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Abstract. In the permutation inversion problem, the task is to Ąnd the preimage
of some challenge value, given oracle access to the permutation. This fundamental
problem in query complexity appears in many contexts, particularly cryptography.
In this work, we examine the setting in which the oracle allows for quantum queries
to both the forward and the inverse direction of the permutationŮexcept that the
challenge value cannot be submitted to the latter. Within that setting, we consider
three options for the inversion algorithm: whether it can get quantum advice about
the permutation, whether the query algorithm can restrict the distribution with which
the challenge input is sampled, and whether it must produce the entire preimage
(search) or only the Ąrst bit (decision). We prove several theorems connecting the
hardness of the resulting variations of the permutation inversion problem and establish
lower bounds for them. Our results show that, perhaps surprisingly, the permutation
inversion problem does not become signiĄcantly easier when the adversary is granted
oracle access to the inverseŮprovided it cannot query the challenge itself.
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1 Introduction

1.1 The permutation inversion problem

The permutation inversion problem is deĄned as follows: given a permutation π : [N ]→ [N ]
and an image y ∈ [N ], output the correct preimage x := π−1(y). In the decision version
of the problem, it is sufficient to output only the Ąrst bit of x. If the algorithm can only
access π by making classical queries, then making T = Ω(N) queries is necessary and
sufficient for both problems. If quantum queries are allowed, then GroverŠs algorithm
can be used to solve both problems with T = O(

√
N) queries [Gro96, Amb02], which is

worst-case asymptotically optimal [BBBV97, Amb02, Nay10].
In this work, we consider the permutation inversion problem in a setting where the

algorithm is granted both forward and inverse quantum query access to the permutation π.
In order to make the problem nontrivial, we modify the inverse oracle so that it outputs a
reject symbol when queried on the challenge image y. We call this the two-sided permutation
inversion problem. This variant appears naturally in the context of chosen-ciphertext
security for encryption schemes based on (pseudorandom) permutations [KL20], as well as
in the context of sponge hashing (SHA3) [GJMG11]. We consider several variants:
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1. (Auxiliary information.) With this option enabled, the inversion algorithm now
consists of two phases. The Ąrst phase is given a full description of π (e.g., as a table)
and allowed to prepare an arbitrary quantum state ρπ consisting of S qubits. This
state is called auxiliary information or advice. The second phase of the inversion
algorithm is granted only the state ρπ and query access to π, and asked to invert an
image y. The two phases of the algorithm can also share an arbitrarily long uniformly
random string, referred to as shared randomness. The complexity of the algorithm is
measured in terms of the number of qubits S of the advice state (generated by the
Ąrst phase) and the total number of queries T (made during the second phase.)

2. (Adaptive restriction of challenge distribution.) In this case, the inversion algorithm
again consists of two phases. The Ąrst phase is again given a full description of π,
and allowed to output a string µ ∈ ¶0, 1♢m for m < n, where n =

√
N . The second

phase is then granted query access to π and asked to invert an image y which is
sampled uniformly at random from the set of all strings whose last m bits equal µ.

3. (Search vs Decision.) Here the two options simply determine whether the inversion
algorithm is tasked with producing the entire preimage x = π−1(y) of the challenge
y (search version), or only the Ąrst bit x0 (decision version.)

If the algorithm is solving the search problem, we refer to it as a search permutation
inverter, or SPI. If it is solving the decision problem, we refer to it as a decision permutation
inverter, or DPI. If an SPI uses S qubits of advice and T queries to succeed with probability
at least ϵ in the search inversion experiment, we say it is a (S, T, ϵ)-SPI. If a DPI uses S
qubits of advice and T queries to succeed with probability at least 1/2 + δ in the decision
inversion experiment, we say it is a (S, T, δ)-DPI. If the algorithm is allowed to adaptively
restrict the challenge distribution, we say it is adaptive and denote it by aSPI or aDPI, as
appropriate.

In this work, we are mainly interested in the average-case setting. This means that both
the permutation π and the challenge image y are selected uniformly at random. Moreover,
the success probability is taken over all the randomness in the inversion experiment, i.e.,
over the selection of π and y along with all internal randomness and measurements of the
inversion algorithm.

In Section 2, we present technical preliminaries, including the swapping lemma and
quantum random access codes (QRAC), for subsequent proof. In Section 3, we introduce
several deĄnitions of the permutation inversion problem, with both auxiliary information
and adaptive restriction of challenge distribution. Within Section 4, we show methods for
amplifying the success probability of inversion in the non-adaptive case. Subsequently, in
Section 5, we illustrate two reductions: from search-to-decision with auxiliary information
and from unstructured search-to-decision without auxiliary information. These reductions
are then utilized to derive lower bounds, as shown in Section 6. Finally, in Section 7, we
propose a novel security notion, called one-way-QCCRA2, and establish the security of
two common schemes under this notion, subject to speciĄc conditions.

1.2 Related work

Previous works have considered the quantum-query function inversion problem [HXY19,
CLQ19, CGLQ20, DKRS23, Liu23]. A number of papers gave lower bounds and time-space
tradeoffs for the (one-sided) quantum-query permutation inversion problem, with and
without advice [Amb02, Nay10, Ros21, NABT14, HXY19, CLQ19, FK15, BY23]. The
relevant highlights among these are summarized in Table 1.

We remark that some of these previous works [CX21, CLQ19, NABT14] do not fully
address the average-case setting. SpeciĄcally, they deal with inverters that are ŞrestrictedŤ
in the following manner. First, the inverter is said to Şinvert y for πŤ if it succeeds in the
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inversion experiment for the speciĄc pair (π, y) with probability at least 2/3. Second, the
inverter is said to Şinvert a δ-fraction of inputsŤ if Prπ,y[the inverter inverts y for π] ≥ δ.
This type of inverter is clearly captured by our notion above: it is an (S, T, 2δ/3)-SPI.
However, there are successful inverters of interest that are captured by our deĄnition
but are not restricted. For example, in a cryptographic context, one would deĄnitely be
concerned about adversaries that can invert every (π, y) with a probability of exactly 1/n.
Such an adversary is clearly a (S, T, 1/n)-SPI, but is not a restricted inverter for any value
of δ. Other works also consider the general average-case (e.g., [CGLQ20, Liu23, HXY19])
but without two-way oracle access. Note that the lower bound for restricted adversaries
described in [NABT14, CLQ19] can be translated to the more general lower bound in a
black box way by applying our ampliĄcation procedure described in Lemma 3.

Table 1: Summary of previous work on permutation inversion with advice. Success
probability is denoted by ϵ. Note that ϵ = O(1) in [NABT14].

[NABT14] [CLQ19] [HXY19] Ours

Advice classical quantum quantum quantum

Access Type one-sided one-sided one-sided two-sided

Inverter restricted restricted general general

T -S trade-off ST
2 = Ω̃(N) ST

2 = Ω̃(ϵN) ST
2 = Ω̃(ϵ3

N) ST
2 = Ω̃(ϵ3

N)

To our knowledge, the two-way variant of the inversion problem has only been considered
in one other work. SpeciĄcally, [CX21] gives a lower bound of T = Ω(N1/5) to invert
a random injective function (with two-way access and no advice) with a non-negligible
success probability.

Another novelty of our work is that we give lower bounds and time-space tradeoffs for the
decision problem (rather than just search). While prior work [CGLQ20] also considered the
general decision game, their generic framework crucially relies on compressed oracles [Zha19]
which are only known to support random functions. Consequently, their techniques cannot
readily be applied in the context of permutation inversion due to a lack of Şcompressed
permutation oraclesŤ.

We remark that the notion of two-way quantum accessibility to a random permutation
has been considered in other works; for example, [ABKM22, ABK+22] studied the hardness
of detecting certain modiĄcations to the permutation in this model. By contrast, we are
concerned with the problem of Ąnding the inverse of a random image.

2 Technical preliminaries

2.1 Swapping Lemma

Let Af be a quantum algorithm with quantum oracle access to a function f : X → Y , for
some Ąnite sets X and Y . Let S ⊆ X be a subset. Then, the total query magnitude of Af

on the set S is deĄned as q(Af ,S) =
∑T−1

t=0 ∥ΠS ♣ψt⟩ ∥2, where ♣ψt⟩ represents the state
of A just before the (t+ 1)st query and ΠS is the projector onto S acting on the query
register of A. We use the following simple fact: for any subset S ⊆ X and A making at
most T queries, it holds that q(Af ,S) ≤ T . The following lemma controls the ability of
a query algorithm to distinguish two oracles, in terms of the total query magnitude to
locations at which the oracles take differing values.

Lemma 1 (Swapping Lemma, [Vaz98]). Let f, g : X → Y be functions with f(x) = g(x)
for all x /∈ S, where S ⊆ X . Let ♣Ψf ⟩ and ♣Ψg⟩ denote the Ąnal states of a quantum
algorithm A with quantum oracle access to the functions f and g, respectively. Then,

∥ ♣Ψf ⟩ − ♣Ψg⟩ ∥ ≤
√
T · q(Af ,S),
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where ∥ ♣Ψf ⟩ − ♣Ψg⟩ ∥ denotes the Euclidean distance and where T is an upper bound on
the number of quantum oracle queries made by A.

2.2 Lower bounds for quantum random access codes

Quantum random access codes [Wie83, ANTSV99, ALMO08] are a means of encoding
classical bits into (potentially fewer) qubits. We use the following variant from [CLQ19].

DeĄnition 1 (Quantum random access codes with variable length). Let N be an integer
and let FN = ¶f : [N ] → XN♢ be an ensemble of functions over some Ąnite set XN . A
quantum random access code with variable length (QRAC-VL) for FN is a pair (Enc,Dec)
consisting of a quantum encoding algorithm Enc and a quantum decoding algorithm Dec:

• Enc(f ;R): The encoding algorithm takes as input a function f ∈ FN together with
a set of random coins R ∈ ¶0, 1♢∗, and outputs a quantum state ρ on ℓ = ℓ(f) many
qubits (where ℓ may depend on f).

• Dec(ρ, x;R): The decoding algorithm takes as input a state ρ, an element x ∈ [N ]
and random coins R ∈ ¶0, 1♢∗ (same randomness used for the encoding), and seeks
to output f(x).

The performance of a QRAC-VL is characterized by parameters L and δ. Let L := E
f

[ℓ(f)]

be the average length of the encoding over the uniform distribution on f ∈ FN , and let

δ = Pr
f,x,R

[Dec(Enc(f ;R), x;R) = f(x)]

be the probability that the scheme correctly reconstructs the image of the function, where
f ∈ FN , x ∈ [N ] and R are all chosen uniformly at random.

We use the following information-theoretic lower bound on the expected length of any
QRAC-VL scheme for permutations, which is a consequence of [CLQ19, Theorem 5].

Theorem 1 ([CLQ19], Corollary 1). For any QRAC-VL for the set of permutations SN

(of the set [N ]) with δ = 1− k/N for some k = Ω(1/N), we have

L ≥ logN !−O(k logN) .

3 The permutation inversion problem

We begin by formalizing the search version of the permutation inversion problem. We let
[N ] = ¶1, ..., N♢; typically we choose N = 2n for some positive integer n. For f : X → Y
a function from a set X to an additive group Y (typically just bitstrings), the quantum
oracle Of is the unitary operator Of : ♣x⟩ ♣y⟩ → ♣x⟩ ♣y ⊕ f(x)⟩. We use AOf (or sometimes
simply Af ) to denote that algorithm A has quantum oracle access to f .

