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Abstract

Cnidarians are critical members of aquatic communities and have been an experimental
system for a diversity of research areas ranging from development to biomechanics to
global change biology. Yet, we still lack a well-resolved, taxonomically balanced cnidarian
tree of life to place this research in appropriate phylogenetic context. To move towards
this goal, we combined data from 26 new anthozoan transcriptomes with 86 previously
published cnidarian and outgroup datasets to generate two 748-locus alignments
containing 123,051 (trimmed) and 449,935 (untrimmed) amino acids. We estimated
maximum likelihood phylogenies for both matrices under partitioned and unpartitioned
site-homogeneous and site-heterogenous models of substitution. We used the resulting
topology to constrain a phylogenetic analysis of 1,814 small subunit ribosomal (18S) gene
sequences from GenBank. Our results confirm the position of Ceriantharia (tube-dwelling
anemones), a historically recalcitrant group, as sister to the rest of Hexacorallia across
all phylogenies regardless of data matrix or model choice. We find unanimous support
for the sister relationships of Scleractinia and Corallimorpharia and of Endocnidozoa
and Medusozoa. We propose the name Coralliformes for the clade uniting scleractinians
and corallimorpharians and the name Operculozoa for the clade uniting endocnidozoans
and medusozoans. Of the 229 genera with more than a single representative in our 18S
hybrid phylogeny, 47 (21%) were identified as monophyletic, providing a starting point
for a number of taxonomic revisions. Together, these data are an invaluable resource for
comparative cnidarian research and provide perspective to guide future refinement of

cnidarian systematics.

Introduction

Cnidarians have been evolving independently from other
animals for at least 600 million years (Dohrmann &
Worheide, 2017; Erwin, 2015; McFadden et al., 2021) and
have diversified into an astonishingly wide assemblage of
forms, including hard and soft corals, anemones,
siphonophores, hydroids, jellyfish, and myxozoan para-
sites. Cnidaria consists of 12,789 extant, accepted species
(WoRMS Editorial Board, 2022) and approximately 8,000
additional predicted species (estimated from Appeltans et
al., 2012). These diverse species form a well-supported

clade and are united by their ability to produce stinging
cells called cnidocytes (Collins et al., 2020). The species
richness of Cnidaria, the ecological importance of many of
its species, and its phylogenetic position as sister to Bila-
teria have made Cnidaria the focus of a range of basic bio-
logical research questions. As such, the long-standing goal
of establishing a complete cnidarian tree of life is becoming
more urgent but also more tractable as maturing sequenc-
ing technologies allow for the collection of more phyloge-
netic characters from more species.

There is a rich history of research involving cnidarians,
with centuries of studies on topics such as regeneration
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(e.g., Trembley et al., 1744; Zeleny, 1907; Zoja, 1895), em-
bryogenesis (e.g., Hargitt, 1904; Murbach, 1896), coral reef
formation (e.g., Darwin, 1851), life history (e.g., Sars,
1829), physiology (e.g., Romanes, 1880), systematics (e.g.,
Miiller, 1862), and morphology (e.g., Hargitt, 1901). Scien-
tific interest in these animals has not waned over time. Re-
search on broad biological questions using cnidarians as a
focal system continues in all fields of biology, with strik-
ing recent examples including studies of allorecognition
(Karadge et al., 2015), biogeography (Martinez et al., 2010),
biomechanics (Hamlet & Miller, 2014), circadian clock
(Peres et al., 2014), development (Helm et al., 2013), early
animal evolution (Bebenek et al., 2004; Collins & Valentine,
2001; Groger & Schmid, 2001; Martin et al., 1997), evo-
lutionary novelty (Babonis et al., 2016), genomics (Chap-
man et al., 2010; Lecleére et al., 2019; Putnam et al., 2007),
germ cell evolution (C.-Y. Chen et al., 2020; Extavour et al.,
2005), global change (Bellwood et al., 2004; Hoegh-Guld-
berg, 1999), human health (e.g., Miller et al., 2005; Sulli-
van & Finnerty, 2007), life history (Sanders & Cartwright,
2015), natural products (Jouiaei et al., 2015; Mariottini &
Grice, 2016), neurobiology (Grimmelikhuijzen et al., 2004;
Marlow et al., 2009), regeneration (Bradshaw et al., 2015;
Chera et al., 2009), stem cell biology (Gahan et al., 2016;
Siebert et al., 2019), symbiosis (Davy et al., 2012; Gault et
al., 2021; Lehnert et al., 2012; Newkirk et al., 2018), venom
(Klompen et al., 2020; Macrander et al., 2015, 2016), and vi-
sion (Picciani et al., 2018). This growing community of re-
searchers and an expanding taxonomic breadth applied to
a diversity of questions (e.g., He et al., 2019) underscores
the importance of an accurate and comprehensive cnidarian
tree of life.

Early efforts to reconstruct the phylogeny of Cnidaria
emphasized broad-scale patterns, including work by Siddall
et al. (1995) who used 18S sequence data to demonstrate
that Myxozoa belonged to Cnidaria after Smothers et al.
(1994) showed them to be metazoans. Bridge et al. (1995)
combined 18S and 16S sequence data with morphological
characters to test class-level relationships within Cnidaria.
Many multi-locus studies followed, including those that
used two or more nuclear ribosomal genes (e.g., 5S, 18S,
288, ITS), two or more mitochondrial genes (e.g., 12S, 16S,
COI, COIII), or a combination of both ribosomal and mito-
chondrial genes to resolve relationships within individual
cnidarian lineages. The earliest molecular phylogenetic
studies to employ complete mitochondrial genome se-
quences focused on relationships within Scleractinia (Med-
ina et al., 2006), Antipatharia (Mercer R. Brugler & France,
2007), Hydrozoa (Kayal et al., 2015), and across all of
Cnidaria (Kayal et al., 2013; Kayal & Lavrov, 2008). More
recently, cnidarian systematics has entered the phyloge-
nomics age, with studies using data from hundreds (and
sometimes thousands) of loci from transcriptome se-
quences (Chang et al., 2015; Kayal et al., 2018; Zapata et
al., 2015) and target-capture sequencing approaches (Bent-
lage & Collins, 2021; Cowman et al., 2020; Glon et al.,
2021; Horowitz et al., 2020; Quattrini et al., 2017, 2020).
See Table S1 for an extensive, but non-exhaustive, list of
142 published cnidarian molecular phylogenetic studies.

