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Abstract. In the permutation inversion problem, the task is to find the preimage
of some challenge value, given oracle access to the permutation. This fundamental
problem in query complexity appears in many contexts, particularly cryptography.
In this work, we examine the setting in which the oracle allows for quantum queries
to both the forward and the inverse direction of the permutation—except that the
challenge value cannot be submitted to the latter. Within that setting, we consider
three options for the inversion algorithm: whether it can get quantum advice about
the permutation, whether the query algorithm can restrict the distribution with which
the challenge input is sampled, and whether it must produce the entire preimage
(search) or only the first bit (decision). We prove several theorems connecting the
hardness of the resulting variations of the permutation inversion problem and establish
lower bounds for them. Our results show that, perhaps surprisingly, the permutation
inversion problem does not become significantly easier when the adversary is granted
oracle access to the inverse—provided it cannot query the challenge itself.

Keywords: permutation inversion * quantum query-access ‘- lower bounds

1 Introduction

1.1 The permutation inversion problem

The permutation inversion problem is defined as follows: given a permutation 7 : [N] — [NV]
and an image y € [N], output the correct preimage x := 7~ 1(y). In the decision version
of the problem, it is sufficient to output only the first bit of x. If the algorithm can only
access ™ by making classical queries, then making T' = Q(N) queries is necessary and
sufficient for both problems. If quantum queries are allowed, then Grover’s algorithm
can be used to solve both problems with T' = O(v/N) queries [Gro96, Amb02], which is
worst-case asymptotically optimal [BBBV97, Amb02, Nay10].

In this work, we consider the permutation inversion problem in a setting where the
algorithm is granted both forward and inverse quantum query access to the permutation 7.
In order to make the problem nontrivial, we modify the inverse oracle so that it outputs a
reject symbol when queried on the challenge image y. We call this the two-sided permutation
inversion problem. This variant appears naturally in the context of chosen-ciphertext
security for encryption schemes based on (pseudorandom) permutations [KL20], as well as
in the context of sponge hashing (SHA3) [GJMG11]. We consider several variants:
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1. (Auziliary information.) With this option enabled, the inversion algorithm now
consists of two phases. The first phase is given a full description of 7 (e.g., as a table)
and allowed to prepare an arbitrary quantum state p, consisting of S qubits. This
state is called auxiliary information or advice. The second phase of the inversion
algorithm is granted only the state p, and query access to mw, and asked to invert an
image y. The two phases of the algorithm can also share an arbitrarily long uniformly
random string, referred to as shared randomness. The complexity of the algorithm is
measured in terms of the number of qubits S of the advice state (generated by the
first phase) and the total number of queries T' (made during the second phase.)

2. (Adaptive restriction of challenge distribution.) In this case, the inversion algorithm
again consists of two phases. The first phase is again given a full description of 7,
and allowed to output a string p € {0,1}™ for m < n, where n = V/N. The second
phase is then granted query access to m and asked to invert an image y which is
sampled uniformly at random from the set of all strings whose last m bits equal p.

3. (Search vs Decision.) Here the two options simply determine whether the inversion
algorithm is tasked with producing the entire preimage = 7~ 1(y) of the challenge
y (search version), or only the first bit z (decision version.)

If the algorithm is solving the search problem, we refer to it as a search permutation
inverter, or SPI. If it is solving the decision problem, we refer to it as a decision permutation
inverter, or DPI. If an SPI uses S qubits of advice and T' queries to succeed with probability
at least e in the search inversion experiment, we say it is a (5,7, €)-SPI. If a DPI uses S
qubits of advice and T queries to succeed with probability at least 1/2 + § in the decision
inversion experiment, we say it is a (S, T, d)-DPI. If the algorithm is allowed to adaptively
restrict the challenge distribution, we say it is adaptive and denote it by aSPI or aDPI, as
appropriate.

In this work, we are mainly interested in the average-case setting. This means that both
the permutation 7 and the challenge image y are selected uniformly at random. Moreover,
the success probability is taken over all the randomness in the inversion experiment, i.e.,
over the selection of 7 and y along with all internal randomness and measurements of the
inversion algorithm.

In Section 2, we present technical preliminaries, including the swapping lemma and
quantum random access codes (QRAC), for subsequent proof. In Section 3, we introduce
several definitions of the permutation inversion problem, with both auxiliary information
and adaptive restriction of challenge distribution. Within Section 4, we show methods for
amplifying the success probability of inversion in the non-adaptive case. Subsequently, in
Section 5, we illustrate two reductions: from search-to-decision with auxiliary information
and from unstructured search-to-decision without auxiliary information. These reductions
are then utilized to derive lower bounds, as shown in Section 6. Finally, in Section 7, we
propose a novel security notion, called one-way-QCCRA2, and establish the security of
two common schemes under this notion, subject to specific conditions.

1.2 Related work

Previous works have considered the quantum-query function inversion problem [HXY19,
CLQ19, CGLQ20, DKRS23, Liu23]. A number of papers gave lower bounds and time-space
tradeoffs for the (one-sided) quantum-query permutation inversion problem, with and
without advice [Amb02, Nay10, Ros21, NABT14, HXY19, CLQ19, FK15, BY23]. The
relevant highlights among these are summarized in Table 1.

We remark that some of these previous works [CX21, CLQ19, NABT14] do not fully
address the average-case setting. Specifically, they deal with inverters that are “restricted”
in the following manner. First, the inverter is said to “invert y for 7” if it succeeds in the
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inversion experiment for the specific pair (7, y) with probability at least 2/3. Second, the
inverter is said to “invert a d-fraction of inputs” if Pr, ,[the inverter inverts y for | > 4.
This type of inverter is clearly captured by our notion above: it is an (S,T,2§/3)-SPI.
However, there are successful inverters of interest that are captured by our definition
but are not restricted. For example, in a cryptographic context, one would definitely be
concerned about adversaries that can invert every (m,y) with a probability of exactly 1/n.
Such an adversary is clearly a (S, T, 1/n)-SPI, but is not a restricted inverter for any value
of 0. Other works also consider the general average-case (e.g., [CGLQ20, Liu23, HXY19)])
but without two-way oracle access. Note that the lower bound for restricted adversaries
described in [NABT14, CLQ19] can be translated to the more general lower bound in a
black box way by applying our amplification procedure described in Lemma 3.

Table 1: Summary of previous work on permutation inversion with advice. Success
probability is denoted by e. Note that e = O(1) in [NABT14].

[NABT14] [CLQ19] [HXY19] Ours
Advice classical quantum quantum quantum
Access Type one-sided one-sided one-sided two-sided
Inverter restricted restricted general general
T-S trade-off ST? = Q(N) ST? =Q(eN) | ST?=Q(&N) | ST? = Q(&N)

To our knowledge, the two-way variant of the inversion problem has only been considered
in one other work. Specifically, [CX21] gives a lower bound of T' = Q(N'/%) to invert
a random injective function (with two-way access and no advice) with a non-negligible
success probability.

Another novelty of our work is that we give lower bounds and time-space tradeoffs for the
decision problem (rather than just search). While prior work [CGLQ20] also considered the
general decision game, their generic framework crucially relies on compressed oracles [Zhal9)
which are only known to support random functions. Consequently, their techniques cannot
readily be applied in the context of permutation inversion due to a lack of “compressed
permutation oracles”.

We remark that the notion of two-way quantum accessibility to a random permutation
has been considered in other works; for example, [ABKM22, ABK™22] studied the hardness
of detecting certain modifications to the permutation in this model. By contrast, we are
concerned with the problem of finding the inverse of a random image.

2 Technical preliminaries

2.1 Swapping Lemma

Let Af be a quantum algorithm with quantum oracle access to a function f : X — ), for
some finite sets X and ). Let S C X be a subset. Then, the total query magnitude of Af
on the set S is defined as ¢(Af,S) = ZtT:_Ol |Ts [4¢) ||?, where |1/;) represents the state
of A just before the (t + 1)5* query and Ils is the projector onto S acting on the query
register of A. We use the following simple fact: for any subset S C X and .4 making at
most T queries, it holds that (A7, S) < T. The following lemma controls the ability of
a query algorithm to distinguish two oracles, in terms of the total query magnitude to
locations at which the oracles take differing values.

Lemma 1 (Swapping Lemma, [Vaz98]). Let f,g: X — Y be functions with f(z) = g(z)
forallz ¢ S, where S C X. Let |¥y) and |¥y) denote the final states of a quantum
algorithm A with quantum oracle access to the functions f and g, respectively. Then,

W) = W) | < /T - q(AS,S),
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where || | f) — |¥,) || denotes the Euclidean distance and where T is an upper bound on
the number of quantum oracle queries made by A.

2.2 Lower bounds for quantum random access codes

Quantum random access codes [Wie83, ANTSV99, ALMOO0S] are a means of encoding
classical bits into (potentially fewer) qubits. We use the following variant from [CLQ19].