DeĄnition 2. Let m,n ∈ N and M = 2m, N = 2n. An adaptive search-version
permutation inverter (aSPI) is a pair aS = (aS0, aS1) of quantum algorithms, where

• aS0 is an algorithm that receives as input a truth table for a permutation over [N ]
and a random string r, and outputs a quantum state as well as a classical string
µ ∈ ¶0, 1♢m with 0 ≤ m < n;

• aS1 is an oracle algorithm that receives a quantum state, a classical string µ ∈ ¶0, 1♢m,
an image y ∈ [N ], and a random string r, and outputs x ∈ ¶0, 1♢n−m.

Note that m is a parameter of the adaptivity, i.e. the length of the adaptive string.
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We will consider the execution of an aSPI aS in the following experiment,

1. (sample coins) a uniformly random permutation π : [N ] → [N ] and a uniformly
random string r ← ¶0, 1♢∗ are sampled;

2. (prepare advice) aS0 is run, producing a pair consisting of a quantum state and a
string (ρπ,r,µ, µ)← aS0(π, r);

3. (sample instance) a random image y ∈ [N ] is generated by Ąrst sampling a random
string x← ¶0, 1♢n−m and then letting y = π(x∥µ);

4. (invert) aS1 is run with the oracles below, and produces a candidate preimage x∗.

Oπ : ♣w⟩ ♣z⟩ → ♣w⟩ ♣z ⊕ π(w)⟩ Oπ−1
⊥y

: ♣w⟩ ♣z⟩ → ♣w⟩ ♣z ⊕ π−1
⊥y(w)⟩ , (1)

where π−1
⊥y : [N ]× ¶0, 1♢ → [N ]× ¶0, 1♢ is deĄned by

π−1
⊥y(w∥b) =

{
π−1(w)∥0 if b = 0 and w ̸= y

1⌈log N⌉∥1 otherwise.

To keep the notation simple, we write this entire process as x∗ ← aS
π⊥y

1 (ρπ,r,µ, µ, y, r).
We will use π⊥y to denote simultaneous access to the two oracles in (1) throughout
the paper.

5. (check) If π(x∗∥µ) = y, output 1; otherwise output 0.

Note that the two oracles allow for the evaluation of the permutation π in both the
forward and inverse directions. To disallow trivial solutions, the oracle outputs a Ąxed
ŞrejectŤ element 1⌈log N⌉∥1 ∈ [N ]× ¶0, 1♢ if queried on y in the inverse direction.

DeĄnition 3. An (S, T, ϵ)-aSPI is a search-version adaptive permutation inverter aS =
(aS0, aS1) satisfying all of the following:

1. Pr
[
π−1(y)← aS

π⊥y

1 (ρ, µ, y, r) : (ρ, µ)← aS0(π, r), y = π(x∥µ)
]
≥ ϵ, where the prob-

ability is taken over π ← SN , r ← ¶0, 1♢∗ and x← ¶0, 1♢n−m, along with all internal
randomness and measurements of aS;

2. S = S(aS) is an upper bound on the number of qubits of ρ in the above.

3. T = T (aS) is an upper bound on the number of oracle queries made by aS1.

We emphasize that the running time of aS and the length of the shared randomness
r are only required to be Ąnite. We will assume that both S and T depend only on the
parameter N ; in particular, they will not vary with π, y, r, or any measurements.

DeĄnition 4. A search-version permutation inverter (SPI) S = (S0,S1) is deĄned as an
aSPI with m = 0. An (S, T, ϵ)-SPI is an (S, T, ϵ)-aSPI with m = 0.

Decision version. The decision version of the permutation inversion problem is deĄned
similarly to the search version above. An adaptive decision-version permutation inverter
(aDPI) is denoted aD = (aD0, aD1), and outputs one bit b rather than a full candidate
preimage. In the ŞcheckŤ phase of the experiment, the single-bit output b of aD1 is
compared to the Ąrst bit π−1(y)♣0 of the preimage of the challenge y. Success probability
is now measured in terms of the advantage over the random guessing probability of 1/2.

DeĄnition 5. A (S, T, δ)-aDPI is a decision-version adaptive permutation inverter aD =
(aD0, aD1) satisfying all of the following:



6 On the Two-sided Permutation Inversion Problem

1. Pr
[
π−1(y)♣0 ← aD

π⊥y

1 (ρ, µ, y, r) : (ρ, µ)← aD0(π, r), y = π(x∥µ)
]
≥ 1

2 + δ, where
the probability is taken over π ← SN , r ← ¶0, 1♢∗ and x← ¶0, 1♢n−m, along with
all internal randomness and measurements of aD. Here π−1(y)♣0 denotes the Ąrst bit
of π−1(y)

2. S = S(aS) is an upper bound on the number of qubits of ρ in the above.

3. T = T (aS) is an upper bound on the number of oracle queries made by aS1.

DeĄnition 6. A decision-version permutation inverter (DPI) D = (D0,D1) is deĄned as
an aDPI with m = 0. An (S, T, δ)-DPI is an (S, T, δ)-aDPI with m = 0.

4 AmpliĄcation

In this section, we show how to amplify the success probability of search and decision
inverters, in the non-adaptive (i.e., m = 0) case. The construction for the search case is
shown in Protocol 1.

Protocol 1 (ℓ-time repetition of (S, T, ϵ)-SPI). Given an (S, T, ϵ)-SPI S = (S0, S1) and
an integer ℓ > 0, deĄne a SPI S[ℓ] = (S[ℓ]0,S[ℓ]1) as follows.

1. (Advice Preparation) S[ℓ]0 proceeds as follows:

(a) receives as input a random permutation π : [N ]→ [N ] and randomness r ←
¶0, 1♢∗ and parses the string r into 2ℓ substrings r = r0∥...∥rℓ−1∥rℓ∥...∥r2ℓ−1

(with lengths as needed for the next step).

(b) uses r0, ..., rℓ−1 to generate ℓ permutation pairs ¶σ1,i, σ2,i♢ℓ−1
i=0 in SN , and

then runs S0(σ1,i ◦ π ◦ σ2,i, ri+ℓ) to get a quantum state ρi := ρσ1,i◦π◦σ2,i,ri+ℓ

for all i ∈ [0, ℓ− 1]. Finally, S[ℓ]0 outputs the quantum state
⊗ℓ−1

i=0 ρi.

2. (Oracle Algorithm) S[ℓ]
π⊥y

1 proceeds as follows:

(a) receives
⊗ℓ−1

i=0 ρi, randomness r and an image y ∈ [N ] as input.

(b) parses r = r0∥...∥rℓ−1∥rℓ∥...∥r2ℓ−1 and uses the coins r0∥...∥rℓ−1 to reconstruct
the permutations ¶σ1,i, σ2,i♢ℓ−1

i=0 in SN .

(c) runs the following routine for all i ∈ [0, ℓ− 1]:

i. run S1 with oracle access to (σ1,i ◦ π ◦ σ2,i)⊥σ1,i(y), which implements the
permutation σ1,i ◦π ◦σ2,i and its inverse (with output ⊥ on input σ1,i(y)).
a

ii. get back xi ← S
(σ1,i◦π◦σ2,i)⊥σ1,i(y)

1 (ρi, σ1,i(y), ri+ℓ).

(d) queries the oracle π⊥y (in the forward direction) on each σ2,i(xi) to see if
π(σ2,i(xi)) = y. If such an σ2,i(xi) is found, outputs it; otherwise outputs 0.

aHow to construct this quantum oracle is described in Appendix B.1.

In the adaptive case, a difficulty arises with the above approach. To amplify the proba-
bility, we randomize the permutation in each iteration and aS[ℓ]0 produces corresponding
advice for each randomized permutation. In the adaptive case, aS[ℓ]0 needs to output
an adaptive string µ which is used to produce the image y. However, running aS0 for
each randomized permutation will, in general, result in a different µ in each execution,
and it is unclear how one can use these to generate a single µ′ in the ampliĄed algorithm.
We remark that other works considered different approaches to ampliĄcation, e.g., via
quantum rewinding [HXY19] and the gentle measurement lemma [CGLQ20].
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Lemma 2 (AmpliĄcation, search). Let S be a (S, T, ϵ)-SPI for some ϵ > 0. Then S[ℓ] is a
(ℓS, ℓ(T + 1), 1− (1− ϵ)ℓ)-SPI.

Proof. We consider the execution of the ℓ-time repetition of (S, T, ϵ)-SPI, denoted by SPI

S[ℓ], in the search permutation inversion experiment deĄned in Protocol 1. By construction,
S[ℓ] runs ℓ-many SPI procedures (S0,S1). Since S is assumed to be an (S, T, ϵ)-SPI, let
πi = σ1,i ◦ π ◦ σ2,i, for each iteration i ∈ [0, ℓ− 1] it follows that

Pr

[
(πi)

−1(σ1,i(y))← S
(πi)⊥σ1,i(y)

1

(
ρi, σ1,i(y), ri+ℓ

)
: ρi ← S0(πi, ri+ℓ)



≡ Pr
[
(σ2,i)

−1 ◦ π−1(y)← S
(π◦σ2,i)

⊥y

1

(
ρπ◦σ2,i,ri+ℓ

, y, ri+ℓ

)
: ρπ◦σ2,i,ri+ℓ

← S0(π ◦ σ2,i, rr+ℓ)
]

≡ Pr
[
π−1(y)← S

π⊥y

1

(
ρπ,ri+ℓ

, y, ri+ℓ

)
: ρπ,ri+ℓ

← S0(π, rr+ℓ)
]
≥ ϵ,

where the probability is taken over π ← SN and r ← ¶0, 1♢∗ (which is used to sample
permutations σi), along with all internal measurements of S.

Essentially, for all i ∈ [0, ℓ − 1], the goal of the i-th trial is to Ąnd the preimage xi

such that σ2,i(xi) = π−1(y). Since all ¶σ2,i♢ are independently randomly generated, the
elements σ2,i(xi) are independent for each i in the range [0, ℓ− 1]. Therefore, all ℓ trails
are mutually independent. Therefore, we get that

Pr
[
π−1(y)← S[ℓ]

π⊥y

1 (ρ, y, r) : ρ← S[ℓ]0(π, r)
]

= 1− Pr


ℓ−1⋂

i=0

[
(π ◦ σ2,i)

−1(y) ̸← S
(πi)⊥σ1,i(y)

1

(
ρi, σ1,i(y), ri+ℓ

)
: ρi ← S0(πi, ri+ℓ)

]

= 1−
ℓ−1∏

i=0

Pr

[
(π ◦ σ2,i)

−1(y) ̸← S
(πi)⊥σ1,i(y)

1

(
ρi, σ1,i(y), ri+ℓ

)
: ρi ← S0(πi, ri+ℓ)



≥ 1− (1− ϵ)ℓ.

Given that the SPI (S0,S1) requires space S and T queries, we have that (S[ℓ]0,S[ℓ]1)
requires space S(S[ℓ]) = ℓ · S and query number T (S[ℓ]) = ℓ · (T + 1), as both algorithms
need to run either S0 or S1 ℓ-many times as subroutines. This proves the claim.

We also need a variant of the above to compute the search lower bound.

