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Abstract

We consider (1 + 1)-dimensional directed polymers in a random potential and provide
sufficient conditions guaranteeing joint localization. Joint localization means that for
typical realizations of the environment, and for polymers started at different starting
points, all the associated endpoint distributions localize in a common random region
that does not grow with the length of the polymer. In particular, we prove that joint
localization holds when the reference random walk of the polymer model is either a
simple symmetric lattice walk or a Gaussian random walk. We also prove that the very
strong disorder property holds for a large class of space-continuous polymer models,
implying the usual single polymer localization.
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1 Introduction

The term directed polymers refers to a class of models describing a random elastic
chain in Rd interacting with its random environment. The random distributions on these
chains or paths are given by random Gibbs measures, with Hamiltonian composed of the
energy of local self-interaction and the energy of interaction with the environment.

Pinning one of the endpoints of the polymer chain and parametrizing the chain by
time, one can view it as a random walk in random potential. Time is a distinguished
coordinate in this (d + 1)-dimensional model. In the absence of interaction with the
environment, i.e., when the external potential is zero, random walks are diffusive: the
distribution of the free endpoint of the path of length n is approximately Gaussian with
variance of order n, so it spreads out and thins out as n→∞.

In the presence of an external potential, favorable and unfavorable regions for poly-
mers are created randomly, and one of the central questions in the theory is how these
impurities change the diffusive behavior, under the assumption that the environment
evolves and decorrelates in time.
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Joint Localization of Directed Polymers

This assumption implies that different parts of the polymer path are exposed to
different states of the environment. Attractive regions and other environment features
are dynamically created and destroyed at every time step, and so it is fascinating that,
despite this, the random distribution of the polymer endpoint is often localized. In other
words, for large n it does not spread out like a Gaussian distribution with large variance.

Conditions guaranteeing various forms of localization have been extensively studied
in the literature over the last two decades, see [13], [18], [19], [14], [19], [21], [36], [20],
[39], [31], [17], [22], [9], [7], [12], [5], [8], [24]. Localization for directed polymers is
one of the main themes of the monograph [16].

In these works, various manifestations of localization were studied such as presence
of uniformly heavy atoms for the endpoint distribution, its asymptotic pure atomicity,
asymptotically nonvanishing replica overlap, and similar stronger notions in terms of
entire paths. The new notion of geometric localization introduced for lattice models in [9],
[7], and studied in [5] for continuous space models (along with the several new notions
of asymptotic clustering replacing asymptotic pure atomicity studied for lattice systems
in [39], [9], [7]) essentially means that despite the growing length of the polymer, its
endpoint distribution mostly concentrates in a random region of size of order 1. This is,
of course, in sharp contrast with the diffusive behavior observed for classical symmetric
random walks. Localization is related to the phenomenon of intermittency for solutions
of the stochastic heat equation, see [15], [10], [29]. The main factors contributing to
the localization/delocalization are the strength of the random potential in relation to the
temperature and the dimension d.

With every polymer model one can associate its Lyapunov exponent characterizing
the discrepancy between the density of quenched and annealed free energies, see precise
definitions below. One says that very strong disorder holds if the Lyapunov exponent
is strictly positive. Results of [9] and their generalizations in [5] establish that very
strong disorder is equivalent to geometric localization. In particular, applying results
of [20] and [31], we obtain that geometric localization holds for a broad class of lattice
models with i.i.d. environments in dimensions 1 + 1 and 2 + 1 and all temperature values.
It is known that very strong disorder holds only for sufficiently low temperatures in
dimensions d ≥ 3: in this case, the so-called weak disorder holds for high temperatures,
see [27], [11], [2], [38], [30]. It is conjectured in [3] that a similar picture holds for a
broader class of generalized Hamilton–Jacobi polymers.

A remarkable explicit representation for the limiting random probability density of the
endpoint (and intermediate points) of the space-time white noise continuous polymers in
1 + 1 dimension was recently obtained in [24].

We are interested in the joint behavior of polymer measures exposed to the same
environment but with different endpoints. Such polymers, in dimension 1 + 1, with
Gaussian random walk as a reference measure, i.e., with quadratic nearest neighbor self-
interaction, play an important role in the ergodic theory of the heat/Burgers/KPZ equation
with random kick forcing: one can construct attracting global random solutions in terms
of Busemann functions associated with thermodynamic limits of polymer measures with
different endpoints, see [4] where all these objects were constructed. We will refer to
them as GRW (Gaussian random walk) polymers in this paper.

It is natural to conjecture that if localization holds for individual polymers, then
polymers with different endpoints exposed to the same environment must be localized in
the same region, i.e., one can find a random set of size of order 1 containing most of the
mass of both endpoint distributions, of both polymers pinned at different endpoints.

Our main result is that this is true in the (1 + 1)-dimensional case under natural
additional assumptions. We also check these additional assumptions and derive that
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Joint Localization of Directed Polymers

joint localization indeed holds for two classes of polymers in 1 + 1 dimensions. The
first class of models is the GRW polymers studied in [4]. The second class is the lattice
polymers with symmetric simple random walk (SSRW) as the reference measure, in an
i.i.d. environment.

We note that while the very strong disorder for lattice polymers was established
in [20] and similar results have been obtained for some continuous-space polymers in
[21], [36], [12], [24], the same property for GRW polymers has not appeared in the
literature to the best of our knowledge. In this note, we adapt the proof from [20] and
derive that very strong disorder holds for a large class of space-continuous polymers,
including GRW polymers, which in conjunction with results from [4], [5], and our main
result allows us to conclude that joint localization holds for GRW polymers for all
temperature values in dimension 1 + 1.