Definition 1 (Quantum random access codes with variable length). Let N be an integer
and let Fy = {f : [N] — Xn} be an ensemble of functions over some finite set X. A
quantum random access code with variable length (QRAC-VL) for Fy is a pair (Enc, Dec)
consisting of a quantum encoding algorithm Enc and a quantum decoding algorithm Dec:

o Enc(f; R): The encoding algorithm takes as input a function f € Fx together with
a set of random coins R € {0,1}*, and outputs a quantum state p on ¢ = ¢(f) many
qubits (where ¢ may depend on f).

o Dec(p,z; R): The decoding algorithm takes as input a state p, an element x € [N]
and random coins R € {0, 1}* (same randomness used for the encoding), and seeks
to output f(z).

The performance of a QRAC-VL is characterized by parameters L and 0. Let L := IJE;Z[K( )]

be the average length of the encoding over the uniform distribution on f € Fy, and let

§ = Pr_ [Dec(Enc(f; R), z; R) = f(z)]

be the probability that the scheme correctly reconstructs the image of the function, where
f € Fn, z € [N] and R are all chosen uniformly at random.

We use the following information-theoretic lower bound on the expected length of any
QRAC-VL scheme for permutations, which is a consequence of [CLQ19, Theorem 5.

Theorem 1 ([CLQ19], Corollary 1). For any QRAC-VL for the set of permutations Sy
(of the set [N]) with § =1 —k/N for some k = Q(1/N), we have

L >logN!—O(klogN).

3 The permutation inversion problem

We begin by formalizing the search version of the permutation inversion problem. We let
[N] ={1,..., N}; typically we choose N = 2" for some positive integer n. For f : X — )
a function from a set X to an additive group Y (typically just bitstrings), the quantum
oracle Oy is the unitary operator Oy : |z} [y) — |z) |y & f(x)). We use A°f (or sometimes
simply Af) to denote that algorithm A has quantum oracle access to f.

Definition 2. Let m,n € N and M = 2™, N = 2". An adaptive search-version
permutation inverter (aSPI) is a pair aS = (aSp, aS1) of quantum algorithms, where

o aSy is an algorithm that receives as input a truth table for a permutation over [N]
and a random string r, and outputs a quantum state as well as a classical string
w € {0,1}™ with 0 < m < n;

 aS; is an oracle algorithm that receives a quantum state, a classical string p € {0,1}™,
an image y € [N], and a random string r, and outputs « € {0, 1}"~™.

Note that m is a parameter of the adaptivity, i.e. the length of the adaptive string.
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We will consider the execution of an aSPI a$S in the following experiment,

1. (sample coins) a uniformly random permutation 7 : [N] — [N] and a uniformly
random string r < {0, 1}* are sampled;

2. (prepare advice) aSy is run, producing a pair consisting of a quantum state and a
string (pr,r,pu, 1) <= aSo(m, 7);

3. (sample instance) a random image y € [N] is generated by first sampling a random
string « + {0,1}"~™ and then letting y = m(x||p);

4. (invert) aS; is run with the oracles below, and produces a candidate preimage x*.

O tw) |2) = [w) @ m(w))  Opr1:|w)fz) = |w) [z o, w), (1)

Ty
where 71'1,; : [N] x{0,1} — [N] x {0,1} is defined by

1 a7 Y w)||0 ifb=0and w#y
rhllp) = 4T .
118 M1 otherwise.
To keep the notation simple, we write this entire process as x* < aS7™" (pr.r s [y Y, T)-
We will use 7, to denote simultaneous access to the two oracles in (1) throughout
the paper.

5. (check) If m(z*||p) = y, output 1; otherwise output 0.

Note that the two oracles allow for the evaluation of the permutation 7 in both the
forward and inverse directions. To disallow trivial solutions, the oracle outputs a fixed
“reject” element 11198 N1||1 € [N] x {0,1} if queried on y in the inverse direction.

Definition 3. An (S,T,¢)-aSPI is a search-version adaptive permutation inverter aS =
(aSo, aSy) satistying all of the following:

L Prn=y) < aS{ " (p,m,y,7) : (p,p) < aSo(m,7), y = m(z||p)] > €, where the prob-
ability is taken over 7 <— Sy, < {0,1}* and = < {0,1}"~™, along with all internal
randomness and measurements of aS;

2. S = 5(aS) is an upper bound on the number of qubits of p in the above.
3. T =1T(aS) is an upper bound on the number of oracle queries made by aS;.

We emphasize that the running time of aS and the length of the shared randomness
r are only required to be finite. We will assume that both S and T depend only on the
parameter N; in particular, they will not vary with 7, y, r, or any measurements.

Definition 4. A search-version permutation inverter (SPI) S = (Sg,S;1) is defined as an
aSPI with m = 0. An (S, T,€)-SPI is an (S, T, €)-aSPIl with m = 0.

Decision version. The decision version of the permutation inversion problem is defined
similarly to the search version above. An adaptive decision-version permutation inverter
(aDPI) is denoted aD = (aDg,aD;), and outputs one bit b rather than a full candidate
preimage. In the “check” phase of the experiment, the single-bit output b of aD; is
compared to the first bit 77!(y)|o of the preimage of the challenge 3. Success probability
is now measured in terms of the advantage over the random guessing probability of 1/2.

Definition 5. A (S,T,9)-aDPI is a decision-version adaptive permutation inverter aD =
(aDg, aDy) satistying all of the following:
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L Pr[n=Y(y)lo < aD{** (p, 1, y,7) : (p,p) < aDo(m,7), y = m(z||p)] > 5 + 6, where
the probability is taken over m <— Sy, r < {0,1}* and x + {0,1}"~™, along with
all internal randomness and measurements of aD. Here 771(y)|o denotes the first bit
of 77 1(y)

2. S = 5(aS) is an upper bound on the number of qubits of p in the above.
3. T =T(aS) is an upper bound on the number of oracle queries made by aS;.

Definition 6. A decision-version permutation inverter (DPI) D = (Dg, D;) is defined as
an aDPI with m = 0. An (S,T,0)-DPl is an (S, T, d)-aDPI with m = 0.

4 Amplification

In this section, we show how to amplify the success probability of search and decision
inverters, in the non-adaptive (i.e., m = 0) case. The construction for the search case is
shown in Protocol 1.

Protocol 1 (¢-time repetition of (S, T, €)-SPI). Given an (S,T,€)-SPI'S = (So,S1) and
an integer £ > 0, define a SPI S[¢] = (S[¢]o,S[¢]1) as follows.

1. (Advice Preparation) S[¢]o proceeds as follows:

(a) receives as input a random permutation 7 : [N] — [N] and randomness r <
{0,1}* and parses the string r into 2¢ substrings r = rol|...||re—1||rel---|720—1
(with lengths as needed for the next step).

(b) uses rg,...,ro—1 to generate £ permutation pairs {0'1,1',0'271'}5;8 in Sy, and
then runs So(o1,; 0 ™0 024, Ti4e) to get a quantum state p; := Po, ;omocs i,
for all i € [0,£ — 1]. Finally, S[¢]o outputs the quantum state ®f;é Pi-

4L

2. (Oracle Algorithm) S[€]}" proceeds as follows:

(a) receives ®f;é pi, randomness r and an image y € [N] as input.

(b) parsesr = ro||...[|[re—1||7el|-.||[r20—1 and uses the coins ro||...||re—1 to reconstruct
the permutations {0’1)2‘,0'2’1‘}2-;3 in Sy.

(¢) runs the following routine for alli € [0,€ — 1]:

i. run Sy with oracle access to (01,0m002,) 14, A(y)» which implements the

permutation o1 ;0T o0y ,; and its inverse (with output L on input o1,(y)).
a

(01,i0m002.4) Loy ;(v)

it. get back x; + S, (pi,01,i(Y); Tite)-

(d) queries the oracle w1, (in the forward direction) on each oo ;(z;) to see if
m(o2,i(zi)) = y. If such an o2 ;(x;) is found, outputs it; otherwise outputs 0.

“How to construct this quantum oracle is described in Appendix B.1.

In the adaptive case, a difficulty arises with the above approach. To amplify the proba-
bility, we randomize the permutation in each iteration and aS[¢]y produces corresponding
advice for each randomized permutation. In the adaptive case, aS[{]p needs to output
an adaptive string p which is used to produce the image y. However, running aSgy for
each randomized permutation will, in general, result in a different p in each execution,
and it is unclear how one can use these to generate a single 1/ in the amplified algorithm.
We remark that other works considered different approaches to amplification, e.g., via
quantum rewinding [HXY19] and the gentle measurement lemma [CGLQ20].
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Lemma 2 (Amplification, search). Let S be a (S,T,€)-SPI for some € > 0. Then S[{] is a
(€S, (T +1),1 — (1 —¢€)*)-SPL

Proof. We consider the execution of the ¢-time repetition of (S, T, €)-SPI, denoted by SPI
S[¢], in the search permutation inversion experiment defined in Protocol 1. By construction,
S[{] runs ¢-many SPI procedures (Sp,S1). Since S is assumed to be an (S, T, €)-SPI, let
T; = 01, 0T 0 0g,, for each iteration i € [0, ¢ — 1] it follows that

(i) Loy 5 (v

Pr {(Wi)1(017i(y)) <5 (pir01,6(Y), rive) = pi < So(mi rise)

_ _ (mooa,i)
=Pbr [(UQ’i) tom 1(?/) — Sl e (pﬂoffz,i’mu’yvrﬂr@) D Proosirive < So(ﬂ' ° 02,i7TT+f)]

=Pr [Wﬁl(y) «— ST (pﬁ7ri+e,y,ri+g) D Pryrie & So(’/T,’/'r_M)] > €

where the probability is taken over 7 <— Sy and r + {0,1}* (which is used to sample
permutations o;), along with all internal measurements of S.