At higher taxonomic levels, an accumulating body of
phylogenetic evidence based on one or a few loci consis-
tently recovers monophyletic Anthozoa, Hexacorallia, Oc-
tocorallia, Antipatharia, Ceriantharia, Zoantharia, Medu-
sozoa, Staurozoa, Scyphozoa, Cubozoa, Hydrozoa,
Endocnidozoa, and Myxozoa. However, the inferred phy-
logenetic relationships among and within these lineages
differ in various studies. For example, many of the early
cladistic and likelihood analyses of sequence data that in-
cluded representatives of Staurozoa, Scyphozoa, Cubozoa,
and Hydrozoa did not resolve the position of Staurozoa
(Bridge et al., 1995; Collins, 2002; Kim et al., 1999) (Fig. S1).
Through analyses of morphology and 18S ribosomal RNA
sequences, Marques and Collins (2004) found support for a
clade consisting of Cubozoa and Staurozoa, with Scyphozoa
as sister to this clade. Subsequent analyses of 28S riboso-
mal genes by Collins et al. (2006) supported Cubozoa and
Scyphozoa as sister lineages, with Staurozoa as the sister
group to this clade plus Hydrozoa. Kayal et al. (2013) found
support in analyses of complete mitochondrial genome se-
quences for a clade that consisted of Staurozoa and Cubo-
z0a, sister to a clade consisting of Hydrozoa and Scyphozoa.
More recently, based on analyses of phylogenomic datasets,
Zapata et al. (2015), Kayal et al. (2018), and Quattrini et al.
(2020) all found support for Acraspeda (i.e., the clade unit-
ing Staurozoa, Cubozoa and Scyphozoa), with Staurozoa
sister to Rhopaliophora (i.e., the clade that unites Cubozoa
and Scyphozoa) (Fig. S1).

No phylogenetic analysis published to date provides ev-
idence to support recent taxa erected as part of a re-classi-
fication of acrasped cnidarians proposed by Straehler-Pohl
and Jarms (2022a, 2022b). Two main clades of hydrozoans,
Trachylina and Hydroidolina, are consistently recovered as
monophyletic, although studies using traditional Sanger
sequencing markers have failed to recover relationships be-
tween the main lineages within Hydroidolina with suffi-
cient support (e.g., Cartwright et al., 2008; Collins et al.,
2008; Picciani et al., 2018). Multiple studies have confirmed
that most of the major groups of Hydroidolina—Leptothe-
cata, Siphonophorae, Capitata, and Aplanulata—are mono-
phyletic. However, Filifera has been found to be poly-
phyletic (Bentlage & Collins, 2021; Cartwright et al., 2008;
Collins et al., 2008; A. M. Nawrocki et al., 2010, 2013). His-
torically, there has been little consistency in inferred rela-
tionships between higher-level groups within Hydroidolina.
Recent phylogenetic analyses of Trachylina found congru-
ent relationships among the major groups Limnomedusae,
Trachymedusae, Narcomedusae, and Actinulida (Bentlage
et al., 2018; Collins et al., 2008). Trachymedusae was found
to be non-monophyletic, with one lineage derived from
within Limnomedusae and the rest of Trachymedusae pa-
raphyletic with respect to Narcomedusae. To address part
of this issue, Bentlage et al. (2018) revised Limnomedusae
to include members of Geryonidae that were previously
classified as Trachymedusae. As presently understood, Tra-
chymedusae is still a paraphyletic assemblage that gave rise
to a monophyletic Narcomedusae.

There has also been discordance in reconstructions of
relationships within Anthozoa, perhaps with the most in-
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triguing phylogenetic question being the placement of Ce-
riantharia. Analyses of 18S and 28S ribosomal RNA se-
quences by Stampar et al. (2014) recovered Ceriantharia
as sister to all other Hexacorallia. However, mitochondrial
datasets placed Ceriantharia as sister to the rest of Antho-
zoa (Stampar et al., 2014). Nuclear exon data from Zapata
et al. (2015) and Kayal et al. (2018), ultraconserved element
(UCE) data from Quattrini et al. (2020), and studies of com-
plete mitochondrial sequences from Stampar et al. (2019)
recovered the same result found in the ribosomal rRNA
studies, with Ceriantharia as sister to the rest of Hexacoral-
lia.

Phylogenomic studies (i.e., those with hundreds or thou-
sands of loci sampled across the genome) have brought
higher resolution to the cnidarian tree of life; but all of
them lack taxonomic balance, and many omit key lineages
(Fig. 1). For example, Zapata et al. (2015) included minimal
ceriantharian and staurozoan data and did not include
Myxozoa. Chang et al. (2015) added seven representatives
of Myxozoa and a Polypodium transcriptome but lacked
Staurozoa and Ceriantharia. Kayal et al. (2018) combined
previous data sets and added five deeply sequenced tran-
scriptomes from Staurozoa but included very few ceri-
anthiarian and octocoral data and had limited sampling
within the most diverse clade of Hydrozoa, Hydroidolina.
Kayal et al. (2018) and Zapata et al. (2015) resolved Aplan-
ulata as the sister to a limited sampling of other Hy-
droidoloina. Bentlage and Collins (2021) addressed this de-
ficiency using a bait capture approach focusing on
Hydroidolina and also recovered strong support for Aplan-
ulata as the sister group to the remainder of Hydroidolina.
Using over 100 loci, Bentlage and Collins (2021) found Fil-
ifera to be polyphyletic, but recovered support for a topol-
ogy uniting Filifera I with Filifera II, as sister to Capitata,
with these three taxa united in a clade sister to Leptothe-
cata. This study also found support for Filifera III plus IV, as
the closest relatives of Siphonophorae (Bentlage & Collins,
2021). To comprehensively understand the evolutionary re-
lationships among Cnidaria clades, it is essential to gener-
ate a phylogenetic tree that includes a comprehensive sam-
pling across all major lineages.

Here, we combine 26 de novo transcriptome datasets
and previously published transcriptome and gene model
datasets to increase taxon sampling for underrepresented
clades and improve the balance of taxon sampling across
Cnidaria. In a hybrid approach designed to further increase
taxon sampling (see McFadden et al., 2022), we use the
topology resulting from phylogenomic analyses of our tran-
scriptome data to constrain a phylogenetic analysis of more
than 1,800 small subunit ribosomal DNA (18S) sequences.
Our resulting phylogenies and new transcriptomic data
provide a solid framework for present understanding of the
evolutionary history of Cnidaria and for guiding future re-
search on the phylogenetics of Cnidaria.

Methods

Reproducibility and transparency statement

Custom scripts, command lines, and data used in these
analyses, including transcriptomes and alignment and tree
files, are available at our GitHub repository (github.com/
josephryan/DeBiasse_cnidophylogenomics;  doi:10.5281/
zenodo.10794451) and Dryad (https://doi.org/10.6071
M3K39S). To maximize transparency and minimize confir-
mation bias, we planned analyses a priori using a phylo-
tocol (DeBiasse and Ryan 2019) and posted this original
document and any subsequent changes to our GitHub
repository.

Sample collection and data generation

Specimens were collected under permits as required by lo-
cal jurisdictions. Full metadata for collection locations and
dates, RNA extraction, library prep, and sequencing is
available in Table S2. Raw reads are available under acces-
sion number PRINA1023279.

Transcriptome assembly and processing

We generated new transcriptome data for 26 anthozoans
(Table S3). We trimmed FASTQ sequences and assembled
transcriptomes using the Trimmomatic (Bolger et al., 2014)
option in Trinity v2.8.5 (Grabherr et al., 2011). We applied
the ‘include supertranscripts’ parameter to generate super-
Transcripts as part of each Trinity run. SuperTranscripts
provide a single all-inclusive transcript for genes with mul-
tiple isoforms (Davidson et al., 2017). We translated the
superTranscripts into amino acid sequences in TransDe-
coder v5.0.2 (github.com/TransDecoder). We set the Trans-
Decoder ““m’ flag (minimum length of open reading frame)
to 50 and used the results from BLASTP (McGinnis & Mad-
den, 2004) searches to inform the final TransDecoder pre-
diction step. Using Alien Index v2.1 (https://github.com,
josephryan/alien_index) we filtered potential contaminants
in these translated sequences by removing sequences that
were the top BLASTP hit to v0.02 of the curated alien_index
database. was to a non-metazoan sequence. We assessed
the completeness of each transcriptome by searching
against the eukaryote database in BUSCO v2 (Simao et al.,
2015) as implemented in gVolante v1.2.0 (Nishimura et al.,
2017).