Lemma 3. Let S be a (S, T, ϵ)-SPI for some ϵ > 0. Then, we can construct an SPI

S[ℓ] = (S[ℓ]0,S[ℓ]1) using S(S[ℓ]) qubits of advice and making T (S[ℓ]) queries, with

S(S[ℓ]) =


ln(10)

ϵ

⌉
· S and T (S[ℓ]) =


ln(10)

ϵ

⌉
· (T + 1)

such that

Pr
π,y

[
Pr
r

[
π−1(y)← S[ℓ]

π⊥y

1 (ρ, y, r) : ρ← S[ℓ]0(π, r)
]
≥ 2

3


≥ 1

5
.

The proof is analogous to Lemma 2 and is given in Appendix B.2.

We also consider ampliĄcation for the decision version; the construction is essentially
the same, except that the Ąnal ŞcheckŤ step is replaced by outputting the majority bit.

Lemma 4 (AmpliĄcation, decision). Let D be a (S, T, δ)-DPI for some δ > 0. Then D[ℓ]
is a (ℓS, ℓT, 1/2− exp

(
−δ2/(1 + 2δ) · ℓ

)
)-DPI.

The proof is analogous to the search version and given in Appendix B.3.
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5 Reductions

We give two reductions related to the inversion problem: a search-to-decision reduction
(for the case of advice), and a reduction from unstructured search to the decision inversion
problem (for the case of no advice).

5.1 A search-to-decision reduction

To construct a search inverter from a decision inverter, we take the following approach. We
Ąrst amplify the decision inverter so that it correctly computes the Ąrst bit of the preimage
with certainty. We then repeat this ampliĄed inverter n times (once for each bit position)
but randomize the instance in such a way that the j-th bit of the preimage is permuted to
the Ąrst position. We then output the string of resulting bits as the candidate preimage.

Theorem 2. Let D be a (S, T, δ)-DPI. Then for any ℓ ∈ N, we can construct a (nℓS, nℓT, η)-
SPI with

η ≥ 1− n · exp

(
− δ2

(1 + 2δ)
· ℓ

)
, where n = ⌈logN⌉.

Proof. Given an δ-DPI (D0,D1) with storage size S and query size T , we can construct a
η′-DPI (D[ℓ]0,D[ℓ]1) with storage size ℓS and query size ℓT through ℓ-time repetition. By

Lemma 4, we have that η′ ≥ 1
2 − exp


− δ2

(1+2δ) · ℓ
)

. Note that the algorithm (D[ℓ]0,D[ℓ]1)

runs (D0,D1) as a subroutine. In the following, we represent elements in [N ] using a binary
decomposition of length ⌈logN⌉. To state our search-to-decision reduction, we introduce a
generalized swap operation, denoted by swapa,b, which acts as follows for any quantum
state of m qubits:

swapa,b ♣w⟩ = swapa,b ♣wm−1 . . . wb . . . wa . . . w1w0⟩ = ♣wm−1 . . . wa . . . wb . . . w1w0⟩

Note that swapk,k is equal to the identity, i.e. swapk,k ♣x⟩ = ♣x⟩ for x ∈ [N ] and k ∈
[0, ⌈logN⌉ − 1]. We construct a SPI (S0,S1) as follows.

1. The algorithm S0 proceeds as follows:

(a) S0 receives a random permutation π : [N ] → [N ] and a random string r ←
¶0, 1♢∗ as inputs. We parse r into ⌈logN⌉ individual substrings, i.e. r =
r0∥...∥r⌈log N⌉−1; the length of each substring is clear in context.

(b) S0 runs the algorithm D[ℓ]0(π◦swap0,j , rj) to obtain quantum advice ρπ◦swap0,j ,rj

for each j ∈ [0, ⌈logN⌉ − 1]. Finally, S0 outputs a quantum state ρ =⊗⌈log N⌉−1
j=0 ρπ◦swap0,j ,rj

. (Note: We let ρj = ρπ◦swap0,j ,rj
for the rest of the

proof.)

2. The oracle algorithm S
Oπ,O

π
−1
⊥y

1 proceeds as follows:1

(a) S1 receives
⊗n−1

j=0 ρj , a random string r := r0∥...∥rn−1 and an image y ∈ [N ].

(b) S1 then runs the following routine for each j ∈ [0, ⌈logN⌉ − 1]:

i. Run D[ℓ]1 with oracle access to Oπ◦swap0,j
and O(π◦swap0,j)−1

⊥y

, where

Oπ◦swap0,j
(♣w⟩1 ♣z⟩2) =

(
swap0,j ⊗ I

)
Oπ

(
swap0,j ⊗ I

)
♣w⟩1 ♣z⟩2

O(π◦swap0,j)−1
⊥y

(♣w⟩1 ♣z⟩2) = (I ⊗ swap0,j)Oπ−1
⊥y

♣w⟩1 ♣z⟩2
1Here, we borrow the notation for Oπ and O

π
−1
⊥y

from the experiment described in Section 3.
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ii. Let bj ← D[ℓ]
(π◦swap0,j)⊥y

1 (ρj , y, rj) denote the output.

(c) S1 outputs x∗ ∈ [N ] with the binary decomposition x∗ =
∑⌈log N⌉−1

j=0 2j · bj .

We now argue that the probability that D[ℓ]1 correctly recovers the pre-image bits bi and bj

is independent for each i ̸= j. From Lemma 4, we know that D[ℓ]1 runs D1 as a subroutine,
i.e. it decides the Ąrst bit of the pre-image of y by running D1 (in Lemma 4) ℓ times
with different random coins. It actually needs to recall D1 for ampliĄcation and for each
iteration in this ampliĄcation k ∈ [0, ℓ− 1], where the actual modiĄed permutation under
use is σi,k ◦ π ◦ swap0,i and image is σi,k(y). Similarly for term j, σj,k ◦ π ◦ swap0,j and
σj,k(y) is used as the permutation and image. Since the random coins (ri and rj), which
are used to modify the target permutation π, are independently random, those random
permutations (σi,k and σj,k) generated from random coins are independently random and
so do those modiĄed composition permutations, images, and advice states.

Analyzing the success probability of (S0,S1), we Ąnd that

Pr
[
π−1(y)← S

π⊥y

1 (ρ, y, r) : ρ← S0(π, r)
]

= Pr



⌈log N⌉−1∧

j=0

π−1(y)♣j ← D[ℓ]
(π◦swap0,j)⊥y

1 (ρj , y, rj)




≥
(

1− exp

(
− δ2

(1 + 2δ)
· ℓ

))⌈log N⌉

≥ 1− ⌈logN⌉ · exp

(
− δ2

(1 + 2δ)
· ℓ

)
.

where the last line follows from BernoulliŠs inequality. Finally, we compute the resources
needed for (S0,S1). By Lemma 4, (D[ℓ]0,D[ℓ]1) requires space ℓS and query size ℓT . For
j ∈ [0, ⌈logN⌉ − 1], S0 stores D[ℓ]0Šs outputs and thus S requires storage size ⌈logN⌉ℓS.
Similarly, S1 runs D[ℓ]1 to obtain bj and thus it requires ⌈logN⌉ℓT queries in total.

Comparison to O2H lemma. The one-way to hiding (O2H) lemma [AHU19] also
presents a natural reduction from search to decision in the context of general quantum
oracle algorithms. However, it is quite limited in our setting. For example, given a decision
inverter capable of computing the Ąrst bit of π−1(y) with certainty after q queries, the
O2H lemma yields a search inverter that can invert y with success probability 1

4q2 after
≈ q queries. By comparison, our ampliĄcation technique achieves an inversion of y with a
success probability of 1 with nq queries, which is signiĄcantly better in the relevant setting
of q ≫ n. However, in applications where only one copy of the advice is available for the
ampliĄed algorithm, O2H still works while our ampliĄcation technique fails.

5.2 A reduction from unstructured search

Second, we generalize the method used in [Nay10] to give a lower bound for adaptive
decision inversion without advice. Unlike in NayakŠs original reduction, here we grant
two-way access to the permutation. Recall that, in the unique search problem, one is
granted quantum oracle access to a function f : [N ]→ ¶0, 1♢ which is promised to satisfy
either ♣f−1(1)♣ = 0 or ♣f−1(1)♣ = 1; the goal is to decide which is the case. The problem is
formally deĄned below.

DeĄnition 7. (UNIQUESEARCHn) Given a function f : ¶0, 1♢n → ¶0, 1♢, such that f
maps at most one element to 1, output YES if f−1(1) is non-empty and NO otherwise.

DeĄnition 8. (Distributional error) Suppose an algorithm solves a decision problem with
error probability at most p0 for NO instances and p1 for YES instances. Then we say this
algorithm has distributional error (p0, p1).
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We now establish a reduction from unstructured search to adaptive decision inversion.

Theorem 3. If there exists a (0, T, δ)-aDPI, then there exists a quantum algorithm that
solves UNIQUESEARCHn−m−1 with at most 2T queries and distributional error

(
1
2 − δ, 1

2

)
.

Proof. Our proof is similar to that of Nayak [Nay10]: given a (0, T, δ)-aDPI A, we construct
another algorithm B which solves the UNIQUESEARCHn−m−1 problem.

Let N = 2n. For any uniform image t ∈ [N ], deĄne the NO and YES instances sets
(corresponding to the image t) of the decision permutation inversion problem with size N :

πt,0 = ¶π : π is a permutation on [N ], the Ąrst bit of π−1(t) is 0♢,
πt,1 = ¶π : π is a permutation on [N ], the Ąrst bit of π−1(t) is 1♢.

Note that for a random permutation π, whether π ∈ πt,0 or πt,1 simply depends on the
choice of t. Since t is uniform, Pr[π ∈ πt,0] = Pr[π ∈ πt,1] = 1/2. We also consider functions
h : [N ] → [N ] with a unique collision at t. One of the colliding pairs should have the
Ąrst bit 0, and the other one should have the Ąrst bit 1. Moreover, the last m bits of the
colloding pair is µ. Formally speaking, h(0∥i∥µ) = h(1∥j∥µ) = t, where i, j ∈ ¶0, 1♢n−m−1.
Let Qt,µ denote the set of all such functions.

Furthermore, given a permutation π on [N ], consider functions in Qt,µ that differ from
π at exactly one point. These are functions h with a unique collision and the collision is at t.
If π ∈ πt,0, π(0∥i∥µ) = h(0∥i∥µ) = t and 1∥j∥µ is the unique point where π and h differ; if
π ∈ πt,1, π(1∥j∥µ) = h(1∥j∥µ) = t and 0∥i∥µ is the unique point where π and h differ. Let
Qπ,t,µ denote the set of such functions h and clearly Qπ,t,µ ⊆ Qt,µ. Note that if we pick a
random permutation π in ¶πN♢ and choose a uniform random h ∈ Qπ,t,µ, h is also uniform
in Qt,µ. Next, we construct an algorithm B that tries to solve UNIQUESEARCHn−m−1 as
follows, with quantum oracle access to f :

1. B Ąrst samples some randomness r ∈ ¶0, 1♢∗, a uniform random string s ∈ ¶0, 1♢n−m

and a permutation π ∈ ¶πN♢.