Essentially, for all i € [0,¢ — 1], the goal of the i-th trial is to find the preimage z;
such that o2 ;(x;) = 77 1(y). Since all {o2;} are independently randomly generated, the
elements o9 ;(x;) are independent for each 7 in the range [0, ¢ — 1]. Therefore, all ¢ trails
are mutually independent. Therefore, we get that

Pr[77'(y) « ST (py.7) < p < Sltlo(m, 7)]

—1
— (7\'1) o1 (y
=1-Pr ﬂ [(woam) 1(y) #+ S ol >(Pi701,i(y)aTi+€) Lpi So(myﬁﬂz)H
i=0
-1 ()
_ Ti)loq 4
=1- HPT [(77 002) Ny £ ST Y (0 oi(Y), rive)  pi So(m,hure)]
i=0
>1—(1-¢)".

Given that the SPI (Sg,S1) requires space S and T queries, we have that (S[¢]o,S[¢]1)
requires space S(S[{]) = £- .S and query number T'(S[¢]) = ¢- (T + 1), as both algorithms
need to run either Sy or S; f-many times as subroutines. This proves the claim. O

We also need a variant of the above to compute the search lower bound.

Lemma 3. Let S be a (S,T,¢€)-SPI for some ¢ > 0. Then, we can construct an SPI
S[¢] = (S[€)o, S[€]1) using S(S[€]) qubits of advice and making T(S[{]) queries, with

In(10)

€

In(10)

€

S(S[ﬁ]):{ ]s and T(S[é]):{ -‘-(T—i—l)

such that
Py P (x ) < SIT () p - Slda(mr) > 2]

1
Ty | T 5 ’
The proof is analogous to Lemma 2 and is given in Appendix B.2.
We also consider amplification for the decision version; the construction is essentially

the same, except that the final “check” step is replaced by outputting the majority bit.

Lemma 4 (Amplification, decision). Let D be a (S, T, §)-DPI for some 6 > 0. Then D[{]
is a (0S,0T,1/2 — exp(—02/(1 + 26) - £))-DPI.

The proof is analogous to the search version and given in Appendix B.3.
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5 Reductions

We give two reductions related to the inversion problem: a search-to-decision reduction
(for the case of advice), and a reduction from unstructured search to the decision inversion
problem (for the case of no advice).

5.1 A search-to-decision reduction

To construct a search inverter from a decision inverter, we take the following approach. We
first amplify the decision inverter so that it correctly computes the first bit of the preimage
with certainty. We then repeat this amplified inverter n times (once for each bit position)
but randomize the instance in such a way that the j-th bit of the preimage is permuted to
the first position. We then output the string of resulting bits as the candidate preimage.

Theorem 2. Let D be a (S,T,6)-DPI. Then for any £ € N, we can construct a (nS,nlT,n)-
SPI with
52
nZl—n-exp(—(ler%), where n = [log N.

Proof. Given an 0-DPI (Dg, D) with storage size S and query size T', we can construct a
7n’-DPI (D[¢]o, D[¢]1) with storage size £S and query size T through ¢-time repetition. By
Lemma 4, we have that n’ > 1 — exp(—% . 6). Note that the algorithm (D[¢]o, D[¢]1)
runs (Dg, D1) as a subroutine. In the following, we represent elements in [N] using a binary
decomposition of length [log N. To state our search-to-decision reduction, we introduce a
generalized swap operation, denoted by swap, ;, which acts as follows for any quantum
state of m qubits:

swap, , [w) = swap, p (W1 -+ Wh ... W - .. WIW0) = [Wpn—1 -+ W - W . .. WIW)

Note that swapy, ;. is equal to the identity, i.e. swapy ; |z) = |z) for € [N] and k €
[0, [log N — 1]. We construct a SPI (Sp,S;1) as follows.

1. The algorithm Sy proceeds as follows:

(a) S receives a random permutation 7 : [N] — [N] and a random string r +
{0,1}* as inputs. We parse r into [log N| individual substrings, i.e. r =
7ol|---||7r10g n7—1; the length of each substring is clear in context.

(b) So runs the algorithm D[¢]o(moswap, ;,7;) to obtain quantum advice proswap, ,r;
for each j € [0,[log N] — 1]. Finally, So outputs a quantum state p =

®flogNT—1pmswapo,jvrj. (Note: We let p; = proswap, ,,r; for the rest of the

=0
proof.)
07,0 -1
2. The oracle algorithm S, v proceeds as follows:!
(a) Si receives ®;L;01 pj, a random string r := r¢||...|[r,—1 and an image y € [N].

(b) S; then runs the following routine for each j € [0, [log N| — 1]:

i. Run D[¢]; with oracle access to Oxroswap, ,and O

- her
(Trc:swapod-)hi7 where

Oroswap, ; ()1 |2)5) = (swapy ; @ I) Ox (swapy ; @ I) |w), |2),

O(‘froswapoyj)i?ll(|w>l |Z>2) = (I® swapO,j)Oﬂ-I; ‘1,U>1 |Z>2

1Here, we borrow the notation for O, and (97;1 from the experiment described in Section 3.
Ly
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ii. Let b; D[E]gmswap”’jhy (pj,y,r;) denote the output.
(c) Sy outputs z* € [N] with the binary decomposition z* = Zj“g% NI=19i . p,.
We now argue that the probability that D[¢]; correctly recovers the pre-image bits b; and b;
is independent for each ¢ # j. From Lemma 4, we know that D[¢]; runs D; as a subroutine,
i.e. it decides the first bit of the pre-image of y by running D; (in Lemma 4) ¢ times
with different random coins. It actually needs to recall D; for amplification and for each
iteration in this amplification k € [0, ¢ — 1], where the actual modified permutation under
use is 01, 0 T o swapy ; and image is o; x(y). Similarly for term j, o o m o swapy ; and
0;.x(y) is used as the permutation and image. Since the random coins (r; and r;), which
are used to modify the target permutation 7, are independently random, those random
permutations (o; , and o, ) generated from random coins are independently random and
so do those modified composition permutations, images, and advice states.
Analyzing the success probability of (Sg,S;1), we find that

Pr [71'_1(:1/) — ST (p,y,r) : p So(w,r)]
[log NT1—1

_ (moswapy ;)
=Prl A )l < DI (o yry)
=0

> (1_exp(_(1f26) .e))“‘jgm > 1- log N .exp(_(lf%) ).

where the last line follows from Bernoulli’s inequality. Finally, we compute the resources
needed for (Sp,S1). By Lemma 4, (D[¢]o, D[¢]1) requires space £S and query size ¢T". For
J €10, [log N — 1], So stores D[{]o’s outputs and thus S requires storage size [log N£S.
Similarly, S; runs D[¢]; to obtain b; and thus it requires [log N1¢T" queries in total. [

Comparison to O2H lemma. The one-way to hiding (O2H) lemma [AHU19] also
presents a natural reduction from search to decision in the context of general quantum
oracle algorithms. However, it is quite limited in our setting. For example, given a decision
inverter capable of computing the first bit of 77 1(y) with certainty after ¢ queries, the
O2H lemma yields a search inverter that can invert y with success probability ﬁ after
= ¢ queries. By comparison, our amplification technique achieves an inversion of y with a
success probability of 1 with ng queries, which is significantly better in the relevant setting
of ¢ > n. However, in applications where only one copy of the advice is available for the
amplified algorithm, O2H still works while our amplification technique fails.

5.2 A reduction from unstructured search

Second, we generalize the method used in [Nayl0] to give a lower bound for adaptive
decision inversion without advice. Unlike in Nayak’s original reduction, here we grant
two-way access to the permutation. Recall that, in the unique search problem, one is
granted quantum oracle access to a function f : [N] — {0,1} which is promised to satisfy
either |[f~1(1)| = 0 or |f~1(1)| = 1; the goal is to decide which is the case. The problem is
formally defined below.

Definition 7. (UNIQUESEARCH,,) Given a function f : {0,1}" — {0,1}, such that f
maps at most one element to 1, output YES if f~1(1) is non-empty and NO otherwise.

Definition 8. (Distributional error) Suppose an algorithm solves a decision problem with
error probability at most pg for NO instances and p; for YES instances. Then we say this
algorithm has distributional error (po,p1).
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We now establish a reduction from unstructured search to adaptive decision inversion.

Theorem 3. If there exists a (0,T,8)-aDPI, then there exists a quantum algorithm that
solves UNIQUESEARCH,,_,,,_1 with at most 2T queries and distributional error (% — 0, %)
Proof. Our proof is similar to that of Nayak [Nay10]: given a (0,7, §)-aDPI A, we construct
another algorithm B which solves the UNIQUESEARCH,, _,,,_; problem.