Phylogenomic matrix construction and
phylogeny estimation

Our original dataset consisted of 26 new anthozoan tran-
scriptomes (18 actiniarians, 4 ceriantharians, and 4 octoco-
rallians), four cnidarian transcriptomes that we assembled
from data publicly available on the NCBI Sequence Read
Archive, 75 previously assembled and published transcrip-
tomes, and seven previously published amino acid gene
model data sets (112 sequences total, Table S3). The dataset
included 104 ingroup cnidarians and the following eight
outgroup taxa: the ctenophore Mnemiopsis leidyi
(GCA _000226015.1), the sponge Amphimedon queenslandica
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Figure 1. A graphical survey of cnidarian phylogenomic datasets over time as compared to species richness across its

major lineages.

A) The colored bar represents the total number of cnidarian species described for four major taxonomic groups. The number of accepted taxa is based on the World Register of Marine
Species database as of September 2022. The height of each grey bar represents the number of species from the total described included in the corresponding study. B) The height of
each colored section represents the proportion of a particular taxonomic group included in the study. The width of the bar represents the number of nucleotide or amino acid
columns in the dataset. For panels A and B, the studies are abbreviated with the first letter of the first author’s surname and the publication year (e.g., K2013 represents Kayal et al.,
2013). The number in parentheses indicates the number of cnidarian taxa included in the alignment. Columns labeled D2024-18S and D2024-Tr indicate the 18S and transcriptomic
datasets generated in this study, respectively. The other studies included are Chang et al., 2015; Kayal et al., 2018; Quattrini et al., 2017, 2020, 2023; Zapata et al., 2015, and Stampar

etal., 2019.

(GCF_000090795), the placozoan Trichoplax adhaerens
(ABGP00000000), the fruit fly Drosophila melanogaster
(GCF_000001215), the marine annelid Capitella teleta (PR-
JNA175705), the limpet Lottia gigantea (PRINA175706), the
purple sea urchin  Strongylocentrotus  purpuratus
(https://metazoa.ensembl.org, release 47), and the zebra
finch Taeniopygia guttata (ABQF00000000) (Table S3). We
used diamond v0.9.22.123 (Buchfink et al. 2015) to perform
reciprocal best BLAST searches and generated FASTA files
of orthologous sequences (i.e., orthogroups) in OrthoFinder
v2.2.3 (Emms & Kelly, 2019) using all 112 sequences as in-
put.

We filtered the orthogroups inferred by OrthoFinder as
follows: Using an automated script, sequences within each
orthogroup were aligned using MAFFT v7.309 (Katoh &
Standley, 2013) using the mafft-linsi alias with parameters
—localpair and —-maxiterate 1000, and, in the multicore ver-
sion of IQ-TREE v1.5.5 (Nguyen et al., 2014), a maximum
likelihood (ML) tree for each alignment that had no more
than 50% sequence gaps was estimated. Only the or-
thogroup trees that had at least 50% of the total taxa and no
more than eight paraphyletic duplicates per species were
retained (there were no limits on the number of duplicates
if they were monophyletic). In PhyloTreePruner v1.0 (Kocot
et al., 2013), we used the -u flag to remove all but the

longest sequence in taxa with monophyletic duplicates
(e.g., paralogs), which produced a set of orthologous loci
with one sequence per species in at least 50% of our taxa.
The initial run of the orthogroup-filtering pipeline pro-
duced a small number of orthogroups that included single-
copy loci per species and many orthogroups that contained
duplicate (i.e., two or more) transcript copies per locus.
These duplicate transcript copies can be artifacts produced
by Trinity due to misassemblies or sequencing errors, or
they can be paralogs that evolved by gene duplication
events. Regardless of their source, including duplicate tran-
script copies per locus interferes with phylogenetic infer-
ence because their evolutionary history is unknown. Using
the BUSCO scores as a guide, we removed five cnidarian
species that had a high number of transcript duplicates per
core gene (Table S3). This increased the number of single-
copy loci produced by subsequent runs of the orthogroup-
filtering pipeline (see below). We also removed Heteractis
crispa because it clustered with the outgroup taxa in pre-
liminary trees, and subsequent BLAST analyses suggested
the H. crispa transcriptome was substantially contaminated
with vertebrate sequences. Muricea muricata was also re-
moved due to suspected non-target cnidarian contamina-
tion. We reran OrthoFinder and the filtering pipeline with
the parameters described above for the 105 species remain-
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ing, assigning 3,670,777 of 4,892,912 sequences (75%) to
orthogroups and retaining 4,117 orthogroups that had at
least 53 of 105 species present and no more than eight du-
plicates per species. After removing within-species dupli-
cates, we were left with 748 single-copy orthogroups.

We concatenated alignments of all the single-copy or-
thologs for the remaining 105 species using the fasta2phy-
lomatrix  utility v0.02  (github.com/josephryan/[FR-
PerlModules) and aligned these sequences with MAFFT
v7.309 using the mafft-linsi alias with parameters —local-
pair and —maxiterate 1000. This dataset did not involve any
column trimming as it has been shown that current meth-
ods for filtering multiple sequence alignments lead to sub-
optimal alignments (Tan et al., 2015). To test if removing
divergent and ambiguously aligned columns affected our
results, we generated a trimmed version of this matrix with
Gblocks v0.91b (Castresana, 2000) using dynamic parame-
ters generated by Gblockswrapper v0.03 (https://goo.gl/fD-
jan6). The untrimmed and trimmed matrices consisted of
449,935 and 123,051 amino acid columns, respectively.

We used the untrimmed and trimmed matrices and two
models (partitioned and unpartitioned) to estimate four ML
phylogenies in IQ-TREE v1.5.5 (Nguyen et al. 2015). In the
first and second analyses, we used the IQ-TREE parameter
m TEST’ to determine site-homogeneous models of amino
acid substitution for each gene partition applied to the (i)
untrimmed and (ii) trimmed data matrices. In the third
and fourth analyses, we used the C60 model in IQ-TREE,
which accounts for across-site compositional heterogeneity
in equilibrium frequencies, applied to the (iii) untrimmed,
unpartitioned data matrix and the (iv) untrimmed, parti-
tioned data matrix. Support values for all phylogenies were
determined from 1000 ultrafast bootstrap replicates.

Small subunit (18S) ribosomal DNA matrix
construction

We ran the following search at GenBank (NT) on July 8,
2020: ((Cnidaria]ORGN] AND (18S OR “small subunit ri-
bosomal”)) BUTNOT NematostellalORGN]) OR AF254382.
We downloaded these results in GenBank format. To these
13,717 sequences, we added accessions AF254382 (Ne-
matostella vectensis) and AF052581 (Renilla reniformis) and
chose a single representative from sets of sequences from
the same species name (retaining the longest sequence of
a set of duplicates). We wused a custom script
(get_18S_fasta_from_genbank.pl) to convert GenBank for-
mat to FASTA and remove the following sequences: (1) all
duplicates of a species except for the longest, (2) AY935208
(Aurelia sp.), (3) sequences shorter than 1000 nucleotides,
(4) sequences that include the patterns ‘environ,’ ‘parasite,’
or ‘proliferative’ in their definition line, (5) sequences that
did not include a class designation, and (6) sequences from
taxa that include species affinis (abbreviated sp. or cf.) un-
less those sequences were the only representative of a
genus.