2. B then runs A with quantum orale access to π, π−1 until it receives a string µ ∈
¶0, 1♢m from A.

3. Let t = π(s∥µ), and then it follows that if s♣0 = 0, π ∈ πt,0, and otherwise π ∈ πt,1.

4. B then constructs a function hf,π,t,µ and h−1∗
f,π,t,µ as follows. If π ∈ πt,0, for any

i ∈ ¶0, 1♢ and j ∈ ¶0, 1♢n−m−1,

hf,π,t,µ(i∥j∥u) =

{
t if i = 1 and f(j) = 1, u = µ,

π(i∥j∥u) otherwise.
(2)

If π ∈ πt,1, for any i ∈ ¶0, 1♢ and j ∈ ¶0, 1♢n−m−1,

hf,π,t,µ(i∥j∥µ) =

{
t if i = 0 and f(j) = 1, u = µ,

π(i∥j∥u) otherwise.
(3)

No matter what instance sets π belongs to, the corresponding "inverse" function is
deĄned as

h−1∗
f,π,t,µ(k♣♣b) =

{
π−1(k)∥0 if b = 0 and k ̸= t,

1∥1 otherwise.
(4)

5. B then sends t, µ and r toA, runs it with quantum oracle access to hf,π,t,µ and h−1∗
f,π,t,µ,

and Ąnally gets back b′. For simplicity, we write this process as b′ ← Ah⊥t(t, µ, r). 2

2Note that those functions are deĄned classically above, and its allowance for quantum oracle access is
discussed in Appendix C, which gives 2q queries in the theorem statement.
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6. B outputs b′ if π ∈ πt,0, and 1− b′ if π ∈ πt,1.

Let δ1 be the error probability of A in the YES case and δ0 be that in the NO case of
(0, T, δ)-DPI. Since s is uniform random and then Pr[π ∈ πt,0] = Pr[π ∈ πt,1] = 1/2, it
follows that

Pr[error of A] = 1−
(

1

2
+ δ

)
=

1

2
(δ0 + δ1)⇒ δ =

1

2
− 1

2
(δ0 + δ1).

We now analyze the error probability of B in the YES and NO cases. In the NO case,
f−1(1) is empty, so no matter whether π ∈ πt,0 or π ∈ πt,1, hf,π,t,µ = π. It follows that
Ah⊥t(t, r) = Aπ⊥t(t, r). Therefore,

Pr[error of B in NO case] = Pr
[
1← BOf (·)

]

= Pr
[
1← Ah⊥t(t, r)♣π ∈ πt,0

]
Pr[π ∈ πt,0]

+ Pr
[
0← Ah⊥t(t, r)♣π ∈ πt,1

]
Pr[π ∈ πt,1]

=
1

2
(Pr[1← Aπ⊥t(t, r)♣π ∈ πt,0] + Pr[0← Aπ⊥t(t, r)♣π ∈ πt,1])

=
1

2
(Pr[error of A in NO case] + Pr[error of A in YES case])

=
1

2
(δ0 + δ1) =

1

2
− δ.

In the YES case, f−1(1) is not empty, so function hf,π,t,µ has a unique collision at
t, with one of the colliding pair having Ąrst bit 0 and the other one having Ąrst bit 1,
no matter π ∈ πt,0 or πt,1. As f is a black-box function, the place j where f(j) = 1 is
uniform and so hf,π,t,µ is uniform in Qπ,t,µ. By arguments at the beginning of this proof,
as π is uniform, the function is also uniform in Qt,µ. Let p := Pr

hf,π,t,µ←Qt,µ

[0← Ah⊥t(t, r)].

Therefore,

Pr[error of B in YES case] = Pr
[
0← Bf (·)

]

= Pr
[
0← Ah⊥t(t, r)♣π ∈ πt,0

]
Pr[π ∈ πt,0]

+ Pr
[
1← Ah⊥t(t, r)♣π ∈ πt,1

]
Pr[π ∈ πt,1]

=
1

2


Pr

[
0← Ah⊥t(t, r)♣hf,π,t,µ

$←− Qt,µ

]

+ Pr
[
1← Ah⊥t(t, r)♣hf,π,t,µ

$←− Qt,µ

])

=
1

2
(p+ (1− p)) =

1

2
.

where the third equality comes from the fact stated above: no matter π ∈ πt,0 or π ∈ πt,1,
the corresponding h is uniform in Qt,µ and then can be viewed as uniform randomly
generated from Qt,µ. Since A is granted with oracle access to h, both conditions can

be changed to hf,π,t,µ
$←− Qt,µ. Note that given h, even if A can notice that it is not a

permutation and then acts arbitrarily, this can only inĆuence the probability of two terms
individually, i.e. the value of p and 1 − p. But as we only care about their summation,
we do not need to handle the consequence of A noticing the difference, including the
probability of oracle distinguishability.

6 Lower bounds

6.1 Search version

We now give lower bounds for the search version of the permutation inversion problem
over [N ]. We begin with a lower bound for a restricted class of inverters (and its formal
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deĄnition); these inverters succeed on an ϵ-fraction of inputs with constant probability (say,
2/3.). The proof uses a similar approach as in previous works on one-sided permutation
inversion with advice [NABT14, CLQ19, HXY19].

Theorem 4. Let N ∈ N. Let S = (S0,S1) be a (S, T, 2ϵ/3)-SPI that satisĄes

Pr
π,y

[
Pr
r

[
π−1(y)← S

π⊥y

1 (ρ, y, r) : ρ← S0(π, r)
]
≥ 2

3


≥ ϵ.

We call those inverters restricted inverters. Suppose that ϵ = ω(1/N), T = o(ϵ
√
N) and

S ≥ 1. Then, for sufficiently large N we have ST 2 ≥ Ω̃(ϵN).

Proof. To prove the claim, we construct a QRAC-VL scheme that encodes the function π−1

and then derive the desired space-time trade-off via Theorem 1. Let S = (S0,S1) be an
2ϵ/3-SPI that succeeds on a ϵ-fraction of inputs with probability at least 2/3. In other
words, S satisĄes

Pr
π,y

[
Pr
r

[
π−1(y)← S

π⊥y

1 (ρ, y, r) : ρ← S0(π, r)
]
≥ 2

3


≥ ϵ.

By the averaging argument in Lemma 7 with parameter θ = 1/2, it follows that there
exists a large subset X ⊆ SN of permutations with size at least N !/2 such that for any
permutation π ∈ X , we have that

Pr
y

[
Pr
r

[
π−1(y)← S

π⊥y

1 (ρ, y, r) : ρ← S0(π, r)
]
≥ 2

3


≥ ϵ

2
.

For a given permutation π ∈ X we let I be the set of indices x ∈ [N ] such that S correctly
inverts π(x) with probability at least 2/3 over the choice of r. By the deĄnition of the set
X , we have that ♣I♣ ≥ ϵ/2 ·N . Our QRAC-VL scheme (Enc,Dec) for encoding permutations
is described in detail in Protocol 2. Below, we introduce some additional notations that
will be relevant to the scheme. For convenience, we model the two-way accessible oracle
given to S1 in terms of a single oracle for the merged function of the form 3

π⊥y(w, a)
def
=





π(w) if a = 0

π−1(w) if w ̸= y ∧ a = 1

⊥ if w = y ∧ a = 1.

Let c, γ ∈ (0, 1) be parameters. As part of the encoding, we use the shared randomness
R ∈ ¶0, 1♢∗ to sample a subset R ⊆ [N ] such that each element of [N ] is contained in
R with probability γ/T (S)2. Moreover, we deĄne the following two disjoint subsets of
[N ]× ¶0, 1♢:

ΣR0 = R \ ¶x♢ × ¶0♢
ΣR1 = π(R) \ ¶π(x)♢ × ¶1♢.

Let G ⊆ I be the set of x ∈ [N ] which satisfy the following two properties:

1. The element x is contained in the set R, i.e.

x ∈ R; (5)

3The (reversible) quantum oracle implementation is similar to the one in DeĄnition 4. We use the
function π⊥y for ease of presentation since the same proof carries over with minor modiĄcations in the
quantum oracle case.
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2. The total query magnitude of S
π⊥y

1 with input (S0(π, r), y, r) on the set ΣR0 ∪ ΣR1 is
bounded by c/T (S). In other words, we have

q(S
π⊥y

1 ,ΣR0 ∪ ΣR1 ) ≤ c/T (S). (6)

Claim 1. Let G ⊆ [N ] be the set of x which satisfy the conditions in (5) and (6). Then,
there exist constants γ, c ∈ (0, 1) such that

Pr
R

[
♣G♣ ≥ ϵγN

4T (S)2

(
1− 5γ2

c

)
≥ 0.8.

In other words, we have ♣G♣ = Ω(ϵN/T (S)2) with high probability.

Proof. (of the claim) Let H = R∩ I denote the set of x ∈ R for which S correctly inverts
π(x) with probability at least 2/3 over the choice of r. By the deĄnition of the set R,
it follows that ♣H♣ has a binomial distribution. Therefore, in expectation, we have that
♣H♣ = γ♣I♣/T (S)2. Using the multiplicative Chernoff bound in Lemma 5 and the fact that
T (S) = o(ϵ

√
N), we get

Pr
R

[
♣H♣ ≥ γ♣I♣

2T (S)2


≥ 0.9, (7)

for all sufficiently large N . Because each query made by S1 has unit length and because S1

makes at most T (S) queries, it follows that

q(S
π⊥y

1 , [N ]× ¶0, 1♢) ≤ T (S). (8)

We obtain the following upper bound for the average total query magnitude:

E
R

[
q(S

π⊥y

1 ,ΣR0 ∪ ΣR1 )
]

= E
R

[
q(S

π⊥y

1 ,ΣR0 ) + q(S
π⊥y

1 ,ΣR1 )
]

(ΣR0 ,Σ
R
1 are disjoint)

= E
R

[
q(S

π⊥y

1 ,ΣR0 )
]

+ E
R

[
q(S

π⊥y

1 ,ΣR1 )
]

(linearity of expectation)

= E
R

[
q(S

π⊥y

1 ,R \ ¶x♢ × ¶0♢)
]

+ E
R

[
q(S

π⊥y

1 , π(R) \ ¶π(x)♢ × ¶1♢)
]

=
γ

T (S)2
· q(Sπ⊥y

1 , [N ] \ ¶x♢ × ¶0♢) +
γ

T (S)2
· q(Sπ⊥y

1 , π([N ]) \ ¶π(x)♢ × ¶1♢)

=
γ

T (S)2
· q(Sπ⊥y

1 , [N ] \ ¶x♢ × ¶0♢)

+
γ

T (S)2
· q(Sπ⊥y

1 , [N ] \ ¶π(x)♢ × ¶1♢) (π is a permutation)

≤ γ

T (S)2
·
[
q(S

π⊥y

1 , [N ]× ¶0♢) + q(S
π⊥y

1 , [N ]× ¶1♢)
]

(supersets)

=
γ

T (S)2
· q(Sπ⊥y

1 , [N ]× ¶0, 1♢) ≤ γ

T (S)
. (by the inequality in (8))

Hence, by MarkovŠs inequality,

Pr
R

[
q(S

π⊥y

1 ,ΣR0 ∪ ΣR1 ) ≥ c

T (S)


≤ T (S)

c
· γ

T (S)
=
γ

c
. (9)

Let us now denote by J the subset of x ∈ I that satisfy Eq. (5) but not Eq. (6). Note
that Eq. (5) and Eq. (6) are independent for each x ∈ I, since Eq. (5) is about whether
x ∈ R and Eq. (6) only concerns the intersection of R and [N ] \ ¶x♢, as well as π(R) and
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π([N ]) \ ¶π(x)♢. Therefore, by (9), the probability that x ∈ I satisĄes x ∈ J is at most
γ2/(cT (S)2). Hence, by MarkovŠs inequality,

Pr
R

[
♣J ♣ ≤ 10♣I♣γ2

cT (S)2


≥ 0.9. (10)

Using (7) and (10), we get with probability at least 0.8 over the the choice of R,

♣G♣ = ♣H♣ − ♣J ♣ ≥ ♣I♣γ
2T (S)2

− 10♣I♣γ2

cT (S)2
≥ ϵγN

4T (S)2

(
1− 5γ2

c

)
,

given that γ is a sufficiently small positive constant.