Let N = 2™. For any uniform image ¢t € [N], define the NO and YES instances sets
(corresponding to the image t) of the decision permutation inversion problem with size N:

Ti0 = {7 : 7 is a permutation on [N], the first bit of 7 (¢) is 0},
71 = {7 : 7 is a permutation on [N], the first bit of 7 !(t) is 1}.

Note that for a random permutation 7, whether = € m; ¢ or 7 ; simply depends on the
choice of ¢. Since ¢ is uniform, Pr[r € m; 0] = Pr[r € m1] = 1/2. We also consider functions
h : [N] — [N] with a unique collision at t. One of the colliding pairs should have the
first bit 0, and the other one should have the first bit 1. Moreover, the last m bits of the
colloding pair is p. Formally speaking, h(0||i||u) = h(1|j||1) = t, where 4,5 € {0,1}~™~L.
Let Q)¢,, denote the set of all such functions.

Furthermore, given a permutation 7 on [N], consider functions in @y, that differ from
7 at exactly one point. These are functions h with a unique collision and the collision is at ¢.
If 7 € my 0, m(0])3||p) = h(0]é]|p) =t and 1||j||u is the unique point where 7 and h differ; if
m € m1, (1)|7]lw) = h(L||7]|p) = t and 0]|%]| is the unique point where 7 and h differ. Let
Qr ¢, denote the set of such functions h and clearly Qr ¢, C Q. Note that if we pick a
random permutation 7 in {mx} and choose a uniform random h € Qnrt,u, I is also uniform
in Q. Next, we construct an algorithm B that tries to solve UNIQUESEARCH,,_,,_; as
follows, with quantum oracle access to f:

1. B first samples some randomness r € {0,1}*, a uniform random string s € {0,1}"~™
and a permutation w € {my}.

2. B then runs A with quantum orale access to m, 7! until it receives a string p €
{0,1}™ from A.

3. Let t = m(s||p), and then it follows that if s|o =0, 7 € 7., and otherwise 7 € 7y 1.

4. B then constructs a function hyf ., and h;}:tw

i€{0,1} and j € {0,1}—™"1,

as follows. If m € mq, for any

t ifi=1and f(j) =1,u=u,

m(i||j|lu)  otherwise.

R (il llw) = { (2)

If 7 € my 1, for any ¢ € {0,1} and j € {0, 1}n—m—17

t ifi=0and f(j) =1,u = p,
7(t]|j]ju)  otherwise.

R tu(illdlle) = { (3)

No matter what instance sets 7 belongs to, the corresponding "inverse" function is
defined as

7 k)0 ifb=0and k #t
WY (k) = ’ 1
f,vr,w( 16) {1”1 otherwise. W
5. Bthensendst, i and r to A, runs it with quantum oracle access to iy » ¢, and h;}:t,u’

and finally gets back b’. For simplicity, we write this process as b’ « A"+t (¢, u,r). 2

2Note that those functions are defined classically above, and its allowance for quantum oracle access is
discussed in Appendix C, which gives 2¢q queries in the theorem statement.
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6. Boutputs ' if m € m, and 1 -V if m € my 1.

Let 6; be the error probability of A in the YES case and dy be that in the NO case of
(0,T,6)-DPI. Since s is uniform random and then Pr[r € m, o] = Pr[r € m1] = 1/2, it
follows that

Prlerror of A =1 — <; —|—5> = %(60 +4)=>0= % - %(50 + d1).

We now analyze the error probability of B in the YES and NO cases. In the NO case,
f71(1) is empty, so no matter whether m € m g or m € w11, b, = 7. It follows that
AlLe(t,r) = A™4¢(t,r). Therefore,

Prlerror of B in NO case] = Pr[1 « B9/ ()]
= Pr[l « A" (t,7)|m € mp o] Pr[m € 7y 0]
+ Pr[0 «+ AlLe(t, )| e T ] Prim € m 1]

(Pr[l = A™ (¢, r)|m € my 0] + Pr[0 = A"t (¢, 7)|m € mp1])

(Pr[error of A in NO case] + Prlerror of A in YES case])

=N =N

5(50—&-51):%—5-

In the YES case, f~1(1) is not empty, so function hy ¢, has a unique collision at
t, with one of the colliding pair having first bit 0 and the other one having first bit 1,
no matter m € m o or m 1. As f is a black-box function, the place j where f(j) =1 is
uniform and so hj . ,, is uniform in Q. By arguments at the beginning of this proof,

as 7 is uniform, the function is also uniform in Q¢ ,. Let p := Pr [0 Ah+e(t,7)].
hf,vr.t,;M—Qt,u

Therefore,
Prlerror of B in YES case] = Pr[0 « B(-)]
= Pr[0 « A" (t,7)|m € mp 0] Pr[m € 7y 0]
+Pr[1«+ A"t (¢, r) |7 € mp 1] Prr € meq]
1
= 5 (Prfo = AP g & Q1)
+ Pr[l — AP ) hfm st & Qt’“D
1 1
= — 1 — = —.
5P+ (1-p) =3
where the third equality comes from the fact stated above: no matter m € m ¢ or 7 € my 1,

the corresponding A is uniform in @, and then can be viewed as uniform randomly
generated from @ ,. Since A is granted with oracle access to h, both conditions can

be changed to hy ¢, & Q.- Note that given h, even if A can notice that it is not a
permutation and then acts arbitrarily, this can only influence the probability of two terms
individually, i.e. the value of p and 1 — p. But as we only care about their summation,
we do not need to handle the consequence of A noticing the difference, including the
probability of oracle distinguishability. O

6 Lower bounds

6.1 Search version

We now give lower bounds for the search version of the permutation inversion problem
over [N]. We begin with a lower bound for a restricted class of inverters (and its formal



12 On the Two-sided Permutation Inversion Problem

definition); these inverters succeed on an e-fraction of inputs with constant probability (say,
2/3.). The proof uses a similar approach as in previous works on one-sided permutation
inversion with advice [NABT14, CLQ19, HXY19].

Theorem 4. Let N € N. Let S = (So,S1) be a (S,T,2¢/3)-SPI that satisfies

Pr (Pr[r(4) ¢ ST (p,9,7) : p = Solm,r)] > 2 [ > e

Ty | T

We call those inverters restricted inverters. Suppose that € = w(1/N), T = o(ev/N) and
S > 1. Then, for sufficiently large N we have ST? > Q(eN).

Proof. To prove the claim, we construct a QRAC-VL scheme that encodes the function 7!

and then derive the desired space-time trade-off via Theorem 1. Let S = (Sp,S1) be an
2¢/3-SPI that succeeds on a e-fraction of inputs with probability at least 2/3. In other
words, S satisfies

} > €.

By the averaging argument in Lemma 7 with parameter § = 1/2, it follows that there
exists a large subset X C Sy of permutations with size at least N!/2 such that for any
permutation 7 € X, we have that

E

For a given permutation m € X’ we let Z be the set of indices = € [N] such that S correctly
inverts m(x) with probability at least 2/3 over the choice of r. By the definition of the set
X, we have that |Z| > €/2- N. Our QRAC-VL scheme (Enc, Dec) for encoding permutations
is described in detail in Protocol 2. Below, we introduce some additional notations that
will be relevant to the scheme. For convenience, we model the two-way accessible oracle
given to S; in terms of a single oracle for the merged function of the form 3

[SCRR )

Pr [Pr (77 (y) < ST (p,y,7) = p  So(m,7)] >
Ty | T

W Do

Pr [Pr [ (y) < ST (p,y,7) : p + So(m,7)] >
Yy T

[\l e)

m(w) ifa=0
7l w) fw#yAa=1
1 fw=yAa=1.

def
Tiy(w,a) =

Let ¢,y € (0,1) be parameters. As part of the encoding, we use the shared randomness
R € {0,1}* to sample a subset R C [N] such that each element of [N] is contained in
R with probability v/T(S)?. Moreover, we define the following two disjoint subsets of
[N] x {0,1}:

Zo =R\ {z} x {0}
SE =a(R)\ {x (@)} x {1}.
Let G C 7 be the set of z € [N] which satisfy the following two properties:

1. The element x is contained in the set R, i.e.

x €R,; (5)

3The (reversible) quantum oracle implementation is similar to the one in Definition 4. We use the
function 7, for ease of presentation since the same proof carries over with minor modifications in the
quantum oracle case.
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2. The total query magnitude of S{*¥ with input (So(m,7),y,7) on the set ¥ U XT is
bounded by ¢/T(S). In other words, we have

q(ST+, 55 UST) < ¢/T(S). (6)

Claim 1. Let G C [N] be the set of  which satisfy the conditions in (5) and (6). Then,
there exist constants v, ¢ € (0,1) such that

eyYN 572
g2 s (=) 00

In other words, we have |G| = Q(eN/T(S)?) with high probability.

