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Abstract—Horstein, Burnashev, Shayevitz and Feder, Naghsh-
var et al. and others have studied sequential transmission of a
k-bit message over the binary symmetric channel (BSC) with
full, noiseless feedback using posterior matching. Yang et al.
provide an improved lower bound on the achievable rate using
martingale analysis that relies on the small-enough difference
(SED) partitioning introduced by Naghshvar et al. SED requires
a relatively complex encoder and decoder. To reduce complexity,
this paper replaces SED with relaxed constraints that admit the
small enough absolute difference (SEAD) partitioning rule. The
main analytical results show that achievable-rate bounds higher
than those found by Yang et al. [2] are possible even under the
new constraints, which are less restrictive than SED. The new
analysis does not use martingale theory for the confirmation
phase and applies a surrogate channel technique to tighten
the results. An initial systematic transmission further increases
the achievable rate bound. The simplified encoder associated
with SEAD has a complexity below order O(K2) and allows
simulations for message sizes of at least 1000 bits. For example,
simulations achieve 99% of of the channel’s 0.50-bit capacity
with an average block size of 200 bits for a target codeword
error rate of 10−3.

Index Terms—Posterior matching, binary symmetric channel,
noiseless feedback, random coding.

I. INTRODUCTION

Consider sequential-transmission over the binary symmetric
channel with full, noiseless feedback as depicted in Fig. 1. The
source data at the transmitter is a K-bit message θ, uniformly
sampled from {0, 1}K ≜ Ω. At each time t = 1, 2, . . . τ ,
input symbol Xt is transmitted across the channel, and output
symbol Yt is received, where Xt, Yt ∈ {0, 1} and Pr(Yt = 1 |
Xt = 0) = Pr(Yt = 0 | Xt = 1) = p ∀t. The received symbol
Yt is available to the transmitter for encoding symbol Xt+1

(and subsequent symbols) via the noiseless feedback channel.
The process terminates at stopping time t = τ when a

reliability threshold is achieved, at which point the receiver
computes an estimate θ̂ ∈ Ω of θ from the received sym-
bols Y1, Y2, . . . , Yτ . The communication problem consists of
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Fig. 1. System diagram of a BSC with full, noiseless feedback.

obtaining a decoding estimate of θ at the smallest possible
time index τ while keeping the error probability Pr(θ̂ ̸= θ)
bounded by a small threshold ϵ.

A. Background

Shannon [3] showed that feedback cannot increase the
capacity of discrete memoryless channels (DMC). However,
when combined with variable-length coding, Burnashev [4]
showed that feedback can help increase the frame error rate’s
(FER) decay rate as a function of blocklength. One such
variable length coding method was pioneered by Horstein [5].
Horstein’s sequential transmission scheme was presumed to
achieve the capacity of the BSC, which was later proved
by Shayevitz and Feder [6] showing that it satisfies the
criteria of a posterior matching scheme. A posterior matching
(PM) scheme was defined by Shayevitz and Feder as one
that satisfies the two requirements of the posterior matching
principle:

1) The input symbol at time t+1, Xt+1, is a fixed function of
a random variable U , that is independent of the received
symbol history Y t ≜ {Y1, Y2, . . . , Yt}; and

2) The transmitted message, θ, can be uniquely recovered
from (U, Y t) a.s.

Gorantla and Coleman [7] used Lyapunov functions for an
alternative proof that PM schemes achieve the channel capac-
ity. Later, Li and El-Gamal [8] proposed a capacity achieving
“posterior matching” scheme with fixed block-length for DMC
channels. Their scheme used a random cyclic shift that was
later used by Shayevitz and Feder for a simpler proof that
Horstein’s scheme achieves capacity [9]. Naghshvar et. al. [10]
proposed a variable length, single phase “posterior matching”
scheme for discrete DMC channels with feedback that exhibits
Burnashev’s optimal error exponent, and used a sub-martingale
analysis to prove that it achieves the channel capacity. Bae and
Anastasopoulos [11] proposed a PM scheme that achieves the
capacity of finite state channels with feedback. Since then,
other “posterior matching” algorithms have been developed,
see [12]–[16]. Other variable length schemes that attain Bur-
nashev’s optimal error exponent have also been developed, and
some can be found in [17]–[21].
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Feedback communication over the BSC in particular
has been the subject of extensive investigation. Capacity-
approaching, fixed-length schemes have been developed such
as [8], but these schemes only achieve low frame error rates
(FERs) at block sizes larger than 1000 bits. For shorter
block lengths, capacity-approaching, variable-length schemes
have also been developed, e.g., [5], [4], [10]. Recently, Yang
et al. [2] provided the best currently available achievability
bound for these variable-length schemes. Yang et al. derive
an achievable rate using encoders that satisfy the small-
enough-difference (SED) constraint. However, the complexity
of variable-length schemes satisfying that constraint can grow
quickly with message size, becoming too complex for practical
implementation even at block lengths significantly below those
addressed by the fixed-length schemes such as in [8].

B. Contributions
In our precursor conference paper [1], we simplified the

implementation of an encoder that enforces the SED constraint
both by initially sending systematic bits and by grouping the
messages according to Hamming distance from the received
systematic bits. The contributions of the current paper include
the following:

• This paper provides a new analysis framework for poste-
rior matching on the BSC that avoids martingale analysis
in the communication phase in order to show that the
achievable rate of [2] can be achieved with a broader
set of encoders that satisfy less restrictive criteria than
the SED constraint. Thm. 3 provides an example of a
constraint, the small-enough-absolute-difference (SEAD)
constraint, that meets the new, relaxed criteria.

• The relaxed criteria allow a significant reduction of
encoder complexity. Specifically, this paper shows that
applying a new partitioning algorithm, thresholding of
ordered posteriors (TOP), induces a partitioning that
meets the SEAD constraints. The TOP algorithm facil-
itates further complexity reduction by avoiding explicit
computation of posterior updates for the majority of
messages, since those posterior updates are not required
to compute the threshold position. This low-complexity
encoding algorithm achieves that same rate performance
that has been previously established for SED encoders in,
e.g., [2].

• Our new analysis further tightens the achievable rate
bound provided in [2]. This new achievable rate lower
bound applies to both the SED encoder analyzed in [2]
and to our new, simpler, encoder.

• We also show that using systematic transmissions as
in [1] to initially send the message meets both the
relaxed criteria including SEAD as well as the SED
constraint. Complexity is reduced during the systematic
transmission, with the required operations limited to
simply storing the received sequence.

• We generalize the concept of the “surrogate process”
U ′
i(t), used in Sec V-E of [2], to a broader class of

processes that are not necessarily sub-martingales. The
ability to construct such “surrogate” processes allows
tighter bounds that also apply to the original process.

• Taken together, these results demonstrate that variable-
length coding with full noiseless feedback can closely
approach capacity with modest complexity.

• Regarding complexity, the simplified encoder associated
with SEAD has a complexity below order O(K2) and
allows simulations for message sizes of at least 1000 bits.
The simplified encoder organizes messages according to
their type, i.e. their Hamming distance from the received
word, orders messages according to their posterior, and
partitions the messages with a simple threshold without
requiring any swaps.

• Regarding proximity to capacity, our achievable rate
bounds show that with codeword error rate of 10−3 SEAD
posterior matching can achieve 96.4% of the channel’s
0.50-bit capacity for an average blocklength of 199.08
bits corresponding to a message with k = 96 bits.
Simulations with our simplified encoder achieve 98.5%
of of the channel’s 0.50-bit capacity for a target codeword
error rate of 10−3 with an average block size of 200.97
bits corresponding to a message with k = 98 bits.

C. Organization

The rest of the paper proceeds as follows. Sec. II describes
the communication process, introduces the problem statement,
and reviews the highest existing achievability bound, by Yang
et al. [2], as well as the scheme that achieves it, by Naghshvar
et. al. [10]. Sec. III introduces Thms. 1, 2 and 3 that together
relax the sufficient constraints to guarantee a rate above Yang’s
lower bound and further tightens Yang’s bound. Sec. IV
introduces Lemmas 1-5 and provides the proof of Thm. 1 via
Lemmas 1-5. Sec. V provides the proofs of Lemmas 1-5, and
the proof of Thm. 2 and Thm. 3. Sec. VI generalizes the new
rate lower bound to arbitrary input distributions and derives an
improved lower bound for the special case where a uniform
input distribution is transformed into a binomial distribution
through a systematic transmission phase. Sec. VII describes
the TOP partitioning method and implements a simplified en-
coder that organizes messages according to their type, applies
TOP, and employs initial systematic transmissions. Sec. VIII
compares performance from simulations using the simplified
encoder to the new achievability bounds. Sec. IX provides
our conclusions. The Appendix provides detailed proof of the
second part of Thm. 3 and the proof of claim 1.

II. POSTERIOR MATCHING WITH SED PARTITIONING

A. Communication Scheme

Our proposed communication scheme and simplified en-
coding algorithm are based on the single phase transmission
scheme proposed by Naghshvar et. al. [10]. Before each
transmission, both the transmitter and the receiver partition
the message set Ω = {0, 1}K into two sets, S0 and S1. The
partition is based on the received symbols Y t according to a
specified deterministic algorithm known to both the transmitter
and receiver. Then, the transmitter encodes Xt = 0 if θ ∈ S0

and Xt = 1 if θ ∈ S1, i.e.

Xt = enc(θ, Y t) = 1i∈S1 (1)
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After receiving symbol Yt, the receiver computes the posterior
probabilities:

ρi(y
t) ≜ P (θ = i | Y t = yt), ∀i ∈ {0, 1}K . (2)

The transmitter also computes these posteriors, as it has access
to the received symbol Yt via the noiseless feedback channel,
which allows both transmitter and receiver to use the same
deterministic partitioning algorithm. The process repeats until
the first time τ that a single message i attains a posterior
ρi(y

τ ) ≥ 1 − ϵ. The receiver chooses this message i as
the estimate θ̂. Since θ is uniformly sampled, every possible
message j ∈ {0, 1}K has the same prior: Pr(θ = j) = 2−K .

To prove that the SED scheme of Naghshvar et. al. [10]
is a posterior matching BSC scheme as described in [6], it
suffices to show that the the scheme uses the same encoding
function as [6] applied to a permutation of the messages. Since
the posteriors ρi(y

t) are fully determined by the history of
received symbols Y t, a permutation of the messages can be
defined concatenating the messages in S0 and S1, each sorted
by decreasing posterior. This permutation induces a c.d.f. on
the corresponding posteriors. Then, to satisfy the posterior
matching principle, the random variable U could just be the
c.d.f. evaluated at the last message before θ. The resulting
encoding function is given by Xt+1 = 0 if U < 1/2, otherwise
Xt+1 = 1.

Naghshvar et. al. proposed two methods to construct the
partitions S0 and S1. The simplest one, described as the small
enough difference encoder (SED) [2], consists of an algorithm
that terminates when the SED constraint bellow is met:

0 ≤
∑
i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t) < min

i∈S0

ρi(y
t) . (3)

The algorithm starts with all messages in S0 and a vector
of posteriors ρt ≜ [ρ1(y

t), . . . , ρ2K (yt)] of the messages
{1, . . . , 2K}. The items are moved to S1 one by one, from
smallest to largest posterior. The process ends at any point
where rule (3) is met. If the accumulated probability in S0

falls below 1
2 , then the labelings of S0 and S1 are swapped,

after which the process resumes.
The worst case scenario complexity of this algorithm is of

order O(M2), where M = 2K is the number of posteriors.
The M is squared because part of the process repeats after
every swap, and in the worst case scenario the number of
swaps is proportional to M . However, a likely scenario is
that the process ends after very few swaps, in which case
the complexity is of order O(M) = O(2K).

The second method by which Naghshvar et al. proposed
to construct S0 and S1 consists of an exhaustive search over
all possible partitions, i.e., the power set 2Ω, and a metric
to determine the optimal partition. This search would clearly
include the partitioning of the first method, and therefore, also
provide the guarantees of equations (9) and (14).

B. Yang’s Achievable Rate

Yang et. al. [2] developed the upper bound (7) on the
expected block length τ of the SED encoder that, to the
best of our knowledge, is the best upper bound that has been
developed for the model.

The analysis by Yang et al. consists of two steps. The
first step, in [2] Thm. 7, consists of splitting the single
phase process from Naghshvar et. al. [10] into a two phase
process: the communication phase, with stopping time T ,
where ρi(y

t) < 1
2 and a confirmation phase where ρi(y

t) ≥ 1
2 ,

when the transmitted message θ is the message i. This is a
method first used by Burnahsev in [4]. With the first step alone,
the following upper bound on the expected blocklength can be
constructed:

E[τ ] ≤ log2(M − 1) + C2

C
+

⌈
log2(

1−ϵ
ϵ )

C2

⌉
C2

C1

+ 2−C2

(
2C2

C
− C2

C1

)
1− ϵ

1−ϵ2
−C2

1− 2−C2
. (4)

where C is the channel capacity, defined by C ≜ 1 −H(p),
q = 1−p, H(p) ≜ −p log2(p)−(q) log2(q), and the constants
C2 and C1 from [2] are given by:

C2 ≜ log2

(
q

p

)
(5)

C1 ≜ q log2

(
q

p

)
+ p log2

(
p

q

)
. (6)

The second step, in [2] Lemma 4, consists of synthesizing a
surrogate martingale U ′

i(t) with stopping time T ′ that upper
bounds T , which is a degraded version of the sub-martingale
Ui(t). The martingale U ′

i(t) guarantees that whenever U ′
i(t) <

0, then U ′
i(t + 1) ≤ 1

q log2(2q) and while still satisfying the
constraints needed to guarantee the bound (4). An achievability
bound on the expected blocklength for the surrogate process,
U ′
i(t), is constructed from (4) by replacing some of the C2

values by 1
q log2(2q). The new bound from [2] Lemma 4 is

given by:

E[τ ] ≤ log2(M − 1)

C
+

log2(2q)

q · C
+

⌈
log2(

1−ϵ
ϵ )

C2

⌉
C2

C1

+ 2−C2

(
C2 +

log2(2q)
q

C
− C2

C1

)
1− ϵ

1−ϵ2
−C2

1− 2−C2
. (7)

This bound also applies to the original process Ui(t), since the
blocklength of the process U ′

i(t) upper bounds that of Ui(t).
The bound (7) is lower because 1

q log2(2q) is smaller than
C2. The improvement is more significant as p → 0 because
1
q log2(2q) grows from 0 to 1 as p → 0, while C2, instead,
grows from 0 to infinity. The rate lower bound is given by
K
E[τ ] , where E[τ ] is upper bounded by (7) from Thm. 7 [2].

C. Original Constraints that Ensure Yang’s Achievable Rate

Let Ft ≜ σ(Y t), the σ-algebra generated by the sequence
of received symbols up to time t, where Y t = [Y1, Y2, . . . , Yt].
For each i = 1, . . . ,M , let the processes Ui(Y

t) by:

Ui(t) = Ui(Y
t) ≜ log2

(
ρi(Y

t)

1− ρi(Y t)

)
. (8)
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Yang et. al. show that the SED encoder from Naghshvar et.
al. [10] guarantees that the following constraints (9)-(12) are
met:

E[Ui(t+ 1)|Ft, θ = i] ≥ Ui(t) + C, if Ui(t) < 0, (9)
|Ui(t+ 1)− Ui(t)| ≤ C2. (10)

E[Ui(t+ 1)|Ft, θ = i] = Ui(t) + C1, if Ui(t) ≥ 0, (11)
|Ui(t+ 1)− Ui(t)| = C2, if Ui(t) ≥ 0, (12)

Meanwhile, Naghshvar et. al. show that the SED encoder
also satisfied the more strict constraint that the average log
likelihood ratio U(t), as defined in equation (13), is also a
submartingale that satisfies equation (14), which is equivalent
to (15):

U(Y t) ≜
M∑
i=1

ρi(Y
t)Ui(Y

t) (13)

E[U(Y t+1) | Ft] ≥ U(Y t) + C (14)

E

[
M∑
i=1

(
ρi(y

t+1)Ui(t+1)−ρi(yt)Ui(t)
) ∣∣∣∣∣Ft

]
≥ C . (15)

The process U(t) is a weighted average of values Ui(t), some
of which increase and some of which decrease after the next
transmission t+ 1.

To derive the bound (4), Yang et al. split the decoding time
τ into T and τ −T , where T is an intermediate stopping time
defined by the first crossing into the confirmation phase. The
expectation E[T ] is analyzed in [2] as a martingale stopping
time, and requires that if θ = i, then Ui(t) be a strict
submartingale that satisfies the inequalities (9) and (10). The
expectation E[τ − T ] is analyzed using a Markov Chain that
exploits the larger and fixed magnitude step size (12) and
inequality (11). Since T is the time of the first crossing into
the confirmation phase, the Markov Chain model, needs to
include in the time τ − T the time that message i takes to
return to the confirmation phase if it has fallen back to the
communication phase, that is: ρi(yt) < 1

2 for some t > T .

III. A NEW BOUND AND RELAXED PARTITIONING

In the following section, we introduce relaxed conditions
that are still sufficient to allow a sequential encoder over the
BSC with full feedback to attain the performance of Yang’s
bound (7). Specifically, we replace the requirement in (9) that
applies separately to each message with a new requirement
in (21) that applies to an average over all possible messages.
For each individual message, we require in (17) that each step
size is larger than the same positive a. The relaxed conditions
are easier to enforce than (9), e.g. by the SEAD partitioning
constraint introduced in Thm. 3.

A. Relaxed Constraints that Also Guarantee Bound (4)

We begin with a theorem that introduces relaxed conditions
and shows that they guarantee the performance (4), corre-
sponding to the first step of Yang’s analysis.

Theorem 1. Let ϵ < 1/2 be a chosen bound on the frame error
rate and let τ be a stopping time of a sequential transmission
system over the BSC, defined by:

τ = min
t∈N
{∃i ∈ Ω : ρi(y

t) ≥ 1− ϵ} . (16)

At each time t let the posteriors ρ1(Y
t), ρ2(Y

t), . . . , ρM (Y t)
be as defined in (2) and the log likelihood ratios
U1(t), . . . , UM (t) be as defined in (8). Suppose that for all
times t for all received symbols yt, and for each j ∈ Ω, the
constraints (17)-(20) are satisfied:

E[Ui(t+ 1)− Ui(t)|Ft, θ = j] ≥ a , where a > 0 , (17)
Ui(t+ 1)− Ui(t) ≤ C2 , if Ui(t) ≤ 0 , (18)
E[Ui(t+ 1)− Ui(t)|Ft, θ = j] = C1 , if Ui(t) ≥ 0 , (19)
| Ui(t+ 1)− Ui(t) | = C2 , if Ui(t) ≥ 0 . (20)

Suppose further that for all t and yt the following condition
is satisfied:

E[Uθ(t+ 1)− Uθ(t)|Y t = yt] ≥ C (21)

Then, expected stopping time E[τ ] is upper bounded by (22).

