
Use of predator exclusion cages
to enhance Orbicella faveolata

micro-fragment survivorship and
growth during restoration

Catherine Raker 1*, Manuel Olmeda-Saldaña2,

Stacey M. Williams2, Ernesto Weil3 and Carlos Prada 1

1College of the Environment and Life Science, University of Rhode Island, Kingston, RI, United States,
2Institute for Socio-Ecological Research, Inc., Lajas, Puerto Rico, 3Department of Marine Sciences,

University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico

As coral reefs face increasing threats from a variety of stressors, coral restoration

has become an important tool to aid coral populations. A novel strategy for

restoring boulder corals is microfragmentation, which may enhance coral

growth by at least five times, depending on species and conditions. However,

mortality rates are still significant during the early weeks after transplanting

microfragments to impacted areas. We examined the effects of predation after

transplanting fragments by caging Orbicella faveolata microfragments and

testing if field survival rates would increase after an acclimation period. We

tracked the health and growth of ten genotypes across different acclimation

periods from a control group of no acclimation (0 months) to full acclimation (4

months). After four months, we presented a mix of acclimated and unacclimated

corals to reef predators. Coral survivorship was highest in acclimation cages

(near 100%) compared to the field (p < 0.001), with significant growth differences

across genotypes (p < 0.001). Microfragments also grew more in acclimation

cages (p < 0.001), with rates slowing down in the first two months after being

planted into the substrate. Microfragments that had been acclimated for longer

than one month also showed comparatively higher survival rates, further

supporting the importance of acclimation during restoration. These results

suggest caging fragments boost coral survival during initial stages of

restoration by > 50% and increase the persistence of transplanted fragments.

Results also highlight the importance of identifying and prioritizing genotypes

with high survival and growth rates. Beyond coral restoration, results

demonstrate the possible negative ecological effects of corallivores,

particularly parrotfishes, on recent transplants of fragments.
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Introduction

In recent years, coral reefs have faced extreme reductions in live

coral cover due to diseases, overfishing, pollution, ocean

acidification, and global warming (Weil et al., 2009; Weil and

Rogers, 2011; Bruno et al., 2019). One of the most affected corals

is the mountainous coral Orbicella faveolata, a foundational species

on Caribbean reefs (Bruckner and Bruckner, 2006; Edmunds, 2015).

In Puerto Rico, the loss of high percent live tissue cover of

foundational coral species has contributed to the overall decline

and community shift from coral dominated to algal dominated

habitats at multiple coral reefs (Weil et al., 2009; Garcıá-Sais et al.,

2017). Since the intense bleaching event and disease outbreak in

2005-2006, some reefs in Puerto Rico have shifted away from an

Orbicella annularis complex dominated ecosystem to one

dominated by algae, sponges and soft corals (Weil et al., 2009;

Williams et al., 2015; Garcıá-Sais et al., 2017; Williams and Garcia-

Sais, 2020).

In response to the rapid loss of coral cover, coral restoration

efforts have become increasingly widespread (Levy et al., 2010; van

Oppen et al., 2017). An especially popular technique has been coral

gardening, where corals are fragmented and maintained in situ

before being replanted on reefs (Levy et al., 2010; Rinkevich, 2015;

Lirman and Schopmeyer, 2016). While most restoration efforts have

focused on fast-growing branching corals (Shaish et al., 2010),

strategies have also been developed for boulder corals. In

particular, Forsman et al. (2015) and Page et al. (2018) pioneered

microfragmentation, a modification on coral gardening techniques,

where boulder corals are cut into 1cm by 1cm pieces that are then

glued to a substrate and monitored before replanting on reefs

(Forsman et al., 2015; Page et al., 2018). Microfragments have

been shown to grow significantly faster (up to 5X) than larger

fragments, making the strategy an effective way to produce coral

tissue (Forsman et al., 2015; Page et al., 2018).