Protocol 2 (Quantum Random Access Code For Inverting Permutations).
Let c, γ ∈ (0, 1) be parameters. Consider the following (variable-length) quantum random-
access code given by QRAC-VL = (Enc,Dec) deĄned as follows:

• Enc(π−1;R): On input π−1 ∈ SN and randomness R ∈ ¶0, 1♢∗, Ąrst use R to extract
random coins r and then proceed as follows:

Case 1: π /∈ X or ♣G♣ < ϵγN
4 T (S)2


1− 5γ2

c

)
. Use the classical Ćag case = 1 (taking

one additional bit) and output the entire permutation table of π−1.

Case 2: ♣G♣ ≥ ϵγN
4 T (S)2


1− 5γ2

c

)
. Use the classical Ćag case = 2 (taking one

additional bit) and output the following

1. The size of G, encoded using logN bits;

2. the set G ⊆ R, encoded using log
(
♣R♣
♣G♣

)
bits;

3. The permutation π restricted to inputs outside of G, encoded using
log(N !/♣G♣!) bits;

4. Quantum advice used by the algorithm repeated ρ times with α⊗ρ, for
α← S0(π, r) for some ρ that we will decide later. (We can compute this
as the encoder can preprocess multiple copies of the same advice. Note
that this is the only part of our encoding that is not classical.)

• Dec(β, y;R): On input encoding β, image y ∈ [N ] and randomness R ∈ ¶0, 1♢∗, Ąrst
use R to extract random coins r and then proceed as follows:

Case 1: This corresponds to the Ćag case = 1. Search the permutation table for
π−1 and output x such that π−1(y) = x.

Case 2: This corresponds to the Ćag case = 2. Recover G and π(x) for every
x /∈ G. If y = π(x) for some x /∈ G, output x = π−1(y). Otherwise, parse

α1, α2, . . . , αρ and run S
π̄⊥y

1 (αi, y, r) for each i ∈ [ρ] and output their majority
vote, where we let a

π̄⊥y(w, a) =





y if w ∈ G ∧ a = 0

π(w) if w /∈ G ∧ a = 0

π−1(w) if w /∈ π(G) ∧ a = 1

⊥ if w ∈ π(G) ∧ a = 1.

aThe (reversible) quantum oracle implementation for π̄⊥y is provided in Appendix D.

Let us now analyze the performance of our QRAC-VL scheme (Enc,Dec) in Protocol 2. Let
♣Ψπ⊥y

⟩ and ♣Ψπ̄⊥y
⟩ denote the Ąnal states of S1 when it is given the oracles π⊥y and π̄⊥y,
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respectively. By Lemma 1 and the properties of the total query magnitude:

∥ ♣Ψπ⊥y
⟩ − ♣Ψπ̄⊥y

⟩ ∥ ≤
√
T (S) · q(Sπ⊥y

1 ,G \ ¶x♢ × ¶0♢) ∪ (π(G) \ ¶π(x)♢ × ¶1♢)

≤
√
T (S) · q(Sπ⊥y

1 ,ΣR0 ∪ ΣR1 )

≤
√
T (S) · c

T (S)
=
√
c.

Since x ∈ I, it follows from the deĄnition of I that measuring ♣Ψπ⊥y
⟩ results in x with

probability at least 2/3. Given a small enough positive constant c, we can ensure that
measuring ♣Ψπ̄⊥y

⟩ will result in x with probability at least 0.6. We now examine the length
of our encoding. With probability 1− ϵ/2, we have π /∈ X ; with probability ϵ(1− 0.8)/2,
we have π ∈ X but G is small, i.e.,

♣G♣ < ϵγN

4T (S)2

(
1− 5γ2

c

)
.

Therefore, except with probability 1− 0.4ϵ, our encoding will result in the Ćag case = 1,
where the encoding consists of 1 + logN ! classical bits and the decoder succeeds with
probability 1. With probability 0.4ϵ , our encoding has the Ćag case = 2, and the size
equals

1 + logN + log

(♣R♣
♣G♣

)
+ log(N !/♣G♣!) + ρS(S).

By the assumption that T (S) = o(ϵ
√
N), we have

log

(♣R♣
♣G♣

)
= log

( ♣R♣(♣R♣ − 1) . . . (♣R♣ − ♣G♣+ 1)

♣G♣(♣G♣ − 1) . . . 1

)

= O

(
log

( ♣R♣♣R♣ . . . ♣R♣
♣G♣♣G♣ . . . ♣G♣

))

= O(♣G♣ log(♣R♣/♣G♣))
= O(♣G♣ log 1/ϵ)

= o(♣G♣ log ♣G♣),
and we can rewrite the size of the encoding as

logN + o(♣G♣ log ♣G♣) + logN !− log ♣G♣! + ρS(S).

In the case when the decoder is queried on an input that is already known, that is
y /∈ π(G) (which occurs with probability 1 − ♣G♣/N), the decoder recovers the correct
pre-image with probability 1. Otherwise, the analysis is the following: with just one
copy of the advice, the decoder recovers the correct pre-image with probability 2/3, and
hence with ρ many copies, the decoder can take the majority vote and recover the correct
pre-image with probability 1− exp(−Ω(ρ)). The latter follows from the Chernoff bound in
Lemma 5. Overall, the average encoding length is

0.4ϵ · (logN + o(♣G♣ log ♣G♣)− log ♣G♣! + ρS(S)) + logN !

where the average success probability is 1 − ♣G♣/N · exp(−Ω(ρ)). By setting ρ =
Ω(log(N/ϵ)) = Ω(logN), the average success probability amounts to 1−O(1/N2). There-
fore, using the lower bound in Theorem 1, we have

logN ! + 0.4ϵ · (logN + o(♣G♣ log ♣G♣)− log ♣G♣! + ρS(S)) ≥ logN !−O
(

1

N
logN

)

logN + o(♣G♣ log ♣G♣)− log ♣G♣! + ρS(S) ≥ −O (logN)

ρS(S) +O (logN) ≥ log ♣G♣!− o(♣G♣ log ♣G♣)
S(S) logN ≥ Ω(log ♣G♣!− o(♣G♣ log ♣G♣))
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where the second and the last equality comes from the fact that ϵ = ω(1/N) and ρ =
Ω(logN), respectively. Since log ♣G♣! = O(♣G♣ log ♣G♣), it follows that

S(S) logN ≥ Ω(O(♣G♣ log ♣G♣)− o(♣G♣ log ♣G♣))
S(S) logN ≥ Ω(♣G♣ log ♣G♣).

As we are conditioning on the event that G is large, plugging in the lower bound on
♣G♣, we have that, for sufficiently large N , S(S) ≥ Ω̃(♣G♣), and thus

S(S) · T (S)2 ≥ Ω̃(ϵN).

This gives the desired space-time trade-off.

We remark that the search inverter we consider in Theorem 4 succeeds on more than
just a constant number of inputs, that is ϵ = ω(1/N), and beats the time complexity of
T = Ω(

√
ϵN) which is required for unstructured search using GroverŠs algorithm. [Gro96,

DH08, Zha19]. Next, we remove the restriction on the inverter by applying ampliĄcation
(speciĄcally, Corollary 3.) This yields a lower bound in the full average-case version of the
search inversion problem.

Theorem 5. Let S be a (S, T, ϵ)-SPI for some ϵ > 0. Suppose that ϵ = ω(1/N), T =
o(ϵ2
√
N), and S ≥ 1. Then, for sufficiently large N we have

S(S) · T (S)2 ≥ Ω̃(ϵ3N).

Proof. Let S = (S0,S1) be an (S, T, ϵ)-SPI, for some ϵ > 0. Using Corollary 3, we can
construct an SPI S[ℓ] = (S[ℓ]0,S[ℓ]1) with space and time complexities

S(S[ℓ]) =


ln(10)

ϵ

⌉
· S(S) and T (S[ℓ]) =

(
ln(10)

ϵ

⌉
+ 1

)
· T (S)

such that

Pr
π,y

[
Pr
r

[
π−1(y)← S[ℓ]

π⊥y

1 (S[ℓ]0(π, r), y, r)
]
≥ 2

3


≥ 1

5
.

From Theorem 4 it follows that for sufficiently large N ≥ 1,

S(S[ℓ]) · T (S[ℓ])2 ≥ Ω̃(N).

Plugging in the expressions for S(S[ℓ]) and T (S[ℓ]), we get that with assumption

ϵ = ω(1/N), T (S) = o(ϵ2
√
N) and S(S) ≥ 1,

the trade-off between space and time complexities is

S(S) · T (S)2 ≥ Ω̃(ϵ3N).

Note that we incur a loss (ϵ3 versus ϵ) in our search lower bound due to the fact
that we need to amplify the restricted search inverter in Theorem 4. This results in a
multiplicative overhead of Θ(1/ϵ) in terms of space and time complexity, as compared to
the restricted inverter. We remark that a similar loss as a result of ampliĄcation is also
inherent in [HXY19].
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6.2 Decision version

6.2.1 Space-time tradeoff, no adaptive sampling

The search lower bound of Theorem 5, when combined with the search-to-decision reduction
of Theorem 2, yields a lower bound for the decision version.

Corollary 1. Let D be a (S, T, δ)-DPI for some δ > 0. Suppose that δ = ω(1/N) and

T = õ

δ2
√
N

)
and S ≥ 1. Then, for sufficiently large N we have

S(D) · T (D)2 ⪆ Ω̃
(
δ6N

)
.

Proof. Let N = 2n. Given a (S(D), T (D), δ)-DPI = (D0,D1) where D0 outputs S-qubit
state and D1 makes T queries, one can construct an (S(S), T (S), η)-SPI = (S0,S1) by
Theorem 2 with η ≥ 1− negl(n), and with space and time complexities

S(S) = nℓS(D) and T (S) = nℓT (D)

where ℓ = Ω


n(1+2δ)
δ2

)
. It directly follows from Theorem 5 that with conditions

δ = ω(1/N), S(D) ≥ 1,

T (D) =
1

nℓ
· o(η
√
N) = o

(
δ2

n2(1 + 2δ)

√
N

)
= õ


δ2
√
N

)
,

S satisĄes the space-time trade-off lower bound

n3

(
n(1 + 2δ)

δ2

)3

S(D) · T (D)2 ≥ Ω̃(η3N) ≈ Ω̃(N)

S(D) · T (D)2 ⪆ Ω̃
(
δ6N

)

for sufficiently large N .

Similar to the search lower bound from before, we incur a loss that amounts to a
factor δ6. This results from our speciĄc approach which is based on the search-to-decision
reduction in Theorem 2. We believe that our lower bound could potentially be improved
even further.