E[τ ] ≤ log2(M−1) + C2

C
+

⌈
log2(

1−ϵ
ϵ )

C2

⌉
C2

C1

+ 2−C2

(
C2

C
− C2

C1

)
1− ϵ

1−ϵ2
−C2

1− 2−C2
. (22)

The proof is provided in Sec IV-B.

The sequential transmission process begins by randomly
selecting a message θ from Ω. Using that selected message, at
each time t until the decoding process terminates, the process
computes an Xt = xt, which induces a Yt = yt at the
receiver. The original constraint (9) dictates that {Ui(t), θ = i}
is a sub-martingale and allows for a bound on Ui(t) at any
future time t + s for any possible selected message i, i.e.
E[Ui(t+s) | Ft, θ = i] ≥ Ui(t)+sC. This is no longer the case
with the new constraints in Thm. 1. While equation (17) of the
new constraints makes the process Ui(t) a sub-martingale, it
only guarantees that E[Ui(t+s) | Ft, θ = i] ≥ Ui(t)+sa and a
could be any small positive constant. The left side of equation
(21) is a sum that includes all M realizations of the message,
it is a constraint for each fixed time t and each fixed event
Y t = yt that governs the behavior across the entire message
set and does not define a sub-martingale. For this reason, the
martingale analysis used by Naghshvar et. al. in [10] and Yang
et al. in [2] no longer be applies.

A new analysis is needed to derive (22), the bound on the
expected stopping time τ , using only the constraints of Thm.
1. This new analysis needs to exploit the property that the
expected stopping time is over all messages, that is: E[τ ] =∑M

i=1 Pr(θ = i)E[τ | θ = i] which the original does not
use because it guarantees that the bound (7) holds for each
message, i.e., E[τ | θ = i], i = 1, . . . ,M . Note, however, that
the original constraint (9) does imply that the new constraints
are satisfied, so that the results we derive below also apply
to the setting of Naghshvar et. al. in [10] and Yang et al. in
[2]. The new constraints allow for a much simpler encoder
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and decoder design. This simpler design motivates our new
analysis that forgoes the simplicity afforded by modeling the
process {Ui(t), θ = i} as a martingale.

The new analysis seeks to accumulate the entire time that a
message i is not in its confirmation phase, i.e. the time during
which the encoder is either in the communication phase or
in some other message’s confirmation phase. For each n =
1, 2, 3, . . . , let Tn be the time at which the confirmation phase
for message i starts for the nth time (or the process terminates)
and let t

(n)
0 be the time the encoder exits the confirmation

phase for message i for the (n − 1)th time (or the process
terminates). That is, for each n = 1, 2, 3, . . . , let t(n)0 and Tn

be defined recursively by t
(1)
0 = 0 and :

Tn = min{t ≥ t
(n)
0 : Ui(t) ≥ 0 or t = τ} (23)

t
(n+1)
0 = min{t ≥ Tn : Ui(t) < 0 or t = τ} . (24)

Thus, the total time the process Ui(t) is not in its confirmation
phase is given by:

T ≜
∞∑

n=1

(
Tn−t(n)0

)
. (25)

B. A “Surrogate Process” that can Tighten the Bound

First we want to note that the bound (22) is loose compared
to (7). It is loose because when the expectation E[τ ] is split
in two parts, E[T ] and E[τ − T ], to analyze them separately,
a sub-optimal factor is introduced in the expression for E[T ],
which is 1

C (log2(M −1)+C2). The sub-optimality is derived
from the term C2, which is the largest value that Ui(t) can
take at the start of the confirmation phase and makes the term
E[T ] large. However, this large C2 is not needed to satisfy any
of the constraints in Thm. 1. To overcome this sub-optimality,
we use a surrogate process that is a degraded version of the
process Ui(t), where the value at the start of the confirmation
phase is bounded by a constant smaller than C2. The surrogate
process is a degradation in the sense that it is always below
the value of the original process Ui(t).

Perhaps the utility of the surrogate process can be better
understood through the following frog-race analogy illustrated
in Fig. 2. A frog f1 traverses a race track of length L jumping
from one point to the next. The distance traveled by frog f1
in a single jump is upper bounded by u1. The jumps are not
necessarily IID, but we know that the expected length of each
jump is lower bounded by l. It is also possible that f1 takes
some jumps backwards. With only this information, we want
to determine an upper bound on the average number of steps
frog f1 takes to reach the end of the track. This could be done
using Doob’s optional stopping theorem [22] to compute the
upper bound as L+u1

l , the maximum distance L+u1 traveled
from the origin to the last jump divided by the lower bound
on average distance l of a single jump.

Perhaps this bound can be improved. The final point is
located between L and L+u1 and is reached in a single jump
from a point between L− u1 and L. If for instance, the frog
was restricted to only forward jumps, we could replace u1/l by
just 1, but the process Ui(t) actually can take steps backwards.
Instead we exploit another property of Ui(t), which is that

Fig. 2. Example: frogs f1 and f2 jumping from 0 to L. The length of a single
jump by f1 is at most u1. Frog f2 jumps at the same times as f1, however,
the length of a single jump by f2 is at most u2 < u1. This restriction forces
frog f2 to be always behind f1 and thus reach L no sooner than frog f1.

maximum step size C2 is not needed to guarantee the lower
bound C on the average step size.

Suppose now that a surrogate frog f2 participates in the race
along f1 but with the following restrictions:

1) f1 and f2 start in the same place and always jump at the
same time.

2) f2 is never ahead of f1, i.e. when f1 jumps forward, f2
jumps at most as far, and when f1 jumps backwards, f2
jumps at least as far.

3) Moreover, the forward distance traveled by frog f2 in a
single jump is upper bounded by u2 < u1.

4) Despite its slower progress, the surrogate frog f2 still
satisfies the property that the expected length of each
jump is lower bounded by l.

The average number of steps taken by f2 will be upper
bounded by L+u2

l , also by Doob’s optional stopping theorem.
Since f2 is never ahead of f1 then f2 crossing the finish line
implies that f1 has as well. Thus, L+u2

l is also an upper bound
on the average number of jumps required for frog f1 reach
across L.

The equivalent to the surrogate frog f2 is what we proceed
to define in Thm. 2, where the length L = log(M − 1), u1 =
C2, u2 = B and l = C.

Theorem 2 (Surrogate Process Theorem). Let the surrogate
process U ′

i(t) be a degraded version of Ui(t) that still satisfies
the constraints of Thm. 1. Initialize the surrogate process as
U ′
i(0) = Ui(0) and reset U ′

i(t) to Ui(t) at every t = t
(n)
0 , that

is at each t that the encoder exits a confirmation phase round
for message i. Define T ′

n ≜ min{t ≥ t
(n)
0 : U ′

i(t) ≥ 0 or t =

t
(n+1)
0 }. Suppose that for some B < C2, the process U ′

i(t)
also satisfies the following constraints:

Ui(t) < 0 =⇒ U ′
i(t+1)−U ′

i(t) ≤ Ui(t+1)−Ui(t) (26)
U ′
i(t) < 0 =⇒ U ′

i(t+1) ≤ B (27)

U ′
i (T

′
n)−

p

q
(Ui(Tn)− C2) ≤ B. (28)

Then the total time U ′
i(t) is not in its confirmation phase is

given by T ′ ≜
∑∞

n=1

(
T ′
n−t

(n)
0

)
, and E[T ] is bounded by:

E[T ] ≤ E[T ′] ≤ B

C

(
1+2−C2

1−2−NC2

1−2−C2

)
− E[Ui(0)]

C
. (29)
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Note that Tn ≤ T ′
n for all n because Ui(t) ≥ U ′

i(t) from the
definition of U ′

i(t) and constraint (26), Therefore T ≤ T ′. Also
note that after the process terminates at the stopping time τ ,
both Tn and t

(n)
0 are equal to τ , which makes their difference

0. Then the communication phase times T and T ′ are a sum
of finitely many non-zero values.

The proof is provided in Sec. V-B

C. Relaxed Constraints that Achieve a Tighter Bound

The following theorem introduces partitioning constraints
that guarantee that the constraints in Thm. 2 are satisfied with
a value of B = log2(2q)/q for the surrogate process. The new
constraints are looser than the original SED constraint, and
therefore are satisfied by an encoder that enforces the SED
constraint. Using a new analysis we show that this encoder
guarantees an achievability bound tighter than the bound (7)
obtained in the second step of Yang’s analysis described in
Section II. The value B = log2(2q)/q is the lowest possible
B value that satisfies the constraints (26)-(28) of Thm. 2
for a system that enforces the original SED constraint (3).
The new achievability applies to an encoder that satisfies the
new relaxed constraint as well as one that satisfies the SED
constraint.

Theorem 3. Consider sequential transmission over the BSC
with noiseless feedback as described in Sec. I with an encoder
that enforces the Small Enough Absolute Difference (SEAD)
encoding constraints, equations (30) and (31) bellow:∣∣∣∣∣∑

i∈S0

ρi(y
t)−

∑
i∈S1

ρi(y
t)

∣∣∣∣∣ ≤ min
i∈S0

ρi(y
t) (30)

ρi(y
t) ≥ 1

2
=⇒ S0 = {i} or S1 = {i} . (31)

Then, the constraints (20)-(21) in Thm. 1 are satisfied and
a process U ′

i(t), i = 1, . . . ,M described in Thm. 2 can be
constructed with B = 1

q log2(2q). The resulting upper bound
on E[τ ] is given by:

E[τ ] ≤
log2(M − 1) + log2(2q)

q

C
+

C2

C1

⌈
log2

(
1−ϵ
ϵ

)
C2

⌉

+ 2−C2
1− ϵ

1−ϵ2
−C2

1− 2−C2

(
log2(2q)

qC
− C2

C1

)
, (32)

which is lower than (7) from [2]. Note that meeting the SEAD
constraints guarantees that both sets S0 and S1 are non empty.
This is because if either set is empty, the the other one is the
whole space Ω and the difference in (30) is 1, which is greater
than any posterior in a space with more than one element.

The proof is provided in Sec. V-B

The requirement ρi(yt) ≥ 1
2 =⇒ S0 = {i} or S1 = {i},

is needed to satisfy constraint (20) and guarantees constraint
(19). This requirement is also enforced by the SED partitioning
constraints in [10] and [2].

The SEAD partitioning constraint is satisfied whenever
the SED constraint (3) is. However, the SEAD partitioning
constraint allows for constructions of S0, S1 that do not
meet either of the SED constraints in [10] and [2], and is

therefore looser. Particularly, SEAD partitioning allows for the
case where P1 − P0 > max

j∈S1

ρj(y
t) that often arises in the

implementation shown in Sec VII-A. This case is not allowed
under either of the SED constraints because they both demand
that:

−min
i∈S1

ρi(y
t) ≤ P0 − P1 ≤ min

i∈S0

ρi(y
t) . (33)

IV. SUPPORTING LEMMAS AND PROOF OF THEOREM 1

This section presents some supporting Lemmas and the full
proofs of Thm. 1. Let T be the time the transmitted message
θ spends in the communication phase or on an incorrect
confirmation phase, that is, for θ = i, Ui(t) < 0 as defined
equation (25). Note that this definition is different from the
stopping time used in [2] described in Sec. II. The proof of
Thm. 1 consists of bounding E[T ] and E[τ−T ] by expressions
that derive from the constraints (17)-(21).

Since ρi(y
t) ≥ 1− ϵ ⇐⇒ ρi(y

t)
1−ρi(yt) ≥

1−ϵ
ϵ ⇐⇒ Ui(t) ≥

log2
(
1−ϵ
ϵ

)
, the stopping rule described in Sec. II could be

expressed by: τ ≜ {min t : max
i
{Ui(t)} ≥ log2

(
1−ϵ
ϵ

)
}. To

prove Thm. 1, we will instead use the stopping rule introduced
by Yang et. al. [2], defined by:

τ ≜ {min t : max
i
{Ui(t)} ≥ NC2} , (34)

where N ≜

⌈
log2( 1−ϵ

ϵ )
C2

⌉
. This rule models the confirmation

phase as a fixed Markov Chain with exactly N + 1 states.
Since NC2 ≥ log2

(
1−ϵ
ϵ

)
, the stopping time under the new

rule is larger than or equal to that of the original rule without
the ceiling as explained in [2].

A. Five Helping Lemmas to Aid the Proof of Thms. 1-3

The expression to bound the expectation expectation E[T ] is
constructed via five inequalities (or equalities) each of which
derives from one of the following five Lemmas. The proofs of
the Lemmas will be provided in Sec. V-A.

Lemma 1. Let the total time the transmitted message spends
in the communication (or an incorrect confirmation phase) be
T and let Tn and t

(n)
0 be as defined in (23) and (24). Define

T (n) ≜ Tn − t
(n)
0 . For r ≤ s ≤ t, let ytr:s be [y1, . . . , ys], the

string of yi values from yr to ys. Define the sets Yϵ
(τ>t), Y

ϵ,
and Yϵ

i by:

Yϵ
(τ>t) ≜ {y

t∈{0,1}t | ρj(yt1:s)<1−ϵ, ∀j ∈ Ω, s ≤ t} (35)

Yϵ ≜ ∪∞t=0Y
t,ϵ
(τ>t) (36)

Yϵ
i ≜ {yt ∈ Yϵ | ρi(yt) <

1

2
} (37)

then:

E[T ] =
M∑
i=1

Pr(θ = i)
∑

yt∈Yϵ
i

Pr(Y t = yt | θ = i) . (38)

Note that T (1) = T1 is the time before entering the correct
confirmation phase for the first time, that is, the time spent in
the communication phase (or an incorrect confirmation phase)
before the posterior ρi(y

t) of the transmitted message ever
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crosses 1
2 . If the decoder stops (in error) before ever entering

the correct confirmation phase, then T (1) is the time until the
decoder stops. For n > 1, T (n) is the time between falling
back from the correct confirmation for the (n− 1)th time and
either stopping (in error) or reentering the correct confirmation
phase for the (n)th time. Thus, the total time the transmitted
message θ = i has Ui(t) < 0 is also given by T =

∑∞
n=1 T

(n).
Also note that that if the decoder stops before entering the
correct confirmation phase for the nth time, then T (n+m) = 0
for all m ≥ 1.

Lemma 2. Suppose constraints (17), (20), and (21) of Thm.
1 are satisfied and let:

Vi(y
t) ≜ E[Ui(t+1)−Ui(t) |Y t = yt, θ = i] , (39)

then:

M∑
i=1

Pr(θ = i)
∑

yt∈Yϵ
i

Vi(y
t) Pr(Y t = yt | θ = i)

≥ C
M∑
i=1

Pr(θ = i)
∑

yt∈Yϵ
i

Pr(Y t = yt | θ = i) . (40)

Lemma 3. Let Tn and t
(n)
0 be the times defined in (23) and

(24). Then, for the left side of sum (40) in Lemma (2) the
following equality holds:

M∑
i=1

Pr(θ = i)
∑

yt∈Y(i)
ϵ

Vi(y
t) Pr(Y t = yt | θ = i)

=
M∑
i=1

Pr(θ= i)
∞∑

n=1

E[Ui(Tn)−Ui(t
(n)
0 ) |θ= i] . (41)

Lemma 4. Let ϵ be the decoding threshold and let the
decoding rule be (34). Define the fallback probability as the
probability that a subsequent round of communication phase
occurs, computed at the start of a confirmation phase. Then,
this fallback probability is a constant pf independent of the
message i = 1, . . . ,M , independent of the number of previous
confirmation phase rounds n, and is given by:

pf = 2−C2
1− 2−NC2

1− 2−(N+1)C2
. (42)

Lemma 5. Let pf be the fallback probability in Lemma 4 and
suppose that Ui(0) < 0 ∀i = 1, . . . ,M . Then the expectation
(41) in Lemma 3 is upper bounded by:

M∑
i=1

Pr(θ = i)
∞∑

n=1

E[Ui(Tn)−Ui(t
(n)
0 ) | θ = i]

≤
M∑
i=1

Pr(θ = i)

(
pf

1− pf
C2 + C2 − Ui(0)

)
(43)

≤ 2−C2
1− 2−NC2

1− 2−C2
C2 + C2 − E[Ui(0)] . (44)

B. Proof of Thm. 1 Using Lemmas 1-5:

Proof: Using Lemmas 1 and 2, the expectation E[T ] is
bounded as follows:

E[T ] =
M∑
i=1

∑
yt∈Y(i)

ϵ

Pr(Y t = yt, θ = i) (45)

≤ 1

C

M∑
i=1

∑
yt∈Y(i)

ϵ

Vi(y
t) Pr(Y t = yt, θ = i) . (46)

By Lemma (3), expression (46) is equal to the left side of
inequality (43), which is bounded by (47) according to Lemma
5:

1

C

M∑
i=1

Pr(θ= i)
∞∑

n=1

E[Ui(Tn)−Ui(t
(n)
0 ) |θ= i]

≤
(
1 + 2−C2

1− 2−NC2

1− 2−C2

)
C2

C
− U(Y 0)

C
, (47)

where U(Y 0) is the expected value of the log likelihood
ratio of the true message according to the a-priori message
distribution, i.e. from the perspective of the receiver before any
symbols have been received. Note that U(Y 0) is − log(M−1)
for a uniform a-priori input distribution. Then, equations (45)-
(47) yield the following bound on E[T ]:

E[T ] ≤ 2−C2
1− 2−NC2

1− 2−C2

C2

C
+

C2 −U(Y 0)

C
. (48)

A bound on the expectation E[τ − T ] can be obtained
using the Markov Analysis in [2], Section V. F. However,
our analysis of E[T ] already accounts for all time spent in the
communication phase, including the additional communication
phases that occur after the system falls back from the confir-
mation phase. Accordingly, we reduce the self loop weight ∆0

in [2] Sec. V F from ∆0 = 1+ C2

C + log2(2q)
qC to ∆0 = 1. The

resulting bound is given by:

E[τ − T ] ≤
(
N − 2−C2

1− 2−NC2

1− 2−C2

)
C2

C1
. (49)

The inequality in (49) is not equality because, in our anal-
ysis, the transmission ends if any message j, other than the
transmitted message θ, attains Uj(t) ≥ NC2. However, in [2]
the transmission only terminates when Ui(t) ≥ NC2. The
upper bound on the expected stopping time E[τ ] is obtained
by adding the bounds in equations (48) and (49) and replacing
N by its definition in equation (34):

E[τ ] ≤ log2(M − 1) + C2

C
+

C2

C1

⌈
log2

(
1−ϵ
ϵ

)
C2

⌉

+ 2−C2
1− ϵ

1−ϵ2
−C2

1− 2−C2

(
C2

C
− C2

C1

)
. (50)

Note that C2

C −
C2

C1
≥ 0 and since

N =
⌈

1
C2

log2
(
1−ϵ
ϵ

)⌉
≤ 1

C2
log2

(
1−ϵ
ϵ

)
+ 1, then

2−NC2 ≥ 2− log2( 1−ϵ
ϵ )−C2 = ϵ

1−ϵ2
−C2 which is also used in

[2] for a more compact upper bound expression.
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V. PROOF OF LEMMAS 1-5, THM. 2, AND THM. 3

Before proceeding to prove Lemmas 1-5, we will introduce
a claim that will aid in some of the proofs.