Despite the increasing adoption of coral restoration, a key

finding is that survivorship of fragments is low, especially after

five years (Miller and Hay, 1998). It appears that fish corallivory can

affect coral fragment survival (Morikawa and Palumbi, 2019; Koval

et al., 2020), yet the effects of fish predators on coral fragments have

not been quantified. Other corallivores such as fireworms have also

been shown to slow the growth of Acropora cervicornis transplants

(Miller et al., 2014). And while it has been found that parrotfish

predation can have a variety of negative effects on coral colonies

(Burkepile, 2012), the factors determining what corals are more or

less attractive to corallivores remain unclear (Rotjan and Dimond,

2010). Other restoration strategies have occasionally used protective

cages around newly fragmented corals, but the overall effectiveness

of these cages as a predator exclusion method has not been

specifically studied (Page et al., 2018). While there is a history of

predator exclusion experiments on coral reefs, many have focused

on fish (Doherty and Sale, 1985) or sponges (Leong and Pawlik,

2010; Pawlik et al., 2013) rather than coral, particularly in a coral

restoration context. Understanding the impacts of predation and

protective caging on coral microfragments is key to determining the

most effective strategies for coral restoration through outplanting.

Genotype variation has been found to be an important factor in

coral restoration success, and could also be a factor in predator

deterrence (Lirman et al., 2014). A survey of over 1,700 nursery-

grown fragments of A. cervicornis found different growth rates

between genotypes (Lirman et al., 2014). Differences between

genotypes in growth rates and calcification rates of A. cervicornis

were also exhibited across multiple attachment strategies (Kuffner

et al., 2017; Goergen and Gilliam, 2018). Reciprocal transplant

experiments involving A. cervicornis suggest a combination of

genotype and location determined colony growth and survival

(Drury et al., 2017). Studies that have found no effect from

genotype on total linear extension (TLE), have generally been

done on small numbers of genotypes (3 or fewer) (Shaish et al.,

2008; Ladd et al., 2016). When more genotypes were examined, TLE

and calcification rates showed a genotype effect (Kuffner et al.,

2017). So while it is clear that different genotypes show significantly

different rates of growth and survival, the vast majority of the

research done on corals grown for restoration purposes has been

done on fast-growing branching species such as A. cervicornis. Little

information is available on differences between genotypes of

boulder corals such as O. faveolata, although some differences

have been observed, but not investigated (Page et al., 2018).

Testing difference in survivorship, growth, and predator

resistance between genotypes in massive corals like O. faveolata is

key for ongoing and future restoration efforts.

Caging corals has been used to examine dynamics such as

predation or competition with algae. The effects of caging corals for

a portion of the outplanting process has not been specifically

investigated. Protecting O. faveolata microfragments in cages near

their eventual permanent outplant location seem to improve

survival rates, implying that corals need time to acclimate to their

new home (Page et al., 2018). In addition, parrotfish behavior may

change over time as corallivores adjust to a new presence in their

environment. Comparing survival and growth rates of corals caged

for multiple different acclimation time periods is key to identify at

what stage coral microfragments become more suited to their

transplant environment.

A large source of mortality in recently transplanted coral

microfragments in the field is fish herbivory (Page et al., 2018).

Historically, herbivory has been viewed as a benefit to coral reef

ecosystems. Herbivorous fish, such as parrotfish, eat fast-growing

macroalgae, which often outcompete slower growing scleractinian

corals (Williams and Polunin, 2001; Burkepile and Hay, 2006;

Mumby et al., 2006). And there is consensus (among 82 experts

on coral bleaching) that protecting parrotfish would protect coral

reefs (Rosinkski and Walsh, 2016). However, a more recent meta-

analysis has shown that parrotfish may not benefit corals as much as

previously thought, as areas with healthy parrotfish levels do not

exhibit high coral cover (Bruno et al., 2019). Local presence of

herbivorous fish does not seem to have as large an impact on reef

health as global stressors such as climate change (Bruno et al., 2019).