6.2.2 Time lower bound, adaptive sampling

In the case of an adaptive decision inverter without advice, we can get a tight bound
by means of the reduction from the unique search problem (Theorem 3), combined with
well-known lower bounds on the average-case unique search problem.

Theorem 6. Let D be a (0, T, δ)-aDPI. Then T 2 ≥ Ω(δN/M).

Proof. Since D is a (0, T, δ)-DPI, by the lower bound of unique search problem [Gro96, Zal99,
Nay10, Zha19], we get a 2T -query algorithm for UNIQUESEARCHn−1 with distributional
error ( 1

2 − δ, 1
2 ). Since the YES and NO cases are uniformly distributed, we can write the

overall error probability as 1
2

(
1
2 − δ

)
+ 1

2 · 1
2 = 1

2 − δ
2 . Then by the lower bound of unique

search, we have

1−
(

1

2
− δ

2

)
≤ 1

2
+O

(
(2T )2

2n−m

)

T 2 ≥ Ω(δ · 2n−m)

T 2 ≥ Ω

(
δN

M

)
.

We note that with non-adaptive D, i.e. m = 0, the above bound reduces to query lower
bound T 2 ≥ Ω (δN).
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7 Applications

In this section, we give a plausible security model for symmetric-key encryption and a
scheme whose security in that model is based on the hardness of our adaptive two-sided
permutation inversion problem. Recall that a symmetric-key encryption scheme consists
of three algorithms:

• (key generation) Gen: given randomness s and security parameter n; outputs key
k := Gen(1n; s);

• (encryption) Enc: given key k, plaintext m, and randomness r; outputs ciphertext
c := Enck(m; r);

• (decryption) Dec: given key k, ciphertext c; outputs plaintext m := Deck(c).

When the key randomness is to be selected uniformly, we suppress it and simply write
Gen(1n).

Consider the following security deĄnition.

DeĄnition 9. (OW-QCCRA2) Let SKE = (Gen,Enc,Dec) be a private-key encryption
scheme. We say that SKE is OW-QCCRA2 if the advantage for any quantum polynomial-
time adversary A in the following OW-QCCRA2 experiment is at most negligible:

1. A key k is generated by running Gen(1n; s);

2. A gets quantum oracle access to Enck( · ; · ) and Deck(·), and then outputs a (m− 1)-
bit string µ and a quantum state ρ with size S. Let t(n) be the number of quantum
queries that A makes in this phase.

3. Uniform b ∈ ¶0, 1♢ and r ∈ ¶0, 1♢n−1 are chosen, and a challenge ciphertext c =
Enck(b∥µ; r) is computed and given to A;

4. A gets quantum oracle access to Enck( · ; · ) and Dec⊥c
k (·), and eventually outputs a

bit b′. Let ℓ(n) be the number of quantum queries that A makes in this phase.

5. The experiment outputs 1, if b′ = b, and 0 otherwise.

We remark that, unlike in most deĄnitions of security, here the adversary is allowed to
choose both inputs to the encryption oracle: the plaintext as well as the randomness. To
generate the challenge ciphertext, the coin r needs to be chosen truly randomly; otherwise,
the scheme will degenerate into a deterministic one that cannot be secure. Moreover, we
do not yet make any restriction on the computational power of A, or on the functions t
and ℓ.

Next, we deĄne two simple encryption schemes.

RP Scheme. Consider the following (inefficient) scheme that uses uniformly random
permutations.

• Gen is given 1n and outputs a description k of a uniformly random permutation π
on ¶0, 1♢2n;

• Enc is given k, m ∈ ¶0, 1♢n and r ∈ ¶0, 1♢n, and outputs c := π(m♣♣r);
• Dec is given k and c ∈ ¶0, 1♢2n, and outputs the Ąrst n bits of π−1(c).

DeĄnition 10. (ϵ-Qsecure PRP)[KL20, Zha16] Let Pk : ¶0, 1♢λ × ¶0, 1♢n → ¶0, 1♢n be a
permutation family. We call Pk a ϵ-Qsecure PRP if for any efficient quantum adversary A
who makes q quantum queries, there exist a negligible function ϵ(λ) such that

∣∣∣Pr
[
APk(·),P −1

k
(·) (1n) = 1

]
− Pr

[
Aπ(·),π−1(·) (1n) = 1

]∣∣∣ ≤ ϵ · poly(q) ,

where π : ¶0, 1♢n → ¶0, 1♢n is a truly random permutation.
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PRP Scheme. Let ¶Pk : ¶0, 1♢2n 7→ ¶0, 1♢2n♢ be a family of ϵ-Qsecure PRPs and consider
the following scheme:

• Gen takes as input a security parameter 1n and returns a key k ∈ ¶0, 1♢n for Pk;

• Enc is given key k ∈ ¶0, 1♢n, m ∈ ¶0, 1♢n and r ∈ ¶0, 1♢n, and outputs c := Pk(m♣♣r);

• Dec is given key k ∈ ¶0, 1♢n and c ∈ ¶0, 1♢2n, and outputs the Ąrst n bits of P−1
k (c).

Of course, any practical scheme should be efficient, and indeed we can show that the
PRP scheme is OW-QCCRA2 in two special cases: when there is no advice, i.e., S = 0
(we call this OW-QCCRA2-v1) and when there is no adaptivity, i.e., ♣µ♣ = 0 (we call this
OW-QCCRA2-v2). We are able to prove the following theorems.

Theorem 7. The PRP scheme is OW-QCCRA2-v1. In other words, for any quantum
adversary A who makes t(n) quantum queries in the pre-challenge phase and ℓ(n) quantum
queries in the post-challenge phase, it holds that

Pr
[
ExpOW-QCCRA2-v1
A,PRP (1n) = 1

]
≤ 1

2
+ δ + ϵ · T (n).

Here, δ ≤ O( ℓ22n−1

22n ), T (n) = t(n) + ℓ(n) and ϵ is a negligible function.

Proof. Given an adversary A that attacks the RP scheme in the OW-QCCRA2 experiment
described in DeĄnition 9 with S = 0, we can construct a (0, T, δ)-aDPI aD = (aD0, aD1) in
the decision inversion experiment, which takes place as follows:

1. (sample instance and coins) a random permutation π : ¶0, 1♢n → ¶0, 1♢n is
sampled;

2. (prepare advice) aD0 is given the whole permutation table of π. Then it constructs
oracles Enc(·; ·) = π(·∥·) and Dec(·) = π−1(·) and gives A quantum oracle access.
aD0 will get back a (n− 1)-bit output string µ and then output it. Suppose A makes
t(n) quantum queries.

3. (invert) An instance c = π(b∥µ∥r) is computed, with b ∈ ¶0, 1♢ and r ∈ ¶0, 1♢n

are sampled. aD1 is run with c, auxiliary string µ and quantum oracle access Oπ

and Oπ−1
⊥y

. It then directly passes c and two oracles to A and gets back a bit b′ and

outputs it. Suppose A makes ℓ(n) quantum queries.

4. (check) If b′ = b, output 1; otherwise output 0.

It trivially follows that

Pr
[
ExpOW-QCCRA2-v1
A,RP (1n) = 1

]
≤ Pr[DecisionInvertaD = 1].

By assumption we have that, for all efficient quantum adversary A, there exists a negligible
ϵ such that

∣∣∣Pr
[
APk(·),P −1

k
(·) (1n) = 1

]
− Pr

[
Aπ(·),π−1(·) (1n) = 1

]∣∣∣ ≤ ϵ · poly(t(n) + ℓ(n)),

Therefore

Pr
[
ExpOW-QCCRA2-v1
A,PRP (1n) = 1

]
≤ Pr

[
ExpOW-QCCRA2-v1
A,RP (1n) = 1

]
+ ϵ · T (n)

≤ Pr[DecisionInvertaD = 1] + ϵ · T (n)

=
1

2
+ δ + ϵT (n).
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Where δ ≤ O( ℓ22n−1

22n ) by Theorem 6, and by DeĄnition 10 ϵ is negligible. Remark that the
above bound becomes 1

2 + negl(n) when A is a quantum polynomial time (QPT) adversary
since both δ and ϵT are negligible when t and ℓ are of polynomial size.

Theorem 8. The PRP scheme is OW-QCCRA2-v2. In other words, for any quantum
adversary A who makes t(n) quantum queries in the pre-challenge phase and ℓ(n) quantum
queries in the post-challenge phase, it holds that

Pr
[
ExpOW-QCCRA2-v1
A,PRP (1n) = 1

]
≤ 1

2
+ δ + ϵ · T (n).

Here, δ ≤ O( ℓ2S
22n )

1
6 , T (n) = t(n) + ℓ(n) and ϵ is a negligible function.

Proof. Given an adversary A that attacks the RP scheme in the OW-QCCRA2 experiment
described in DeĄnition 9 with ♣µ♣ = 0, we can construct a (S, T, δ)-DPI D = (D0,D1) in
the decision inversion experiment. The construction is the same as Theorem 7, with slight
modiĄcations at the "prepare advice" and the "invert" step:

(prepare advice) D0 is given the whole permutation table of π. Then it constructs oracles
Enc(·; ·) = π(·∥·) and Dec(·) = π−1(·) and gives A quantum oracle access. D0 will get back
a S-qubit quantum state ρ and then output it. Suppose A makes t(n) quantum queries.

(invert) An instance c = π(b♣♣r) is computed, with b ∈ ¶0, 1♢ and r ∈ ¶0, 1♢n are sampled.
D1 is run with c, quantum advice ρ and quantum oracle access Oπ and Oπ−1

⊥y

. It then

directly passes c and two oracles to A and gets back a bit b′ and outputs it. Suppose A
makes ℓ(n) quantum queries.

By following the same procedure as in Theorem 7 but using the bound of Corollary 1,
we get the desired bound.

Finally, we remark that the above results hold for the following strengthening of OW-

QCCRA2, described as follows. Suppose that an encryption scheme satisĄes the property
that there exists an alternative decryption algorithm that can both compute the plaintext
and also deduce the randomness that was initially used to encrypt. This property is true
for the RP and PRP schemes, as well as some other standard encryption methods (e.g.,
RegevŠs secret-key LWE scheme, implicit in [Reg09]). For schemes in this category, one
can also grant access to such an alternative decryption algorithm, thus expanding the
form of Şrandomness accessŤ that the adversary has. Our proofs show that the RP and
PRP schemes are secure (in their respective setting) even against this form of additional
adversarial power.

8 Future Work

For future applications, the two-sided permutation inversion problem appears naturally in
the context of sponge hashing [GJMG11] which is used by the international hash function
standard SHA3 [Dwo15]. Previous work [CGBH+18, CMSZ21] studied the post-quantum
security of the sponge construction where the block function is either a random function
or a (non-invertible) random permutation. However, as the core permutation in SHA3 is
public and efficiently invertible, the Şright settingŤ of theoretical study is one in which the
block function consists of an invertible permutation. This setting is far less understood,
and establishing the security of the sponge in this setting is a major open problem in
post-quantum cryptography. Our results on two-sided permutation inversion may serve as
a stepping stone towards this goal.
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A Some basic probabilistic lemmas

In this section we collect a series of known probabilistic results, which we used in our main
proofs.

We Ąrst record some basic lemmas about the behavior of certain types of random
variables.

