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Abstract—Broad-scale modeling and optimization play a vital
role in the design of advanced power converters. Optimization
is normally implemented via brute force iterations of design
variables or utilizing metaheuristic techniques which are time
consuming for a wide range of potential topologies, device
implementations, and operating points. Recently, discrete time
state-space modeling has shown merits in rapid analysis and
generality to arbitrary circuit topologies but has not yet been
utilized under rapid optimization techniques across multiple
converter parameters. In this work, we investigate methods
to incorporate rapid gradient-based optimization techniques to
leverage discrete time state-space modeling and showcase the
approach in the power converter design process. The method is
validated on a 48-to-1V converter designed using the proposed
techniques.

I. INTRODUCTION

In the design of power electronics, steady-state model-
ing forms the basis of many metrics for the assessment of
converter design [1]. As such, techniques for general, rapid,
and highly-accurate steady-state analysis of arbitrary power
converters are of broad appeal [2]–[6]. Simultaneously, the
increasing availability of significant computational power has
expanded the role of design automation and optimization in the
converter design process for both late-stage, hardware imple-
mentation and early-stage topology selection and schematic-
level design [7], [8].

Fig. 1 shows an example of the latter. Given a set of
constraint and objectives for a power converter, the goal
of the early-stage process is to generate a schematic-level
implementation suitable for physical prototyping or detailed
multi-physics modeling. This process includes selection of
converter topology, components, modulation, and some basic
considerations of form factor that can be modeled prior to a
circuit implementation. In most cases, this design process is
iterative, and requires assessing many devices, components,
modulations, and topologies to arrive at a suitable candidate
with acceptable performance.

This work gives a framework to optimize converters uti-
lizing the rapid modeling method of discrete time state-space
modeling [3], [4], [6] and adapting gradient-based optimiza-
tion techniques for discrete component selection as well as
continuous parameters such as device area and frequency. The
method is used to design a 48-to-1 V converter through a
multi-topology optimization.

Section II briefly reviews state space modeling and the
nature of externally-controlled and state-dependent switching
actions. Section III develops gradient-based techniques for
incorporating state-dependent switching into the steady-state
solution. Section IV extends the approach to design optimiza-
tion, including component and switching frequency selection.
Section V gives details of an experimental prototype designed
using the developed techniques. Finally, Section VI concludes
the paper.
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Fig. 1. Early stage broad-scale optimization flowchart for the design of power
converters.



II. DISCRETE TIME STATE-SPACE MODELING

Discrete time state-space modeling is a proven steady-state
and dynamic analysis method for switched circuits [2]–[4],
[9]–[11]. By approximating a switched mode power supply as
a linear equivalent circuit within each switching interval, the
entire period of the converter can be modeled using discrete
time state-space equations,

ẋ(t) = Aix(t) +Biu(t) (1)

y(t) = Cix(t) +Diu(t), (2)

where Ai, Bi, and u represent the state matrix, input matrix,
and constant inputs respectively. During any switching interval
i the state vector can be solved for any time t within the
interval if an initial condition x(0) is known, Ai is invertable
and all input sources are constant throughout the interval,

x(t) = eAitx(0) +A−1
i [eAit − I]Biu. (3)

The dynamic switching behavior of the converter is captured
by iterating through the linear equivalent switching intervals.
Assuming the converter is operating in steady-state over the
period,

Xss =

[
I−

1∏
i=m

eAiti

]−1

×
m∑
i=1

[( i+1∏
k=m

eAktk

)
A−1

i [eAiti − I]Biu

]
, (4)

solves the set of linear equivalent circuits over the entire period
to calculate the steady-state solution.

Utilizing (4) to solve for the steady-state of a switch mode
power supply does have limitations discussed in prior work
[6], [8]. Some conditions such as requiring a Ai be invertible
and u constant throughout the period can be quickly alleviated.
However, in order to solve (4) the switch timing ti between
each linear equivalent circuit must be known a priori and are
discussed in the following sections.

Some limitations to discrete time state-space modeling have
been addressed in literature, such as dependent switching due
to time interval ti being set before solving for steady-state of
the converter [8]. The common issue resulting from this lim-
itation is inaccurate diode conduction timing. The framework
presented in [8] to solve this issue iterate individually through
each diode violation and time interval found in the converter.