In addition, parrotfish can significantly contribute to bioerosion

(Roff et al., 2015). Certain species of fish, such as the stoplight

parrotfish (Sparisoma viride) routinely prey on corals (Scoffin et al.,

1980; Harborne and Mumby, 2018). Fish corallivory has even been
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observed to increase as coral cover declines (Burkepile, 2012). A

2011 survey of various Caribbean reefs found that higher coral

density showed a higher density of bite scars (Roff et al., 2015), and

initially grazed coral colonies are more likely to be re-grazed (Rotjan

and Dimond, 2010) and these more heavily predated colonies show

higher mortality rates (Rotjan and Lewis, 2008). Given the key role

of fish herbivores on reefs, it is crucial to understand the effect of

coral predators in recently transplanted corals in reefs. A variety of

complex trophic interactions may be taking place, impacted by

substantial unhealthy conditions such as low coral cover, increased

algae cover, overfished carnivorous top predators, or in some areas,

direct fishing of corallivores such as parrotfish.

To study the effects of genotype and caging in the presence of

corallivorous predators, we studied populations of the boulder coral

species O. faveolata, using experimental cages, transplant

experiments and different acclimation periods. Here we tested: 1)

whether the initial mortality in transplanted corals is due to

predation, and if increase in acclimation time in cages enhances

microfragment survival and growth; 2) whether differences in

survival and growth occur across coral genotypes. Results from

this study demonstrate the likely utility of acclimation cages,

highlight the negative effects of parrotfish on coral growth and

survivorship during coral restoration, and provide ways to improve

microfragmentation-based restoration strategies.

Methods

Coral collection

To understand the effects of predation on coral growth and

survivorship, we collected fragments from tagged Orbicella faveolata

from a midshelf reef (~6m) in La Parguera, Puerto Rico (Turrumote

reef, 17° 56.1′N, 67° 01.1′W, Figure 1) on June 27 and July 25, 2019

(Collecting permit #: O-VS-PVS15-SJ-01041-16042019). Coral

colonies targeted for the collection are part of an ongoing coral

monitoring program at the Department of Marine Sciences at the

University of Puerto Rico, Mayagüez (DMS-UPRM). These tagged

colonies have demonstrated resistance to bleaching events and the

biological diseases that affected reefs between 2003 and 2017 (Weil

et al., 2009; Garcıá-Sais et al., 2017). They have also demonstrated

variable responses to other stressors, and are physically separated

(5 m) apart to be considered distinct genotypes, as O. faveolata has

been shown to exhibit extremely low clonality throughout the

Caribbean (although no genetic analysis were performed at this

time) (Porto-Hannes et al., 2015). Working in teams, divers used a

hammer and chisel to remove skirt pieces from the edge of the large

colonies, to minimize damage. Fragments were placed in labeled 1-

gallon ziplock bags, which were held in a mesh dive bag until divers

were back on the boat. Once pieces from ten colonies were collected,

the bags were put in 5-gallon buckets full of fresh seawater. Upon

return to the laboratory, colonies were removed from bags and placed

in a running sea-water raceway in the on-land coral culture area of the

DMS-UPRM. Metal tags stamped with the associated genotype codes

(AZ, BY, etc.) were placed near their matching fragments. Raceways

were covered with shade cloth to protect newly fragmented corals

from heat and light stress. Collected colonies remained in the raceway

for at least one week before they were micro-fragmented, with earlier

collected colonies fragmented for Acclimation Groups 1 and 2, and

later collected colonies fragmented for Acclimation Groups 3, 4, and 5

(acclimation groups further described in Acclimation Treatments

section). Colonies were closely monitored, and those that did not

transition well were not used for fragmentation.