Claim 1. For the communication scheme described in Sec. II,
the following are equivalent:

(i) | Uj(t+ 1)− Uj(t) |= C2

(ii) S0 = {j} or S1 = {j}

This claim implies that for constraint (20) to hold, the set
containing item j, with Uj(t) ≥ 0, must be a singleton.

Proof: See appendix A

A. Proof of Lemmas 1-5

Proof of Lemma 1: We begin by defining sets that are
used in the proof. First define a set Ni(y

t) for each sequence
yt ∈ Yϵ as the set of time values t

(1)
0 , t

(2)
0 , . . . , t

(n)
0 ≤ t where

message i begins an interval with Ui(t) < 0. This includes
time zero and all the times s where from time s − 1 to s,
message i transitions from Ui(s−1) ≥ 0 to Ui(s) < 0, i.e. the
decoder falls back from confirmation phase to communication
phase.

Ni(y
t) ≜ {0} ∪ {s ≤ t : Ui(s) < 0, Ui(s− 1) ≥ 0} . (51)

Now we define the set Yϵ
(i,n) of sequences yt for which the

the following are all true: 1) the decoder has not stopped, 2)
the decoder has entered the confirmation phase for message i
n times, and 3) the decoder is not in the confirmation phase
for message i at time t, where the sequence ends.

Yϵ
(i,n) ≜ {y

t∈ Yϵ :
∣∣Ni(y

t)
∣∣ = n,Ui(t) < 0} . (52)

Now we define the set Yϵ
(i,n)(y

s), which is the subset se-
quences in Yϵ

(i,n) that have the sequence ys as a prefix.

Yϵ
(i,n)(y

s) ≜ {yt ∈ Yϵ
(i,n) | t ≥ s, yt1:s = ys} (53)

As our final definition, let Bϵ(i,n) be the set containing only the
sequences where the final received symbol yt is the symbol
for which the decoder resumes the communication phase for
message i for the nth time, or the empty string, that is:

Bϵ(i,n) ≜ {y
t ∈ Yϵ

(i,n)

∣∣ t ∈ Ni(y
t)} . (54)

Each yt ∈ Bϵ
(i,n), sets an initial condition for the communica-

tion phase where Ui(t) < 0, so that T (n) ≥ 1, that is t is of
the form t

(n)
0 defined in (24). By the property of conditional

expectation, E[T ] is given by:

E[T ] =
M∑
i=1

Pr(θ = i)E[T | θ = i] . (55)

Now we explicitly write this expression as a function of all
the possible initial conditions for each of the communication
phase rounds n, that is, the set Bϵ(i,n):

M∑
i=1

Pr(θ = i)E[T | θ = i]

=
M∑
i=1

Pr(θ = i)E

[( ∞∑
n=1

T (n)

)∣∣∣∣θ = i

]
(56)

=
M∑
i=1

Pr(θ = i)
∞∑

n=1

E
[
T (n)

∣∣∣θ = i
]

(57)

=
M∑
i=1

Pr(θ= i)
∞∑

n=1

∑
Pr(Y s

ys∈Bϵ
(i,n)

=ys |θ= i)

· E
[
T (n)

∣∣∣Y s=ys, θ= i
]
. (58)

Now we proceed to write the last expectation (58) using the
tail sum formula for expectations in (59) and then as an
expectation of the indicator of {T (n) > 0} in (60). Then,
since T (n) is a random function of Y t = Y sY r, where
Y r ∈ {0, 1}r, given by 1T (n)>r = 1Y sY r∈Yϵ

(i,n)
, (61) follows:

E
[
T (n)

∣∣∣Y s=ys, θ= i
]

=
∞∑
r=0

Pr(T (n) > r|Y s = ys, θ = i) (59)

=

∞∑
r=0

E[1T (n)>r|Y s = ys, θ = i] (60)

=
∞∑
r=0

E[1Y s+r∈Yϵ
(i,n)

(ys)|Y s = ys, θ = i] . (61)

Expanding the expectation in (61) we obtain (62). Since the
indicator in (62) is 0 outside Yϵ

(i,n) and 1 inside, it is omitted
in (63), where we have only considered values of yszr that
intersect with Yϵ

(i,n). Since ∪∞r=1{{0, 1}r ∩ Yϵ
(i,n)(y

s)} =
Yϵ
(i,n)(y

s) (63) follows.

∞∑
r=0

E[1Y s+r∈Yϵ
(i,n)

(ys)|Y s = ys, θ = i]

=
∞∑
r=0

∑
zr∈{0,1}r

1Y s+r∈Yϵ
(i,n)

(ys)

· Pr(Y s+r=yszr | Y s=ys, θ= i) (62)

=
∑

Pr(Y s+r=yszr

yszr∈∪∞
r=1{{0,1}r∩Yϵ

(i,n)
(ys)}

| Y s=ys, θ= i) (63)

=
∑

Pr(Y s+r

ys+r∈Yϵ
(i,n)

(ys)

= yszr | Y s = ys, θ = i) . (64)

The product of the conditional probabilities Pr(Y s=ys | θ=
i) in (58) and Pr(Y s+r = yszr | Y s = ys, θ = i) in (64) is
given by Pr(Y s+r = yszr | θ = i). Replacing the expectation
in (58) by (64) the inner-most sum in (58) becomes (65). The
summation in (65) is over Yϵ

(i,n)(y
s) for each ys in Bϵ(i,n),



9

and every sequence in Yϵ
(i,n) has a prefix in Bϵ(i,n), that is:

∪
ys∈Bϵ

(i,n)

Yϵ
(i,n)(y

s) = Yϵ
(i,n).

∑
ys∈Bϵ

(i,n)

Pr(Y s=ys |θ= i)E
[
T (n)

∣∣∣Y s=ys, θ= i
]

=
∑

ys∈Bϵ
(i,n)

∑
Pr(Y s+r=

ys+r∈Yϵ
(i,n)

(ys)

ys+r | Y s=ys, θ= i) (65)

=
∞∑
t=1

∑
yt∈Yϵ

(i,n)

Pr(Y t = yt | θ = i) . (66)

We can now rewrite (56) by replacing the expectation in
(57) by (66) to obtain (67). In (68) the two summations are
consolidated into a single sum over union over all n of each
Yϵ
(i,n):

M∑
i=1

Pr(θ= i)
∞∑

n=1

∞∑
r=0

E[1T (n)>r|θ = i]

=
M∑
i=1

Pr(θ= i)
∞∑

n=1

∑
Pr(Y t

yt∈Yϵ
(i,n)

= yt | θ = i) (67)

=
M∑
i=1

Pr(θ = i)
∑

Pr(Y t = yt

yt∈∪∞
n=0Yϵ

(i,n)

| θ = i) . (68)

To conclude the proof, note that the union ∪∞n=0Yϵ
(i,n) is the

set Yϵ
i defined in the statement of the Lemma 1.
Proof of Lemma 2: Define the set Aϵ by:

Aϵ ≜ {yt ∈ Y(i)
ϵ : ρj(y

t) <
1

2
∀j = 1, . . . ,M} , (69)

where Aϵ does not depend on i. Let the set Y(i)
ϵ be partitioned

into Aϵ and Y(i)
ϵ \ Aϵ. Then, we can split the sum in the left

side of (70), which is the left side of (40) in Lemma 2, into
a sum over Aϵ, right side of (70), and a sum over the sets
Y(i)
ϵ \ Aϵ, expression (71) as follows:

M∑
i=1

Pr(θ = i)
∑

yt∈Y(i)
ϵ

Pr(Y t = yt | θ = i)Vi(y
t)

=
M∑
i=1

Pr(θ = i)
∑

yt∈Aϵ

Pr(Y t = yt | θ = i)Vi(y
t) (70)

+
M∑
i=1

Pr(θ = i)
∑

Pr(Y t = yt

yt∈Y(i)
ϵ \Aϵ

| θ = i)Vi(y
t) . (71)

For yt ∈ Y(i)
ϵ \ Aϵ : ∃j ̸= i s.t. Uj(t) ≥ 0 and Ui(t) < 0.

By Claim (1), in order to satisfy constraint (20), we need
S0 = {j}. Then, the partitioning also satisfies Naghshvar’s
SED constraint [10], which guarantees inequality (9):
E[Ui(t + 1) − Ui(t) | Y t = yt, θ = i] ≥ C for every i ∈ Ω.
It suffices to show that the bound holds also for (70). The
product of conditional probabilities: Pr(θ = i) and Pr(Y t =
yt | θ = i) in (70) is equal to Pr(Y t = yt, θ = i) and can
be factored into Pr(Y t = yt) Pr(θ = i | Y t = yt). Since

0 < Vi(y
t) ≤ C2 and Aϵ does not depend on i, then the

summation order in (70) can be reversed to obtain:

M∑
i=1

∑
yt∈Aϵ

Pr(Y t = yt) Pr(θ = i | Y t = yt)Vi(y
t)

=
∑

yt∈Aϵ

Pr(Y t = yt)
M∑
i=1

Pr(θ = i | Y t = yt)Vi(y
t) (72)

Note that the probability Pr(θ = i | Y t = yt) in (72) is just
ρi(y

t). Next we show that the inner sum in (72) ca be bounded
using the constraint (21) of Thm. 1. This becomes clear when
Vi(y

t) is replaced by it’s definition:

M∑
i=1

Pr(θ = i | Y t = yt)Vi(y
t) (73)

=
∑
i∈Ω

E[Ui(t+1)−Ui(t)|Y t=yt, θ= i]P(i=θ | Y t=yt)

= E[Uθ(t+ 1)− Uθ(t)|Y t = yt] ≥ C (74)

Replacing (73) by the lower bound C from (74) equation (75)
follows. Then we multiply by 1 =

∑M
i=1 ρi(y

t) to produce
(76). In (77) note that ρi(yt) = Pr(θ = i | Y t = yt) and the
product Pr(θ = i | Y t = yt) Pr(Y t = yt) is given Pr(Y t =
yt, θ = i) = Pr(Y t = yt | θ = i) Pr(θ = i). This is used to
obtain (77) and then (78):

∑
yt∈Aϵ

Pr(Y t = yt)
M∑
i=1

Pr(θ = i | Y t = yt)Vi(y
t)

≥
∑

yt∈Aϵ

Pr(Y t = yt)C (75)

= C
∑

yt∈Aϵ

Pr(Y t = yt)

M∑
i=1

ρi(y
t) (76)

= C
M∑
i=1

∑
yt∈Aϵ

Pr(Y t = yt, θ = i) (77)

= C
M∑
i=1

Pr(θ = i)
∑

yt∈Aϵ

Pr(Y t = yt | θ = i) . (78)

In both (70) and (71) replacing Vi(y
t) by C provide and upper

bound on the original expression. Combining the two upper
bounds we recover the Lemma.

Proof of Lemma 3: We start writing, in the left side of
(79), the sum in the left side of equation (41) of Lemma 3,
using an equivalent form for Yϵ

i , which is ∪∞n=0Yϵ
(i,n). This

equivalent form was also used in the proof of Lemma 1. Then
in (79) we break it into two summations, first over n and then
over Yϵ

(i,n):

M∑
i=1

Pr(θ= i)
∑

Vi(y
t)

yt∈∪∞
n=0Yϵ

(i,n)

Pr(Y t=yt | θ = i)

=
M∑
i=1

Pr(θ= i)
∞∑

n=1

∑
Vi

yt∈Yϵ
(i,n)

(yt) Pr(Y t=yt | θ= i) . (79)
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The set Yϵ
(i,n) is a subset of ∪∞t=0{0, 1}t and therefore can

be expressed a union of all the intersections over n: Yϵ
(i,n) =

∪∞t=0{Yϵ
(i,n) ∩ {0, 1}

t}. We use this new form to rewrite the
inner sum in (79) as the left side of (80). Then, we remove
the intersections with Yϵ

(i,n) by using its indicator in the right
side of (80):

∞∑
t=0

∑
yt∈Yϵ

(i,n)
∩{0,1}t

Vi(y
t) Pr(Y t = yt | θ = i)

=
∞∑
t=0

∑
yt∈{0,1}t

1yt∈Yϵ
(i,n)

Vi(y
t) Pr(Y t=yt | θ= i) . (80)

Recall that Vi(y
t) = E [Ui(t+ 1)−Ui(t) |Y t = yt, θ= i] from

(39). Also recall from (8) that Ui(t) = Ui(Y
t), a random

function of Y t. Let Di(Y
t+1) ≜ Ui(Y

t+1)−Ui(Y
t), then we

expand Vi(y
t) as:

Vi(y
t) = E[Ui(t+ 1)− Ui(t) | Y t = yt, θ = i]

=
∑

Di

z∈{0,1}

(ytz) Pr(Yt+1=z | Y t=yt, θ= i) . (81)

The product of the probabilities in (80) and (81) is given by
Pr(Y t+1 = ytz | θ = i). Replacing Vi(y

t) in (80) using (81)
we obtain the left side of (82). The equality in (82) follows
by definition of expectation:

∞∑
t=0

∑
Di(y

t+1)

yt+1∈{0,1}t+1

1yt∈Yϵ
(i,n)

Pr(Y t+1=yt+1 | θ= i)

=
∞∑
t=0

E[Di(Y
t+1)1Y t∈Yϵ

(i,n)
| θ= i] . (82)

We expand Di(Y
t) using its definition to write (82) as the left

side of (83) and use linearity of expectations to the equality
(83). The indicator 1Y t∈Yϵ

(i,n)
is zero before time t = t

(n)
0

and after time t = t
(n)
0 + T (n) − 1, and is one in between.

Accordingly, in (84) we adjust the limits of summation and
remove the indicator function. Note that the times t

(n)
0 and

T (n) are themselves random variables. Lastly, observe that
(84) is a telescopic sum that is replaced by the end points in
(85):

∞∑
t=0

E
[(
Ui

(
Y t+1

)
−Ui

(
Y t
))
1Y t∈Yϵ

(i,n)

∣∣θ= i
]

= E

[ ∞∑
t=0

(
Ui

(
Y t+1

)
−Ui

(
Y t
))
1Y t∈Yϵ

(i,n)

∣∣∣∣∣θ= i

]
(83)

= E

T (n)+t
(n)
0 −1∑

t=t
(n)
0

(Ui(Y
t+1)−Ui(Y

t))

∣∣∣∣∣θ = i

 (84)

= E
[
Ui

(
t
(n)
0 + T (n)

)
− Ui

(
t
(n)
0

) ∣∣θ = i
]
. (85)

To conclude the proof, we replace the inner most summation
in (79) with (85):
M∑
i=1

Pr(θ= i)
∞∑

n=1

∑
Vi

yt∈Yϵ
(i,n)

(yt) Pr(Y t=yt | θ= i) (86)

=
M∑
i=1

Pr(θ= i)
∞∑

n=1

E
[
Ui

(
t
(n)
0 +T (n)

)
−Ui

(
t
(n)
0

)
|θ= i

]
.

Proof of Lemma 4: The confirmation phase starts at a
time t of the form Tn defined in (23), at which the transmitted
message i attains Ui(Tn) ≥ 0 and Ui(Tn− 1) < 0. Then, like
the product martingale in [23], the process ζi(t), t ≥ Tn, is a
martingale respect to Ft = σ(Y t), where:

ζi(t) =

(
p

q

)Ui(t)

C2

. (87)

Note that Ui(t) is a biased random walk, see the Markov Chain
in [2], with Ui(t) = Ui(Tn) +

∑t
m=Tn

ξm, where ξm is an
R.V. distributed according to:

ξm =

{
+C2 w.p. q
−C2 w.p. p

, (88)

We verify that E[ζi(t+ 1) | Ft] = ζi(t) as follows:

E[ζi(t+ 1) | Ft] = ζi(t)

(
p

(
p

q

)−1

+ q

(
p

q

)1
)

= ζi(t) (p+ q) = ζi(t) . (89)

Let Sn be the time at which decoding either terminates at
Ui(t) = Ui(Tn) +NC2, or a fall back occurs, when Ui(t) =
Ui(Tn) − C2 < 0, that is Sn ≜ min{t ≥ Tn : Ui(t) ∈
{Ui(Tn)−C2, Ui(Tn)+NC2}}. Then, the process ζi(t∧Sn)
is a two side bounded martingale and:

E[ζi(Sn)] = pf

(
p

q

)Ui(Tn)

C2
−1

+ (1−pf )
(
p

q

)Ui(Tn)

C2
+N

(90)

E[ζi(Tn)] =

(
p

q

)Ui(Tn)

C2

(91)

By Doob’s optional stopping theorem [22], E[ζi(Sn)] is
equal to E[ζi(Tn)] . Let the fall back probability be pf ≜
Pr(Ui(Sn) = Ui(Tn) − C2 | t = Tn), then we can solve for
pf using equations (90) and (91) by setting both right sides
equal. In (92) we factor out and cancel (p/q)Ui(Tn)/C2 . In (93)
we collect the terms with factor pf and in (94) we solve for
pf .

1 = pf
q

p
+ (1− pf )

(
p

q

)N

(92)

0 = pf
q

p

(
1−

(
p

q

)N+1
)
−

(
1−

(
p

q

)N
)

(93)

pf =
p

q

1−
(

p
q

)N
1−

(
p
q

)N+1
. (94)
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Since pf is just a function of N and p, then it is the same
constant across all messages i = 1, . . . ,M and indexes n =
1, . . . . To complete the proof we use the definition of C2 from
equation (5), which is C2 = log2

(
q
p

)
and express pf in terms

of C2:

pf = 2− log2(
q
p )

1− 2−N log2(
q
p )

1− 2−(N+1) log2(
q
p )

= 2−C2
1− 2−NC2

1− 2−(N+1)C2
(95)

Proof of Lemma 5: We start by conditioning the ex-
pectation in the left side of equation (43), in Lemma 5, on
the events {T (n) > 0, θ = i}, {T (n) = 0, θ = i}, and
{T (n) < 0, θ = i}, whose union results in the original
conditioning event, {θ = i}, to express the original conditional
probability using Bayes rule:

E[Ui(Tn)− Ui(t
(n)
0 ) | θ = i] (96)

= E[Ui(Tn)−Ui(t
(n)
0 ) |T (n)>0, θ= i] Pr(T (n)>0 |θ= i)

+ E[Ui(Tn)−Ui(t
(n)
0 ) |T (n)=0, θ= i] Pr(T (n)=0 |θ= i)

+ E[Ui(Tn)−Ui(t
(n)
0 ) |T (n)<0, θ= i] Pr(T (n)<0 |θ= i) .