The following changes were made based on prior knowl-
edge: (1) Virgularia gustaviana was removed as it is er-
roneously annotated (clearly a ceriantharian) in GenBank,
(2) Carybdea marsupialis was renamed Alatinidae indet., (3)

Alatina philippina was removed as it was shown to be the
same as Alatina morandinii (Straehler-Pohl & Toshino,
2015), (4) Darwin sp. was renamed to Gerongia rifkinae, and
(5) accession AF099104 (Craterolophus convolvulus) is a con-
taminant of Haliclystus so it was replaced with AY845344.
After running an initial tree, we identified one long-
branched clade of octocoral sequences that contained
Junceella aquamata  (AY962535), Junceella fragilis
(AY962533), and Subergorgia ornata (AY962537), which fell
within Hexacorallia instead of Octocorallia. We determined
that these three sequences were likely contaminants and
removed them based on the following criteria: (1) all were
from the same NCBI PopSet (accession=63148780), (2) the
top BLAST hits of each of these were to other sequences
from this PopSet including bivalves and crustaceans, (3)
Junceella and Subergorgia, which were sister in our prelim-
inary tree, are distantly related genera in Quattrini et al.
(2020), and (4) there is no obvious voucher available for
these sequences. We included a reduced set of octocoral se-
quences given the low phylogenetic signal for 18S in this
group demonstrated previously (Berntson et al., 2001; Mc-
Fadden et al., 2010).

We used ssu-align v0.1.1 (E. P. Nawrocki & Farm, 2010)
with default settings to align 1,814 18S gene sequences (15
ceriantharians, 442 non-ceriantharian hexacorallians, 117
octocorallians, 496 hydrozoans, 22 cubozoans, 24 stauro-
zoans, 73 scyphozoans, and 625 endocnidozoans) repre-
senting 702 genera. We used ssu-mask v0.01 from the same
package with default settings to remove columns that likely
include a significant number of misaligned nucleotides as
recommended in the ssu-align manual. We used esl-format
v0.43 from the Easel sequence library (https://github.com
EddyRivasLab/easel) to convert stockholm formatted align-
ments to FASTA format. The resulting alignment contained
1,324 columns (959 parsimony-informative).

Small subunit (18S) ribosomal DNA
phylogeny estimation

We constructed a constraint tree based on the topology of
the transcriptomic phylogeny estimated in the untrimmed,
partitioned site homogeneous analysis above (Fig 2). We
pruned Ceriantheopsis americana from the constraint tree
because there has been confusion regarding the distinction
between this taxon and Pachycerianthus borealis (Klompen
et al., 2020) that complicates downstream interpretations.
Additional sequences were pruned if a corresponding se-
quence did not exist in the 18S dataset. In total, there were
23 sequences pruned from the constraint tree (Table S2).
We also collapsed the three cubozoan species into a poly-
tomy to reflect discrepancies that we encountered among
the phylogenomic trees (discussed in Results). The final
constraint tree contained 75 taxa that were present in both
our phylogenomic and 18S datasets.

We next generated a phylogeny of 18S sequences using
IQ-TREE multicore v1.6.12 (Nguyen et al., 2014) applying
the parameter -m TEST to identify the best fitting model
of nucleotide substitution. The final dataset, the accessions
of all sequences, the constraint tree, the final tree, and the
scripts used to create the dataset and constraint tree, are
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Figure 2. Maximum-likelihood phylogeny of Cnidaria estimated from an untrimmed, concatenated matrix of 748
ortholog alignments analyzed under a site-homogeneous partitioned model (rooted based on the outgroup, which is not

shown).

Circles at the branch tips are proportional to the occupancy of that taxon in the data matrix, with black circles indicating previously published data and white circles indicating data
generated for this study. Occupancy for previously published Myxozoa, Cyanea capillata, Tripedalia cystophora, and Platygyra carnosa sequences was below 15% (Table S2), making cir-
cles for these taxa very small and appearing to be missing. Bootstrap values are indicated at nodes if support is less than 100% for any of the analyses (partition-specific site-homoge-
neous models run on untrimmed matrix listed first, partition-specific site-homogeneous models run on trimmed matrix listed second, C60 analysis listed third, and C60 partitioned
analysis listed fourth). The hash indicates a conflicting relationship where T. kitauei is sister to M. cerebralis in the C60 analysis (Fig. S3).The diamond indicates a conflicting relation-
ship in the two phylogenies estimated under the C60 model where Staurozoa is sister to Hydrozoa (Fig. S3-S4). The asterisk indicates a conflicting relationship where A. alata is sister
to T. cystophora in the three other phylogenies (Fig. S2-54).

posted to our GitHub repository (see the URL above), and Results and Discussion

the transcriptomes are available at Dryad (https://doi.org/

10.6071/M3K39S). Cnidaria is an ancient lineage that encompasses a wide
range of phenotypic and genomic diversity. Research inter-
ests in cnidarian organisms are extensive and taxonomi-
cally broad, presenting an excellent opportunity to study a
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Figure 3. Maximum-likelihood phylogeny estimated using small subunit ribosomal (18S) gene sequences from 1,814
cnidarian species with higher-level relationships constrained according to the relationships in the multi-locus,

untrimmed, partitioned, site homogeneous analysis (Fig 2).

Bolded branches indicate the constraint tree applied, with colors representing higher-level taxonomic groups as in Fig. 1 and 2.

wide variety of biological processes. However, an accurate
and extensive phylogenetic framework is necessary to pro-
mote and contextualize such research. Existing phylogenies
encompass less than 2% of species (Fig. 1A), and most, if
not all, are taxonomically skewed relative to the actual rep-
resentation of major cnidarian groups (Fig. 1B). In addi-
tion, there are conflicting relationships that emerge from
these previous studies, which is not surprising given that
they differ in taxon sampling and fail to represent the di-
versity of the group. Here, we apply a hybrid approach to
present phylogenetic relationships for nearly 15% of de-
scribed cnidarian species. Building a reliable phylogeny for
any group, particularly one as diverse and species rich as
Cnidaria, requires the cumulative efforts of researchers
working to improve inference methods and taxonomic and
genomic sampling. In comparing results across studies and
incorporating previously applied sequences with newly ac-

quired data, support for phylogenetic relationships be-
comes stronger. Our most important contributions in this
paper, which we discuss below, include strong support in
both phylogenies for the sister relationship of the Hexaco-
rallia and Octocorallia, the position of Ceriantharia as sister
to the remaining Hexacorallia, the sister relationship of the
Medusozoa and Endocnidozoa, and the newly coined clades
Coralliformes and Operculozoa.