Microfragmenting

Corals were microfragmented using a Gryphon AquaSaw XL,

Model C-40 CR Custom. The saw was fitted with a 42” Gryphon

Diamond Band Saw Blade and replaced as needed. Less than one inch

of saltwater from the raceway holding the coral fragments was put in

the base of the saw. The colony to be fragmented was placed in a bin

filled with saltwater. Larger colonies were cut into strips, and then into

1cm by 1cm squares. Excess skeleton off the bottom of the fragments

was removed if necessary. Gorilla super glue gel was used to affix

microfragments to ceramic plugs made by ReefCreators. Before

fragmenting, each plug was labeled with the microfragment’s

genotype, acclimation treatment, and individual ID number. Glued

microfragments were placed on egg crates in a bin of saltwater. To

remove excess mucus off the glued microfragments, a turkey baster or

pipet was used. Once finished, fragments were transported back to

their original raceway. To standardize the amount of time

microfragments spent in the on-shore raceway, fragmenting was

staggered. Microfragment groups were generated one month before

being moved to the acclimation cage (or in the case of Group 5, one

month before planting). This allowed us to assess the total time (from

fragmentation to planting) needed to produce successful corals.

Acclimation treatments

To generate different acclimation treatments, coral

microfragments were sorted into five groups, with ten

microfragments from each collection colony (hereafter referred to

as “genotype”) in each group. The acclimation cage was deployed at

Mario reef (17°57’08.8”N, 67°03’21.2”W), at around 3 meters of

depth. Mario reef was chosen due to the ability to deploy the cage

securely, as well as ease of boat access. The cage was 1m wide, 0.5m

tall, and 0.5m deep. There were two levels of eggcrate within the

cage. The cage was attached to six pieces of rebar that had been

hammered into the substrate, both to keep it stationary and to keep

it roughly 0.5m above the benthic environment (Figure 2). Coral

microfragments were acclimated for the following periods of time to

test the effect on outplant survivorship: Group 1 = three months;

Group 2 = two months; Group 3 = one month; Group 4 = two weeks

and Group 5 = 0 days (control). Each group had 100 fragments (10

replicates X 10 genotypes). Group 1 was put in the acclimation cage

on August 8, 2019. All ten microfragments from the AZ genotype

died within two weeks, leaving only nine genotypes for this

acclimation point. Microfragments in group 2 were put in the

acclimation cage on August 22, 2019. Acclimation Group 2

included ten microfragments from each genotype except AZ.
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Group 3 microfragments were put in the acclimation cage on

November 4, 2019, and this group included ten microfragments

from all ten genotypes. Group 4 also included ten microfragments

from all ten genotypes and were put in the acclimation cage on

November 18, 2019. The acclimation cage was checked at least every

other week starting August 8, 2019. Coral fragments were cleared of

sediment and researchers took photos of the microfragments for

later health and growth analysis. Acclimation Group 5 contained

ten microfragments from all ten genotypes and remained in the on-

shore raceway until outplanting.

Outplanting

Microfragments were planted at Mario reef, in close proximity

and at a similar depth to the acclimation cage. We labeled metal tags

FIGURE 1

Map of field location showing the locations of the UPR Isla Magueyes research laboratories, the coral collection location, and the acclimaiton and

outplanting location.

A

B

C

FIGURE 2

(A). Schematic showing dimensions and materials of coral acclimation cage, (B). photo showing acclimation cage deployed at the study location, secured

up out of substrate by six pieces of rebar, and (C). a coral fragment attached to the reef, showing the metal tag as well as evidence of parrotfish predation.
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with coral fragments’ individual ID numbers using metal stamping

rods and a mallet. Tags were then grouped by genotype and further

subdivided into groups of 5 IDs with one fragment from each

acclimation treatment (ex: one outplant clump would include a BY

genotype fragment from each acclimation group). Large pieces of

dense coral skeleton from the target outplant site were collected and

brought back to shore. Onshore, masonry nails were used to attach

groups of tags to the skeleton rubble, with tags spaced at least 5”

apart. Nails were hammered at least an inch into the coral skeleton,

but not all the way. Labeled pieces were brought onto the boat,

along with tools for outplanting (clippers, zip ties, hammers, super

glue, and large plastic bins). Upon arrival at the site, the plastic bins

were filled with seawater and the water was changed frequently.