Proof. (of the claim) Let H = R NZ denote the set of 2 € R for which S correctly inverts
m(x) with probability at least 2/3 over the choice of r. By the definition of the set R,
it follows that |#| has a binomial distribution. Therefore, in expectation, we have that
|H| = v|Z|/T(S)?. Using the multiplicative Chernoff bound in Lemma 5 and the fact that
T(S) = o(eV/N), we get

Pr {IHI > 2;'@')2} > 0.9, (7)

for all sufficiently large N. Because each query made by S; has unit length and because Sy
makes at most T'(S) queries, it follows that

q(ST, [N] x {0,1}) < T(S). (®)

We obtain the following upper bound for the average total query magnitude:

E [¢(S7"", 55 UST))]
=E [q(ST™, 2F) + q(ST+, £7)] (2R, 2R are disjoint)
=E [a(ST,25)] + E [a(ST,27)] (linearity of expectation)
=E [q(ST", R\ {z} x {0)] + E [g(ST, 7(R) \ {m(2)} x {1})]
= T(VS)Q ~q(ST, [NT\ {=} x {0}) + ﬁ ~q(ST, m(IN])\ {m(2)} x {1})
= g 45T N\ e} x (o)

+ ﬁ Lq(STH [N\ { (@)} x {1}) (r is a permutation)
< T(g)g ~[a(ST, [NT x {0}) + ¢(ST™, [N] x {1})] (supersets)
= = (2)2 Cq(S™ L [N] % {0,1}) < % (by the inequality in (8))

Hence, by Markov’s inequality,
br [T SR US> s | < T s = T )

Let us now denote by J the subset of z € Z that satisfy Eq. (5) but not Eq. (6). Note
that Eq. (5) and Eq. (6) are independent for each x € Z, since Eq. (5) is about whether
x € R and Eq. (6) only concerns the intersection of R and [N]\ {z}, as well as 7(R) and
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m([N]) \ {m(2z)}. Therefore, by (9), the probability that = € 7 satisfies € J is at most
v2/(eT(S)?). Hence, by Markov’s inequality,

10/Z]y?
P < >0.9. 1
5 [ﬂ = e =% (10)
Using (7) and (10), we get with probability at least 0.8 over the the choice of R,
Zly 1017y _ eyN 5°
91 = =171 = 5767 ~ T = ) . )
given that ~y is a sufficiently small positive constant. O

Protocol 2 (Quantum Random Access Code For Inverting Permutations).
Let ¢,y € (0,1) be parameters. Consider the following (variable-length) quantum random-
access code given by QRAC-VL = (Enc, Dec) defined as follows:

e Enc(m=; R): On input n=! € Sy and randomness R € {0,1}*, first use R to extract
random coins v and then proceed as follows:
Case 1: ¢ X or |G| < % (1 — %) Use the classical flag case = 1 (taking
one additional bit) and output the entire permutation table of 1.

Case 2: |G| > % (1 — 5%2) Use the classical flag case = 2 (taking one

additional bit) and output the following

1. The size of G, encoded using log N bits;

2. the set G C R, encoded using log (‘Ig\l) bits;

3. The permutation 7 restricted to inputs outside of G, encoded using
log(N!/|G|!) bits;

4. Quantum advice used by the algorithm repeated p times with a®?, for
a < So(m,r) for some p that we will decide later. (We can compute this
as the encoder can preprocess multiple copies of the same advice. Note
that this is the only part of our encoding that is not classical.)

e Dec(f,y; R): On input encoding 3, image y € [N] and randomness R € {0,1}*, first
use R to extract random coins r and then proceed as follows:

Case 1: This corresponds to the flag case = 1. Search the permutation table for
71 and output x such that 7= 1(y) = .

Case 2: This corresponds to the flag case = 2. Recover G and w(x) for every
r ¢ G. Ify =m(x) for some x ¢ G, output x = 7 1(y). Otherwise, parse
o1, 0, ..., 0, and Tun S;r“’ (i, y,7) for each i € [p] and output their majority
vote, where we let ¢

Y ifwegG ANa=0
m(w) fwgGANa=0
7l w) ifwén(G) Aa=1
1 ifwemn(G) Aa=1.

Tiy(w,a) =

%The (reversible) quantum oracle implementation for 7, is provided in Appendix D.

Let us now analyze the performance of our QRAC-VL scheme (Enc, Dec) in Protocol 2. Let
|Wr,,) and [Wz ) denote the final states of S; when it is given the oracles m, and 7,



Gorjan Alagic, Chen Bai, Alexander Poremba, Kaiyan Shi 15

respectively. By Lemma 1 and the properties of the total query magnitude:
187, = ¥z ) < \/T(S) ~q(ST, G\ {2} x {0}) U (w(G) \ {m(2)} x {1})
< \/T(S)-q(S]**, SR USR)

<. /T(S)- T(CS) = /e

Since x € Z, it follows from the definition of Z that measuring [¥,, ) results in 2 with
probability at least 2/3. Given a small enough positive constant ¢, we can ensure that
measuring [V ) will result in z with probability at least 0.6. We now examine the length
of our encoding. With probability 1 — ¢/2, we have m ¢ X; with probability ¢(1 — 0.8)/2,
we have m € X but G is small, i.e.,

eyYN 572
o1 < ey (15 )

Therefore, except with probability 1 — 0.4¢, our encoding will result in the flag case = 1,
where the encoding consists of 1 + log N! classical bits and the decoder succeeds with
probability 1. With probability 0.4¢ , our encoding has the flag case = 2, and the size
equals

1+log N + log <||7;||> +log(N!/|G]!) + pS(S).

By the assumption that T(S) = o(ev/N), we have

RN . (IRI(RI=1)...(R| —|g] + 1)
10g<|g>1°g( GGl — 1) 1 )

IRIR|...IR|
-0 (s (\Gi601))
= O(|G|1og(IR[/IG]))
= O(|G|log1/e)
= o(|G|logg]),
and we can rewrite the size of the encoding as
log N + o(|G| log|G|) + log N! — log |G|! + pS(S).

In the case when the decoder is queried on an input that is already known, that is
y ¢ 7(G) (which occurs with probability 1 — |G|/N), the decoder recovers the correct
pre-image with probability 1. Otherwise, the analysis is the following: with just one
copy of the advice, the decoder recovers the correct pre-image with probability 2/3, and
hence with p many copies, the decoder can take the majority vote and recover the correct
pre-image with probability 1 — exp(—£(p)). The latter follows from the Chernoff bound in
Lemma 5. Overall, the average encoding length is

0.4¢ - (log N + o(|G| log |G|) — log |G|! + pS(S)) + log N!

where the average success probability is 1 — |G|/N - exp(—Q(p)). By setting p =
Q(log(N/e)) = Q(log N), the average success probability amounts to 1 — O(1/N?). There-
fore, using the lower bound in Theorem 1, we have

1
log N1+ 0.4¢ - (log N + o(|G| log |G|) — log |G|! + pS(S)) > log NI — O (NlogN>

log N+ o(|G|log |G]) —log |G|! + pS(S) = —O (log N)
pS(S) + O (log N) > log[G|! — (|G| log |G])
5(S)log N = Q(log |G]! — o(|G|log |G]))
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where the second and the last equality comes from the fact that € = w(1/N) and p =
O(log N), respectively. Since log |G|! = O(|G|log |G|), it follows that

S5(S)log N = Q(0O(|G]log[G]) — o(|G]log |G]))
S5(S)log N > Q(|G|log |G]).

As we are conditioning on the event that G is large, plugging in the lower bound on
|G|, we have that, for sufficiently large N, S(S) > Q(|G]), and thus

S(S)-T(S)? > Q(eN).
This gives the desired space-time trade-off. O

We remark that the search inverter we consider in Theorem 4 succeeds on more than
just a constant number of inputs, that is e = w(1/N), and beats the time complexity of
T = Q(V/eN) which is required for unstructured search using Grover’s algorithm. [Gro96,
DHO08, Zhal9]. Next, we remove the restriction on the inverter by applying amplification
(specifically, Corollary 3.) This yields a lower bound in the full average-case version of the
search inversion problem.

Theorem 5. Let S be a (S,T,€)-SPI for some € > 0. Suppose that € = w(1/N), T =
o(e2\/N), and S > 1. Then, for sufficiently large N we have

5(S)-T(S)? = Q(*N).

Proof. Let S = (Sp,S1) be an (S, T, €)-SPI, for some € > 0. Using Corollary 3, we can
construct an SP1 S[¢] = (S[¢]o, S[¢]1) with space and time complexities

S(S[z])z[ln“ﬂ-S(S) and T(S[é}):dhl(lﬂ+1>.:r(5)

€ €

such that
Pr {Pr (77 (y) + ST (S[o(m, ), y,7)] > :ﬂ > %

Ty | T

From Theorem 4 it follows that for sufficiently large N > 1,

S(SI0) - T(S[)? = QN).
Plugging in the expressions for S(S[¢]) and T'(S[{]), we get that with assumption
e=w(l/N), T(S)=o0(3VN) and S(S)>1,
the trade-off between space and time complexities is
S(S)-T(S)? > Q(EN).
O

Note that we incur a loss (¢ versus €) in our search lower bound due to the fact
that we need to amplify the restricted search inverter in Theorem 4. This results in a
multiplicative overhead of ©(1/¢) in terms of space and time complexity, as compared to
the restricted inverter. We remark that a similar loss as a result of amplification is also

inherent in [HXY19].
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6.2 Decision version
6.2.1 Space-time tradeoff, no adaptive sampling

The search lower bound of Theorem 5, when combined with the search-to-decision reduction
of Theorem 2, yields a lower bound for the decision version.