Discrete time state-space modeling allows for rapid analysis
of switch mode power supplies without the need for additional
approximation or dedicated analysis of each topology. With an
accelerated modeling method, brute force and metaheuristic
methods execute faster; however, there are inherent techniques
used in discrete time state-space modeling that can be applied
to optimization [5]. A general approach to this is shown
in Fig. 3. Due to the speed of discrete time state-space
modeling, it is feasible to run a multi-loop optimization
without sacrificing breadth of analysis. In the inner loop,
the solution is iterated to correctly account for all nonlinear
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Fig. 2. Synchronous buck converter schematic, including switching transistor
piecewise-linear circuit models. RBD and RFET are varied depending on
the conduction state of the transistor.
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Fig. 3. Flowchart of schematic-level design optimization. In an inner loop, the
discrete time steady-state model is iterated to find a valid converter solution.
In an outer loop, the design (including e.g. component selection, switching
frequency) is iterated to optimize an objective function.

state-dependencies; in the outer loop, the hardware design or
modulation is altered to optimize the performance.

A. State-Dependent Switching

Fig. 4 shows an example steady-state solution of the syn-
chronous Buck converter of Fig. 2. The steady-state is solved
using (4), then expanded to full waveforms for visualization.
Corresponding state models and conducting devices are given
in Table I for each interval as labeled at the bottom of Fig. 4.

In the initial solution, the deadtimes, t1 and t3, are set
substantially longer than the switching transients for the circuit
design and operation. This may occur from an inaccurate
initial guess to the circuit solution, or may model the real,
programmed deadtime from the transistor modulation signals
in a design. In any event, the initial solution defines the
externally-controlled switching actions, i.e. the gate-controlled
transistor turn-on and turn-off, but does not define the state-



dependent switching actions, i.e. the turn-on and turn-off of
the body diodes.

In the steady-state solution, the long deadtimes allow the
switched-node voltage vsw to resonate below 0 V during
subintervals 1 and 3, where the circuit model assumes all
semiconductors are in their off states. This initial solution is
therefore errant, as the body diodes (or reverse conduction
mechanism for GaN HEMTs) would turn on and disallow
this voltage from resonating negative. In order to correct this
error and achieve a valid steady-state solution, the model must
alter both the circuit model and time intervals as shown in the
final solution in both Fig. 4 and Table I. The correct steady-
state solution inserts circuit model A1,2 = A3,2 for the circuit
during the deadtime with both transistors turned off, but the
low-side body diode forward-biased. Additionally, intervals t1
and t3 are split into two subintervals, ti = ti,1 + ti,2, with
the same total duration, as shown in greater detail for t1 in
Fig. 4(b). More generally, the intervals may be split into more
than two subintervals based on any state-dependent switching
action,

ti = ti,1 + ti,2 + . . .+ ti,N . (5)

The total duration of the subintervals must remain constant, as
the end of the deadtime is controlled by external signals and
not, in general, affected by diode conduction dynamics.

Note from Fig. 4 that the solution for t1,1 is not the zero-
crossing time of vsw in the initial solution. Because both
the initial and final solutions are given by (4), both are in
steady-state, even if state-dependent switching is accounted for
incorrectly. Thus, the additional negative volt-seconds applied
to the inductor by the errant negative vsw in the initial solution
significantly alters the operating point, as shown by iL and
vout.

Though the example presented in Fig. 4 ignores how the
final solution is solved, it is clear that two steps must be
completed, iteratively

1) Insert subintervals for state-dependent switching actions
at required interval interfaces

2) Adjust subinterval durations to drive towards zero-error
solution

In this work, a gradient descent method is developed which
uses a numerical gradient between the subinterval duration and
the steady-state error in state-dependent switching to address
the second point.

III. STEADY-STATE SOLUTION

For the example of diode state-dependent switching, error
in the steady-state solution is identified by violation of one of
the pair of inequalities,{

vd(t) ≤ VF , i s.t. diode is reverse biased
id(t) ≥ 0, i s.t. diode is forward biased

(6)

These constraints are both of the general form

Ei = CbndiXi +Dbndiu ≤ 0 (7)
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Fig. 4. Example steady-state waveforms of synchronous buck converter
(a) before and after state-dependent switching correction and (b) zoomed-
in waveforms of initial dead time

TABLE I
BUCK CONVERTER DEADTIME SOLUTION

Inital Solution

Time Interval t1 t2 t3 t4

Circuit Model A1 A2 A3 A4

Conducting
Devices — M2 — M1

Final Solution

Time Interval t1 t2 t3 t4

Circuit Model A1 A1,2 A2 A3 A3,2 A4

Conducting
Devices — D2 M2 — D2 M1

where Cbnd ∈ Rp×ns and Dbnd ∈ Rp×1 with p the number
of constraint equations in the circuit and ns the number of
states in the circuit. This approach formulates the error signals
due to state-dependent switching as though they were outputs
of the system.