Note that T (n) is non-negative, thus the last term in the right
side of (96) vanishes as Pr(T (n) < 0) = 0. When T (n) = 0,
then Tn = t

(n)
0 + T (n) = t

(n)
0 so that Ui(Tn) = Ui(t

(n)
0 ).

Therefore, the second term in the right side of (96) also
vanishes, leaving only the first term conditioned on {T (n) >

0, θ = i}. Let C(t(n)0 ) be the event that message i enters
confirmation after time t

(n)
0 , rather than another message j ̸= i

ending the process by attaining Uj(t) ≥ log2(1− ϵ)− log2(ϵ),
that is: C(t(n)0 ) ≜ {∃t > t

(n)
0 : Ui(t) ≥ 0}. Then, the

probability Pr(T (n+1) ≥ 0 | θ = i) can be expressed as:

Pr(T (n+1) ≥ 0 | θ = i)

= Pr(T (n+1) ≥ 0 | T (n) > 0, C(t(n)0 ), θ = i) (97)

· Pr(T (n) > 0, C(t(n)0 ) | θ = i) .

Note that the first probability in the right side of (97) is
just the fall back probability pf computed in Lemma 4. The
last probability in (97) can be also expressed as a product
of conditional probabilities, see (98). In (98) note that event
C(t(n)0 ) is the event that an n-th confirmation phase phase
occurs, which implies that a preceding n-th communication
phase round occurs. Then, C(t(n)0 ) =⇒ T (n) > 0 and the
first factor in the product of probabilities in (98) vanishes:

Pr(T (n) > 0, C(t(n)0 ) | θ = i)

= Pr(T (n)>0 | C(t(n)0 ), θ= i) Pr(C(t(n)0 ) | θ= i)

= Pr(C(t(n)0 ) | θ = i) . (98)

Combining (97) and (98) we obtain:

Pr(T (n+1)>0 | θ= i) = Pr(C(t(n)0 ) | θ = i)pf . (99)

We can also bound Pr(C(t(n)0 ) | θ = i) as follows:

Pr(C(t(n)0 ) | θ = i)

= Pr(C(t(n)0 ) | T (n)>0, θ= i) Pr(T (n)>0 | θ= i)

≤ Pr(T (n)>0 | θ= i) . (100)

Then, we can recursively bound Pr(T (n+1) > 0 | θ = i) by
Pr(T (n) > 0 | θ= i)pf using (99) and (100). For n ≥ 1, this
results in the general bound:

Pr(T (n)≥0 | θ= i) ≤ pn−1f . (101)

Using (101) we can bound the expectation E[Ui(Tn) −
Ui(t

(n)
0 ) | θ = i] in the left side of (96) by:

E[Ui(Tn)− Ui(t
(n)
0 ) | θ = i]

≤ E[Ui(Tn)−Ui(t
(n)
0 ) |T (n)>0, θ= i]pn−1

f . (102)

The value of Ui(t
(n)
0 ) at n = 1, when t

(1)
0 = 0 is a constant

that can be directly computed for every i from the initial
distribution. Using (102), we can then bound the second sum
in the left side of equation (43) by:

∞∑
n=1

E[Ui(Tn)− Ui(t
(n)
0 ) | θ = i] (103)

≤ E[Ui(T
(1))− Ui(0) |T (1)>0, θ = i]p0f

+

∞∑
n=2

E[Ui(Tn)−Ui(t
(n)
0 ) |T (n)>0, θ= i]pn−1f (104)

=
∞∑

n=1

E[Ui(Tn) | T (n) > 0, θ = i]pn−1
f − Ui(0)

−
∞∑

n=2

E[Ui(t
(n)
0 ) | T (n) > 0, θ = i]pn−1

f . (105)

The conditioning event {T (n) > 0} implies events {T (m) >
0} for m = 1, . . . , n because if T (m) = 0 means the process
has stopped and no further communication rounds occur. Event
{T (n) > 0} also implies that the n-th round of communication
occurs, and therefore Ui(t

(n)
0 ) is given by the previous crossing

value Ui(Tn−1) minus C2 by constraint (20), then:

∞∑
n=2

E[Ui(t
(n)
0 ) | T (n) > 0, θ = i]pn−1

f

=

∞∑
n=2

E[Ui(Tn−1)−C2 | T (n) > 0, θ= i]pn−1
f (106)

=
∞∑

n=1

E[Ui(Tn)−C2 | T (n+1) > 0, θ= i]pnf

≥
∞∑

n=1

E[Ui(Tn)−C2 | T (n)>0, θ= i]pnf . (107)

The inequality in (107) follows from the following inequality:

E[Ui(Tn) | T (n+1)>0, θ= i] ≥ E[Ui(Tn) | T (n)>0, θ= i] .
(108)
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For the proof of inequality (108) see Appendix D. From (107)
it follows that:

−
∞∑

n=1

E[Ui(Tn)−C2 | T (n+1)>0θ= i]pnf

≤−
∞∑

n=1

E[Ui(Tn)−C2 | T (n)>0, θ= i]pnf (109)

=−
∞∑

n=1

E[pf (Ui(Tn)−C2) |T (n)>0, θ= i]pn−1f . (110)

In (110) we have factored one pf inside the expectation. We
can now replace (105) by (110) to upper bound (103):

∞∑
n=1

E[Ui(t
(n)
0 + T (n))− Ui(t

(n)
0 ) | θ = i]

≤ −Ui(0) +
∞∑

n=1

E[Ui(Tn) | T (n) > 0, θ = i]pn−1
f (111)

−
∞∑

n=1

E[pf (Ui(Tn)−C2) | T (n)>0, θ= i]pn−1f

=
∞∑

n=1

E[Ui(Tn)−pf (Ui(Tn)−C2) |T (n)>0, θ= i]pn−1f

− Ui(0) . (112)

The expectation in (112) combines the two sums in from
(111) by subtracting pf (Ui(Tn)−C2) from Ui(Tn). The first
term Ui(Tn) is the value of Ui(t) at the communication-phase
stopping time t = Tn. In the second term pf (Ui(Tn)−C2), the
difference Ui(Tn)−C2 is the unique value that Ui(t

(n+1)
0 ) can

take once the n-th confirmation phase round starts at a point
Ui(Tn). Equation (112) is an important intermediate result
in the proof of Thm. 2. This is because when considering
the process U ′

i(t), the starting value of each communication-
phase round U ′

i(t
(n+1)
0 ) is still that of the original process

Ui(Tn) − C2, and therefore the argument of the expectation
would change to U ′

i(T
′
n)− pf (Ui(Tn)−C2). For the proof of

Lemma 5, we just need to bound (112), so we write the sum
in (112) as:

∞∑
n=1

E[Ui(Tn)(1− pf )+pfC2) | T (n)>0, θ= i]pn−1f (113)

=
∞∑

n=1

E[Ui(Tn) | T (n)>0, θ= i](1−pf )pn−1f +
∞∑

n=1

C2p
n
f .

By constraint (18), Ui(Tn) ≤ Ui(Tn − 1) + C2, and since
Ui(Tn − 1) < 0, then, Ui(Tn) is bounded by C2. Thus, the
expectation E[Ui(Tn) | T (n)>0, θ= i] is also bounded by C2.
Then (113) is bounded by:

∞∑
n=1

C2(1−pf )pn−1f +
∞∑

n=1

C2p
n
f = C2 +

pf
1− pf

C2 (114)

Finally, the left side of equation (43) in Lemma 5, (the left
side of (115)), is upper bounded using the bounds (112) and

(114) on the inner sum (109) as follows:
M∑
i=1

Pr(θ = i)
∞∑

n=1

E[Ui(Tn)−Ui(t
(n)
0 ) | θ = i]

≤
M∑
i=1

Pr(θ = i)

(
pf

1− pf
C2 + C2 − Ui(0)

)
(115)

= 2−C2
1− 2−NC2

1− 2−C2
C2 + C2 − E[Ui(0)] . (116)

To transition from (115) to (116) we have used the definition
of pf from Lemma 4. The proof of Lemma 5 is complete.

B. Proof of Theorems 2 and 3
Proof of Thm. 2: Suppose U ′

i(t) is a process that satisfies
the constraints (17)-(21) in Thm. 1 and constraints (26)-(28)
of Thm. 2 for some B < C2. Because the constraints of Thm.
1 are satisfied, Lemmas 1-5 all hold for the process U ′

i(t). To
bound E[T ′] we begin by bounding the sum on the right side
of Lemma 3, which is (41), but using the new process U ′

i(t).
Dividing the new bound by C produces the desired result. We
follow the procedure in the proof of Lemma 5, but replacing
Ui(t) by U ′

i(t), up to the equation (105). By the definition
of U ′

i(t) we have that U ′
i(t

(n)
0 ) = Ui(t

(n)
0 ) and from equation

(20) it follows that, for n > 1, T (n) > 0 implies Ui(t
(n)
0 ) =

Ui(Tn−1)−C2. Then, from equation (105) to (112), we replace
U ′
i(t

(n)
0 ) by Ui(Tn−1)−C2 instead. Using equation (112) we

have that:
∞∑

n=1

E[U ′
i(T

′
n)− U ′

i(t
(n)
0 ) | θ = i] ≤ −U ′

i(0) (117)

+
∞∑

n=1

E[U ′
i(T

′
n)−pf (Ui(Tn)− C2) | T (n)>0, θ= i]pn−1f

We can replace U ′
i(t) by U ′

i(0) = Ui(0) using the definition
of U ′

i(t). We further claim that the constraints of Thm. 2
guarantee that U ′

i(T
′
n) − pf (Ui(Tn) − C2) ≤ B. This is

derived from constraint (28): U ′
i(T

′
n)−

p
q (Ui(Tn)−C2) ≤ B

by replacing pf by p
q . The replacement is possible because

pf < p
q , see (94), and Ui(Tn) − C2 < 0 by constraint (18).

Therefore, the expectation in the last sum can be replaced with
B for an upper bound to obtain:
∞∑

n=1

E[U ′
i(T

′
n)−Ui(t

(n)
0 ) |θ = i] ≤ −Ui(0)+

∞∑
n=1

Bpn−1f

=B+
Bpf
1−pf

−Ui(0) = B+2−C2
1−2−NC2

1−2−C2
B − Ui(0) .

(118)

Then, the value in equation (118) replaces the inner sum in
the left side of (47) to obtain:

1

C

M∑
i=1

Pr(θ= i)
∞∑

n=1

E[U ′
i(T

′
n)−U ′

i(t
(n)
0 ) |θ= i]

≤ 1

C

M∑
i=1

Pr(θ= i)

(
Ui(0)+B+2−C2

1−2−NC2

1− 2−C2
B

)
=

B

C

(
1+2−C2

1−2−NC2

1−2−C2

)
− E[Ui(0)]

C
. (119)
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The proof is complete.
Proof of Thm. 3:

When Ui(t) ≥ 0 for some i, constraint (31) is the same
as the SED constraint (3) and therefore the constraints (20)
and (19) are satisfied as shown in [2]. Need to show that
constraints (17), (18) and (21) are also satisfied. We start the
proof by deriving expressions for E[Ui(t+1)−Ui(t) | Y t, θ=
i] to find bounds in terms of the constraints of the theorem.
The posterior probabilities ρi(y

t+1) are computed according
to Bayes’ Rule:

ρi(y
t+1) =

Pr(θ = i, Yt+1 = yt+1 | Y t)

Pr(Yt+1 = yt+1 | Y t)
. (120)

The top conditional probability in equation (120) can be split
into P (Yt+1 = yt+1 | θ = i, Y t = yt) Pr(θ = i | yt).
Since the received history yt fully characterizes the vector
of posterior probabilities ρt ≜ [ρ1(y

t), ρ2(y
t), . . . , ρM (yt)],

and the new construction of S0 and S1, then the conditioning
event {θ = i} sets the value of the encoding function
Xt+1 = enc(i, Y t), via its definition: enc(i, Y t) = 1i∈S1

. We
can just write the first probability as Pr(Yt+1 | enc(i, Y t)),
which reduces to q if Yt+1 = enc(i, Y t) and to p if Yt+1 ̸=
enc(i, Y t). The second probability Pr(θ = i | Y t = yt) is just
ρi(y

t).
The bottom conditional probability can be written as∑
Pr(Yt+1

xt+1∈{0,1}
= yt+1 | Xt+1, Y

t)P (Xt+1 = xt+1 | Y t). By

the channel memoryless property, the next output Yt+1 given
the input Xt+1 is independent of the past Y t, that is:
Pr(Yt+1 = yt+1 | Xt+1, Y

t) = Pr(Yt+1 = yt+1 | Xt+1).
Since Pr(Xt+1 = xt+1 | Y t) = Pr(θ ∈ Sxt+1

) which is given
by

∑
i∈Sxt+1

ρi(y
t), we write:

ρi(t+ 1) =
Pr(Yt+1 | i)ρi(yt)∑

j∈Ω Pr(Yt+1 | j)ρj(yt)

=
Pr(Yt+1 | i)ρi(yt)

q
∑

j∈Syt+1
ρj(yt) + p

∑
j∈Ω\Syt+1

ρj(yt)
.

(121)

For {i = θ} the encoding function Xt+1 = 1θ∈S1
dictates

that Xt+1 = 1i∈S1
. Thus Pr(Yt+1 = 1i∈S1

| i = θ) =
Pr(Yt+1 = Xt+1) = q, and Pr(Yt+1 = 1i/∈S1

| i = θ) =
Pr(Yt+1 = Xt+1 ⊕ 1) = p. Let P0 =

∑
j∈S0

ρj(y
t) and

P1 =
∑

j∈S1
ρj(y

t) and let ∆ ≜ P0−P1, so that P0 = 1
2 +

∆
2

and P1 = 1
2−

∆
2 . The value of Ui(t+1) for each Yt+1 ∈ {0, 1}

can be obtained from equation 121.
Assume first that i ∈ S0 to obtain the value of E[Ui(t +

1)− Ui(t) | Y t = yt, θ = i].

E[Ui(t+ 1) | Y t = yt, θ = i]

= q log2

ρi(y
t)q

P0q+P1p

1− ρi(yt)q
P0q+P1p

+ p log2

ρi(y
t)p

P0p+P1q

1− ρi(yt)p
P0p+P1q

= q log2
ρi(y

t)q
1
2+

∆(q−p)
2 −ρi(yt)q

+ p log2
ρi(y

t)p

1
2−

∆(q−p)
2 −ρi(yt)p

.

For i ∈ S1 the only difference is the sign of the term with ∆.
Let ιi = 1i∈S0 − 1i∈S1 , that is 1 if i ∈ S0 and −1 if i ∈ S1

and add a coefficient ιi to each ∆ for a general expression.

Multiply by 2 both terms of the fraction inside the logarithm
and expand it to obtain:

E[Ui(t+1)−Ui(t) | Y t, θ= i] = log2(ρi(y
t)) (122)

+ q
(
log2(2q)−log2

(
1−ρi(yt)+(q−p)(ιi∆−ρi(yt)

))
+ p

(
log2(2p)−log2

(
1−ρi(yt)−(q−p)(ιi∆−ρi(yt)

))
=q

(
log2(2q)−log2

(
1+(q−p) ιi∆−ρi(y

t)

1− ρi(yt)

))
(123)

+ p

(
log2(2p)−log2

(
1−(q−p) ιi∆−ρi(y

t)

1−ρi(yt)

))
≥C − log2

(
1 + (q − p)2

ιi∆− ρi(y
t)

1− ρi(yt)

)
. (124)

Now subtract the term log2(1 − ρi(y
t)), and add it back as

a factor in the logarithm, to recover Ui(t) from log2(ρi(y
t)).

Note that 2ρi(yt)q = ρi(y
t) + (q − p)ρi(y

t) and 2ρi(y
t)p =

ρi(y
t) − (q − p)ρi(y

t). And also note that q log2(2q) +
p log2(2p) = C.

The logarithm log2(1 − ρi(y
t)) from (122) is split into

p log2(1−ρi(yt))+q log2(1−ρi(yt)), and 1−ρi(yt) divides the
arguments of the logarithms in (123). Equation (124) follows
from applying Jensen’s inequality to the convex function
− log2(·). Then:

M∑
i=1

E[Ui(t+ 1)− Ui(t) | Y t, θ = i]ρi(Y
t)

≥ C−
M∑
i=1

ρi(y
t) log2

(
1 + (q − p)2

ιi∆− ρi(y
t)

1− ρi(yt)

)
(125)

= C−
∑
i∈S0

ρi(y
t) log2

(
1 + (q − p)2

∆− ρi(y
t)

1− ρi(yt)

)
−
∑
i∈S1

ρi(y
t) log2

(
1− (q − p)2

∆+ ρi(y
t)

1− ρi(yt)

)
. (126)

By the SEAD constraints, equations (30) and (31) if i ∈ S0,
then ∆ ≤ ρmin ≤ ρi(y

t). For the case where ∆ ≥ 0, then
i ∈ S0 =⇒ ∆ − ρi(y

t) ≤ 0 and −∆ − ρi(y
t) < 0. Then

the arguments of the logarithms in (126) are both less than 1
for every i. This suffices to show that the constraints (21) and
(17) are satisfied when P0 ≥ P1 for the case that ∆ ≥ 0.

It remains to prove that constraints (21) and (17) hold in the
case where P1 > P0, or equivalently ∆ < 0. Let α = −∆ > 0,
and note that since 0 < α < 1, then:

α

1−ρmin
≥ α = α

1−ρi(yt)
1−ρi(yt)

≥ α−ρi(yt)
1−ρi(yt)

, (127)

and ρi ≥ ρmin =⇒ α+ρi ≥ α+ρmin and 1−ρi < 1−ρmin,
therefore:

log2

(
1−(q−p)2α+ρi(y

t)

1−ρi(yt)

)
≤ log2

(
1−(q−p)2α+ρmin

1−ρmin

)
log2

(
1+(q−p)2α−ρi(y

t)

1−ρi(yt)

)
≤ log2

(
1+ (q−p)2 α

1− ρmin

)
.
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Since this holds for all i = 1, . . . ,M , then:
M∑
i=1

E[Ui(t+ 1)− Ui(t) | Y t = yt, θ = i]ρi(y
t) ≥ C (128)

− P0 log2

(
1−(q−p)2α+ρmin

1−ρmin

)
−P1 log2

(
1+ α

(q−p)2

1−ρmin

)
≥ C − log2

(
1− (q − p)2

1− ρmin
[P0(α+ ρmin)− P1α]

)
.