Corollary 1. Let D be a (S,T,6)-DPI for some 6 > 0. Suppose that 6 = w(1/N) and
T=0 (52\/N) and S > 1. Then, for sufficiently large N we have

S(D)-T(D)? 2 Q(8°N).
Proof. Let N = 2™. Given a (S(D),T(D),¢)-DPI = (Dg, D1) where Dy outputs S-qubit
state and D; makes T queries, one can construct an (S(S),T(S),n)-SPl = (So,S1) by
Theorem 2 with > 1 — negl(n), and with space and time complexities
S(S)=ntS(D) and T(S)=nlT(D)
where ¢ = 2 (%). It directly follows from Theorem 5 that with conditions
s=w(/N),  S(D)>1,
T(0) = - ol/F) = o (VN ) = 5 (5*VF)
nl n2(1+ 24) ’
S satisfies the space-time trade-off lower bound
n(1+20)\° ~ =
m((52)>smmif29m%msz)
S(D) - T(D)? Z Q2 (65N)
for sufficiently large IN. O

Similar to the search lower bound from before, we incur a loss that amounts to a
factor 6. This results from our specific approach which is based on the search-to-decision
reduction in Theorem 2. We believe that our lower bound could potentially be improved
even further.

6.2.2 Time lower bound, adaptive sampling

In the case of an adaptive decision inverter without advice, we can get a tight bound
by means of the reduction from the unique search problem (Theorem 3), combined with
well-known lower bounds on the average-case unique search problem.

Theorem 6. Let D be a (0,7,0)-aDPI. Then T? > Q(6N/M).

Proof. Since Disa (0,T,d)-DPI, by the lower bound of unique search problem [Gro96, Zal99,
Nay10, Zhal9], we get a 2T-query algorithm for UNIQUESEARCH,, ; with distributional
error (3 — &, %). Since the YES and NO cases are uniformly distributed, we can write the
overall error probability as % (% — (5) + % . % =1 _ 2 Then by the lower bound of unique

272
search, we have

1 46 1 (27)2
I—(=—=) <=
(5-5) =30 (5)
T2 2 Q((S . Qn—m)
ON
2> - .
T _Q<M)

We note that with non-adaptive D, i.e. m = 0, the above bound reduces to query lower
bound 7% > Q (6N). O
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7 Applications

In this section, we give a plausible security model for symmetric-key encryption and a
scheme whose security in that model is based on the hardness of our adaptive two-sided
permutation inversion problem. Recall that a symmetric-key encryption scheme consists
of three algorithms:

o (key generation) Gen: given randomness s and security parameter n; outputs key
k := Gen(1"™; s);

o (encryption) Enc: given key k, plaintext m, and randomness r; outputs ciphertext
¢ := Encg(m;7);
 (decryption) Dec: given key k, ciphertext ¢; outputs plaintext m := Decg(c).
When the key randomness is to be selected uniformly, we suppress it and simply write
Gen(1™).
Consider the following security definition.
Definition 9. (OW-QCCRA2) Let SKE = (Gen, Enc, Dec) be a private-key encryption

scheme. We say that SKE is OW-QCCRA?2 if the advantage for any quantum polynomial-
time adversary A in the following OW-QCCRA2 experiment is at most negligible:

1. A key k is generated by running Gen(1"; s);

2. A gets quantum oracle access to Ency(-; -) and Decy(+), and then outputs a (m — 1)-
bit string © and a quantum state p with size S. Let ¢(n) be the number of quantum
queries that A makes in this phase.

3. Uniform b € {0,1} and r € {0,1}"~! are chosen, and a challenge ciphertext ¢ =
Ency (b||p; ) is computed and given to A;

4. A gets quantum oracle access to Encg(-; -) and Decj“(+), and eventually outputs a
bit b'. Let £(n) be the number of quantum queries that .4 makes in this phase.

5. The experiment outputs 1, if b = b, and 0 otherwise.

We remark that, unlike in most definitions of security, here the adversary is allowed to
choose both inputs to the encryption oracle: the plaintext as well as the randomness. To
generate the challenge ciphertext, the coin r needs to be chosen truly randomly; otherwise,
the scheme will degenerate into a deterministic one that cannot be secure. Moreover, we
do not yet make any restriction on the computational power of A, or on the functions ¢
and /.

Next, we define two simple encryption schemes.

RP Scheme. Consider the following (inefficient) scheme that uses uniformly random
permutations.

e Gen is given 1™ and outputs a description k£ of a uniformly random permutation 7
on {0,1}2";

o Encis given k, m € {0,1}™ and r € {0,1}", and outputs ¢ := w(m/||r);

o Dec is given k and ¢ € {0,1}?", and outputs the first n bits of 77 1(c).

Definition 10. (e-Qsecure PRP)[KL20, Zhal6] Let Py : {0,1}* x {0,1}" — {0,1}" be a
permutation family. We call P a e-Qsecure PRP if for any efficient quantum adversary A
who makes ¢ quantum queries, there exist a negligible function €(\) such that

Pr [Apk(')»PEI(‘) (1") = 1] —Pr [_Aﬂ'(')’ﬂil(') 1) = 1} ‘ < e-poly(q),

where 7 : {0,1}" — {0,1}" is a truly random permutation.
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PRP Scheme. Let {P; : {0,1}?" — {0,1}*"} be a family of e-Qsecure PRPs and consider
the following scheme:

o Gen takes as input a security parameter 1™ and returns a key k € {0,1}" for Py;
o Encisgivenkey k € {0,1}", m € {0,1}" and r € {0,1}", and outputs ¢ := Py(m||r);
o Dec is given key k € {0,1}" and ¢ € {0,1}?", and outputs the first n bits of P, *(c).

Of course, any practical scheme should be efficient, and indeed we can show that the
PRP scheme is OW-QCCRA2 in two special cases: when there is no advice, i.e., S =0
(we call this OW-QCCRA2-v1) and when there is no adaptivity, i.e., || = 0 (we call this
OW-QCCRA2-v2). We are able to prove the following theorems.

Theorem 7. The PRP scheme is OW-QCCRA2-vl. In other words, for any quantum
adversary A who makes t(n) quantum queries in the pre-challenge phase and £(n) quantum
queries in the post-challenge phase, it holds that

Pr [ExpaY\léggCRAz_ﬂ(l") =1 <-+d+e-T(n).

M| —

Here, § < O(EZZQ:[l ), T(n) =t(n) + €(n) and € is a negligible function.

Proof. Given an adversary A that attacks the RP scheme in the OW-QCCRA2 experiment
described in Definition 9 with S = 0, we can construct a (0,7, d)-aDPI aD = (aDg, aD;) in
the decision inversion experiment, which takes place as follows:

1. (sample instance and coins) a random permutation 7 : {0,1}" — {0,1}" is
sampled;

2. (prepare advice) aDy is given the whole permutation table of 7. Then it constructs
oracles Enc(-;-) = m(+||-) and Dec(-) = #~1(-) and gives A quantum oracle access.
aDg will get back a (n — 1)-bit output string x and then output it. Suppose A makes
t(n) quantum queries.

3. (invert) An instance ¢ = 7w(b||u||r) is computed, with b € {0,1} and r € {0,1}"
are sampled. aD; is run with ¢, auxiliary string 4 and quantum oracle access O,
and O, 1. It then directly passes ¢ and two oracles to A and gets back a bit " and

€L

Y
outputs it. Suppose A makes {(n) quantum queries.
4. (check) If ¥ = b, output 1; otherwise output 0.

It trivially follows that
Pr [Expa\f\gSCCRAZVl(l”) = 1} < Pr[Decisionlnvert,p = 1].

By assumption we have that, for all efficient quantum adversary A, there exists a negligible
€ such that

‘Pr [APH')’P?(-) 1" = 1] —Pr [Aﬂ%ﬂ’l(-) 1") = 1} ‘ < ¢ - poly(t(n) + £(n)),
Therefore
Pr [Expa\f\gggcmz-u(ln) = 1} <Pr [Expz\f\ggccmz"’l(l”) = 1] +e-T(n)
< Pr[Decisionlnvert,p = 1] + € - T'(n)

— % +6+eT(n).
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Where 6 < O(Z 22; 1) by Theorem 6, and by Definition 10 € is negligible. Remark that the
above bound becomes 3 + negl(n) when A is a quantum polynomial time (QPT) adversary
since both § and €T" are negligible when ¢ and £ are of polynomial size.

O

Theorem 8. The PRP scheme is OW-QCCRA2-v2. In other words, for any quantum
adversary A who makes t(n) quantum queries in the pre-challenge phase and £(n) quantum
queries in the post-challenge phase, it holds that

- 1
Pr[Bxp Qe R (1) = 1] < <3 +d+e T(n).

