid of infinite extent. Based
n nonlinear theory for potential flow in the presence of a moving
oundary under surface tension without gravity, and adopting the
amiltonian formulation proposed by Benjamin (1987), we introduce

the DNO to clarify the reduction in terms of surface variables with a
canonical symplectic structure. We propose a Taylor series represen-
tation of the DNO about a quiescent circular state of the bubble. A
recursion formula is devised to evaluate this Taylor series up to an
arbitrary order of nonlinearity, with each term having two distinct
components to describe shape distortions and radial pulsations as well
as their coupling.

In this theoretical framework, we obtain a Stokes wave solution that
is accurate up to second order in wave steepness for steadily rotating
shape oscillations without volume change. Assuming circular symme-
try, we derive an inviscid RP model for the time evolution of the bubble
radius under the excitation of a far-field pressure. We also develop a
direct numerical solver for the full governing equations, where each
term in the DNO series is computed efficiently and accurately by a
pseudo-spectral method with the FFT. Via this Fourier decomposition,
an arbitrary number of shape modes can be specified to contribute to
nonlinear wave interactions.

We show extensive numerical tests on the convergence of the DNO
as a function of the truncation order 𝑀 for varying bubble shapes,
urface steepnesses and spatial resolutions. While errors remain small
verall, the convergence quickly stagnates past 𝑀 ≃ 2 and even
eteriorates past a critical value of 𝑀 for severe shape distortions
r fine spatial resolutions. This behavior is consistent with the ill-
onditioning of the DNO series, which has been documented in other
ontexts (Guyenne and Părău, 2016; Nicholls and Reitich, 2001; Xu and
Guyenne, 2009).

Despite these numerical issues, computations of bubble deforma-
tions of moderately large amplitude or steepness can be performed with
satisfactory accuracy. We apply this algorithm to simulating cycles of
compression–dilatation for a purely circular bubble driven by a uniform
pressure field. Tests against predictions by the RP model provide mu-
tual validation for these two approaches. Nonlinear shape oscillations
of a non-circular bubble in the unforced regime without volume change
are also investigated. We compute steadily rotating waves and time-
periodic standing waves for a few first modes of the bubble surface. We
compare our estimates for mode-2 standing waves to previous results.
Observed discrepancies are attributed to differences between the two-
and three-dimensional geometries.

The focus here is on the algorithmic development and preliminary
assessment of this numerical solver, in cases where the processes of ra-
dial pulsations and shape distortions do not interact. On the other hand,
the nonlinear coupling between different modes under resonant condi-
tions constitutes an interesting problem in its own right (Guédra and
Inserra, 2018; McDougald and Leal, 1999b). Its in-depth investigation is
envisioned for a subsequent paper. Finally, we emphasize that the pro-
posed methods are not restricted to the two-dimensional setting. Pro-
vided a FFT version in spherical harmonics is available (Mohlenkamp,
1999), we plan to extend the present results to the more general prob-
lem on nonlinear deformations of three-dimensional bubbles. Related
work for three-dimensional water waves can be found in de la Llave
and Panayotaros (1996) and Xu and Guyenne (2009).
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