(129)

To satisfy constraint (21) we only need the logarithm term
in (129) to be non-negative. This only requires that −∆2 +
P0ρmin > 0. Since P0−P1 = ∆, then P0(α+ρmin)−P1α =
(P0−P1)α+P0ρmin = −∆2 +P0ρmin. To satisfy constraint
(21) it suffices that −∆2 + P0ρmin > 0, which is equivalent
to:

∆2 ≤ P0ρmin . (130)

The SEAD constraints, equations (30) and (31), guarantees
that ∆2 ≤ ρ2min. Since P0 ≥ min

i∈S0

ρi(y
t) = ρmin, then ∆2 ≤

ρ2min ≤ P0ρmin, which satisfies inequality (130). Then, the
SEAD constraints guarantee that constraint (21) is satisfied,
and only restricts the (130) is satisfied, and only restricts the
absolute difference between P0 and P1.

To prove that constraint (17) is satisfied, note that equation
(30) of the SEAD constraints guarantees that if ρj(t) ≤ 1

2∀j =
1, . . . ,M , then |∆| ≤ 1

3 . Starting from equation (124) note that
the worst case scenario is when ιi∆ = 1

3 . Using (127) with
α = 1

3 to go from (131) to (132) we find obtain:

E[Ui(t+ 1)− Ui(t) | Y t, θ = i]

≥C − log2

(
1 + (q − p)2

ιi∆− ρi(y
t)

1− ρi(yt)

)
(131)

≥C − log2

(
1 +

(q − p)2

3

)
(132)

≥C − (q − p)2

3
(133)

=C − (q − p)2

2 ln(2)
+

3− 2 ln(2)

6 ln(2)
(q − p)2 (134)

≥3− 2 ln(2)

6 ln(2)
(q − p)2 >

(q − p)2

3
. (135)

To transition from (134) to (135) we need to show that
2 ln(2)C ≥ (q − p)2. For this we find a small constant a that
makes aC − (q − p)2, the difference between 2 convex func-
tions, also convex. Take second derivatives d2

dp2 aC = 1
ln(2)

a
pq

and d2

dp2 (q − p)2 = 8 and subtract them. The constant a is
found by noting that pq ≤ 1

4 .
The SEAD constraints guarantee that both sets, S0 and

S1 are non-empty. Then, since the maximum absolute value
difference | Ui(t+1)−Ui(t) | is C2, constraint (18) is satisfied,
see the proof of Claim 1.

For the proof of existence of a process U ′
i(t), with B =

1
q log2(2q), see Appendix B.

VI. EXTENSION TO ARBITRARY INITIAL DISTRIBUTIONS

The proof of Thm. 1 only used the uniform input dis-
tribution to assert Ui(0) = U1(0) and replace E[Ui(0)] by

U1(0) = log2(M − 1) in equation (48). In Lemma 5, we have
required that Ui(0) < 0 ∀i. However, even with uniform input
distribution this is not the case when Ω = {0, 1}. To avoid
this requirement, the case where ∃i : Ui(0) ≥ 0 and therefore
T (1) = 0 needs to be accounted for. Also, if Ui(t) ≥ C2,
then the probability that an initial fall back occurs is only
upper bounded by pf , which can be inferred from the proof
of Lemma 4. Then, to obtain an upper bound on the expected
stopping time E[τ ] for an arbitrary input distribution, it suffices
to multiply the terms E[Ui(T

(1)) | T (1) > 0, θ = i] − Ui(0)
in the proof of Lemma 5, equation (104), by the indicator
1Ui(0)<0. Then, the bound on Lemma 5 becomes:

M∑
i=1

∞∑
n=1

E[Ui(t
(n)
0 + T (n))− Ui(t

(n)
0 ) | θ = i] Pr(θ = i)

≤ C2
p

q

1−
(

p
q

)N
1− p

q

+E[(C2−Ui(0))1Ui(0)<0] . (136)

By Thm. 3, we can replace C2 with q−1 log2(2q) in (136).
Using the definition of pf from (42) we obtain the bound:

E[T ] ≤ E[T ′] ≤ 2−C2
1− 2−NC2

1− 2−C2

log2(2q)

qC

+ E

[(
log2(2q)

q
− Ui(0)

)
1Ui(0)<0

C

]
. (137)

A. Generalized Achievability Bound

An upper bound on E[τ ] for a arbitrary initial distribution
ρ0 is then obtained using this bound (137) and the bound on
E[τ − T ] from equation (49) to obtain:

E[τ ] ≤
M∑
i=1

 log2

(
1−ρi(0)
ρi(0)

)
C

+
log2(2q)

q · C

 ρi(0)1ρi(0)<0.5

+

⌈
log2(

1−ϵ
ϵ )

C2

⌉
C2

C1
+

(
log2(2q)

qC
− C2

C1

)
1− ϵ

1−ϵ2
−C2

1−2−C2
2−C2 .

(138)

For the special case where ρi(0) ≪ 1
2 ∀i = 1, . . . ,M , the

log likelyhood ratio can be approximated by log2(
ρi(0)

1−ρi(0)
) ⪅

log2(ρi(i)) to obtain a simpler expression of the bound (138):

E[τ ] <
H(ρ0)

C
+

log2(2q)

q · C
+

⌈
log2(

1−ϵ
ϵ )

C2

⌉
C2

C1

+

(
log2(2q)

qC
− C2

C1

)
1− ϵ

1−ϵ2
−C2

1−2−C2
2−C2 , (139)

where H(ρ(0)) is the entropy of the p.d.f. ρ0 in bits.

B. Uniform and Binomial Initial Distribution

Using the bound of equation (138), we can develop a better
upper bound on the blocklength for a systematic encoder
with uniform input distribution when Ω = {0, 1}K . It can be
shown that the systematic transmissions transform the uniform
distribution into a binomial distribution, see [1]. The bound is
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Fig. 3. The two cases for update and combine S0 and S1 after partitioning
with the TOP rule of claim 2. Alg. 6 implements partitioning and Alg. 5
implements update and combine.

constructed by adding the K systematic transmissions to the
bound in (138) applied to the binomial distribution as follows:

E[τ ] ≤ K+ (140)
K∑
i=0

 log2( 1−piqK−i

piqK−i )

C
+
log2(2q)

qC

(K
i

)
piqK−i

1(qK−ipi<0.5)

+

⌈
log2(

1−ϵ
ϵ )

C2

⌉
C2

C1
+

(
log2(2q)

qC
−C2

C1

)
1− ϵ

1−ϵ2
−C2

1−2−C2
2−C2 .

This bound, which assumes SEAD and systematic transmis-
sion, is the tightest achievability bound that we have developed
for the model.

VII. ALGORITHM AND IMPLEMENTATION

In this section we introduce a systematic posterior match-
ing (SPM) algorithm with partitioning by thresholding of
ordered posteriors (TOP), that we call SPM-TOP. The SPM-
TOP algorithm guarantees the performance of bound (32) of
Thm. 3 because both systematic encoding and partitioning via
TOP enforce the SEAD partitioning constraint in equations
(30) and (31). The SPM-TOP algorithm also guarantees the
performance of the bound (140) because it is a systematic
algorithm.

A. Partitioning by Thresholding of Ordered Posteriors (TOP)

The TOP rule is a simple method to construct S0 and S1

at any time t from the vector of posteriors ρt, which enforces
the SEAD partitioning constraint of Thm. 3. The rule requires
an ordering {b1, . . . , bM} of the vector of posteriors such that
ρb1(t) ≥ ρb2(t) ≥ · · · ≥ ρbM (t). TOP builds S0 and S1 by
finding a threshold m to split {b1, . . . , bM} into two contigu-
ous segments {b1, . . . , bm} = S0 and {bm+1, . . . , bM} = S1.
To determine the threshold position, the rule first determines
an index m′ ∈ {1, . . . ,M} such that:

m′−1∑
i=1

ρbi(y
t) <

1

2
≤

m′∑
i=1

ρbi(y
t) , (141)

Once m′ is found, the rule must select between two possible
alternatives: Either m = m′ or m = m′ − 1. In other words,

all that remains to decide is whether to place bm′ in S0 or
in S1. We select the choice that guarantees that the absolute
difference between P0 and P1 is no larger than the posterior
of bm′ .

Thus the threshold m is selected from {m′ − 1,m′} as
follows:

m =

{
m′ − 1 if

∑m′

i=1 ρbi(t)−
1
2 > 1

2ρbm′ (t)

m′ if
∑m′

i=1 ρbi(t)−
1
2 ≤

1
2ρbm′ (t)

(142)

Note that since m ∈ {m′ − 1,m′}, then the posterior of bm′

is no larger than that of bm, and the posterior of bm is also
the value of ρmin = mini∈S0

{ρi(t)}.

Claim 2. The TOP rule guarantees that the SEAD constraints
of Thm. 3, given by (30) and (31) are satisfied.

Proof: The TOP partitioning rule sets the threshold that
separates S0 and S1 exactly before or exactly after item bm′

depending on which of the cases in (142) occurs. To show that
the TOP rule guarantees that the SEAD constraints in Thm.
3 are satisfied note that if the first case of (142) occurs, the
threshold lies before item bm′ . Then, the inequalities in (141)
demand that:

P0 =
m′−1∑
i=1

ρbi(y
t) =

m′∑
i=1

ρbi(y
t)− ρbm′ (t) <

1

2
(143)

P0 >
1

2
+

1

2
ρbm′ (t)− ρbm′ (t) =

1

2
− 1

2
ρbm′ (t) . (144)

When the second case of (142) occurs, the threshold is set
after item bm′ . Then, the inequalities in (141) demand that:

P0 =
m′∑
i=1

ρbi(y
t) ≥ 1

2
(145)

P0 ≤
1

2
+

1

2
ρbm′ (t) , (146)

In either case we have:
1

2
− 1

2
ρbm(t) ≤ P0 ≤

1

2
+

1

2
ρbm(t) (147)

By definition, ∆ = P0 − P1 = P0 − (1 − P0) = 2P0 − 1.
Scale equation (147) by 2 and subtract 1, then: −ρbm′ (t) <
2P0 − 1 ≤ ρbm′ (t). Then, | ∆ | ≤ ρbm′ (t) ≤ ρbm(t) = ρmin.
This concludes the proof.

We have shown that the construction of S0 and S1 can be
as simple as finding the threshold item bm′ where the c.d.f.
induced by the ordered vector of posteriors crosses 1

2 . After
identifying bm′ , the threshold is placed either before or after
item bm′ to ensure the SEAD rule. Finally, all items before the
threshold are allocated to S0 and all items after the threshold
are allocated to S1.

B. SPM-TOP Implementation

The SPM-TOP algorithm is a low complexity scheme
that implements sequential transmission over the BSC with
noiseless feedback with a source message sampled from a
uniform distribution. Algorithms 1 and 2 present the encoder
and decoder as functions that, when called, respectively trans-
mit and decode one channel symbol. These functions have



16

the usual communication and confirmation phases, but the
communication phase starts with a systematic transmission
phase. Thus systematic transmissions of the communication
phase are treated as a separate systematic phase, for a total of
three phases that we proceed to describe in detail.

C. Systematic phase

Let the sampled message be θ ∈ {0, 1}K , with bits b
(θ)
i ,

that is θ = {b(θ)1 , b
(θ)
2 , . . . , b

(θ)
K }. For t = 1, . . . ,K the bits b(θ)t

are transmitted (See line 2 of Alg. 1.) and the vector yK ≜
{y1, . . . , yK} is received without any decoder computations.
(See line 2 of Alg. 2.)

After the K-th transmission, both transmitter and receiver
initialize a list of K+1 groups {G0, . . . ,GK}, where each Gi is
a tuple Gi = [Ni, Li, hi, ρi(y

t)]. Alg. 3 implements the initial-
ization of the list of groups as the function InitializeGroups,
which is called in line 5 of Alg. 1 and Alg. 2.

As described in Alg. 3 for Group i, Ni is the count of
messages in the group; Li is the index of the first message
in the group; hi is the shared Hamming distance between
yK and any message in the group, that is: l, s ∈ Gi =⇒∑K

j=1 b
(l)
j ⊕ yj =

∑K
j=1 b

(s)
j ⊕ yj = hi; and ρi(y

t) is
the group’s shared posterior. At time t = K, each group
Gi, i = 1, . . . ,K has that Ni =

(
K
i

)
, Li = 0, hi = i, and

ρi(K) = pjqK−j . The groups are initially established in order
of decreasing probability, equivalent to increasing Hamming
weight, since for p < q, j > l =⇒ plqK−l < pjqK−j , (see
line 2 of Alg. 3).

At the end of the systematic phase the transmitter finds
the index of the group hθ and the index within the group nθ

corresponding to the sampled message θ via Alg. 4. Line 5
of Alg. 1 shows the call to the function InitializeGroups of
Alg. 4. The index hθ is given by hθ =

∑K
j=1 b

(θ)
j ⊕ yj and

the index nθ ∈ {0, . . . ,
(
K
hθ

)
− 1}.

D. Communication Phase

The communication phase consists of the transmissions after
the systematic phase, and while all posteriors are lower than 1

2 .
During communication phase, the transmitter attempts to boost
the posterior of the transmitted message, past the threshold 1

2 ,
though any other message could cross the threshold instead,
due to channel errors.

The list of groups initialized in the systematic phase is
maintained ordered by decreasing common posterior. The
list of groups is partitioned into S0 and S1 before each
transmission using rule (141) as shown in Alg. 6. For this,
the group Gnm that contains the threshold item bm is found
first, see lines 4−7 of Alg. 6. Then all groups before Gnm

are
assigned to S0 and all the groups after Gnm

are assigned to
S1, shown in line 8 of Alg. 6. To assign group Gnm

the index
nm of item bm that sets the threshold is determined within
group Gnm , see lines 9−12 of Alg. 6. The TOP rule demands
that all items j ∈ Gnm with index n

(j)
m ≤ nm be assigned

to S0 and all items i ∈ Gnm with index n
(i)
m > nm to S1.

For this we split the group Gnm
into two by creating an new

group with the segment of items past nm that belongs in S1

as shown in lines 12 − 27 of Alg. 6. However, if the item
with index nm is the last item in Gnm , then the entire group
Gnm

belongs in S0 and no splitting is required as shown in
lines 28− 34 of Alg. 6. The partitioning algorithm is used by
the encoder and decoder during the communication phase as
shown in the calls to function PartitionGroups in line 31 of
Alg. 1 and line 23 of Alg. 2.

After each transmission t, the posterior probabilities of the
groups are updated using the received symbol Yt according
to equation (120), which is shown by Alg. 5. Each posterior
is multiplied by a weight update, computed using equation
(121), according to its assignment, S0 or S1, see lines 4, 8
and 15 of Alg. 5. Then, the lists that comprise S0 and S1 are
merged into a single sorted list, see lines 11−12, 16−17 and
21 of Alg. 5. The process repeats for the next transmission,
which is shown by the calls to functions CommPhaseUpdate
in lines 23 and 27 of Alg. 1 and lines 15 and 19 of Alg.
2. The communication phase is interrupted to transition to
the confirmation phase when the posterior of a candidate
message crosses the 1

2 threshold. The communication phase
might resume if the posterior of message i that triggered the
confirmation falls below 1

2 rather than increasing past 1 − ϵ,
and all other posteriors are still below 1

2 , see line 22 of Alg.
1 and line 14 of Alg. 2.

Not all groups need to be updated at every transmis-
sion. The partitioning method only requires visiting groups
G1,G2, . . . ,Gnm . After the symbol Yt+1 is received, we need
to combine S0 and S1 into a single list, sorted by decreasing
order of posteriors once updated. Figure 3 shows the three
operations that are executed during the communication phase:
partitioning the list, updating the posteriors of the partitions,
and combining the updated partitions into a single sorted list.
Note that in both cases, Yt+1 = 0 and Yt+1 = 1, either the
entirety or a segment of the partition S1 is just appended at
the end of the new sorted list, see line 21 of Alg. 5. This
segment starts at the first group Gj ∈ S1, such that its posterior
ρj(t) is smaller than the smallest in S0. We avoid explicit
operations on this segments and only saved the “weight”
update factor as another item in the tuple described in at the
beginning of this section. Every subsequent item in the list
will share this update coefficient and could be updated latter
on if it is encountered at either partitioning the list, updating
the posteriors or combining the partitions. If this happens, the
“weight” update is just “pushed” to the next list item, see lines
4 and 9 of Alg. 5. Since most of the groups belong to this
“tail” segment, we expect to perform explicit operations only
for a “small” fraction of the groups. This results in a large
complexity reduction, which is validated by the simulation
data of figure 6.

E. Confirmation Phase

The Confirmation Phase is triggered when a candidate i
attains a posterior ρi(y

t) ≥ 1
2 , see line 33 of Alg. 1 and line

24 of Alg. 2. During this phase the transmitter will attempt
to boost ρi(y

t), the posterior of candidate i, past the 1 − ϵ
threshold, if it is the true message θ. Otherwise it will attempt
to drive its posterior below 1

2 . Clearly, the randomness of
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Algorithm 1: (S′
0, S

′
1, Z

′, N ′
ϵ)=Encoder(t, yt, S0, S1, Z,Nϵ)

Data: Constants channel p, q, error bound ϵ, length K
Data: Constants set once: hθ, nθ ▷ See line 4.
Input: message θ time t, feedback yt = [y1, . . . , yt]
Input: Previous Encoder state of partitions S0, S1

Input: Previous confirmation state Z, target Nϵ

Output: Next symbol xt+1, Encoder state S′
0, S

′
1

Output: Next confirmation state Z ′, next target N ′
ϵ

1 if t < K then
2 channel input: xt+1 = bθt+1 ▷ θ = [b

(θ)
1 , . . . , b

(θ)
K ]

3 else if t = K then
4 G← InitializeGroups(K, p, q) ▷ Alg. 3
5 mθ ← hθ ▷ The group index of θ is its Hamming

distance from the received transmission yK .
6 (hθ, nθ)←FindMessageIndex(K,xK, yK) ▷ Alg. 4
7 fmθ

← 1 ▷ Set fmθ
= 1 since θ ∈ Gmθ

8 Z ′ ← −1 ▷ Set communication phase
9 else if Z ≥ 0 then

10 Z ′ ← (yt = 0 ? Z + 1 : Z − 1)
11 if Z ′ = Nϵ then
12 if h0 = hθ and L0 = nθ then
13 Declare success
14 else
15 Declare error
16 end
17 S′

0, S
′
1 ← ∅ ▷ Terminate process

18 else if Z ′ ≥ 0 then
19 S′

0, S
′
1,← S0, S1, Nϵ ▷ No change in partitions

20 N ′
ϵ ← Nϵ ▷ Same target

21 xt+1 ← (h0 = hθ and L0 = nθ ? 0 : 1)
22 else if Z ′ = −1 then
23 G′ ← CommPhaseUpdate(S0, S1, yt) ▷ Alg. 5
24 ▷ Fall back to communication phase
25 end
26 else if Z = −1 then
27 G′ ← CommPhaseUpdate(S0, S1, yt) ▷ Alg. 5
28 Z ′ ← Z ▷ No state change yet (see line 34)
29 end
30 if Z ′ = −1 then
31 S′

0, S
′
1 ← PartitionGroups(G′) ▷ Alg. 6

32 xt+1 ← (∃Gi ∈ S0: fi = 1 ? 0 : 1)
33 if ρ0 ≥ 1

2 and N0 = 1 then
34 Z ′ ← 0 ▷ Set Confirmation phase start

35 N ′
ϵ ←

⌈
C−1

2

(
log2

(
1−ϵ
ϵ

)
− log2

(
ρ0

1−ρ0

))⌉
36 end
37 end

the channel could allow the posterior ρi(y
t) to grow past

1− ϵ, even if it is the wrong message, resulting in a decoding
error. Alternatively, the right message could still fall back to
the communication phase, also due to channel errors. The
confirmation phase lasts for as long as the posterior of the
message that triggered its start stays between 1

2 and 1− ϵ or
equivalently Ui(t) stays between 0 and ϵU ≜ log2

(
1−ϵ
ϵ

)
.