Two members of the SCUBA team collected coral plugs from the

acclimation cage and brought them to the boat. Researchers on the

boat clipped the stems off the coral plugs so that they would lie as

flat as possible when attached. Using the metal tags and the labels

on the bottom of the plugs, the coral fragments were attached to the

nail with their matching tag using a zip tie. Any excess zip tie was

clipped off. Microfragments were kept submerged in bins as much

as possible. Once the microfragments were attached, they were

passed back to the SCUBA team, who then placed them around the

reef in horizontal, stable substrate. A photo was taken of each

fragment and group.

Photo monitoring

To measure growth and quantify mortality across treatments,

we took initial photos of fragments in the field upon outplanting, on

December 11 and 12, 2019. The next round of photos were not

taken until January 30, 2020, due to a stop of diving activities after

local earthquakes. Subsequent photos were taken on February 7 and

March 3, 2020. Photos of individual or small groups of coral

fragments were taken so that the labeled tag was clearly visible,

and included a ruler for reference when possible. When a ruler was

not present, the size of the tags was used as a calibration reference.

Data analysis

To process all images for growth, we used the ImageJ software.

Coral size was measured as a two-dimensional planar area, as

fragments remained flat even after growth. Measurements were

calibrated using the egg crate, a ruler, or the labeled metal tags,

which had been measured previously and were on the same plane as

the coral fragments. Microfragment size was recorded in square

centimeters. Some coral fragments were missing by the end of the

experiment, and these were not included in the final analysis of field

survivorship. Survival percentages were calculated by location (on-

shore raceway, acclimation cage, and outplanted), and then by

genotype. All data, including individual photo processing and

survivorship percentages, were uploaded into R for further analysis.

Survivorship data between locations, genotypes, and

acclimation treatments were assessed visually, and means were

compared using either an unpaired two-samples Wilcoxon test

(cage vs. outplanted microfragments) or a Kruskal-Wallis Test

(acclimation treatment and genotype comparisons). A non-

parametric test was used due to the fact that the data did not

show a normal distribution. Data was still transformed to

standardize between groups. Survivorship data was further

evaluated using the Kaplan-Meier estimate (Goel et al., 2010, R

p a c k a g e s u r vm i n e r , h t t p s : / / CRAN .R - p r o j e c t . o r g /

package=survminer). This allowed taking into account coral

fragments for which the final date of observation indicated

mortality, and coral fragments for which or final date of

observation indicated the end of field surveys. Growth rate was

calculated by dividing microfragment size by the number of days

since planting, and then standardizing to centimeters per month for

ease of comparison. Growth rates were then log transformed for

further statistical analysis. Growth rates were compared using a

Kruskal-Wallis Test (acclimation treatment and genotype

comparisons). Survivorship and growth rates were compared

between locations, genotypes, acclimation treatments, and

predation presence in R (https://cran.r-project.org).

To score predation, visible bite marks were included, as well as

samples where the coral was missing off the plug, and samples

where the coral and plug were missing but the nail and metal tag

remained. This decision was made based on previous literature

(Page et al., 2018) and field observations, indicating that fish grazers

sometimes prey on coral fragments off the reef structure.

Post-hoc analysis on differences in survivorship and growth was

performed using the R-package agricolae (de Mendiburu and

Yaseen, 2020). Survival data (measured in days alive) was log

transformed to achieve normality. Tukey’s HSD was used to test

for pairwise differences between groups. Cox models were used to

evaluate variable effects (R package survminer). Two-way ANOVAs

were used to rank the different models and choose the one with the

best fit to our data

Results

Coral microfragments in the first three acclimation groups show

higher survival rates than microfragments in the final two groups, but

there was no statistically significant difference in field survivorship

between the five acclimation treatments (p = 0.52, Figure 3).