Anthozoa
Hexacorallia

The four transcriptomic phylogenies generated here (Fig. 2,
S2-4) recovered all sampled hexacoral lineages (i.e., Scle-
ractinia, Corallimorpharia, Actiniaria, Zoantharia, Ceri-
antharia) as monophyletic and found Scleractinia and
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Corallimorpharia as sister taxa (discussed further below),
concurring with many recent phylogenomic studies (Kayal
et al., 2018; Quattrini et al., 2017, 2020, 2023; Zapata et al.,
2015). In the 18S tree, Zoantharia was non-monophyletic
with a sample labeled as Zoanthus falling out among the
Antipatharia; we suspect that this is a contaminant or mis-
labeled sequence rather than evidence for zoantharian
polyphyly. Our transcriptomic analyses did not include rep-
resentatives from Antipatharia as the one transcriptome
available when we were assembling our matrix had very low
BUSCO scores (Antipathes griggi, Zapata et al., 2015; Table
$3). A more recent study (Drake and Mass 2022) included a
high-quality A. griggi transcriptome, however, by the time
this study was published, our transcriptomic phylogenetic
analyses were complete. In the 18S tree, we recover An-
tipatharia as the sister to the Actiniaria-Scleractinia-Coral-
limorpharia clade, rather than as sister to Scleractinia and
Corallimorpharia as in previous target-enrichment (Quat-
trini et al., 2017, 2020, 2023), transcriptome-based (Zapata
et al., 2015), and whole mitochondrial genome analyses
(Quattrini et al., 2023). If true, our 18S topology suggests
either that a number of characters related to skeletoniza-
tion evolved independently in Scleractinia and Corallimor-
pharia or that there were multiple independent losses of
these characters in the clade that includes Antipatheria,
Scleractinia, and Corallimorpharia. A recent comparison of
anthozoan phylogenies estimated from UCE and whole mi-
tochondrial genomes also demonstrated instability in the
relationships of Zoantharia, Actiniaria, and the enigmatic
giant deep-sea anemone Relicanthus daphneae, which
grouped with Zoantharia in the UCE dataset and An-
tipatharia in the mtDNA dataset (Quattrini et al., 2023),
highlighting the need for more thorough taxon and more
phylogenetically-informative loci to solidify the evolution-
ary history of these clades.

Corallimorpharia and Scleractinia

Reconciling molecular phylogeny with morphology in Scle-
ractinia has been a long term, persistent, and challenging
task (Fukami et al., 2004, 2008; Kitahara et al., 2010;
McMillan et al., 1991), with Huang et al. (2011) coining
the tongue-in-cheek term “Bigmessidae” to describe this
group. Some of the earliest molecular phylogenies based
on mitochondrial rRNA genes resulted in two major scler-
actinian groups that conflict with morphologically defined
subordinal classifications (C. A. Chen et al., 2002; McMillan
et al,, 1991; Romano & Cairns, 2000; Romano & Palumbi,
1996, 1997). One group, called the robust corals, contains
platelike and massive taxa with thick, heavily calcified
skeletons. The second group, called the complex corals,
contains corals with more porous, less calcified skeletal
walls. We recovered these robust and complex groups (Fig.
2, S2-4) as have recent multilocus studies (e.g., M. F. Lin et
al., 2016; Quek & Huang, 2022). An important area of fu-
ture research attention is resolving the position of deep-sea
aposymbiotic taxa, which fall out as the earliest branching
scleractinians in studies based on mitogenomes and rRNA
(Barbeitos et al., 2010; Kitahara et al., 2010; Seiblitz et al.,

2020; Stolarski et al., 2011) but have been absent or under-
represented in recent phylogenomic studies.

Introducing Coralliformes (Corallimorpharia
+ Scleractinia)

Using whole mitochondrial genomes, Medina et al. (2006)
found Corallimorpharia sister to the complex corals, ren-
dering Scleractinia non-monophyletic. Based on these rela-
tionships, Medina et al. (2006) resurfaced the “naked coral
hypothesis,” suggesting the soft-bodied corallimorpharians
evolved from a scleractinian ancestor and subsequently lost
the stony skeleton trait during historical periods of in-
creased CO, concentrations in the marine environment.
Following studies using a range of loci (nuclear rRNA:
Fukami et al. (2008); whole mitochondrial genomes: Kayal
et al. (2013); Lin et al. (2014); Seiblitz et al. (2020); nuclear
protein coding: Lin et al. (2016); Kayal et al. (2018); UCEs:
Quattrini et al.(2017); Quattrini et al. (2020)) have found
Scleractinia to be monophyletic. Like these studies, we re-
covered a monophyletic Scleractinia across all four phy-
logenetic analyses (Fig. 2, S2-4), demonstrating this rela-
tionship is robust to model choice and refuting the naked
coral topology, which was likely a result of saturation in the
mitochondrial protein sequences (but see Quattrini et al.,
2023), long-branch attraction, and/or model violations (Ki-
tahara et al., 2014). We propose the name Coralliformes to
represent the clade that unites Corallimorpharia and Scler-
actinia.

Actiniaria

Although we found monophyly for Actiniaria as a whole,
internal relationships differed between marker types and
from previous studies. For example, Enthemonae and
Anenthemonae were monophyletic in all phylogenies based
on transcriptomic data (Fig.2, S2-4), corroborating previous
studies (Gusmao et al., 2020; Rodriguez et al., 2014). In
contrast, in the 18S phylogeny Enthemonae and Anenthe-
monae were non-monophyletic, with the difference stem-
ming from the placement of the actinostolideans Hormo-
soma and Anthosactis and the actinernoideans Actinernus,
Isactinernus, and Synactinernus at the base of the actiniar-
ian tree rather than within Enthemonae and Anenthe-
monae, respectively. This novel topology recalls historical
groupings of these taxa within “Mesomyaria,” (see Carl-
gren, 1949; Rodriguez et al., 2014) and, if confirmed, would
significantly change the inferred history and homology of
marginal musculature in Actiniaria. Based on the 18S tree,
the marginal sphincter would be inferred to be present and
mesogleal at the root of Actiniaria, with subsequent losses
and multiple shifts to become concentrated and embedded
in the endoderm. In the phylogenomic tree, internal rela-
tionships for Enthemonae contradict historical taxonomy,
with Haloclava producta (Actiniodea) nested within Metrid-
ioidea and Megalactis griffithsi (Actinodendridae) nested
within Actiniidae (Fig. 2, S2-4). These discordant relation-
ships are well known from previous studies (Barragan et
al., 2019; Izumi et al., 2020; Rodriguez et al., 2014; Yap et
al., 2014), and the taxonomy of Haloclavidae has recently
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been updated to better reflect the position of H. producta
(Hamilton et al., 2022). While multilocus phylogenies are
generally preferred to those based on a single marker, taxon
sampling in the phylogenomic dataset is almost an order
of magnitude lower for Actinioidea and Metridioidea than
that of the 18S tree and mesomyarian taxa, which typically
branch near the base of the actiniarian tree. Resolving re-
lationships at the suborder and below in Actiniaria will re-
quire generating data for species in more sparsely sampled
regions of the tree.