There are no partitioning, update, or combining operations

Algorithm 2: (S′
0, S

′
1, Z

′, N ′
ϵ)=Decoder(t, yt, S0, S1, Z,Nϵ)

Data: Constants channel p, q, error bound ϵ, length K
Input: Previous Decoder state of partitions S0, S1

Input: Previous confirmation state Z, target Nϵ

Output: Next Decoder state S′
0, S

′
1

Output: Next confirmation state Z ′, next target N ′
ϵ

1 if t < K then
2 ▷ No action needed at decoder
3 else if t = K then
4 G← InitializeGroups(K, p, q) ▷ Alg. 3
5 Z ′ ← −1 ▷ Set communication phase
6 else if Z ≥ 0 then
7 Z ′ ← (yt = 0 ? Z + 1 : Z − 1)
8 if Z ′ = Nϵ then
9 x̂K ← IndexToEstimate(h0, L0, y

t
1:K) ▷ Alg. 7

10 Report Estimate x̂K

11 else if Z ′ ≥ 0 then
12 S′

0, S
′
1,← S0, S1, Nϵ ▷ No change in partitions

13 N ′
ϵ ← Nϵ ▷ Same target

14 else if Z ′ = −1 then
15 G′ ← CommPhaseUpdate(S0, S1, yt)
16 ▷ Fall back to communication phase: Alg. 5
17 end
18 else if Z ′ = −1 then
19 G′ ← CommPhaseUpdate(S0, S1, yt) ▷ Alg. 5
20 Z ′ ← Z ▷ No state change yet (see line 25)
21 end
22 if Z ′ = −1 then
23 S′

0, S
′
1 ← PartitionGroups(G′) ▷ Alg. 6

24 if ρ0 ≥ 1
2 and N0 = 1 then

25 Z ′ ← 0 ▷ Set Confirmation phase start

26 N ′
ϵ ←

⌈
C−1

2

(
log2

(
1−ϵ
ϵ

)
− log2

(
ρ0

1−ρ0

))⌉
27 end
28 end

Algorithm 3: G = InitializeGroups(p, q,K)

Input: Channel parameters p, q message length K
Output: List of Groups G = G0, . . . ,GK

1 for i=0,. . . ,K do
2 ρi ← qK−ipi ▷ ∀j ∈ Gi → ρj(K) = ρi
3 Ni ←

(
K
i

)
▷ Ni ≜| Gi |: count of items in group

4 Li ← 0 ▷ First index in group
5 hi ← i ▷ Shared group Hamming weight
6 Wi = 1 ▷ Delayed update coefficient
7 fi = 0 ▷ For encoder: set fi = 1 if θ ∈ Gi
8 Gi = (Ni, Li, hi, ρi,Wi, fi)
9 end

10 G← G0, . . . ,GK

during the confirmation phase. If j is the message in the
confirmation phase, then the partitioning is just S0 = {j},
S1 = Ω \ {j}. A single update is executed if a fallback
occurs, letting ρi(y

t) = ρi(y
Tn) ∀i = 1, . . . ,M , where

n is the index of the confirmation phase round that just
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Algorithm 4: (h, n)=FindMessageIndex(K,xK , yK)

Input: Length K, Trans. Seq. xK , Rec. Seq. yK

Output: Hamming weight h, index n
1 eK = xK ⊕ yK

2 h←
∑K

j=0 e
i
j

3 n← 0
4 c← h
5 for j = 0, . . . ,K − 1 do
6 if c = 0 then
7 Break
8 else if ej = 0 then
9 n← n+

(
K−j−1
c−1

)
10 else
11 c← c− 1
12 end
13 end

Algorithm 5: G = UpdateGroupList(yt, S0, S1)

Input: channel output: yt, Partitions S0, S1

Output: updated List G = {G0, . . . ,GK+ns
}

1 w0 ← q
Pyt+1

(q−p)+p ▷ Weight update for items in S0

2 w1 ← p
Pyt+1

(q−p)+p ▷ Weight Update for items in S1

3 m0 ← 0, m1 ← 0 ▷ indices of first group in S0, S1

4 Wm1
←Wm1

·w1 ▷ Update weight of first group in S1

5 G← ∅ ▷ Initiallize to null
6 while S0 ̸= ∅ do
7 if w0 · ρm0 < Wm1 · ρm1 then
8 ρm1 ← ρm1 ·Wm1

9 Wm1+1 ←Wm1+1 ·Wm1
▷ Update Next weight

10 Wm1
← 1 ▷ Reset weight Wm1

11 remove Gm1
from S1

12 insert Gm1
to tail of G

13 m1 ← m1 + 1 ▷ Get next item from S1

14 else
15 ρm0

← ρm0
· w0 ▷ Update ρm0

(t)
16 remove Gm0

from S0

17 append Gm0
to tail of G

18 m0 ← m0 + 1 ▷ Get next item from S0

19 end
20 end
21 append S1 to tail of G ▷ No update for rest of S1

ended and Tn is the time at which it started, see the calls
to CommPhaseUpdate in line 23 of Alg. 1 and line 14 of
Alg. 2. This is because every negative update that follows a
positive update results in every ρi(y

t) returning to the state
it was at time t − 2. This is summarized in claim 3 that
follows. During the confirmation phase it suffices to check
if Uj(t) ≥ ϵU , in which case the process should terminate,
or if Uj(t) < 0, in which case a fall back occurs. The
encoder terminates the process by computing an estimate x̂K

of the systematic symbols vial Alg. 7, which is shown in
the call to function IndexToEstimate in line 9 of Alg. 2.
When the process terminates, the transmitter can declare a

Algorithm 6: (S0, S1) = PartitionGroups(G, nθ)

Input: List of Groups G = {G0, . . . ,GK+ns
}

▷ ns: the number of new group by splitting: line 25
Input: (Transmitter only) index nθ

▷ Encoder: tracks group with hi = hθ, ni = nθ

Output: Sets S0, S1 that partition G
▷ S0={G0, . . .Gm}, S1={Gm+1}, . . .GK+ns

}
1 m← 0 ▷ Index of first group in G
2 S0 ← ∅ ▷ Initialize S0 to empty
3 P0 ← 0 ▷ posterior in S0: P0 ≜ P(θ ∈ S0)
4 while P0 +Nmρm < 1

2 do
5 P0 ← P0 +Nmρm(t) ▷ Nm, ρm ∈ Gm
6 m← m+ 1 ▷ Increase group index m
7 end
8 S0 ← {G0, . . . ,Gm−1}, S1 ← {Gm+1, . . . }
9 n← ⌈ 0.5−P0

ρm(t) ⌉ ▷ Initial n value
10 if P0 + nρm(t) > 1

2 (1 + ρm(t)) then
11 n← n− 1 ▷ TOP rule
12 end
13 if n > 0 and n < Nm then
14 Nright ← Nm − n ▷ Items in new group
15 Lright ← Lm + n ▷ index of first item
16 Nleft ← n ▷ Decrease count in old group
17 ▷ Lines 18-19 only execute for transmitter.
18 if fm = 1 and nθ ≥ Lright then
19 fright ← 1 ▷ case: Lright ≤ nθ < Lright + n
20 fleft ← 0 ▷ Gm no longer group containing nθ

21 else
22 fright ← 0 ▷ case: Lm ≤ nθ < Lright

23 end
24 G(left)m ← (Nleft, Lm, hm, ρm,Wm, fleft)

25 G(right)m ← (Nright, Lright, hm, ρm,Wm, fright)

26 S0 ← S0 ∪ G(left)m

27 S1 ← G(right)m ∪ S1

28 else if n = 0 then
29 S1 = Gm ∪ S1 ▷ case entire Gm belongs in S1

30 m← m− 1 ▷ Equation (142)
31 else if n = Nm then
32 S0 = S0 ∪ Gm ▷ case entire Gm belongs in S0

33 P0 ← P0 + nρm(t)
34 end

successful decoding if the index n0 and Hamming distance
h0 of the message in confirmation match nθ and hθ, and an
error otherwise, as shown in lines 12− 16 of Alg. 1.

Claim 3 (Confirmation Phase is a Discrete Markov Chain). Let
the partitioning of Ω at time t = s be S0 = {j}, S1 = Ω\{j},
and suppose Ys+1 = 0. If the partitioning at time t = s + 1
is also S0 = {j}, S1 = Ω \ {j}, the same partitioning of
time s, and Yt+1 = 1, then for all i = 1, . . . ,M , ρi(yt+1) =
ρi(y

t−1), that is ρi(y
s) = ρi(y

s+2).
Proof: See appendix C

During the confirmation phase we only need to count the
difference between boosting updates and attenuating updates.
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Algorithm 7: x̂K = IndexToEstimate(h, n,K, yK)

Input: Weight h, index n, length K symbols yK

Output: Estimate x̂K ▷ Estimate of θ = xK

1 x̂K ← yK ▷ Initialize x̂K with received symbols yK

2 for j = 0, . . . ,K − 1 do
3 if h = 0 then
4 Break
5 else if n <

(
K−1−j
h−1

)
then

6 x̂j ← ¬x̂j

7 h← h− 1
8 else
9 n← n−

(
K−j−1
h−1

)
10 end
11 end

Since the Ui(t) changes in steps with magnitude C2, then
there is a unique number N such that Ui(Tn) + NC2 ≥ ϵU
and Ui(Tn) + (N − 1)C2 < ϵU . Starting at time t = Tn,
since S0 = {j}, any event Yt+1 = 0 is a boosting update that
results in Ui(t+ 1) = Ui(t) + C2 and any event Yt+1 = 1 is
an attenuating update that results in Ui(t+1) = Ui(t)−C2. A
net of N boosting updates are needed to reach Ui(Tn)+NC2.
Let the difference between boosting and attenuating updates
be Z(t) ≜

∑t
s=Tn+1(1 − 2Ys). The transmission terminates

the first time τ where Z(τ) = N . However, a fall back occurs
if Z(t) ever reaches −1 before reaching N . The value of N
can be computed as follows: let N1 ≜

⌈
C−1

2 log2
(
1−ϵ
ϵ

)⌉
and

let ϵn ≜ log2
(
1−ϵ
ϵ

)
−N1C2, see line 35 of Alg. 1 and line 26

of Alg. 2. Suppose the confirmation phase starts at some time
t = Tn, then, N = N1 if Ui(Tn) ≥ ϵN , otherwise N = N1+1.
Once N is computed, all that remains is to track Z(t), where
Z(t+1) = Z(t)+(1−2Yt+1), and return to the communication
phase if Z(t) reaches −1 or terminate the process if Z(t)
reaches N , see lines 18 and 22 of Alg. 1 and lines 11 and 14
of Alg. 2.

Theorem 4. [from [1]] Suppose that Ω = {0, 1}K and
ρi(0) = 2−K ∀i ∈ Ω. Then, for t = 1, . . . ,K the partitioning
rule S0 = {i ∈ Ω | b(i)t = 0}, S1 = {i ∈ Ω | b(i)t = 1}, results
in systematic transmission: xK = θ, and achieves exactly
equal partitioning P0 = P1 = 1

2 .

Proof: First note that if Ω = {0, 1}K , then for each
t = 1, . . . ,K , exactly half of the items in i ∈ Ω have
bit b

(i)
t = 0 and the other half have bit b

(i)
t = 1. The

theorem holds for t = 1, since the partitioning S0 = {i ∈
Ω | b(i)1 = 0}, S1 = {i ∈ Ω | b(i)1 = 1} results in half
the messages in each partition and all the messages have
the same prior. For t = 1, . . . ,K − 1 note the partitioning
S0 = {i ∈ Ω | b(i)t = 0}, S1 = {i ∈ Ω | b(i)t = 1} only
considers the first t bits b(i)1 , . . . , b

(i)
t of each message i. Thus,

all item {j ∈ Ω | b(j)1 , . . . , b
(j)
t = b1, . . . , bt} that share a prefix

sequence b1, . . . , bt have shared the same partition at times
s = 1, . . . , t, and therefore share the same posterior. There are
exactly 2K−t such difference posteriors. Also, exactly half of
the items that share the sequence b1, . . . , bt have bit bt+1 = 0

and are assigned to S0 at time t + 1 and the other half have
bit bt+1 = 1 and are assigned to S1 at time t + 1. Then, S0

and S1 will each hold half the items in each posterior group
at each next time t + 1 for t = 1, . . . ,K − 1, and therefore
equal partitioning holds also at times t = 2, . . . ,K .

F. Complexity of the SPM-TOP Algorithm

The memory complexity of the SPM-TOP algorithm is of
order O(K2) because we use a triangular array of all com-
binations of the form

(
K
i

)
i ∈ {0, . . . ,K}. The algorithm

itself stores a list of groups that grow linearly with K, since
the list size is bounded by the decoding time τ .

The time complexity of the SPM-TOP algorithm is of order
O(K2). To obtain this result note that the total number of
items that the system tracks is bounded by the transmission
index t. At each transmission t, partitioning, update and
combine operations require visiting every item at most once.
Furthermore, because of the complexity reduction described
in Sec. VII-D, the system executes operations for only a
fraction of all the items that are stored. The time complexity
at each transmission is then of order O(K), with a small
constant coefficient. The number of transmissions required
is approximately K/C as the scheme approaches capacity.
A linear number of transmissions, each of which requires a
linear number of operations, results in an overall quadratic
complexity, that is, order O(K2), for fixed channel capacity
C.

The K systematic transmissions only require storing the
bits, and in the confirmation phase we just add each symbol
Yt to the running sum. The complexity of this phase is then
of order O(K). Therefore, the complexity of O(K2) is only
for the communication phase.

VIII. SPM-TOP SIMULATION RESULTS

We validate the theoretical achievability bounds in Sec. III
and Sec. VI via simulations of the SPM-TOP algorithm. Figure
4 shows Simulated rate vs. blocklength performance curves of
the SPM-TOP algorithm and the corresponding frame error
rate (FER). The plots show simulated rate curves for the stan-
dard SPM-TOP algorithm and a randomized version, as well as
their associated error rate. The rate for the standard SPM-TOP
algorithm is shown with the red curve with dots at the top and
the corresponding FER is the red, jagged curve at the bottom.
The standard SPM-TOP algorithm stops when a message i
attains Ui(t) ≥ log2 ((1− ϵ)/ϵ). Note that the FER is well
below the threshold ϵ. The randomized version of the SPM-
TOP algorithm, implements a stopping rule that randomly
alternates between the standard rule, which is stopping when
a message i attains Ui(t) ≥ log2 ((1− ϵ)/ϵ), and stopping
when a message attains Ui(t) ≥ log2 ((1− ϵ)/ϵ)−C2, which
requires one less correctly received transmission. The simu-
lated rate of the randomized SPM-TOP version is the purple
curve above the standard version. This randomized version
aims to obtain a higher rate by forcing the FER to be close
to the threshold ϵ rather than upper bounded bounded by ϵ.
Note that the corresponding FER, the horizontal purple curve
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Fig. 4. SPM-TOP Rate and FER performance as a function of average
blocklength. The red lines are rate and FER for the standard version of the
SPM-TOP algorithm. The purple lines are rate and FER for a randomized
version of the SPM-TOP algorithm. The orange dash-dot line −· shows the
bound defined in VI-B for a systematic encoder; the yellow dash-dot line
−· shows the new bound introduced in Thm. 3 for system that enforces
the SEAD constraints an the initial distribution is uniform; the black dash-
dot line −· shows the SED lower bound by Yang et al. [2], equation (7)
sec. II; and the green dash-dot line −· shows Williamnson’s approximation
[24] to Polyanskiy’s VLF lower bound for a stop feedback system [25]. The
simulation consists of 1M Monte Carlo trials and for all curves the channel is
one with capacity C = 0.5000, where p ≈ 0.110, and a decoding threshold
ϵ = 10−3. For a fair comparison, the ϵ-capacity of 0.5005 as described in [25]
is shown rather than the Shannon capacity, but the difference is negligible.

with dots, is very close to the threshold ϵ = 10−3, but not
necessarily bounded above by the threshold. The simulation
consisted of 106 trials for each value of K = 1, . . . , 100 and
for a decoding threshold ϵ = 10−3 and a channel with capacity
C = 0.50. The simulated rate curves attain an average rate that
approaches capacity rapidly and stay above all these theoretical
bounds, also shown in Figure 4 that we describe next.

The two rate lower bounds introduced in this paper are
shown in Figure 4 for the same channel, capacity C = 0.50
and threshold ϵ = 10−3, used in the simulations. The highest
lower bound is labeled Sys. Lower Bound, and is the bound
developed in Sec. VI-B for a system that uses a systematic
phase to turn a uniform initial distribution into a binomial
distribution and then enforces the SEAD constraints. The next
highest bound is labeled SEAD Rate Bound and is the lower
bound (32) introduced in Thm. 3 for a system that enforces
the SEAD constraints. This bound is a slight improvement
from the SED lower bound by Yang et al. [2] that we show
for comparison and is labeled Yang’s Lower Bound. Also for
comparison, we show Polyanskiy’s VLF lower bound [25]
developed for a stop feedback system. Since a stop feedback
system is less capable than a full feedback system, we expect
that the lower bound for full feedback system approaches
capacity faster than the VLF bound, which is what the previous
3 bounds achieve.

The empirical time complexity results of the SPM-TOP
algorithm simulations vs. message size K is shown in Figures
5 and Figure 6. All simulations were performed on a 2019
MacBook Pro laptop with a 2.4 GHz, 8-core i9 processor and
16 GB of RAM, and with transmitter and receiver operating
alternatively on the same processor. First we show in Figure 5
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Fig. 5. Shows average time as a function of K for values of K =
10, 20, . . . , 1000. The yellow line shows the time in milliseconds per frame
transmission and the yellow line, shows microseconds per symbol transmis-
sion. The number of trials use to obtain this data is 100, 000 and the channel
capacity is C = 0.50.

the average time, in milliseconds, taken per message, yellow
line, and per transmitted symbol, green line. The average
time per symbol drops very fast as the message size grows
from 10 to 200 and then slowly stabilizes. This drop could
be explained by the initialization time needed for each new
message. However, the computer temperature and other pro-
cesses managed by the computer’s OS could also play a role
in time measurements. For a more accurate characterization
of the complexity’s evolution as a function of message size
K, we count the number of operations executed during the
transmission of each symbol and each message, which are
probability checks for partitioning before transmitting a sym-
bol and probability updates after the transmission of a symbol.