Survivorship in the cage was significantly higher than survivorship

in the field (96.18% compared to 31.13%, p < 0.001, Figure 4). Kaplan-

Meier estimate also showed significant differences between genotypes

in the field (p < 0.01, Figure 5). Genotypes AZ and EV die more often

than the other genotypes in the field, with AZ performing especially

poorly in all locations (pairwise comparisons in supplemental

material). All genotypes (except AZ) had similar rates of survival in

the acclimation cage. Genotype HS exhibited a significantly higher

survivorship probability in the field after outplanting, while genotypes

BY, CX, and DW performed well in both the acclimation cage and the

field. Nineteenmicrofragments showed distinct parrotfish bite scars. In

total, 105 out of 250 fragments were either missing or bitten, and

counted as affected by predation (see Methods). Coral fragments with

no evidence of predation survived more than coral fragments by

predation (Figure 6).
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There was also a significant difference in growth rates between

the five acclimation treatments (p < 0.01). Additionally, coral

microfragments also showed significantly higher growth rates in

the acclimation cage than in the field (p < 0.001, Figure 7). The

average growth rate in the cage was 10.7 mm2/month, while the

average growth rate after outplanting was 1.8 mm2/month. In

addition, different genotypes grew significantly faster than others

(p < 0.001, Figure 8).

When modeling fragment survivorship over the entire

experiment, genotype and fragment location were shown to have

significant effects on survival rates. However, adding acclimation

treatment as a parameter did not significantly strengthen the model

(p = 0.8312). Modeling survivorship of fragments only in the field

(i.e. fragment location is not a factor), genotype had a significant

effect on survival rates, while including acclimation did not

strengthen the model (p = 0.102).

Discussion

Microfragments that were acclimated for longer than one

month showed slightly higher survival rates than those that had

been acclimated for a shorter length of time or not at all. Our data

suggest that initial field mortality is largely due to predation by

corallivorous fish. Additionally, microfragments experienced

almost zero mortality in the protective cage, which has important

implications for future restoration strategies.

Previous studies show that aquacultured corals in protective

cages exhibited an 85% survival rate, with most genotypes showing

100% survival in the cages by the end of the acclimation periods

(Dela Cruz et al, 2015). The higher survival rate in the acclimation

cage is likely due to the exclusion of predators, particularly

parrotfish. Schools of juvenile parrotfish were observed to

investigate the acclimation cage on a regular basis, and even

FIGURE 3

Kaplan-Meier survival curves of coral microfragments in the field grouped by acclimation group. Corals in the first three groups show slightly higher

survival rates, but there are no significant differences across acclimation groups.

FIGURE 4

Kaplan-Meier survival curves of coral microfragments over time in both the predator exclusion cage and the field. Corals showed a significantly

higher survival rate in the acclimation cage than on the reef.
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swim inside while the cage was open to retrieve coral

microfragments. While they prefer calcareous algae, juvenile

parrotfish do graze on coral (Overholtzer and Motta, 1999;