In each switching interval i, only one of the constraints in



(6) will apply for each diode in the circuit, determined by
whether the matrices Ai and Bi are derived with the diode
forward or reverse-biased. For other types of state-dependent
switching, there may be conditions which appear only in
certain intervals without dual counterparts in the remaining
intervals.

To reduce computational burden, the method used in this
work initially examines the error only at the discrete points
at the interface between intervals. The steady-state solution is
solved using (4) for Xss = X0, then the states at the end
of each subsequent interval are reconstructed using recursive
application of (3),

Xi+1 = eAitiXi +A−1
i [eAiti − I]Biu. (8)

or appropriate methods when Ai is singular [6]. If interval
dynamics are sufficiently fast [8], it may be necessary to
increase the resolution of discrete points to identify all errors,
but this does not alter the approach and can be done as a
final check once a valid solution has been solved based on the
discrete points at the end of each interval.

A. Inserting Additional Subintervals

The error calculation (7) is applied to both the states at the
beginning and end of each interval (8), resulting in two error
signals for the ith interval, E−

i for the initial states and E+
i

for the final states, both with the same conducting devices.
In the initial solution of Fig. 4, both interval 1 and 3 have

E−
i ≤ 0 but E+

i ≰ 0. This implies that the error occurs
somewhere within the interval, and a valid solution may be
found by inserting a new state at the end of the interval.
The necessary diode which must change commutation state
is found by examining which row of (7) is in violation, and
which equation from (6) generated the constraint.

In this example, both require the insertion of a new subin-
terval with D2 turned on. These subintervals, A1,2 = A3,2,
are initially inserted with minimal time duration t1,2 and t3,2
so that they only nominally affect the steady-state waveforms.
After inserting these intervals, the following all hold simul-
taneously, at subinterval (i, j), which is defined by the state-
dependent turn-on of D2

E−
i,j ≤ 0

E+
i,j ≰ 0

E−
i,j+1 ≤ 0

(9)

This situation implies that by increasing ti,j+1, subject to (5),
the error can be eliminated. From the previous example, this
corresponds to the dead times with body diode turned on for
an instant at the end of the dead time. The remaining task is
to increase the duration of body diode conduction, from the
end of the interval back, until the diode properly turns on as
the diode voltage increases to vd(t) = VF .

In more complex topologies, additional situations may arise,
including persistent error across multiple intervals. In any
event, the appropriate candidate states to be added are selected
by examining E±

i,j

B. Adjusting Subinterval Durations

Once the correct subintervals have been inserted (or a best
guess at the appropriate subintervals based on the current
steady-state solutions), the subinterval time durations are ad-
justed using a gradient-based minimization of the signals in
violation of (7).

A Jacobian is calculated for all time intervals of the con-
verter to determine each time intervals impact on the steady-
state as well as each steady-state violation.

J =

∂X1(t1)
∂tn

∂X1(t2)
∂tn

. . . ∂X1(tn)
∂tn

∂X2(t1)
∂tn

∂X2(t2)
∂tn

. . . ∂X2(tn)
∂tn

...
...

. . .
...

∂Xm(t1)
∂tn

∂Xm(t2)
∂tn

. . . ∂Xm(tn)
∂tn



∂X1(t1)
∂t2

∂X1(t2)
∂t2

. . . ∂X1(tn)
∂t2

∂X2(t1)
∂t2

∂X2(t2)
∂t2

. . . ∂X2(tn)
∂t2

...
...

. . .
...

∂Xm(t1)
∂t2

∂Xm(t2)
∂t2

. . . ∂Xm(tn)
∂t2

∂X1(t1)
∂t1

∂X1(t2)
∂t1

. . . ∂X1(tn)
∂t1

∂X2(t1)
∂t1

∂X2(t2)
∂t1

. . . ∂X2(tn)
∂t1

...
...

. . .
...

∂Xm(t1)
∂t1

∂Xm(t2)
∂t1

. . . ∂Xm(tn)
∂t1


where J ∈ Rns×m×m for a system with ns states and m =
mi + mj subintervals. Entry jijk is the response of the ith

state, at the jth subinterval, to a perturbation in the duration
of the kth subinterval time.
J is evaluated numerically for small perturbations to each

time interval. To construct the complete matrix, the steady-
state solution (4) and discrete time reconstruction (8) need to
be repeated m times. Because these equations are all closed-
form, doing so requires relatively little computation burden.