Here, § < O( 5)6, T(n) = t(n) + £(n) and € is a negligible function.

Proof. Given an adversary A that attacks the RP scheme in the OW-QCCRA2 experiment
described in Definition 9 with |u| = 0, we can construct a (S,T,0)-DPI D = (Dg, D;) in
the decision inversion experiment. The construction is the same as Theorem 7, with slight
modifications at the "prepare advice" and the "invert" step:

(prepare advice) Dg is given the whole permutation table of 7. Then it constructs oracles
Enc(+;+) = 7(-||-) and Dec(-) = 7~ (-) and gives A quantum oracle access. Do will get back
a S-qubit quantum state p and then output it. Suppose .4 makes t(n) quantum queries.

(invert) An instance ¢ = 7w (b||r) is computed, with b € {0,1} and r € {0,1}" are sampled.
D; is run with ¢, quantum advice p and quantum oracle access O and O_ -1 It then

directly passes ¢ and two oracles to A and gets back a bit &’ and outputs it. Suppose A
makes ¢(n) quantum queries.

By following the same procedure as in Theorem 7 but using the bound of Corollary 1,
we get the desired bound. O

Finally, we remark that the above results hold for the following strengthening of OW-
QCCRA2, described as follows. Suppose that an encryption scheme satisfies the property
that there exists an alternative decryption algorithm that can both compute the plaintext
and also deduce the randomness that was initially used to encrypt. This property is true
for the RP and PRP schemes, as well as some other standard encryption methods (e.g.,
Regev’s secret-key LWE scheme, implicit in [Reg09]). For schemes in this category, one
can also grant access to such an alternative decryption algorithm, thus expanding the
form of “randomness access” that the adversary has. Our proofs show that the RP and
PRP schemes are secure (in their respective setting) even against this form of additional
adversarial power.

8 Future Work

For future applications, the two-sided permutation inversion problem appears naturally in
the context of sponge hashing [GJMG11] which is used by the international hash function
standard SHA3 [Dwol5]. Previous work [CGBH'18, CMSZ21] studied the post-quantum
security of the sponge construction where the block function is either a random function
or a (non-invertible) random permutation. However, as the core permutation in SHA3 is
public and efficiently invertible, the “right setting” of theoretical study is one in which the
block function consists of an invertible permutation. This setting is far less understood,
and establishing the security of the sponge in this setting is a major open problem in
post-quantum cryptography. Our results on two-sided permutation inversion may serve as
a stepping stone towards this goal.
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A Some basic probabilistic lemmas

In this section we collect a series of known probabilistic results, which we used in our main
proofs.

We first record some basic lemmas about the behavior of certain types of random
variables.

Lemma 5 (Multiplicative Chernoff Bound). Let Xi,...,X,, be independent random
variables taking values in {0,1}. Let X =3, X; denote their sum and let p = E[X]
denote its expected value. Then for any d > 0,

PriX < (1-9)u] < 20" 1/2,

Specifically, when X; is a Bernoulli trial and X follows the binomial distribution with

p=mnp and p > 1, we have Pr[X < n/2] < e~nP=3)*/(2p),

Lemma 6 (Reverse Markov’s inequality). Let X be a random variable taking values in
[0,1]. Let 6 € (0,1) be arbitrary. Then, it holds that

Pr[X > 6] > W
1—6
Proof. Fix 6 € (0,1). We first show that
(1-0) Ix>e = X -0, (11)

where [ x>g is the indicator function for the event that X > 6. Suppose that X > 6.

Then, Eq. (11) amounts to 1 — § > X — 0, which is satisfied because X < 1. Now suppose
that X < 6. In this case Eq. (11) amounts to 0 > X — 6, which is satisfied whenever X > 0.
Taking the expectation over Eq. (11) and noting that E[l[x>g] = Pr[X > 0], we get

(1-0)-Pr[X >0] >E[X]—6.
This proves the claim. O

Lemma 7 (Averaging argument). Let X and Y be any finite sets and let Q) : X xY — {0,1}
be a predicate. Suppose that Pry [Q(z,y) = 1] > €, for some € € [0, 1], where z is chosen
uniformly at random in X. Let 6 € (0,1). Then, there exists a subset Xy C X of size
|Xo| > (1 —0) - €|X| such that

PrQ(z,y) =1 >0-¢, Ve X,
y
Proof. Define p, = Pr,[Q(x,y) = 1], for z € X. Then, for ¢ € [0, 1], we have

Eelpe] = PriQ(e,y) = 1] = [X|™' }_ Pr[Q(z,9) =1] > e

TEX

Fix 0 € (0,1). Because the weighted average above is at least ¢, there must exist a subset
Xy such that
pr =Pr[Qz,y)=1]>0-¢, Vae Xy
Y

Recall that x is chosen uniformly at random in X'. Using the reverse Markov’s inequality,
it follows that

|Xp|

_ Elps] ~6-c_ ¢ (1-6)
Eq

1—-0-¢ — 1—-0-¢

Prip, > 0-¢ > >e-(1-9).

In other words, the subset Xy C X is of size at least |Xy| > (1 —0) - €| X|. O
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B Amplification proofs

B.1 Quantum oracle construction in Protocol 1

In Protocol 1 step 2(c), S[¢]1, with quantum oracle access to O, O, 1 needs to grant S;

quantum oracle access to (01,;0m002,;) 1, (y)s which is a simplified notatlon of Os, ;omo0s.

and (9(0_1 . . Here we give detailed constructions of these two oracles:

,.077002,1')L01 i(y)

» Whenever the algorithm S; queries the oracle Og, ;oro0,, ON |w), |2),, S[]1 performs

the following reversible operations

[w)y [2),
add aux registers
. |w>1 |Z>2 |0>aux1 |O>aux2

OUQYr,l,auXZ
- |w>1 |Z>2 |O>aux1 |027i(w)>aux2

O aux2,auxl
= |w>1 |Z>2 |7T °© U2ai(w)>aux1 |O—27i(w)>aux2

Oolyi‘auxlj
W)y 2@ 010 010 02,3(w)), [T 0 02,3 (W)) 1 102, (W) e

O aux2,
aux2,auxl |w>1 |Z D or;0omoog(w 9 ‘0>aux1 |0'2,i(w)>aux2

)
)
12 10) a1 [0) a2
)

Ooy 11,002

drop aux

(w)
|w), |2 @ 01 0mo 0y, (w)
(w)

|w), |z @ 01,5010 T2(w)), .

Then, S[¢]; sends the final state back to S;.

e Whenever S; queries the oracle (9((71 jomous )L
5 ,i Lo, (v)

performs the following reversible operations:

[w)y 12),

add aux register
E— |w>1 |Z>2 |0>aux1 |O>aux2

o ;i Lo 1hauxt 1
———w)y [2)s o (), 10) e
Orr7 ,auxl,aux2 1 1 1
— > |w), |2), o1 i (W), g 1Ty 001 (W), o
O _
02’:1*,2,3.“2 1 1 1 1 1
lw), [z @ 02,0 OT 1y © U1,i,*( )> |U1 i, *(w)>aux1 |7TJ_y ° Ul,i,*(w)>
(O]
WJ_ yauxl,aux2
— |’U)> |Z D 02 i,k o ﬂ-J_; 00y 7.1*( )> |Ul Ji, *<w)>aux1 |O>aux2

oa_l 1,auxl
10,47 — — —
|w>1 |Z D 0271‘1,* ° WL; °oy 11*(w)>2 |O>aux1 |0>aux2

S )y |2 @ 03, 0wy 0 0 L (w)),
where U:;* : [N] x{0,1} — [N] x {0,1} is given below

0 i (wl[b) = o7 (w) b,

Then, S[¢]; sends the final state back to S;.

on |w), |z),, the algorithm S[¢];

aux2
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B.2 Another amplification lemma proof

Lemma 3. Let S = (Sp,S1) be an e€-SPI with space and time complexity given by S(S) and
T(S), respectively, for some € > 0. Then, we can construct an SPI S[¢] = (S[¢]o, S[¢]1) with
space and time complexities

S(S[M]) = FH(IO)

€

In(10)

€

WS(S) and T(S[é]):{ ](T(S)H)

such that

1
Y 5

Pr|Pr[r(y) < SIAT* (p.,7) : p ¢ S[llo(m, )] > zﬂ >

Proof. Let £ = [@—‘ . Using Lemma 2, we can construct an ¢-time repetition of S (1)-SPI,

denoted by S[¢] = (S[f]o,S[¢]1), with = 1 — (1 — €)* and space and time complexities
S(S[€]) =¢-S(S) and T(S[¢]) = £- (T(S) + 1). In other words,

Pr [77 ()« ST oy, m) o Sllo(mr)] 21 - (1) > %

Let Sy denote the set of permutations over [N]. From Lemma 7 it follows that there exists
0 =7/9 and a subset Xy C Sy % [N] of size at least

] > (1-0)- 1 |Sn x [ ]|:%.|3NX[N]|.
such that, for every (m,y) € Xy, we have
Pr [x(y) ¢ SIT** (p,9.7)  p ¢ S[o(m, )] 2020 > 2.
Because | Xy| - |Sy x [N]|7! > 1, it follows that
Pr e[ ()  SIAT (0,0, - ¢ Slo(m )] 2 5| 2 2.
This proves the claim. O

B.3 Decision amplification proof

Same as the search amplification, we amplify the success probability of a 4-DPI through
{-time repetition defined in Protocol 3.