Feitosa and Ferreira, 2015). Adult parrotfish were also frequently

observed in the area. Bite marks were observed on coral fragments

within 24 hours of being outplanted on the reef. Stoplight parrotfish

(Sparisoma viride) was also observed in the area, which is a major

coral predator on Caribbean reefs (Scoffin et al., 1980; Harborne

and Mumby, 2018). Higher rates of coral predation have been

observed on shallow reefs, such as those where our restoration

efforts took place. Previous restoration experiments have also

observed that predation from reef fish caused the highest

mortality rate among transplanted corals (Acropora hyacinthus,

Acropora gemmifera, Pocillopora damicornis, and Porites

cylindrica) (Morikawa and Palumbi, 2019). Restoration work with

Orbicella faveolata in the Florida Keys also observed high predation

rates directly after outplanting, although mortality rates were not

recorded (Page et al., 2018). Research on O. annularis found that

most mortality was from larger bite scars, and that any healing

usually occurred in the first month (Rempel et al., 2020). Others

found that multiple bite scars are more likely to lead to mortality

(Welsh et al., 2014). As coral cover declines, corallivory may

increase (Burkepile, 2012), which will greatly impact newly

restored corals, as most restoration projects target locations that

have already experienced a severe loss in coral cover. Initially

grazed colonies are also more likely to be re-grazed (Rotjan and

Dimond, 2010), which in the case of small microfragments, would

quickly lead to total fragment mortality. We observed 19 distinct

bite scars from parrotfish out of 163 corals at the end of three

months of observation. As previously mentioned, it seems likely

that a portion of “missing” corals were due to parrotfish predation

as well, as large parrotfish could dislodge fragments from the rubble

pieces. Our low survival rates in the field support the hypothesis

that increased presence of herbivores prevent degraded reefs from

recovering, as they contribute to high mortality rates of

transplanted and recruited corals (Bruno et al., 2019).

FIGURE 6

Kaplan-Meier survival curves of coral microfragments in the field grouped by evidence of predation.

FIGURE 5

Kaplan-Meier survival curves of coral microfragments in the field grouped by genotype. Curves are grouped by significance using Tukey’s HSD (see

pairwise comparisons in supplemental material, Table S1).
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Surprisingly, our results showed no significant difference in field

survival rates between acclimation treatments (Figure 3). Fragments

that had been acclimated in the cage for a longer period of time showed

slightly higher survival rates, but not enough to draw significant

conclusions. While not statistically significant, these results did

exhibit a trend similar to our original hypothesis: that coral

microfragments that spent time in a predator exclusion cage would

show higher survival rates after outplanting. All microfragments that

were protected in the cage for at least one month showed higher

survival than microfragments protected in the cage for less than a

month. Since the effects of protection from predation was strong, it is

possible this caused any differences between acclimations to be too

small to be observed. There was, however, a significant difference in

growth rate between acclimation treatments (p < 0.01). Growth rates

can change significantly during the first year of outplanting (Mahmoud

et al., 2019), so time is most likely a confounding factor here. Corals

that were fragmented earlier likely saw more changes to their growth

rates, not because of acclimation effects, but rather because growth rates

change the further away the coral is from fragmenting, regardless of

location. If we monitored fragments for a longer period, we may see

different results in both differences in growth rates and survival. While

most predation on outplanted microfragments and associated

mortality has been observed in the first three months (Page et al.,

2018), ongoing mortality after this point could show more of a

difference between acclimation treatments. Since our study showed a

trend rather than significant results, other factors appear to play a

bigger role in coral survivorship.

We observed different survival rates between genotypes in the

field (Figure 5). Genotype HS performed especially well, while

genotype AZ died in both the field and the acclimation cage. In

reciprocal transplant experiments performed on Porites lobata,

genotype was the most important factor to individual colony’s

FIGURE 8

Growth in centimeters per month across genotypes: each point represents one microfragment. Note the large variation within genotypes. Negative

growth rates indicate loss of live coral tissue, or coral mortality.

FIGURE 7

Average growth rates in square centimeters per month between all coral microfragments in the acclimation cages and on the reef after outplanting.

Each point represents one microfragment. Corals showed a significantly higher growth rate in the acclimation cage than on the reef.
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stress tolerance (Barshis et al., 2010).With the exception of genotype

AZ, all genotypes showed near universal survival in the acclimation

cage. Other researchers have observed high survivorship across

genotypes in Acropora cervicornis nurseries (Goergen and Gilliam,

2018). We also observed significantly different growth rates between

genotypes (p < 0.001). This has been well documented in A.

cervicornis restoration efforts. In a survey of over 1,700 A.

cervicornis fragments in various nurseries around the Caribbean,

researchers observed significantly different growth rates between

genotypes (Lirman et al., 2014). These differences are still observed

when controlling for different locations (Drury et al., 2017).