Ceriantharia

Among anthozoan lineages, Ceriantharia has been the most
challenging to interpret phylogenetically. Instability in the
resolution of Ceriantharia confounds attempts to under-
stand two key aspects of ceriantharian biology. Cerianthar-
ians produce spirocytes and ptychocytes in addition to ne-
matocytes, with these additional kinds of capsules having
different structural properties and functions (Mariscal,
1984). All hexacorals produce spirocytes, but ptychocytes
are unique to Ceriantharia (Mariscal et al., 1977). The in-
ferred relationship among these cell types depends on the
topology of the anthozoan tree (Babonis et al., 2023; Reft
& Daly, 2011) and is worth investigating given the func-
tional importance and unparalleled complexity of these mi-
croscopic machines. Similarly, the medusiform, long-lived
larval stage of some ceriantharians is complicated to inter-
pret if the phylogenetic position of Ceriantharia is not well
resolved.

Here, we recovered this historically labile group as the
sister lineage to the rest of Hexacorallia in all our analyses
with strong bootstrap support (Fig. 2, 3, S2-4). This result
corroborates the results of previous phylogenomic studies
(Kayal et al., 2018; Quattrini et al., 2017, 2020, 2023; Zap-
ata et al., 2015) and solidifies the placement of this clade.
Previously, Stampar et al. (2019) found a different relation-
ship based on complete mitochondrial genomes with ceri-
antharians sister to a clade containing octocorals and other
hexacorals. Possible explanations provided for this rela-
tionship included unique mitochondrial features such as
multipartite linear genome structure (Stampar et al., 2019),
saturation (Pratlong et al., 2016), and remarkably slow rates
of mitochondrial genome evolution (Mercer Robert Brugler,
2004; Hellberg, 2006; Shearer et al., 2002), a trend echoed
across most anthozoan groups. Interestingly, a more recent
phylogeny also inferred using complete mitochondrial
genome sequences agreed with phylogenomic studies, re-
covering ceriantharians as the first hexacorallian lineage
(Quattrini et al., 2023). In their study, Quattrini et al., 2023
explicitly tested for saturation in the mitochondrial loci and
found none, lending support to the hypothesis that satura-
tion might lead to outlier relationships for Ceriantharia and
other cnidarian taxa.

While we recovered the same internal relationships for
Ceriantharia across all four phylogenomic trees, those re-
lationships conflicted with taxonomy. For example, Peni-
cillaria and Spirularia are monophyletic, but, within Spir-
ularia, the two Cerianthidae species are not as
Pachycerianthus borealis (Cerianthidae) is sister to a clade

that contains Botruanthus benedeni (Botrucnidiferidae) and
Ceriantheomorphe brasiliensis (Cerianthidae). We also find
the genus Isarachnanthus non-monophyletic as I. nocturnus
is sister to Archnanthus sp. Our constrained 18S tree pre-
sents further conflicts between ceriantharian taxonomy and
phylogeny. Here, the genus Pachycerianthus is non-mono-
phyletic as a clade of six Pachycerianthus species is sister
to the two Isarachnanthus (Penicillaria) species. In addition,
the two species of Botrucnidiferidae (Botruanthus benedeni
and Botrucnidifer sp.) and the genus Cerianthus are non-
monophyletic. These problems echo results of previous
molecular phylogenetic relationships within Ceriantharia,
which generally find conflict between taxonomic groups
and phylogenetic results (e.g., Forero Mejia et al., 2020;
Stampar et al., 2012, 2014). The disconnect between taxon-
omy and phylogeny in both the phylogenomic and 18S data
are paralleled in recent discoveries of significant plasticity
in morphology within the life history of a species and per-
sistent taxonomic confusion, even at a narrow geographic
scale (reviewed in Stampar et al., 2016).

Octocorallia

In all four of our phylogenomic analyses, we found Octo-
corallia sister to Hexacorallia (Fig. 2, S2-4), as have recent
phylogenomic studies (Quattrini et al., 2017, 2020, 2023),
demonstrating the stable position of octocorals in the
cnidarian tree. However, ordinal and familial-level taxon-
omy has been, and continues to be, uncertain (reviewed
in McFadden et al., 2021). Recently, Quattrini et al. (2017,
2020) made major strides in octocoral phylogenomics, in-
creasing the number of taxa and loci (933 UCE loci,
278,819bp), and McFadden et al. (2022) published a thor-
ough taxonomic revision of Octocorallia guided by 739 UCE
and exon loci and including 185 octocoral taxa representing
55 of 63 currently recognized families. In this monograph,
the authors dissolve the three historical orders (Alcy-
onacea, Pennatulacea, Helioporacea) and reassign taxa to
two new orders: Scleralcyonacea and Malacalcyonacea.
Within these orders, McFadden et al. (2022) identify 79
families, 18 that are newly described and 3 that the authors
elevated or reinstated. Our results for Malacalcyonacea,
while limited in taxon sampling, concur with the relation-
ships defined by McFadden et al. (2022). In our transcrip-
tomic phylogeny, Eunicellidae sensu McFadden et al. (2022)
and Gorgoniidae form a clade sister to Plexauriidae within
the Malacalcyonacea. For genera where we had multiple
octocoral species, neither Eunicea nor Leptogorgia were
monophyletic, which matches known evolutionary patterns
described previously (Poliseno et al., 2017). We did not re-
cover a monophyletic Scleralcyonacea, which is perhaps ex-
pected given we had only two representatives of this order
(Coralliidae and Pennatuloidea). In light of the extensive
UCE-based phylogeny (McFadden et al., 2022; Quattrini et
al., 2017, 2020, 2023) and the long-realized unreliability of
18S for constructing octocoral relationships due to its lack
of sufficient variation among octocoral taxa (McFadden et
al., 2010), we do not go into extensive details of the octoco-
ral relationships in our 18S tree.
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Endocnidozoa

We found support for Endocnidozoa, recovering Myxozoa
sister to Polypodiozoa across all four transcriptomics analy-
ses (Fig. 2, S2-4) and the 18S phylogeny, concordant with
Chang et al. (2015) and Kayal et al. (2018). In the transcrip-
tomic analyses, we included data for the same five species
included in Kayal et al. (2018), which all had low matrix
occupancy (5-35%, Table S2). Across our four analyses, we
found two topologies, both with paraphyletic Myxobolus. In
the site-heterogeneous unpartitioned analyses, Thelohanel-
lus kitauei and M. cerebralis formed a clade (Fig. S3), and, in
all other analyses, T. kitauei formed a clade with M. pendula
(Fig. 2, S2, S4). In the 18S phylogeny, which contained 624
myxozoan tips, Malacosporea and Myxosporea were mono-
phyletic, but most genera, including those most frequently
represented, were not (Myxobolus (n = species 185), Cerato-
myxa (n = 85), Kudoa (n = 69), and Henneguya (n = 64)). Only
5 genera were monophyletic (Sphaeromyxa (n = 10), Ellip-
somyxa (n = 10), Soricimyxum (n = 2), Gadimyxa (n = 2), Gas-
tromyxum (n = 2) (Figure 3). Given that early descriptions of
myxosoan species were based on spore characteristics (Lom
and Noble 1984), which are often plastic (Mitchell 1989),
discordance between morphological taxonomy and molec-
ular phylogeny are not surprising. In fact, one of the first
phylogenetic attempts to place Myxozoa on the tree of life
using 18S sequence data found Myxobolus and Henneguya to
be paraphyletic 29 years before our study (Smothers et al.,
1994). Clearly, with plastic and reduced traits that evolved
under a parasitic lifestyle (Kent 2005), reconciling myxo-
zoan species boundaries will remain a challenge in cnidar-
ian systematics.