By multiplying every jth column by Cbnd,j the resulting
matrix Jerr ∈ Rp×m×m has elements jerr,ijk that represent
the linearized response of the pth constraint equation (7) to the
same perturbation and time.

In order to eliminate the errors present in any iteration
of the steady-state solution, Jerr is evaluated only for the
states and times where error with state-dependent switching
is present in the steady-state solution. This is combined with
equations of the form of (5) for every subdivided interval from
the controlled switching pattern to give

Φ =

J±
err,ij

1T

 , (10)

Γ =

D±
bnd,iju

ti

 (11)

where 1T is a binary matrix indicating which timing subin-
tervals are part of each controlled interval in ti. The required
change to each time subinterval ∆ti, based on the linearized
steady-state Jacobian, is then given by the solution to

Φ(∆ti) + Γ = 0 (12)

where the equation is an equality, rather than inequality,
because only the errant signals are include which must be
driven back to zero from currently violating (7).
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In practice, ∆ti must then be checked to ensure no time
intervals are driven below zero. If the solution attempts to
do so, subintervals inserted in the prior section may need to
be removed, and the algorithm should iterate back and forth
between the subinterval insertion and time adjustment steps.

Fig. 5 plots iL and vsw over the seven iterations required to
reach a valid steady-state solution. On the fourth iteration, the
diode conduction time during t1 overshoots the final solution
slightly. Iterations 5-7 are nearly indistinguishable from the
final solution at the plotted resolution. The process takes less
than 100 ms† when complete waveforms are not plotted at
each iteration.

IV. OPTIMIZATION METHOD

Following a similar approach to the gradient-based error-
minimization used to solve steady-state waveforms, addi-
tional numerical gradient computations are used to optimize
a schematic-level converter implementation. The objective
function for this optimization depends on the intended ap-
plication, but in addition to parameters such as component
size/weight and cost, will usually include some accounting for
converter efficiency or power loss. Using the method detailed
in [3], average input and output power are simple to solve
using the steady-state solution Xss and applying (8) to the
augmented system to compute average values of input and
output waveforms.

For continuous parameters including switching frequency
(or period), the application is straightforward. After solving the
objective function at an initial design, the switching frequency
is perturbed and the objective function resolved to find a
numerical gradient that is descended to optimize the circuit
operation.

Hardware optimization, in which we may be required to
select between discrete components, requires additional con-
sideration. Fig. 6 gives an example design space for transistor

†on a Intel Core i7-8700 running Matlab R2022b
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Fig. 6. Example iterative transistor selection from discrete devices. Individual
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regions closest to each discrete device. Cases of selecting subsequent iteration
are shown in (b) and (c)

selection for the synchronous buck converter examined previ-
ously. Based on the model of Fig. 2, transistors are character-
ized by their on-resistance Ron and output capacitance Coss

with only discrete points available as valid selections.
Though only the discrete points are feasible designs, the

optimization can nonetheless treat the design space as con-
tinuous in the Ron-Coss plane, compute numerical gradients,
then revise the next selected point to conform to the feasible
design points. Fig. 6(a) shows this process for an assumed
objective to maximize efficiency, η. Using small perturbations
to each parameter and re-solving steady-state operation, the
optimization finds numerical approximations to ∂η/∂Ron and
∂η/∂Coss and combines them for a net vector of steepest
descent. In Fig. 6(b), the steepest descent vector is extended
until it crosses from the current region into a new region closer
to an alternate discrete point. Fig. 6(c) gives a second example
on the boundary of the points.

To select a discrete point for a subsequent iteration, the
optimization computes the minimum distance d that must be
traveled along the vector of steepest descent before each point
will be closer than the original. Generally, for an initial point
p0 = (p0,x, p0,y) and any other point pi, the distance is

di =
1

2

(p0,x − pi,x)
2 + (p0,y − pi,y)

2

(p0,x − pi,x)
∂η
∂x + (p0,y − pi,y)

∂η
∂y

. (13)

Then, the best selection for the next iteration of the opti-
mization is the point with minimum nonnegative di.

This approach is again applied to a simplified synchronous
buck converter for demonstration. The buck converts 48 V
input to 5 V output, has an ideal 250 nH inductor, and switch-
ing frequency is optimized per-design to maximize efficiency.
Fig. 7 shows the precomputed efficiency and optimal switching
frequency for a range of candidate discrete transistors. For this
conceptual example, the transistors are randomly generated
near-to, but bounded by, a figure of merit RonCoss ≤ 2 mΩnF.
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Initially, dead times are set to zero, forcing non-ZVS
operation of each switching action and making it feasible to
run the optimization without an inner iterative loop solving
steady state; no state-dependent switching actions are present.
Under this condition, the precomputed maximum efficiency is
94.54% at a frequency of 917 kHz.