Calcification rates have been found to differ between A. cervicornis

genotypes in a nursery environment as well (Kuffner et al., 2017).

However, we also observed a large variation in growth rates within

genotypes (Figure 8). This fits with some studies that have not

observed significant differences between genotypes, largely due to

small sample sizes (Shaish et al., 2008; Ladd et al., 2016). So while

some genotypes survive at significantly higher rates than others,

larger sample sizes are needed to draw conclusions about differences

in growth rates. Microfragments also grew significantly faster in the

acclimation cage than in the field (Figure 7). In protected

environments, microfragments of O. faveolata have been found to

produce 6.5 times more tissue than larger fragments (Page et al.,

2018). While some studies have found that caged corals grew less

than uncaged corals, this was primarily due to an increase in algae

presence (Lirman, 2001). As our cages were regularly monitored and

cleaned, this was not an issue. Our acclimation cage produced fast

growing O. faveolata fragments with high survival rates.

Orbicella faveolata has declined throughout the Caribbean in

recent decades. Indeed, the loss of massive coral cover in the Florida

Keys has been almost all O. faveolata (Bruno et al., 2019). Further

study is required to more comprehensively weight these options.

Other studies have found that mixed species plots show higher

survival rates after small disturbance events, with single species

plots performing better after large scale disturbances (Dizon and

Yap, 2006). It would be important to explore the effectiveness of

mixing O. faveolata with other species, particularly to examine if this

would mitigate the initial stress of outplanting. Previous research has

found that low species richness can actually hinder reef recovery

(Clements and Hay, 2019). In future restoration efforts focused on O.

faveolata, we recommend that if corallivores are present,

microfragments are caged for at least one month with periodic

cleaning and monitoring to avoid algal overgrowth. While post-

outplant survivorship still needs to be improved, caging fragments in

a nursery will allow for an improvement in the source material (Dela

Cruz et al., 2015). We also recommend identifying successful

genotypes before engaging in large scale restoration efforts.

Researchers can prioritize survivorship and growth, but should take

into account other proxies such as microclimate, origin, and heat

tolerance (Morikawa and Palumbi, 2019). Researchers should also be

aware of possible impacts of genetic diversity, as there may be a

tradeoff between focusing on more successful genotypes and

maintaining genetic diversity in the local population.

Future research will delve further into the differences between

genotypes by analyzing the corals’ microbiomes. Microbiome

research will also allow us to more finely tease apart any

differences between the different acclimation treatments.

Microbiome analysis will also be useful when examining the

impacts of predation. Parrotfish bites can cause a change in the

microbial community, and predated corals show higher microbial

diversity (Ezzat et al., 2020). Since physiological differences are a

response to corallivory rather than a cause (Rotjan and Dimond,

2010), further investigation is needed to describe the relationship

between newly restored corals and parrotfish predation. It is also

possible that restored corals are producing secondary compounds to

deter predators, which could change depending on coral genotype

and acclimation treatment (Hay and Fenical, 1988). Changes in

metabolomics could also be influenced by changes to the

microbiome as a result of stress (Williams et al., 2021).

Coral acclimation cages do not require expensive materials, or

complicated training to operate. Additionally, as microfragments

survived at such high rates while still within the cage, acclimation

cages may be helpful for restoration operations with limited space on

shore. While they do require some additional dives, the dives are brief

and not labor intensive. Moving forward, practitioners should

consider caging corals during the restoration process, and

additionally consider prioritizing high performing genotypes. More

effective coral restoration strategies will help degraded reefs stand a

better chance of recovery from ongoing stress from climate change.
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