Protocol 3 ({-time repetition of §-DPI). Given a 6-DPI D = (D, D1), the construction
of an "l-time serial repetition of D" D[¢] = (D[¢]o, D[f]1) is as follows:

1. (Advice Preparation) the algorithm D[€]y proceeds as follows:

(a) D[f]p receives as input a random permutation m : [N] — [N] and ran-
domness r < {0,1}* and parses the string r into 2¢ substrings, i.e. r =
roll-.-|re—1l|7ell..-[|[r2e—1 (the length is clear in context).

(b) D[l]o uses rg,...,m¢—1 to generate £ permutation pairs {0'1,,‘,0'2’1‘}?;3 in Sy,
where 01 ,; is a random permutation, o2 ; has the following form

09, (T1, ooy ) = (X1 B 1], T2,y ooy Tny), (12)

where 1 is some random bit generated from r; for alli € [0,£ — 1]. Then
runs Do(01,; 0 ™0 024,7i1¢) to get a quantum state p; := po, jomoos ;rise JOT

alli € [0,¢ — 1]. Finally, D[{]g outputs a quantum state ®f;é Pi-
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2. (Oracle Algorithm) D[()T™" is an oracle algorithm that proceeds as follows:

(a) D[f]; receives ®f:é pi, randomness r and an image y € [N] as input.

(b) Dlf]1 parses r = 1o||...||[re—1]|7ell-..||r2e—1 and uses the coins ro||...||[re—1 to
generate £ different permutation pairs {o1 ;, Ug,i}i;é in SNy as shown above.

(c) D[{]; then runs the following routine for all i € 0,4 — 1]:
i. Run Dy with oracle access to (01, 0mo ogﬁi)Lglvi(y), which implements
the permutation o1, 0o gg,; and its inverse (but L at 01,;(y)).
i. Get back b; D(Ul womeonio, L(y)(puo’l,i(y), Tite)-

(d) D[€]y pads b; with all zero string of size n—1 and computes b} = o2 ;(b;]|0"~1)|o
for alli € [0,£—1], then outputs b* which is the majority vote of {b§, ..., b;_1}.

Lemma 4. Let (Dg,D1) be a §-DPI, where Dy outputs an S-qubit state and Dy makes T
queries. Then, we can construct an £-time repetition of D, denoted by D[¢] = (D[¢]o, D[¢]1),
which is an n-DPI for n > % — exp(—ﬁ . Z), and has space and time complexities given
by

S(D[{])=¢-S(D) and T(D[{])=¢-T(D).
Proof. Let (Dg,D1) be a §-DPI for some § > 0, where Dy outputs an S-qubit state and

D, makes T queries. Similarly as in Lemma 2, we consider the execution of the ¢-time

repetition of §-DPI, denoted by DPI D[¢], which we define in Protocol 3. For each iteration
i €10,¢— 1], we have

Pr[b; ="' (y)lo]
N (ﬂ)Lol iy —

=Pr |(7) " (o1,i(y))|o < Dy “(pis01,i(y), Tive) : pi  Do(T,ise)

=Pr [((0271)71 o Wﬁl(y))|0 — DT“’

1
> —490
2 5190

(pﬂOG‘z,merz 'Y ri—i—[) P Proca,i,Tite — DO (7T ©02,i, THJ)]

where T = 01, 0m003,;. The probability is taken over 7 <— Sy, r < {0, 1}* (which is used

to sample permutations ;) and x < [N], along with all internal measurements of D.
(01,;0m002,;)

Recall that b; < D, 0is01,i(Y), Tite), for i € [€]. Let X; be the indicator
variable for the event that b; = (7 0 02;) ! (y)|o. Similar to the search case, we argue that
all X; are mutually independent. For any i € [0, ¢ — 1] and any subset K C [0, — 1] where
1 ¢ K, let

J—U1,i(y)(

Event A = {X; =0}
={bi # ((02.2) "o '(¥))lo}
= {bi]|0" o # ((02,) "  omH(y)) o}
= {(02,i 0 (0:10" 1)) |0 # 7 (»)]o},

Note that the last equality holds because of Equation 12. We then define another event
Event B = | {X; =0}
jEK

= ({020 (B5l10" )0 # 7 ()]0}

jeEK



Gorjan Alagic, Chen Bai, Alexander Poremba, Kaiyan Shi 25

Given that B happens, we have {b;};cx such that for all j € K, (o2, 0 (b;[|0"1))]o #
7 (y)]o. We now consider the probability that A happens. In Equation 12, since all r} are
independently randomly generated, the value of (o3 o (b;][0" 7))o is independent of all
other values of (c2,;0(b;]|/0"1))|o. Therefore, the event that (o2,;0(b;||0"71))]o # 71 (y)]o
is not correlated with all other (o2 ;o (b;]|0"1))|o # 7' (y)lo, i-e., Pr[A|B] = Pr[A]. This
is true for any ¢ and K. Same as the search case, in each trial, the base inverter is solving
a completely independent permutation inversion problem, thus we conclude that all ¢ trails
are mutually independent.

Let X = Zf;é X;, we have that E[X] > ¢ (1 + ) by the linearity of expectation.
Note that D[¢] succeeds in Decisionlnvert if and only if D[¢]; can output b* = 7=1(y)]o, i.e.
X > £ in which case more than half of the elements in {bo, ..., by—_1} are equal to 7 (y)|o.
By the multiplicative Chernoff bound in Lemma 5, the probability that Decisionlnvert fails

is at most
Pr|X < ; < o 14
T — exp| ———=-0].
2| =P\ T a2
Note that the resource requirements needed for the amplification procedure amount to
space and time complexities ¢S and ¢T, respectively, similar as in Lemma 2. O

C Quantum oracle constructions in Theorem 3

In Theorem 3, B, with quantum oracle access to f, needs to grant A quantum oracle access

1% . . . . .
to hy e and hy " . Here we give detailed constructions of Oy, ., , and Ohﬁ*t R Note

that 7 is sampled by B and so it is easy for it to construct quantum oracles O, and O_-1.
1t
Since h71* = x7! the partial inverse oracle O, -1.  can be simply simulated by @ —1.
frmtp Lt Ryt T
So we only need to show how to construct Oy, _, ..
Let x = z¢...2p—1, where n = log N. When m € 79 ,, the function becomes

hfmip(@o...xn_1) = (zo- f(@1. . Trom-1) W(Tp_m..xp =p)) -t

+ (zo - fl@1Tp—m—1) - W@yt = 1)) - w().

Then define a function g : [N] — {0, 1}, such that g(x) = zo- f(x1.. - Zp—m-1) L Tp_m...zn =
). With access to Oy, it is easy to construct O, by applying Oy to the last n — 1 bits
followed by an AND gate.

Now when A queries the oracle Oy, _, . on |z)|y), B performs the following reversible
operations

|2) [y)
20 20T, 1) 1y)s [0) 10).4 [07)5 107)g
O91:8%40140x1.50t 1oy 1) [g(2)) [9(2)) [(2) |8
SOT0, 1y [y & (g(x) - 1) g (@) [9(@) [ () [8)
SN, 10y [y & (g(x) - 1) & (9(a) - m(x))) g(a)) [9(@) m(a)) 1)
O01:8%40140x 1500 1oy 10 & (g(2) - 1) @ (9(@) - 7)) [0) [0) [07) [0™)
LR o) |y @ (9() - 1) @ (9(a) - (@)

It is easy to see that y & (g(x) - t) @ (9(z) - 7(x)) =y @ hy ¢ u(x). Therefore, to respond
to one query to Op, ., ., B needs to query Oy twice (once for computing and once for
eliminating). The same thing can be done when 7 € 71 .
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D Quantum oracle constructions in Protocol 2

Here, we show how to implement the function 7, by means of a (reversible) quantum
oracle. This can be done by two separate oracles Oz and O--1, where the corresponding
Ly

_ _y ifweg
( )_{w(w) ifwég

functions are

and

ﬁ*mm_{w%mw it ¢ 7(G) A b=
Ly 1)1 if wem(G) Ab=1.

Let f be an indicator function on whether w € G. Given (3 as an input, the permutation
m restricted to inputs outside of G is known (denoted as 7). Therefore given input y, with
quantum oracle access to Oy and O/, we can easily construct Oz and O_-1.
Ly

The following procedure gives a construction of Ox.

add aux registers

— S w
Of1,3X401,40.s 4 5Uy

CCNOT:;:G’Q
_—

SO, 1) 2 @ (£(w) - ) @ (Flw) - 7' (w))} @)} [FC@)) 7' () )

The backward oracle O_-1 would be constructed similarly.
Ly
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