Lemma 5 (Multiplicative Chernoff Bound). Let X1, . . . , Xn be independent random
variables taking values in ¶0, 1♢. Let X =

∑
i∈[n] Xi denote their sum and let µ = E[X]

denote its expected value. Then for any δ > 0,

Pr[X < (1− δ)µ] ≤ 2e−δ2µ/2.

SpeciĄcally, when Xi is a Bernoulli trial and X follows the binomial distribution with
µ = np and p > 1

2 , we have Pr[X ≤ n/2] ≤ e−n(p− 1
2 )2/(2p).

Lemma 6 (Reverse MarkovŠs inequality). Let X be a random variable taking values in
[0, 1]. Let θ ∈ (0, 1) be arbitrary. Then, it holds that

Pr[X ≥ θ] ≥ E[X]− θ
1− θ .

Proof. Fix θ ∈ (0, 1). We Ąrst show that

(1− θ) · I[X≥θ] ≥ X − θ, (11)

where I[X≥θ] is the indicator function for the event that X ≥ θ. Suppose that X ≥ θ.
Then, Eq. (11) amounts to 1− θ ≥ X − θ, which is satisĄed because X ≤ 1. Now suppose
that X < θ. In this case Eq. (11) amounts to 0 ≥ X−θ, which is satisĄed whenever X ≥ 0.
Taking the expectation over Eq. (11) and noting that E[I[X≥θ]] = Pr[X ≥ θ], we get

(1− θ) · Pr[X ≥ θ] ≥ E[X]− θ.

This proves the claim.

Lemma 7 (Averaging argument). Let X and Y be any Ąnite sets and let Ω : X×Y → ¶0, 1♢
be a predicate. Suppose that Prx,y[Ω(x, y) = 1] ≥ ϵ, for some ϵ ∈ [0, 1], where x is chosen
uniformly at random in X . Let θ ∈ (0, 1). Then, there exists a subset Xθ ⊆ X of size
♣Xθ♣ ≥ (1− θ) · ϵ♣X ♣ such that

Pr
y

[Ω(x, y) = 1] ≥ θ · ϵ, ∀x ∈ Xθ.

Proof. DeĄne px = Pry[Ω(x, y) = 1], for x ∈ X . Then, for ϵ ∈ [0, 1], we have

Ex[px] = Pr
x,y

[Ω(x, y) = 1] = ♣X ♣−1
∑

x∈X

Pr
y

[Ω(x, y) = 1] ≥ ϵ.

Fix θ ∈ (0, 1). Because the weighted average above is at least ϵ, there must exist a subset
Xθ such that

px = Pr
y

[Ω(x, y) = 1] ≥ θ · ϵ, ∀x ∈ Xθ.

Recall that x is chosen uniformly at random in X . Using the reverse MarkovŠs inequality,
it follows that

♣Xθ♣
♣X ♣ = Pr[px ≥ θ · ϵ] ≥

E[px]− θ · ϵ
1− θ · ϵ ≥ ϵ · (1− θ)

1− θ · ϵ > ϵ · (1− θ).

In other words, the subset Xθ ⊆ X is of size at least ♣Xθ♣ ≥ (1− θ) · ϵ♣X ♣.
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B AmpliĄcation proofs

B.1 Quantum oracle construction in Protocol 1

In Protocol 1 step 2(c), S[ℓ]1, with quantum oracle access to Oπ,Oπ−1
⊥y

, needs to grant S1

quantum oracle access to (σ1,i◦π◦σ2,i)⊥σ1,i(y), which is a simpliĄed notation of Oσ1,i◦π◦σ2,i

and O(σ1,i◦π◦σ2,i)−1
⊥σ1,i(y)

. Here we give detailed constructions of these two oracles:

• Whenever the algorithm S1 queries the oracle Oσ1,i◦π◦σ2,i
on ♣w⟩1 ♣z⟩2, S[ℓ]1 performs

the following reversible operations

♣w⟩1 ♣z⟩2
add aux registers−−−−−−−−−−→♣w⟩1 ♣z⟩2 ♣0⟩aux1 ♣0⟩aux2

Oσ2,i,1,aux2−−−−−−−→♣w⟩1 ♣z⟩2 ♣0⟩aux1 ♣σ2,i(w)⟩
aux2

Oπ,aux2,aux1−−−−−−→♣w⟩1 ♣z⟩2 ♣π ◦ σ2,i(w)⟩
aux1
♣σ2,i(w)⟩

aux2

Oσ1,i,aux1,2−−−−−−−→♣w⟩1 ♣z ⊕ σ1,i ◦ π ◦ σ2,i(w)⟩2 ♣π ◦ σ2,i(w)⟩
aux1
♣σ2,i(w)⟩

aux2

Oπ,aux2,aux1−−−−−−→♣w⟩1 ♣z ⊕ σ1,i ◦ π ◦ σ2,i(w)⟩2 ♣0⟩aux1 ♣σ2,i(w)⟩
aux2

Oσ2,i,1,aux2−−−−−−−→♣w⟩1 ♣z ⊕ σ1,i ◦ π ◦ σ2,i(w)⟩2 ♣0⟩aux1 ♣0⟩aux2

drop aux−−−−−→♣w⟩1 ♣z ⊕ σ1,i ◦ π ◦ σ2,i(w)⟩2 .

Then, S[ℓ]1 sends the Ąnal state back to S1.

• Whenever S1 queries the oracle O(σ1,i◦π◦σ2,i)−1
⊥σ1,i(y)

on ♣w⟩1 ♣z⟩2, the algorithm S[ℓ]1

performs the following reversible operations:

♣w⟩1 ♣z⟩2
add aux register−−−−−−−−−−→♣w⟩1 ♣z⟩2 ♣0⟩aux1 ♣0⟩aux2

O
σ

−1
1,i,∗

,1,aux1

−−−−−−−−→♣w⟩1 ♣z⟩2 ♣σ−1
1,i,∗(w)⟩

aux1
♣0⟩aux2

O
π

−1
⊥y

,aux1,aux2

−−−−−−−−→♣w⟩1 ♣z⟩2 ♣σ−1
1,i,∗(w)⟩

aux1
♣π−1
⊥y ◦ σ−1

1,i,∗(w)⟩
aux2

O
σ

−1
2,i,∗

,2,aux2

−−−−−−−−→♣w⟩1 ♣z ⊕ σ−1
2,i,∗ ◦ π−1

⊥y ◦ σ−1
1,i,∗(w)⟩

2
♣σ−1

1,i,∗(w)⟩
aux1
♣π−1
⊥y ◦ σ−1

1,i,∗(w)⟩
aux2

O
π

−1
⊥y

,aux1,aux2

−−−−−−−−→♣w⟩1 ♣z ⊕ σ−1
2,i,∗ ◦ π−1

⊥y ◦ σ−1
1,i,∗(w)⟩

2
♣σ−1

1,i,∗(w)⟩
aux1
♣0⟩aux2

O
σ

−1
1,i,∗

,1,aux1

−−−−−−−−→♣w⟩1 ♣z ⊕ σ−1
2,i,∗ ◦ π−1

⊥y ◦ σ−1
1,i,∗(w)⟩

2
♣0⟩aux1 ♣0⟩aux2

drop aux−−−−−→♣w⟩1 ♣z ⊕ σ−1
2,i,∗ ◦ π−1

⊥y ◦ σ−1
1,i,∗(w)⟩

2
.

where σ−1
·,i,∗ : [N ]× ¶0, 1♢ → [N ]× ¶0, 1♢ is given below

σ−1
·,i,∗(w∥b) := σ−1

·,i (w)∥b.

Then, S[ℓ]1 sends the Ąnal state back to S1.
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B.2 Another ampliĄcation lemma proof

Lemma 3. Let S = (S0, S1) be an ϵ-SPI with space and time complexity given by S(S) and
T (S), respectively, for some ϵ > 0. Then, we can construct an SPI S[ℓ] = (S[ℓ]0, S[ℓ]1) with
space and time complexities

S(S[ℓ]) =


ln(10)

ϵ

⌉
· S(S) and T (S[ℓ]) =


ln(10)

ϵ

⌉
· (T (S) + 1)

such that

Pr
π,y

[
Pr
r

[
π−1(y)← S[ℓ]

π⊥y

1 (ρ, y, r) : ρ← S[ℓ]0(π, r)
]
≥ 2

3


≥ 1

5
.

Proof. Let ℓ =
⌈

ln(10)
ϵ

⌉
. Using Lemma 2, we can construct an ℓ-time repetition of S (η)-SPI,

denoted by S[ℓ] = (S[ℓ]0,S[ℓ]1), with η = 1 − (1 − ϵ)ℓ and space and time complexities
S(S[ℓ]) = ℓ · S(S) and T (S[ℓ]) = ℓ · (T (S) + 1). In other words,

Pr
π,y,r

[
π−1(y)← S[ℓ]

π⊥y

1 (ρ, y, r) : ρ← S[ℓ]0(π, r)
]
≥ 1− (1− ϵ)ℓ ≥ 9

10
.

Let SN denote the set of permutations over [N ]. From Lemma 7 it follows that there exists
θ = 7/9 and a subset Xθ ⊆ SN × [N ] of size at least

♣Xθ♣ ≥ (1− θ) · 9

10
·
∣∣SN × [N ]

∣∣ =
1

5
·
∣∣SN × [N ]

∣∣.

such that, for every (π, y) ∈ Xθ, we have

Pr
r

[
π−1(y)← S[ℓ]

π⊥y

1 (ρ, y, r) : ρ← S[ℓ]0(π, r)
]
≥ θ · 9

10
>

2

3
.

Because ♣Xθ♣ · ♣SN × [N ]♣−1 ≥ 1
5 , it follows that

Pr
π,y

[
Pr
r

[
π−1(y)← S[ℓ]

π⊥y

1 (ρ, y, r) : ρ← S[ℓ]0(π, r)
]
≥ 2

3


≥ 1

5
.

This proves the claim.

B.3 Decision ampliĄcation proof

Same as the search ampliĄcation, we amplify the success probability of a δ-DPI through
ℓ-time repetition deĄned in Protocol 3.

Protocol 3 (ℓ-time repetition of δ-DPI). Given a δ-DPI D = (D0,D1), the construction
of an "ℓ-time serial repetition of D" D[ℓ] = (D[ℓ]0,D[ℓ]1) is as follows:

1. (Advice Preparation) the algorithm D[ℓ]0 proceeds as follows:

(a) D[ℓ]0 receives as input a random permutation π : [N ] → [N ] and ran-
domness r ← ¶0, 1♢∗ and parses the string r into 2ℓ substrings, i.e. r =
r0∥...∥rℓ−1∥rℓ∥...∥r2ℓ−1 (the length is clear in context).

(b) D[ℓ]0 uses r0, ..., rℓ−1 to generate ℓ permutation pairs ¶σ1,i, σ2,i♢ℓ−1
i=0 in SN ,

where σ1,i is a random permutation, σ2,i has the following form

σ2,i(x1, ..., xn) = (x1 ⊕ r∗i , x2, ..., xn), (12)

where r∗i is some random bit generated from ri for all i ∈ [0, ℓ − 1]. Then
runs D0(σ1,i ◦ π ◦ σ2,i, ri+ℓ) to get a quantum state ρi := ρσ1,i◦π◦σ2,i,ri+ℓ

for

all i ∈ [0, ℓ− 1]. Finally, D[ℓ]0 outputs a quantum state
⊗ℓ−1

i=0 ρi.
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2. (Oracle Algorithm) D[ℓ]
π⊥y

1 is an oracle algorithm that proceeds as follows:

(a) D[ℓ]1 receives
⊗ℓ−1

i=0 ρi, randomness r and an image y ∈ [N ] as input.