Introducing Operculozoa (Medusozoa +
Endocnidozoa)

A relationship consistent in past studies (Chang et al.,
2015; Kayal et al., 2018) and in all phylogenies estimated
here is the sister relationship of Endocnidozoa and Medu-
sozoa (Fig. 2, S2-4). Based on this result, and noting that
nematocytes of Medusozoa and Polypodiozoa (see Raikova
and Raikova 1990) and polar capsules of Myxozoa all pos-
sess an operculum (Reft and Daly 2012), we propose the
name Operculozoa for the clade uniting Endocnidozoa and
Medusozoa.

Medusozoa

Our results highlight the need for more taxon sampling
within Medusozoa. Relationships of the major medusozoan
lineages have been increasingly refined in recent decades
(Bridge et al., 1995; Collins, 2002; Collins, Bentlage, et al.,
2006; Kayal et al., 2015; Kim et al.,, 1999; Marques &
Collins, 2004), with an emerging consensus that Medusozoa
consists of two major lineages, Acraspeda and Hydrozoa
(Kayal et al., 2018). In our analyses that applied a site-ho-
mogeneous model of amino acid substitution to each gene
partition (i & ii), we recovered a monophyletic Acraspeda
with Staurozoa as sister to the clade containing Scyphozoa
and Cubozoa (Fig. 2, S2), matching the relationships found

by four recent studies (Chang et al., 2015; Kayal et al., 2018;
Quattrini et al., 2020; Zapata et al., 2015). However, we
recovered an intriguing, albeit weakly supported, finding
when applying the C60 site-heterogeneous model (iii & iv)
in which Hydrozoa and Staurozoa formed a clade sister to a
clade containing Scyphozoa and Cubozoa (Fig. S1, S3, S4),
a result also recovered by Miranda et al. (2016) analyzing
concatenated mitochondrial (COI, 16S) and nuclear (ITS,
188, 28S) loci under a Bayesian framework. None of our re-
sults corroborate the ribosomal RNA-based hypothesis that
Staurozoa is sister to the remaining medusozoans (Collins,
Schuchert, et al., 2006; Picciani et al., 2018).
Site-heterogeneous models that partition data at the
level of sites (as opposed to at the level of genes) have been
suggested to alleviate problems of long-branch attraction
(Lartillot & Philippe, 2004; Le & Gascuel, 2008). It is pos-
sible that our recovery of a non-monophyletic Acraspeda
was due to applying a site-heterogeneous approach. How-
ever, Kayal et al. (2018) applied the site-heterogeneous CAT
model in PhyloBayes (Lartillot et al., 2009) using largely
the same medusozoan taxa as we used here and recovered
a monophyletic Acraspeda. These conflicting relationships
within Medusozoa may be a result of a number of factors in-
cluding: (1) increased anthozoan sampling in our study, (2)
increased gene sampling in our study, or (3) differences be-
tween the C60 model implemented in IQ-TREE and the CAT
model implemented in PhyloBayes. Nevertheless, taxon
sampling within Medusozoa is poor in all phylogenomic
analyses to date, and a true understanding of medusozoan
relationships will require substantial increase in data from

this group (Fig. 1).
Cubozoa

In addition to conflicting relationships between the major
medusozoan lineages, we also find unstable relationships
within Cubozoa across our analyses. We included three
cubozoans in our analyses: Chironex fleckeri, Tripedalia
cystophora, and Alatina alata. In our untrimmed site-homo-
geneous analysis, we recovered Tripedalia cystophora as sis-
ter to a clade containing Chironex fleckeri and Alatina alata
(Fig. 2). We also recovered this relationship in our 18S phy-
logeny, which did not constrain relationships within Cubo-
zoa. These results conflict with the rest of our analyses as
well as with Bentlage et al. (2010) and Kayal et al. (2018),
which recovered C. fleckeri (Chirodropidae) as sister to a
clade containing A. alata (Alatinidae) and T. cystophora
(Tripedaliidae). This inconsistency is almost certainly due
to the poor taxon sampling (3 of 48 described species rep-
resented) and low data matrix occupancy (4-46%, Table S3)
of Cubozoa in our analyses (Fig. S2-S4) and Kayal et al.
(2018).

Staurozoa

The phylogenetic placement of staurozoans has been re-
calcitrant (Fig. S1). Historically, these so-called stalked jel-
lyfish were considered scyphozoans until Marques and
Collins (2004) elevated the group to the class level (Miranda
et al., 2010). Despite the variable position of Staurozoa
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in our phylogenies (see above), the relationships within
the clade were constant and matched those of Kayal et al.
(2018), the source of the transcriptomic data analyzed here.
The relationships among the genera sampled here were dis-
cordant with those inferred by Miranda et al. (2016), which
to date has the best taxon sampling for Staurozoa based
on a concatenated matrix of mitochondrial (COI, 16S) and
nuclear genes (ITS, 18S, 28S) under parsimony, maximum
likelihood, and Bayesian analyses.

Within Staurozoa, transcriptome-based analysis sug-
gests Myostaurida is sister to Amyostaurida. This result
would suggest that muscles in the stalks have been lost in
Amyostaurida (also suggested in Miranda, Collins, et al.,
2016; Miranda et al., 2018; Miranda, Hirano, et al., 2016)
because scyphozoan polyps possess these muscles. How-
ever, the constrained 18S tree paints a more complicated
picture, as neither Amyostaurida nor Myostaurida is mono-

phyletic (Fig. 3).
Scyphozoa

Relationships within Scyphozoa are consistent and highly
supported across all our transcriptomic phylogenies (Fig. 2,
S2-4) and agree with prior studies that found Discomedusae
sister to Coronatae (Bayha et al., 2010, 2017). Despite re-
moving Periphylla periphylla due to high numbers of tran-
script copies and/or paralogs (Table S3), we recovered the
same relationships among the remaining 6 scyphozoan
species as Kayal et al. (2018), the source of the transcrip-
tomic data analyzed here. Interestingly, despite frequent
topological discordance between nuclear and mitochondr-
ial phylogenies, we find the same phylogenetic relation-
ships (a clade containing Cyanea and Chrysaora sister to
a clade containing Aurelia and Cassiopea) as Kayal et al.
(2013), who inferred phylogenies using mitogenomes, and
Daglio and Dawson (2017), who used mitochondrial and
nuclear ribosomal genes (16S, 18S, 28S). Comparisons to
other recent phylogenomic studies are limited due to low
taxon sampling in this group (Zapata et al., 2015, p. 2
scyphozoans).