The average number of probability checks and probability
update operations per message vs message size K are shown in
the top of Figure 6. To compare the data with a quadratic line,
we fitted the parabola 0.0154K2 +4.4316K − 25.9905 to the
update-merge simulated data. Also for reference, the blue line
shows the function 0.17K1.69 to highlight that the complexity
per message is below quadratic in the region of interest. The
average number of probability checks and probability update
operations per transmitted symbol are shown in the bottom
of Figure 6. The number of operations per symbol falls well
below K, even when the number of probabilities that the
system tracks is larger than K. This number is K + 1 at
t = K and only increases with t. Note that for K = 1000 both
averages are below 40. These results show that complexity of
the SPM-TOP algorithm allows for fast execution time and
validate the theory that the complexity order as a function of
K is linear for each transmission and quadratic for the whole
message.

IX. CONCLUSION

Naghshvar et al. [10] established the “small enough dif-
ference” (SED) rule for posterior matching partitioning and
used martingale theory to study asymptotic behavior and
also showed how to develop a non-asymptotic lower bound
on achievable rate. Yang et al. [2] significantly improved
the non-asymptotic achievable rate bound using martingale
theory for the communication phase and a Markov model
for the confirmation phase, still maintaining the SED rule.



21

0 100 200 300 400 500 600 700 800 900 1000
0

0.4

0.8

1.2

1.6

2
#
p
er
fr
a
m
e

#104

Links per message: partition S0; S1
Links per message: posterior updates
0:0154K2 + 4:4316K ! 25:9905
0:17K1:69

0 100 200 300 400 500 600 700 800 900 1000

message size K

0

10

20

30

40

#
p
er
tr
a
n
.

# Partitioning operations
# Update/Combine operations

Fig. 6. The plots shows the average of the number of links visited for update-
merge operations, orange solid line, and for partitioning the list of groups into
S0 and S1, red solid line, as a function of message size K. The top plot shows
the average for the entire transmission of a frame, while the bottom plot shows
the average for a single transmission. The top plot includes a quadratic line,
green line with dots .., fitted to the update-merge curve for comparison with
the simulation data. Also, the top plot includes the function 0.17K1.69 as a
reference to show that the complexity order of the number of links visited
during the transmission of a frame is below quadratic. This data was obtained
with a simulation of 100, 000 trials, and for a channel with capacity C = 0.5

However, partitioning algorithms that enforce the SED rule
require a complex process of swapping messages back and
forth between the two message sets S0 and S1 and updating
the posteriors.

To reduce complexity, this paper replaces SED with the
small enough absolute difference (SEAD) partitioning con-
straints. The SEAD constraints are more relaxed than SED,
and they admit a partitioning rule that applies a threshold
to the ordered posteriors. In this way, SEAD allows a low
complexity approach that organizes messages according to
their type, i.e. their Hamming distance from the received word,
orders messages according to their posterior, and partitions the
messages with a simple threshold without requiring any swaps.

The main analytical results show that the SEAD constraints
suffice to achieve at least the same lower bound that Yang et
al. [2] showed to be achievable by SED. Moreover, the new
SEAD analysis establishes achievable rate bounds higher than
those found by Yang et al. [2]. The analysis does not use
martingale theory for the communication phase and applies a
surrogate channel technique to tighten the results. An initial
systematic transmission phase further increases the achievable
rate bound.

The simplified encoder associated with SEAD has a com-
plexity below order O(K2) and allows simulations for mes-
sage sizes of at least 1000 bits. From a practical perspective,
the simulation results themselves provide new lower bounds on
the achievable rates possible for the BSC with full feedback.
For example, with an average block size of 200.97 bits
corresponding to k = 99 message bits, simulation results for a
target codeword error rate of 10−3 show a rate of R = 0.493
for the channel with capacity 0.5, i.e. 99% of capacity.

Considering future directions for research, the simulation
results reveal actual achievable rates that are sufficiently
above our new achievable-rate bounds that further analytical
investigation to obtain even tighter achievable-rate bounds is
warranted. Furthermore, we note that the uses of a systematic
phase provides an excellent achievable rate while also avoiding
the need for feedback during the initial K transmissions.
Future research can investigate how reducing instances of
feedback after the systematic phase affects achievable rate for
communication with full feedback. Perhaps relatively sparse
feedback can still closely approach the rates achieved with
denser feedback as has been observed in [26], [27] for stop
feedback when sequential differential optimization is used to
select the sparse instances of stop feedback.
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APPENDIX A
PROOF OF CLAIM 1

Proof that | Ui(t+ 1)− Ui(t) |= C2 is equivalent to S0 =
{j} ( or S1 = {j}). First let’s prove the converse, if the set
containing j is not singleton, then constraint (20) does not
hold. Without loss of generality, assume j ∈ S0 and suppose
∃l ̸= j s.t. l ∈ S0. Since P0 ≥ ρj(y

t) + ρl(t), then, ∆ =
2P0 − 1 ≥ 2ρi(y

t) + 2ρj(y
t) − 1 ≥ 2ρj(y

t) − 1 > 0. By
equation (123), when j ∈ Sy , then:

Uj(t+ 1)− Uj(t)

= log2(2q)− log2

(
1 + (q − p)

∆− ρj(y
t)

1− ρj(yt)

)
(148)

≤ log2(2q)−log2
(
1+(q−p)2ρj(y

t) + 2ρl(t)−1−ρj(yt)
1−ρj(yt)

)
= log2(2q)−log2

(
1−(q−p)+(q−p) 2ρl(t)

1−ρj(yt)

)
< log2(2q)− log2 (1− (q − p)) = C2 . (149)

Note from equation (148) that Uj(t+1)−Uj(t) decreases with
∆, therefore, replacing ∆ with a lower bound gives an upper
bound of difference (148). For a lower bound, note that ∆ ≤ 1,
and that setting ∆ = 1 in (148), results in Uj(t+1)−Uj(t) =
0. In the case where Yt+1 = Xt+1⊕1, or j ∈ Syc , by equation
(123), the difference Uj(t+ 1)− Uj(t) is:

Uj(t+ 1)− Uj(t)

= log2(2p)− log2

(
1− (q − p)

∆− ρj(y
t)

1− ρj(yt)

)
(150)

≥ log2(2p)−log2
(
1− (q−p)2ρj(y

t)+2ρl(t)−1−ρj(yt)
1− ρj(yt)

)
(151)

= log2(2p)−log2
(
1+(q−p)

(
1− 2ρl(t)

1−ρj(yt)

))
(152)

> log2(2p)− log2 (2q) = −C2 . (153)

To prove that if the set containing j is singleton, then |Uj(t+
1)−Uj(t)| = C2, note that S0 = {j} =⇒ ∆ = 2ρj(y

t)− 1.



22

The inequalities, therefore, become equalities and equations
(148) and (150) become C2 and −C2 respectively.

APPENDIX B
PROOF OF EXISTENCE OF U ′

i(t) IN THM. 3

The proof that a process like the one described in Thm. 3
exists, consists of constructing one such process. Define the
process U ′

i(t) by U ′
i(t) = Ui(t) when Y t ∈ Bϵ

(i,n), for some
n ∈ N, otherwise U ′

i(t+1) = U ′
i(t)+W ′

i (t+1), where W ′
i (t+

1) is a weight update to be defined, or just C2(1(Yt+1=0) −
1(Yt+1=1)) if Y t /∈ Yϵ

(i,n). The update W ′
i (t+1) needs to meet

at the same time the constraints (17), (19), (21), and (20) of
Thm. 1 and the constraints of Thm. 2 with B = C.

Denote the transmitted symbol Xt+1 by X , and the received
symbol Yt+1 by Y and let Xc = X ⊕ 1. The symbol Y
could either be X or Xc. Also, we could have {i ∈ S0} or
{i ∈ S1}. These cases combine to 4 possible events. Define
Wi(t + 1) ≜ Ui(t + 1) − Ui(t), and note that Wi(t + 1) can
be derived from equation (123) as follows:

Wi(t+1) =


log2(2q)+ai if i ∈ S0, Y = X

log2(2p)+bi if i ∈ S0, Y = Xc

log2(2p)+ci if i ∈ S1, Y = Xc

log2(2q)+di if i ∈ S1, Y = X

, (154)

where ai, bi, ci and di are given by:

ai = − log2

(
1− (q − p)

ρj(y
t)−∆

1− ρj(yt)

)
(155)

bi = − log2

(
1 + (q − p)

ρj(y
t)−∆

1− ρj(yt)

)
(156)

ci = − log2

(
1 + (q − p)

ρj(y
t) + ∆

1− ρj(yt)

)
(157)

di = − log2

(
1− (q − p)

ρj(y
t) + ∆

1− ρj(yt)

)
. (158)

Let a′i and d′i be defined by:

a′i ≜ 1(∆<0)
1−∆

1 +∆
log2 (1− (q − p)∆)− p

q
bi, (159)

d′i ≜ 1(di<0)di − 1(di≥0)
p

q
ci , (160)

then, define the update W ′
i (t+ 1) by:

W ′
i (t+1) =


log2(2q)+a′i if i ∈ S0, Y = X

log2(2p)+bi if i ∈ S0, Y = Xc

log2(2p)+ci if i ∈ S1, Y = Xc

log2(2q)+d′i if i ∈ S1, Y = X

. (161)

Need to show that the constraints (21)-(20) of Thm. 1, and
constraints (26) and (28) are satisfied. When U ′

i(t) ≥ 0, since
W ′

i (t + 1) is defined in the same manner as Wi(t + 1), then
constraints (19) and (20) are satisfied.

The proof that U ′
i(t) satisfies constraints (21), (17) and (26)

is split into the case where ∆ ≥ 0 and the case where ∆ < 0.

A. Proof that U ′
i(t) satisfies (21), (17) and (26) when ∆ ≥ 0.

It suffices to show that for all yt ∈ Yϵ
(i,n) and for all i =

1, . . . ,M , if ∆ ≥ 0, then E[W ′
i (t + 1) | θ = i, Y t = yt] =

C, Since C > 0 (constraint (17)), and any weighted average
would add up to C (constraint (21)).

When ∆ ≥ 0, then ρi(y
t) + ∆ > 0, and a′i = −

p
q bj since

di > 0. The expectation E[W ′
j(t + 1) | θ = i, Y t = yt] can

be computed from (123), where ιi depends on whether i ∈ S0

or i ∈ S1. The expectation is given by either (162) or (163)
respectively:

q log2(2q)− pbi + p log2(2p) + pbi = C if i ∈ S0 (162)
q log2(2q)− pci + p log2(2p) + pci = C if i ∈ S1 . (163)

This proofs constraints (21) and (17) satisfied. To proof that
constraint (26) is satisfied, need to show that W ′

i (t + 1) ≤
Wi(t+1). If suffices to compare the cases where W ′

i (t+1) ̸=
Wi(t+ 1), that is, when Y = X . Need to show that a′i ≤ ai
and d′i ≤ di. For this comparison, express ai and di as positive
logarithms as follows:

ai = log2

(
1 +

(q − p)(ρi(y
t)−∆)

1− ρi(yt)− (q − p)(ρi(yt)−∆)

)
(164)

a′i =
p

q
log2

(
1 +

(q − p)(ρi(y
t)−∆)

1− ρi(yt)

)
(165)

di = log2

(
1 +

(q − p)(∆ + ρi(y
t))

1− ρi(yt)− (q − p)(∆ + ρi(yt))

)
(166)

d′i =
p

q
log2

(
1 +

(q − p)(ρi(y
t) + ∆)

1− ρi(yt)

)
. (167)

Since p ≤ 1
2 →

p
q ≤ 1, then, we only need to show

that the arguments of the logarithm in (164) is greater than
that of (165), and similarly for (166) and (167). Since all
arguments share the term 1, we only need to show the
following inequalities (168) and (169):

(q − p)(ρi(y
t)−∆)

1−ρi(yt)−(q−p)(ρi(yt)−∆)
≥ (q − p)(ρi(y

t)−∆)

1−ρi(yt)
(168)

(q − p)(∆ + ρi(y
t))

1−ρi(yt)−(q−p)(ρi(yt)+∆)
≥ (q − p)(ρi(y

t) + ∆)

1−ρi(yt)
.

(169)

The numerators on both inequalities are the same, and positive,
since q − p > 0 and i ∈ S0 =⇒ ρi(y

t) − ∆ ≥ 0 and
∆ ≥ 0 =⇒ ρi(y

t) + ∆ ≥ 0. Both denominators on the left
hand side are smaller than those in the right side. Since the
numerators are exactly the same, then, the inequalities hold.

B. Proof that U ′
i(t) satisfies (21), (17) and (26) when ∆ < 0.

Next we show that constraints (21), (17) and (26) are
satisfied when ∆ < 0. In the case where ρi(y

t)+∆ > 0, then
d′i is still −p

q ci ≤ di by equation (166). However, whenever
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∆ < 0, the term 1−∆
1+∆ log2 (1− (q − p)∆) ≥ 0 is added to a′i.

To show that constraint (21) holds, recall from (126) that:

M∑
i=1

ρiE[Wi(t+ 1) | θ = i, Y t = yt]− C

=
∑
i∈S0

ρi(y
t) (qai +pbi) +

∑
i∈S0

ρi(y
t) (qdi +pci) (170)

≥
∑
i∈S0

ρi(y
t) (qai +pbi)

−
∑
i∈S1

ρi(y
t) log2

(
1− (q − p)2

ρi(y
t)− α

1− ρi(yt)

)
(171)

≥
∑
i∈S0

ρi(y
t) (qai+pbi)−

1+α

2
log2

(
1+(q−p)2α

)
. (172)

To obtain E[W ′
i (t+1) | Ft, θ = i], replace ai by a′i in equation

(172), and let ei ≜ 1+α
1−α log2

(
1 + (q − p)2α

)
. Then a′i = ei−

p
q bi and qa′i + pbi = qei, and replace to obtain:

M∑
i=1

ρiE[W
′
i (t+ 1) | θ = i, Y t = yt]− C

=
∑
i∈S0

ρi(y
t)qei+

∑
i∈S1

ρi(y
t) (qdi + pci) (173)

≥qe1
∑
i∈S0

ρi(y
t)− 1 + α

2
log2

(
1 + (q − p)2α

)
(174)

=
1− α

2
e1 −

1 + α

2
log2

(
1 + (q − p)2α

)
(175)

=

(
1− α

2

1 + α

1− α
− 1 + α

2

)
log2

(
1 + (q − p)2α

)
(176)

= 0 . (177)

To show that E[W ′
i (t + 1) | θ = i, Y t = yt] ≥ 0, (constraint

(17)), note that d′i is either unchanged from di, or the same
as when ∆ ≥ 0 and therefore, it holds for i ∈ S1. For i ∈ S0,
note from the first term of equation (173), that E[W ′

i (t+ 1) |
θ = i, Y t = yt] − 0 = ρi(y

t)qei. Since ei ≥ 0, then the
expectation is either C or greater.

Need to show, W ′
i (t+ 1) ≤ Wi(t+ 1) (constraint (26)). It

suffices to show that a′i ≤ ai and d′i ≤ di. Again, since d′i is
either di or the same as when ∆ ≥ 0, we only need to show
that a′i = ei − p

q bi ≤ ai. It suffices to show that for a positive
scalar γ:

γ

(
q

(
ei −

p

q
bi

)
+ pbi

)
≤ γ (qai + pbi) . (178)

When ∆ < 0, then ei > 0. We have that:

q

(
ei −

p

q
bi

)
+pbi =

1 + α

1− α
log2

(
1 + (q − p)2α

)
. (179)

Recall from equation (129) that:

qai + pbi ≥ − log2

(
1− (q − p)2

ρmin + α

1− ρmin

)
, (180)

and let γ = 1−α
2 , then, the scaled difference between left and

right terms in (178) is given by:

1− α

2
(qai + pbi)−

1 + α

2
log2(1 + (q − p)2α)

≥− 1− α

2
log2

(
1− (q − p)2

ρmin + α

1− ρmin

)
− 1 + α

2
log2

(
1− (q − p)2α

ρmin − 1

1− ρmin

)
(181)

≥− log2

(
1− (q−p)2

1−ρmin

(
ρmin

1+α2

2
−α2

))
(182)

≥− log2

(
1− (q−p)2

1−ρmin

(
ρmin

1+α2

2
−ρminα

))
(183)

=− log2

(
1− (q−p)2

1−ρmin

(
ρmin

(1−α)2

2

))
≥ 0 . (184)

Equation (181) follows from (180). In (182), Jensen’s inequal-
ity is used, where:
1−α
2 (ρmin + α) + 1+α

2 α(ρmin − 1) = −α2 + ρmin
1−α+α+α2

2 .
In (183) note that α ≤ ρmin =⇒ α2 ≤ ρminα. Finally
1− 2α+α2 = (1−α)2 ≥ 0. We conclude that ei− p

q bi ≤ ai,
and therefore W ′

i (t+ 1) ≤Wi(t+ 1).

C. Proof that U ′
i(t) satisfies constraint (28)

Finally need to show that constraint (28) is satisfied, that
is: U ′

i(Tn+1)− p
q (Ui(Tn)−C2) ≤ 1

q log2(2q). We have shown
that the update W ′

i (t) allows the process U ′
i(t) to meet

constraints (17)-(20) of Thm. (1) and constraints (26) and
(26). Note that the definition of U ′

i(t), in Thm. 2, guarantees
that U ′

i(t) resets to the value of Ui(t) at any time t
(n+1)
0 ,

when Ui(t) falls from confirmation, even if U ′
i(t) has not

entered confirmation, where U ′
i(t) ≥ 0. We could construct

a third process U ′′
i (t) that preserves all the properties of

U ′
i(t), and with U ′′

i (t) ≥ 0 if Ui(t) ≥ 0. The process U ′′
i (t)

could be initialized by U ′′
i (t

(n)
0 ) = Ui(t

(n)
0 ) and then letting

U ′′
i (t+1) = U ′′

i (t)+W ′′
i (t+1) with step size W ′′

i (t) defined
by: W ′′

i (t+ 1) = max{min{Wi(t+ 1),−Ui(t)},W ′
i (t+ 1)}.