(b) D[ℓ]1 parses r = r0∥...∥rℓ−1∥rℓ∥...∥r2ℓ−1 and uses the coins r0∥...∥rℓ−1 to
generate ℓ different permutation pairs ¶σ1,i, σ2,i♢ℓ−1

i=0 in SN as shown above.

(c) D[ℓ]1 then runs the following routine for all i ∈ [0, ℓ− 1]:

i. Run D1 with oracle access to (σ1,i ◦ π ◦ σ2,i)⊥σ1,i(y), which implements
the permutation σ1,i ◦ π ◦ σ2,i and its inverse (but ⊥ at σ1,i(y)).

ii. Get back bi ← D
(σ1,i◦π◦σ2,i)⊥σ1,i(y)

1 (ρi, σ1,i(y), ri+ℓ).

(d) D[ℓ]1 pads bi with all zero string of size n−1 and computes b∗i = σ2,i(bi∥0n−1)♣0
for all i ∈ [0, ℓ−1], then outputs b∗ which is the majority vote of ¶b∗0, . . . , b∗ℓ−1♢.

Lemma 4. Let (D0,D1) be a δ-DPI, where D0 outputs an S-qubit state and D1 makes T
queries. Then, we can construct an ℓ-time repetition of D, denoted by D[ℓ] = (D[ℓ]0,D[ℓ]1),

which is an η-DPI for η ≥ 1
2 − exp


− δ2

(1+2δ) · ℓ
)

, and has space and time complexities given

by
S(D[ℓ]) = ℓ · S(D) and T (D[ℓ]) = ℓ · T (D).

Proof. Let (D0,D1) be a δ-DPI for some δ > 0, where D0 outputs an S-qubit state and
D1 makes T queries. Similarly as in Lemma 2, we consider the execution of the ℓ-time
repetition of δ-DPI, denoted by DPI D[ℓ], which we deĄne in Protocol 3. For each iteration
i ∈ [0, ℓ− 1], we have

Pr
[
bi = π−1(y)♣0

]

= Pr

[
(π̄)−1(σ1,i(y))♣0 ← D

(π̄)⊥σ1,i(y)

1

(
ρi, σ1,i(y), ri+ℓ

)
: ρi ← D0(π̄, ri+ℓ)



≡ Pr
[
((σ2,i)

−1 ◦ π−1(y))♣0 ← D
π⊥y

1

(
ρπ◦σ2,i,ri+ℓ

, y, ri+ℓ

)
: ρπ◦σ2,i,ri+ℓ

← D0(π ◦ σ2,i, ri+ℓ)
]

≥ 1

2
+ δ,

where π̄ = σ1,i ◦π ◦σ2,i. The probability is taken over π ← SN , r ← ¶0, 1♢∗ (which is used
to sample permutations σi) and x← [N ], along with all internal measurements of D.

Recall that bi ← D
(σ1,i◦π◦σ2,i)⊥σ1,i(y)

1 (ρi, σ1,i(y), ri+ℓ), for i ∈ [ℓ]. Let Xi be the indicator
variable for the event that bi = (π ◦ σ2,i)

−1(y)♣0. Similar to the search case, we argue that
all Xi are mutually independent. For any i ∈ [0, ℓ− 1] and any subset K ⊂ [0, l− 1] where
i /∈ K, let

Event A = ¶Xi = 0♢
= ¶bi ̸=

(
(σ2,i)

−1 ◦ π−1(y)
)
♣0♢

= ¶bi♣♣0n−1♣0 ̸=
(
(σ2,i)

−1 ◦ π−1(y)
)
♣0♢

= ¶
(
σ2,i ◦ (bi♣♣0n−1)

)
♣0 ̸= π−1(y)♣0♢,

Note that the last equality holds because of Equation 12. We then deĄne another event

Event B =
⋂

j∈K

¶Xj = 0♢

=
⋂

j∈K

¶
(
σ2,j ◦ (bj ♣♣0n−1)

)
♣0 ̸= π−1(y)♣0♢
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Given that B happens, we have ¶bj♢j∈K such that for all j ∈ K,
(
σ2,j ◦ (bi♣♣0n−1)

)
♣0 ≠

π−1(y)♣0. We now consider the probability that A happens. In Equation 12, since all r∗i are
independently randomly generated, the value of

(
σ2,i ◦ (bi♣♣0n−1)

)
♣0 is independent of all

other values of
(
σ2,j◦(bi♣♣0n−1)

)
♣0. Therefore, the event that

(
σ2,i◦(bi♣♣0n−1)

)
♣0 ≠ π−1(y)♣0

is not correlated with all other
(
σ2,j ◦ (bi♣♣0n−1)

)
♣0 ̸= π−1(y)♣0, i.e., Pr[A♣B] = Pr[A]. This

is true for any i and K. Same as the search case, in each trial, the base inverter is solving
a completely independent permutation inversion problem, thus we conclude that all ℓ trails
are mutually independent.

Let X =
∑ℓ−1

i=0 Xi, we have that E[X] ≥ ℓ · ( 1
2 + δ) by the linearity of expectation.

Note that D[ℓ] succeeds in DecisionInvert if and only if D[ℓ]1 can output b∗ = π−1(y)♣0, i.e.
X > ℓ

2 in which case more than half of the elements in ¶b0, ..., bℓ−1♢ are equal to π−1(y)♣0.
By the multiplicative Chernoff bound in Lemma 5, the probability that DecisionInvert fails
is at most

Pr

[
X <

ℓ

2


≤ exp

(
− δ2

(1 + 2δ)
· ℓ

)
.

Note that the resource requirements needed for the ampliĄcation procedure amount to
space and time complexities ℓS and ℓT , respectively, similar as in Lemma 2.

C Quantum oracle constructions in Theorem 3

In Theorem 3, B, with quantum oracle access to f , needs to grant A quantum oracle access
to hf,π,t,µ and h−1∗

f,π,t,µ. Here we give detailed constructions of Ohf,π,t,µ
and Oh−1∗

f,π,t,µ

. Note

that π is sampled by B and so it is easy for it to construct quantum oracles Oπ and Oπ−1
⊥t

.

Since h−1∗
f,π,t,µ = π−1

⊥t , the partial inverse oracle Oh−1∗

f,π,t,µ

can be simply simulated by Oπ−1
⊥t

.

So we only need to show how to construct Ohf,π,t,µ
.

Let x = x0 . . . xn−1, where n = logN . When π ∈ πt,0,µ, the function becomes

hf,π,t,µ(x0 . . . xn−1) = (x0 · f(x1...xn−m−1) · 1(xn−m...xn = µ)) · t
+ (x0 · f(x1...xn−m−1) · 1(xn−m...xn = µ)) · π(x).

Then deĄne a function g : [N ]→ ¶0, 1♢, such that g(x) = x0·f(x1...xn−m−1)·1(xn−m...xn =
µ). With access to Of , it is easy to construct Og by applying Of to the last n− 1 bits
followed by an AND gate.

Now when A queries the oracle Ohf,π,t,µ
on ♣x⟩ ♣y⟩, B performs the following reversible

operations

♣x⟩ ♣y⟩
add aux registers−−−−−−−−−−→♣x⟩1 ♣y⟩2 ♣0⟩3 ♣0⟩4 ♣0n⟩5 ♣0n⟩6

Og,1,3X4O1,4Oπ,1,5Ut−−−−−−−−−−−−−−→♣x⟩ ♣y⟩ ♣g(x)⟩ ♣g(x)⟩ ♣π(x)⟩ ♣t⟩
CCNOT3,6,2−−−−−−−−→♣x⟩ ♣y ⊕ (g(x) · t)⟩ ♣g(x)⟩ ♣g(x)⟩ ♣π(x)⟩ ♣t⟩
CCNOT4,5,2−−−−−−−−→♣x⟩ ♣y ⊕ (g(x) · t)⊕ (g(x) · π(x))⟩ ♣g(x)⟩ ♣g(x)⟩ ♣π(x)⟩ ♣t⟩

Og,1,3X4O1,4Oπ,1,5Ut−−−−−−−−−−−−−−→♣x⟩ ♣y ⊕ (g(x) · t)⊕ (g(x) · π(x))⟩ ♣0⟩ ♣0⟩ ♣0n⟩ ♣0n⟩
drop aux−−−−−→♣x⟩ ♣y ⊕ (g(x) · t)⊕ (g(x) · π(x))⟩

It is easy to see that y ⊕ (g(x) · t)⊕ (g(x) · π(x)) = y ⊕ hf,π,t,µ(x). Therefore, to respond
to one query to Ohf,π,t,µ

, B needs to query Of twice (once for computing and once for
eliminating). The same thing can be done when π ∈ πt,1,µ.
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D Quantum oracle constructions in Protocol 2

Here, we show how to implement the function π̄⊥y by means of a (reversible) quantum
oracle. This can be done by two separate oracles Oπ̄ and Oπ̄−1

⊥y

, where the corresponding

functions are

π̄(w) =

{
y if w ∈ G
π(w) if w /∈ G

and

π̄−1
⊥y(w, b) =

{
π−1(w)♣♣0 if w /∈ π(G) ∧ b = 0

1♣♣1 if w ∈ π(G) ∧ b = 1.

Let f be an indicator function on whether w ∈ G. Given β as an input, the permutation
π restricted to inputs outside of G is known (denoted as π′). Therefore given input y, with
quantum oracle access to Of and Oπ′ , we can easily construct Oπ̄ and Oπ̄−1

⊥y

.

The following procedure gives a construction of Oπ̄.

♣w⟩ ♣z⟩
add aux registers−−−−−−−−−−→♣w⟩1 ♣z⟩2 ♣0⟩3 ♣0⟩4 ♣0n⟩5 ♣0n⟩6

Of,1,3X4O1,4Oπ′,1,5Uy−−−−−−−−−−−−−−−→♣w⟩ ♣z⟩ ♣f(w)⟩ ♣f(w)⟩ ♣π′(w)⟩ ♣y⟩
CCNOT3,6,2−−−−−−−−→♣w⟩ ♣z ⊕ (f(w) · y)⟩ ♣f(x)⟩ ♣f(w)⟩ ♣π′(w)⟩ ♣t⟩
CCNOT4,5,2−−−−−−−−→♣x⟩ ♣z ⊕ (f(w) · y)⊕ (f(w) · π′(w))⟩ ♣f(w)⟩ ♣f(w)⟩ ♣π′(w)⟩ ♣y⟩

Of,1,3X4O1,4Oπ′,1,5Uy−−−−−−−−−−−−−−−→♣x⟩ ♣z ⊕ (f(w) · y)⊕ (f(w) · π′(w))⟩ ♣0⟩ ♣0⟩ ♣0n⟩ ♣0n⟩
drop aux−−−−−→♣x⟩ ♣z ⊕ (f(w) · y)⊕ (f(w) · π′(w))⟩

≡ ♣x⟩ ♣z ⊕ π̄(w)⟩

The backward oracle Oπ̄−1
⊥y

would be constructed similarly.
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