Hydrozoa

The transcriptomic phylogeny (Fig. 2) recovered Hydrozoa
split into Trachylina and Hydroidolina, in agreement with
analyses of other previous studies (Bentlage & Collins,
2021; Collins et al., 2008; Kayal et al., 2018; Picciani et al.,
2018; Zapata et al., 2015), although the 18S topology re-
covered the trachyline Halammohydra as falling outside of
these two clades, rendering Trachylina paraphyletic. The
18S topology fails to recover the monophyly of and rela-
tionships among many well-established taxa. For example,
the 18S topology includes part of a grade of Limnomedusae
(including Geryonidae) plus Actinulida as sister to the re-
mainder of Hydrozoa, rendering Trachylina paraphyletic
while Narcomedusae was monophyletic, derived from
within the grade of Trachymedusae, which is congruent
with previous studies (Bentlage et al., 2018; Collins et al.,
2008) (including Actinulida). Within Hydroidolina, two dis-
tinct clades (Siphonophorae and Leptothecata) were mono-

phyletic, but Aplanulata, Capitata, and Filifera were not.
The latter was as expected given that earlier studies es-
tablished Filifera as paraphyletic (e.g., Bentlage & Collins,
2021; Cartwright et al., 2008). The high degree of conser-
vation, and resulting lack of resolution, from 18S has ham-
pered inferences of hydrozoan relationships previously, an
issue that has been partially overcome by using additional
markers such as 16S and 28S (Cartwright et al., 2008;
Collins, Bentlage, et al., 2006; Collins et al., 2008) and most
recently target capture data (Bentlage & Collins, 2021).

While the 18S topology failed to recover monophyly of
most of the traditionally recognized groups within Hydro-
zoa (Fig. 3), the transcriptomic phylogeny (Fig. 2) was con-
sistent with many previous studies. Within Hydroidolina,
Aplanulata (Ectopleura and Hydra) is shown to be the sister
to the rest of Hydroidolina, consistent with previous phy-
logenomic studies (Bentlage and Colllins 2021; Kayal et
al., 2018; Zapata et al., 2015). In addition, Filifera IIT and
IV (Hydractinia, Podocoryne, Turritopsis) were recovered as
monophyletic (Fig. 2), consistent with Bentlage and Collins
(2021), Cartwright et al. (2008), Kayal et al. (2018), and Za-
pata et al. (2015). Sampling of genomic data has been par-
ticularly sparse for Leptothecata, the most species rich of
all roughly ordinal-level medusozoan clades (just one of
2,140 leptothecate species sampled herein) and Filifera I
and II, which are not represented in the genomic data an-
alyzed herein. Bentlage and Collins (2021) filled some of
these gaps with target capture data, but more sampling will
be necessary to settle some of the long-standing debates in
hydrozoan systematics. The sparse taxonomic representa-
tion of hydrozoans, and resulting sparse backbone, may at
least partially explain the lack of resolution of the 18S phy-
logeny for Hydrozoa.

Future of phylogenomics for cnidarians and
other organisms

One critical need for future studies is to improve taxon
sampling across the cnidarian tree. Currently, we have just
scratched the surface of capturing the species richness of
Cnidaria in our phylogenomic analyses (Fig. 1A). Of the
12,000-plus cnidarian species known, the largest phyloge-
nomic study to date (Quattrini et al., 2020) includes just
2% of cnidarian species richness and our 18S hybrid phy-
logeny includes less than 15% (Fig. 1A). Recent studies
have dramatically improved the representation of certain
clades, for example Anthozoa and Octocorallia (Quattrini
et al., 2017, 2020) and Actiniaria (this study), while other
clades like Medusozoa have lagged (Fig. 1B), particularly
the species-rich hydrozoan clade Leptothecata. Cubozoans
also have been poorly represented (Fig. 1b, Chang et al.,
2015 Tripedalia cystophora only, Zapata et al., 2015 Alatina
alata only, Stampar et al., 2019 Alatina moseri only), making
relationships within the clade difficult to resolve with con-
fidence. Zoantharia, Endocnidozoa, Antipatharia, and Ceri-
antharia are other groups that have historically been un-
derrepresented in phylogenomic studies (Fig. 1B, see also
Quek & Huang, 2022). Furthermore, sampling bias due to
uneven geographic accessibility presents a major challenge
in building a complete tree of Cnidaria.

Bulletin of the Society of Systematic Biologists 11



A Cnidarian Phylogenomic Tree Fitted With Hundreds of 18S Leaves

The 18S phylogeny we estimated employed a hybrid ap-
proach leveraging the strength of the multi-locus phyloge-
nomic backbone and the vast number of 18S sequences
publicly available. McFadden et al., 2022 used a similar ap-
proach to increase taxonomic representation in octocorals,
using a UCE-based topology to constrain the phylogeny of
284 mtMutS sequences. These hybrid methods are useful
for identifying areas where taxonomy can be improved, al-
though instances of contamination and misidentification in
large databases like GenBank can produce spurious results
in phylogenetic trees. In some cases, the topology based on
our 18S was unconventional, differing from results in fo-
cused analyses of this marker. This discordance might have
been due to mis-identified specimens and/or differences in
alignment and models in a phylum-scale data set, high-
lighting areas of the tree where molecular evolution differs
from that of the clade.

All approaches that estimate phylogenies based on ge-
nomic, transcriptomic, single-gene, morphological, target-
capture data as well as super trees have a unique set of
limitations. Despite these limitations, there is value in ex-
ploring sequence data using the hybrid “transcriptomic
trunk with 18S leaves” approach we have outlined here. The
biggest contribution of this analysis is that many of the
taxa in our 18S analysis have hitherto not been incorpo-
rated in a large-scale phylogeny. As such, our analysis pro-
vides a position, albeit provisional, for these taxa relative to
hundreds of other cnidarians.

Target capture methods like UCEs are likely the way
forward in phylogenomic studies in cnidarians (Quek &
Huang, 2022) and other taxa given their cost effectiveness,
coverage, and flexibility, particularly in that they can be
used on older and/or less optimally preserved specimens
(Derkarabetian et al., 2019; McCormack et al., 2015; Ruane
& Austin, 2017). Target capture approaches also reduce
problems with multiple transcript isoforms and paralogous
loci, which we encountered mining transcriptomes for phy-
logenetic markers. Generating genome and transcriptome
sequences will remain important since these data aid in the
design of target capture probe sets (e.g., Quattrini et al.,
2017) and are required for other analyses (e.g., selection,
structural variants, gene family evolution, among others).
Our transcriptome-based phylogenies confirm backbone re-
lationships resolved in recent studies using target capture,
which is a promising approach for reaching the goal of total
taxon sampling.

Conclusions

Building a reliable phylogeny for any group, particularly
one as diverse and species rich as Cnidaria, requires the
cumulative efforts of researchers working to improve in-
ference methods and taxonomic and genomic sampling. In

comparing results across studies and incorporating previ-
ously applied sequences with newly acquired data, support
for phylogenetic relationships becomes stronger. The goal
of generating a cnidarian tree that includes every species
increasingly seems like a reality that will happen within
the next 10 or 20 years. In the meantime, generating trees
(i.e., hypotheses of relationships) that encompass as many
species as possible is critical for moving the field of cnidar-
ian systematics and supplying cnidarian researchers with a
framework from which to interpret evolutionary patterns.
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Figure S2. Maximum-likelihood phylogeny of cnidarian estimated from a concatenated matrix of 748 trimmed ortholog
alignments generated partition-specific models. Bootstrap values are indicated at nodes with less than 100% support.
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Figure S3. Maximum-likelihood phylogeny of cnidarians estimated from a concatenated matrix of 748 untrimmed ortholog alignments under the C60 model of amino acid
substitution. Bootstrap values are indicated at nodes with less than 100% support.
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Figure S4. Maximum-likelihood phylogeny of cnidarians estimated from a concatenated matrix of 748 untrimmed
ortholog alignments under the C60 model of amino acid substitution applied to a partitioned matrix. Bootstrap values
are indicated at nodes with less than 100% support.
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