From an initial point, steady-state efficiency under perturba-
tions to Ron and Coss are solved and (13) is used to compute
the discrete FET selection for the following iteration. The
gradient of efficiency with respect to switching frequency is
also calculated, and on the updated switching frequency is
scaled proportional to this gradient and the discrete step size,
di.

Fig. 8 diagrams the iterative convergence to near-optimal
designs from three initial points, overlaid on the precomputed
values of Fig. 7. Though the plot overlays the convergence path
on the optimal efficiencies for clarity, the iterations align with
these efficiencies only near the final convergence. Due to non-
optimal switching frequencies given at the initial operating
points, the initial efficiencies are 21%, 33%, and 73% for the
three starting points. Nonetheless, all three converge to designs
with over 94.45% efficiency, with minor variations between
them.

Next, both the steady-state algorithm of Section III and
the optimization formulation in this section are combined by
setting nonzero deadtime for the buck converter. For each
design, deadtimes are limited to one-quarter of the resonant
frequency between L and Coss which allows critical ZVS but
prevents nonmonotonic convergence [8].

Rather than the proportional step in switching frequency
used previously, the switching frequency is optimized to
convergence at each iteration. Though this requires additional
computation, it was found to be necessary. With variable
deadtime and switching frequency, the optimization will con-
verge towards designs with critical ZVS of both transistors.
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starting point for the synchronous buck converter with dead time considered.

Perturbing only one of fs or Coss away from these design
points will predict rapid reduction in efficiency, even if a
simultaneous perturbation can increase it.

Due to the lack of other losses included in this example (e.g.
inductor loss), the optimal designs exhibit very high efficiency
under ZVS operation, with the maximum precomputed design
have η = 99.5% efficiency at fs = 1.3 MHz. As shown in
Fig. 9, the presence of ZVS shifts optimal devices to the lowest
Ron transistors.

The same three starting points are considered, and again all
three rapidly converge to designs above 99% efficiency with
the optimal device.
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TABLE II
SERIES CAPACITOR BUCK HYBRID BUCK CONVERTER PARAMETERS

L 0.251 µH M1,2,3 EPC2044
RL 0.31mΩ M4,5,6 EPC2088

C1,2 2x10 µF M7−15 EPC2055
C3,4,5 2x47 µF fs 500 MHz

Vg 48 V

V. EXAMPLE APPLICATION

A 48-1 V converter was designed to verify the proposed
method. The optimization database included a set of converters
from literature [12], [14]–[16] shown in Fig. 10. A database
of 20 EPC GaN devices modeled approximately by Ron and
Coss, 9 Coilcraft and 7 ICE Components discrete inductors
modeled approximately by RL,dc and L was used to select
implementation of each component. Additionally, the number
of components in parallel, switching frequency, and output
current were taken as variables for the optimization.

Fig. 11 shows the results of the optimization. In Fig. 11(a),
a genetic algorithm is used to sweep a pareto front comprised
by the efficiency and current density (assessed using the total
area of power stage transistors and passives) for each topology.
In Fig. 11(b), the proposed gradient-based optimization is
used to separately select each transistor, inductor, and the
switching frequency. In this case, only efficiency is used as

the design objective, resulting in high-efficiency but large-
footprint designs.

A prototype using the series capacitor buck with switched
capacitor step-down topology is fabricated to test the mod-
eling. The prototype uses the components listed in Table II
which was selected from the Pareto front with a selection bias
towards high efficiency designs without paralleled transistors.
The prototype is designed for Iout = 40 A. Testing results
up to Iout = 10 A are shown in Table II(c) and an image of
the PCB along with thermal performance at 10 A are given in
Fig. 12. From the thermal images and the comparison between
modeled and measured efficiency, the prototype appears to
exhibit about 2 W of additional ac loss in the inductor, which
was not modeled. Nonetheless, the trends in efficiency match
fairly well neglecting the constant offset in power loss.

VI. CONCLUSION

This work proposes a method to optimize power converters
by leveraging discrete time state-space modeling. Techniques
to accelerate both the convergence to a valid steady-state
solution in the presence of state-dependent switching and hard-
ware optimization via component selection and modulation
design are developed. The techniques allow the accurate and
rapid discrete time modeling to be used for broad early-stage
converter design optimization.



(a) (b)

Fig. 12. Prototype PCB photograph (a) and thermal image at Iout = 10 A
(b)
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