The inner minimum guarantees that U ′′
i (t) reaches 0 if Ui(t)

does, and the outer maximum guarantees that the step size
is at least that of U ′

i(t). Then the processes Ui(t) and U ′′
i (t)

cross 0 and enter confirmation at the same time, and share the
same values when Ui(t) < 0, that is:

Ui(t+1) ≥0 =⇒ U ′′
i (t+ 1) ≥ 0 (185)

Ui(t) ≤ 0 =⇒ U ′′
i (t) = Ui(t) . (186)

Using the process U ′′
i (t) and equation (186), the expression

in constraint (28) becomes:

U ′′
i (t+ 1)− p

q
(Ui(t+ 1)− C2)

=Ui(t)

(
1− p

q

)
+W ′′

i (t+1)− p

q
(Wi(t+1)−C2) . (187)
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In the case where W ′′
i (t+ 1) = −Ui(t), we have that

U ′′
i (t+ 1) = 0 and Ui(t+ 1) ∈ [0, C2], then:

U ′′
i (t+ 1)− p

q
(Ui(t+1)−C2)

= −p

q
(Ui(t) +Wi(t+ 1)− C2) (188)

=
p

q
C2 −

p

q
(Ui(t) +Wi(t+ 1)) (189)

≤ p

q
C2 ≤

1

q
log2(2q) . (190)

The first inequality in (190) follows since U ′′
i (t) = 0 =⇒

Wi(t+1) ≥ −Ui(t) and the second inequality holds because:

log2(2q)− pC2 = 1 + (1− p) log2(1− p) + p log2(p)

= C ≥ 0 . (191)

For the case where W ′′
i (t) > −Ui(t) we solve a constraint

maximization of expression (187), where the constraint is
Ui(t) < 0 (or ρi(y

t) < 1
2 ). For simplicity we subtract the

constant 1
q log2(2q) from (187).

Let i ∈ {1, . . . ,M} be arbitrary and let ρ ≜ ρi(y
t), and α ≜

|∆|. Using the definitions of Wi(t) and W ′′
i (t) in (154), (161)

and (159)-(160), we explicitly find expressions for U ′′
i (t+1)−

p
q (Ui(t+1)−C2) in terms of ρ, p, q and α.

When {i ∈ S0} ∩ {∆ < 0} or {i ∈ S1} ∩ {∆ ≥ 0} the
expression is given by:

log2

(
ρ

1−ρ

)(
1− p

q

)
− p

q
log2(2q)−

p

q
log2(2p)

+ 1∆<0
1 + α

1− α
log2(1 + (q − p)2α) (192)

+
p

q
log2

(
1+(q−p)ρ+α

1−ρ

)
+
p

q
log2

(
1−(q−p)ρ+α

1−ρ

)
,

and when {i ∈ S0} ∩ {∆ ≥ 0} or {i ∈ S1} ∩ {∆ < 0} it is
given by:

log2

(
ρ

1−ρ

)(
1− p

q

)
− p

q
log2(2q)−

p

q
log2(2p) (193)

+
p

q
log2

(
1+(q−p)ρ−α

1−ρ

)
+

p

q
log2

(
1−(q−p)ρ−α

1−ρ

)
.

D. Maximizing (192)

The maximum of (192) happens when ∆ < 0, since the term
with the indicator function is non-negative. Since α ≤ 1

3 , then
1+α
1−α ≤ 2, and we proceed to solve:

maximize f(ρ, α) (194)

subject to ρ ≤ 1

2
, α ≤ 1− 2ρ , (195)

where f(ρ, α) is defined by:

f(ρ, α) ≜ log2

(
ρ

1−ρ

)(
1− p

q

)
(196)

+ 2 log2(1 + (q − p)2α)− p

q
log2(2q)−

p

q
log2(2p)

+
p

q
log2

(
1+(q−p)ρ+α

1−ρ

)
+
p

q
log2

(
1−(q−p)ρ+α

1−ρ

)
.

First we show that f is increasing in ρ, by showing d
dρf ≥ 0.

Note that d
dρ

ρ
1−ρ = 1

(1−ρ)2 and d
dρ

ρ+α
1−ρ = 1

(1−ρ)2 + α
(1−ρ)2

∂

∂ρ
ln(2)f(ρ, α) =

q − p

q

1

(1− ρ)ρ
+

p

q

1+α

(1−ρ)2

(
(q − p)

1 + (q−p)ρ+α
1−ρ

− (q − p)

1− (q−p)ρ+α
1−ρ

)
. (197)

Factor out the positive constant 1
q
q−p
1−ρ , to obtain:

1

ρ
+ p

1+α

1−ρ

(
1

1 + (q−p)ρ+α
1−ρ

− 1

1− (q−p)ρ+α
1−ρ

)

=
1

ρ
+ p

1+α

1−ρ

(
1−(q−p)ρ+α1−ρ

)
−
(
1+(q−p)ρ+α1−ρ

)
1− (q − p)2

(
ρ+α
1−ρ

)2 (198)

=
1

ρ
− 2

p(1 + α)(q − p)(ρ+ α)

(1− ρ)2 − (q − p)2(ρ+ α)2
=

(1−ρ)2−(q−p)2(ρ+α)2−2pρ(1+α)(q−p)(ρ+α)

ρ(1− ρ)2 − ρ(q − p)2(ρ+ α)2
. (199)

It suffices to show that the top of equation (199) is non-
negative. Since it decreases when α ≤ 1− 2ρ then:

(1− ρ)2 − (q − p)2(ρ+ α)2 − 2pρ(1 + α)(q − p)(ρ+ α)

≥(1− ρ)2 − (q − p)2(ρ+ 1− 2ρ)2

− 2pρ(1 + 1− 2ρ)(q − p)(ρ+ 1− 2ρ) (200)

=(1− ρ)2 − (q − p)2(1− ρ)2

− 2pρ(2− 2ρ)(q − p)(1− ρ) (201)

=(1− ρ)2(1− (q − p)2 − (q − p)4pρ) (202)

=(1− ρ)24p(q − ρ(q − p))

> 4p(1− ρ)2(q − ρ) > 0 . (203)

In equation (203) we have used (q − p)2 = (1 − 2p)2 =
1−4p+4p2 = 1−4pq and ρ(q−p) < ρq < ρ. Since ∂

∂ρf > 0

then f is increasing in ρ and we can replace ρ by 1−α
2 for

an upper bound. Since ρ+α
1−ρ =

1−α
2 +α

1− 1−α
2

= 1−α+2α
2−1+α = 1, then

f(α) ≜ f
(
1−α
2 , α

)
is given by:

f(α) = log2

(
1−α
1+α

)(
1− p

q

)
+2 log2(1+(q−p)2α) (204)

− p

q
log2(2q)−

p

q
log2(2p)

+
p

q
log2(1+(q−p)) + p

q
log2(1− (q − p)) (205)

= log2

(
1−α
1+α

)(
1− p

q

)
+2 log2(1+(q−p)2α). (206)
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To complete the proof, it suffices to show that the last
expression decreases in α:

d

dα
ln(2)f(α)

=

(
1− p

q

)
1+α

1−α
−(1+α)−(1−α)

(1 + α)2
+

2(q − p)2

1+(q−p)2α
(207)

=− 2
1

q

q − p

1− α2
+ 2

(q − p)2

1 + (q − p)2α
(208)

=2(q − p)

(
−1

q

1

1− α2
+

q − p

1 + (q − p)2α

)
(209)

≤ −2(q − p)

(
1 +

p

q
− q + p

)
= −2p(q − p)

(
2 +

1

q

)
< 0 . (210)

Since f is decreasing, then the maximum of equation (192) is
0, at α = 0.

E. Maximizing (193)
The expression (193) is given by g(ρ, α) − p

q log2(2q) −
p
q log2(2p) where f(ρ, α) is defined by:

g(ρ, α) ≜ log2

(
ρ

1−ρ

)(
1− p

q

)
(211)

+
p

q
log2

(
1+(q−p)ρ−α

1−ρ

)
+

p

q
log2

(
1−(q−p)ρ−α

1−ρ

)
.

We proceed to solve:

maximize g(ρ, α) (212)

subject to ρ ≤ 1

2
, α ≤ 1− 2ρ . (213)

Combining the last two terms we obtain:

g(ρ, α) = log2

(
ρ

1− ρ

)(
1− p

q

)
+

p

q
log2

(
1− (q − p)2

(
ρ− α

1− ρ

)2
)

. (214)

The first term increases with ρ, and the second one decreases
as the quotient

(
ρ−α
1−ρ

)
increases in absolute value. For ρ ≤ 1

3 ,
it is possible to have ρ = α, leaving only (214). However, for
ρ ≥ 1

3 , the quotient is positive because α ≤ 1− 2ρ ≤ 1
3 . The

smallest value of the quotient is then 1−α
1−ρ

3ρ−1
1−ρ = 2ρ

1−ρ−1 with
square 1 − 4ρ(1−2ρ)

(1−ρ)2 . Let g(ρ) be defined in equation (215),
then the maximum of g(ρ, α) is bounded by the maximum of
g(ρ), where:

g(ρ) ≜ log2

(
ρ

1− ρ

)(
1− p

q

)
(215)

+
p

q
log2

(
1−(q−p)3ρ−1

1−ρ

)
+

p

q
log2

(
1+(q−p)3ρ−1

1−ρ

)
.

To determine the max, we find the behavior of g(ρ) by taking
the first derivative:
d

dρ
g(ρ) =

q − p

q ln(2)

1− ρ

ρ

1

(1− ρ)2

+
p

q ln(2)

(
(q − p) 2

(1−ρ)2

1 + (q − p) 3ρ−1
1−ρ

−
(q − p) 2

(1−ρ)2

1− (q − p) 3ρ−1
1−ρ

)
. (216)

Then, scale by the positive term (1−ρ)2

q−p q ln(2) to obtain:

g′(ρ)
(1− ρ)2

q − p
q ln(2)

=
1− ρ

ρ
− p

2

1− (q − p) 3ρ−1
1−ρ

+ p
2

1 + (q − p) 3ρ−1
1−ρ

(217)

=
1− ρ

ρ
+ 2p

1− (q − p) 3ρ−1
1−ρ − 1− (q − p) 3ρ−1

1−ρ

1− (q − p) 3ρ−1
1−ρ

(218)

=
1− ρ

ρ
− 4p(q − p)

3ρ−1
1−ρ

1− (q − p) 3ρ−1
1−ρ

(219)

=
1− ρ

ρ
− 4p(q − p)

3ρ− 1

1− (q − p)(3ρ− 1)
(220)

=
1− ρ− (q − p)(3ρ− 1)(1− ρ+ 4pρ)

ρ− (q − p)ρ(3ρ− 1)
. (221)

To show that g′ ≥ 0 in [ 13 ,
1
2 ] it suffices to show that the top

of equation (221) is positive:

1− ρ− (q − p)(3ρ− 1)(1− ρ+ 4pρ)

≥1− 1

2
− (q − p)

(
3

2
− 1

)
(1− ρ(1− 4p)) (222)

=
1

2
− 1− 2p

2
(1− ρ(1− 4p)) (223)

=
1

2
− 1− 2p

2
+

1− 2p

2
ρ(1− 4p) (224)

=
1

2
− 1

2
+ p+ ρ

(1− 2p)(1− 4p)

2
(225)

=p+ ρ
(1− 2p)(1− 4p)

2
. (226)

When p ≤ 1
4 , then (1− 4p) > 0 and the second term is non-

negative and therefore the derivative is positive. When p > 1
4

we have 1− 4p ≥ −1, 0 ≤ 1− 2p < 1
2 , then:

p+ ρ
(1− 2p)(1− 4p)

2
≥ 1

4
− ρ

1

4
=

1− ρ

4
≥ 1

8
> 0 ,

therefore, g is increasing in ρ and the maximum is at ρ = 1
2

where ρ
1−ρ = 1. The maximum is given by:

g

(
1

2

)
= log2 (1)

(
1− p

q

)
+

p

q
log (1+(q−p)) + p

q
ln (1−(q−p))

=
p

q
log2(2q) +

p

q
log2(2p) . (227)

Then the maximum of g(ρ, α) − p
q log(2q) −

p
q log2(2p) is

zero. Since the maximum of both equations, (192) and (193)
are zero, we conclude that U ′

i(t+ 1)− p
q (Ui(t+ 1)− C2) ≤

1
q log2(2q).

Finally, we prove the last claim that B = 1
q log2(2q) is the

smallest value for a system that enforces the SED constraint.
It suffices to note that the surrogate process described in [2],
Sec. V E is a strict martingale. A process U ′

i(t) with a lower
B value would not comply with constraint (9) and therefore
would also fail to meet constraint (21).
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APPENDIX C
PROOF: CONFIRMATION PHASE STATE SPACE 3

Proof: Suppose that for times t = s and t = s + 1 the
partitioning is fixed at S0 = {j} and S1 = Ω \ {j}. Suppose
also that Ys = 0, and Ys+1 = 1. Need to show that ∀i =
1, . . . ,M we have that ρi(ys) = ρi(y

s+2). Using the update
formula (121), at time t = s+ 1 we have that for i ̸= j:

ρi(y
s+1) =

pρi(y
s)

qρj(ys)+p(1−ρj(ys))
=

pρi(y
s)

ρj(ys)(q−p)+p
(228)

ρj(y
s+1) =

qρj(y
s)

qρj(ys) + p(1− ρj(ys))
=

qρj(y
s)

ρj(ys)(q−p)−p
.

(229)

At time t = s + 2, since Ys+2 = 1, equation (121) for i ̸= j
results in:

ρi(y
s+2) =

qρi(y
s+1)

(p−q)ρj(ys+1)+q
=

q pρi(y
s)

ρj(ys)(q−p)+p

(p−q) qρj(ys)
ρj(ys)(q−p)+p+q

=
qpρi(y

s)

(p−q)qρj(ys)+q(ρj(ys)(q−p)+p)
(230)

=
qpρi(y

s)

−(q−p)qρj(ys)+(q−p)qρj(ys)+qp

=
qpρi(y

s)

qp
= ρi(y

s) . (231)

And for i = j equation (121) results in:

ρj(y
s+2) =

pρj(y
s+1)

(p−q)ρj(ys+1)+q
=

p
qρj(y

s)
ρj(ys)(q−p)+p

(p−q) qρj(ys)
ρj(ys)(q−p)+p+q

=
pqρj(y

s)

(p−q)qρj(ys)+q(ρj(ys)(q−p)+p)
(232)

=
qpρj(y

s)

−(q−p)qρj(ys)+(q−p)qρj(ys)+qp

=
qpρj(y

s)

qp
= ρj(y

s) . (233)

Then for all i = i . . . ,M each posterior at time t = s +
1 is given by: ρi(y

s+2) = ρi(y
s). The same equalities hold

when Ys+1 = 1 and Ys+2 = 0, where the only difference
is that p and q are interchanged. By induction, we have that
ρi(y

s+2r) = ρi(y
s) for r = 1, . . . , if for every t = s, . . . , s+

2r− 1 the partitions are fixed at S0 = {j} and S1 = Ω \ {j},
and

∑2r
k=1 Ys+k = 0.

APPENDIX D
PROOF OF INEQUALITY (108), SEC. III

Proof: Need to show that the following inequality holds:

E[Ui(Tn) | T (n+1)>0, θ= i] ≥ E[Ui(Tn) | T (n)>0, θ= i]
(234)

Recall that C(t(n)0 ) is the event that message i enters confirma-
tion after time t

(n)
0 , rather than another message j ̸= i ending

the process by attaining Uj(t) ≥ log2(1 − ϵ) − log2(ϵ). This
event is defined by C(t(n)0 ) ≜ {∃t > t

(n)
0 : Ui(t) ≥ 0}. Using

Bayes rule, the expectation E[Ui(Tn) | T (n) > 0, θ = i] can

be expanded as a sum of expectations conditioned on events
that are defined in terms of {T (n+1) > 0}, {T (n) > 0} and
C(t(n)0 ), and whose union is the full event space to leave
only the original conditioning {T (n) > 0}. These events
are C(t(n)0 ) ∩ {T (n+1) > 0}, C(t(n)0 ) ∩ {T (n+1) ≤ 0},
¬C(t(n)0 )∩{T (n+1) > 0} and ¬C(t(n)0 )∩{T (n+1) ≤ 0}. Note
that ¬C(t(n)0 ) =⇒ {T (n+1) = 0} and therefore the third
event vanishes. The expansion is given by:

E[Ui(Tn) | T (n) > 0, θ = i]

=E[Ui(Tn) | T (n+1) > 0, T (n) > 0, θ = i]

· Pr(C(t(n)0 ), T (n+1) > 0 | T (n) > 0, θ = i) (235)

+ E[Ui(Tn) | C(t(n)0 ), T (n+1)≤0, T (n)>0, θ= i]

· Pr(C(t(n)0 ), T (n+1) ≤ 0 | T (n)>0, θ= i) (236)

+ E[Ui(Tn) | ¬C(t(n)0 ), T (n+1)≤0, T (n)>0, θ= i]

· Pr(¬C(t(n)0 ), T (n+1) ≤ 0 | T (n)>0, θ= i) . (237)

Since {T (n+1) > 0} =⇒ C(t(n)0 ) ∩ {T (n) > 0} , we
can omit the conditioning on C(t(n)0 ) and {T (n) > 0} when
accompanied by {T (n+1) > 0}. By the independence of the
confirmation phase from the crossing value Ui(Tn) derived
from the fix state count of the Markov Chain we have that:

E[Ui(Tn) | C(t(n)0 ), T (n+1)≤0, T (n)>0, θ= i]

= E[Ui(Tn) | T (n+1) > 0, T (n) > 0, θ = i] . (238)

Therefore, we can replace the expectation in (236) by the one
in (235) and then add the probabilities in (235) and (236) to
obtain Pr(C(t(n)0 ) | T (n) > 0, θ= i). Note that ¬C(t(n)0 ) =⇒
{T (n+1) ≤ 0}, thus the conditioning on {T (n+1) ≤ 0} is
redundant with ¬C(t(n)0 ). Then the expectation in the left of
(235) is also given by:

E[Ui(Tn) | T (n) > 0, θ = i]

= E[Ui(Tn) | T (n+1) > 0, θ = i]

· Pr(C(t(n)0 ) | T (n)>0, θ= i) (239)

+ E[Ui(Tn) | ¬C(t(n)0 ), T (n)>0, θ= i]

· Pr(¬C(t(n)0 ) | T (n)>0, θ= i) (240)

The event ¬C(t(n)0 ) ∩ {T (n) > 0} ∩ {θ = i} implies that
the process decodes in error at the nth communication phase
round, which results in Ui(Tn) < 0. Therefore, we have that
E[Ui(Tn) | ¬C(t(n)0 ), T (n+1) ≤ 0, θ = i] < 0, This makes the
left side of (239) an average of the positive quantity in the
right of (239) and the negative quantity in (240). Then:

E[Ui(Tn) |T (n)>0, θ= i]

≤ E[Ui(Tn) | T (n+1)>0, θ= i]

· Pr(C(t(n)0 ) | T (n)>0, θ= i) (241)

≤ E[Ui(Tn) | T (n+1) > 0, θ = i] (242)

The last inequality (242) follows because the expectation is
positive and is multiplied by a probability, 0 ≤ Pr(C(t(n)0 ) |
T (n)>0, θ= i) ≤ 1, in (241).
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