Besides the localization for individual polymers, an additional assumption we need is
closely related to the requirement that the ratio of certain point-to-line partition functions
remains bounded by a random constant not depending on the polymer length. A stronger
form of this property was established for GRW polymers in [4], where convergence of
these ratios to finite positive numbers was established. The limits of those ratios or their
logarithms can be viewed as Busemann functions, and their existence has been also
established for exactly solvable models of log-gamma polymer in [26] and O’Connell–Yor
polymer in [1]. For general SSRW models, convergence of partition function ratios (i.e.,
well-definedness of Busemann functions) is known only conditionally, see [28], but the
boundedness of these ratios can be derived from the latter paper.

A first indication that such a result could be true is a theorem from [4] stating conver-
gence to zero (as n→∞) of the total variation distance between the n-th marginals of
the infinite-volume polymer measures with the same asymptotic slope but with different
endpoints.

Acknowledgements. We are grateful to Firas Rassoul-Agha for pointing out that our
condition on the boundedness of partition functions can be easily derived from [28]. We
are thankful to the referees for their detailed reading and useful comments. YB thanks
NSF for partial support via grants DMS-1811444 and DMS-2243505.

2 The setting and statements of main results

We will consider two main cases, lattice polymers and polymers in continuous space.
To unify the notation, we define the space X to be either Z or R. In both cases, X is a
group with respect to the usual addition. The role of space-time for our polymers in 1 + 1

dimension is played by Z×X (X being the space and Z being the time).
Let λ be a probability measure on (X,B), where B is the Borel σ-algebra on X. To

simplify the presentation we assume that λ is not equal to a Dirac mass δx for any x ∈ X.
For a ∈ X and an i.i.d. sequence of random variables (ξi)i∈N with common distribution
λ on X, we define the partial sums S0 = a, Sk = a +

∑k
i=1 ξi for k ≥ 1, and denote the

distribution of (S0, . . . , Sn−1, Sn) on Xn+1 by Pna . Equivalently,

Pna(dx0, . . . , dxn) = δa(dx0)λ(d(x1 − x0)) · · ·λ(d(xn − xn−1)). (2.1)

For integers m < n we use the notation Pm,na := Pn−ma . In this paper, we consider
probability measures λ of the form λ(dx) = p(x)γ(dx), where γ is either Lebesgue
measure on X = R or the counting measure on X = Z and p is a probability density, i.e.,
a measurable nonnegative function such that

∫
X
p(x)γ(dx) = 1.

We state our main results (see Theorem 2.7) imposing extra conditions on the distri-
bution λ. Although we believe that these conditions hold true for a large class of models,
in this paper, we verify them only for two specific examples: the Gaussian random walk,
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where λ(dx) = g(x)dx with

g(x) =
1√
2π
e−x

2/2, (2.2)

and the symmetric simple random walk, where λ(dx) = 1
2δ−1 + 1

2δ1, see our Assump-
tions 2.1 and 2.2 below.

The (1 + 1)-dimensional polymer measures that we are concerned with are obtained
as a result of interaction of the above random walks with the environment potential, a
measurable function F : Z×X→ R which can be viewed as a collection F = (Fk)k∈Z,
where Fk : X→ R, k ∈ Z.

We denote the point-to-line directed polymer measure at temperature T = 1/β ∈
(0,∞), in potential F , started at (m, a) ∈ Z×X and ending at time n > m, by µm,na,β . The
measure µm,na,β is a Gibbs distribution. It is defined to be the probability measure on
Xn−m+1 satisfying

µm,na,β (dxm, . . . , dxn) =
1

Zm,na,β

e−β
∑n−1
k=m Fk(xk)Pm,na (dxm, . . . , dxn), (2.3)

where the normalizing constant Zm,na,β called the point-to-line partition function is defined
by

Zm,na,β =

∫
Xn−m+1

e−β
∑n−1
k=m Fk(xk)Pm,na (dxm, . . . , dxn). (2.4)

We note that (2.3) defines a probability measure µm,na,β whenever Zm,na,β <∞.
Since in this paper we only consider 1 + 1 dimension, the role of β is inconsequential,

as the very strong disorder regime holds for all positive β and environments satisfying
certain mild conditions (see [20] for the discrete case and Section 7 for the continuous
case). Because of this, we can omit the constant β from our notation and absorb it into
the environment F . We also use Zna = Z0,n

a , µna = µ0,n
a , Zn = Zn0 , µn = µn0 for brevity.

The polymer measure µm,na can be viewed a Gibbs measure with reference measure
δa × γn−m and Hamiltonian

Hm,nxm (xm+1, . . . , xn−1) =
n−1∑
k=m

[
Fk(xk) + V (xk+1 − xk)

]
,

where
V (x) := − log p(x). (2.5)

Under this interpretation, V (xk+1 − xk) plays the role of the energy of nearest neighbor
self-interaction of the polymer chain. For the Gaussian density of the random walk step
given in (2.2), the energy V is quadratic.

We assume we are given a probability space (Ω,F ,P), where Ω is the space of
continuous functions F : Z×X→ R (the continuity requirement is superfluous if X = Z)
endowed with local uniform topology and F is the completion of the Borel σ-algebra with
respect to P.

We usually write the time argument of F as a subscript obtaining Fk : X→ R, k ∈ Z.
We introduce the space-time shifts (θn,x)n∈Z,x∈X acting on Ω, defined by θn,xFk(y) =

Fk+n(y + x), and we assume that these space-time shifts preserve P so that F is space-
time stationary. We take the environment to be independent in time, meaning that the
collection (Fk)k∈Z is independent. We also assume throughout this paper that F is not
deterministic (a deterministic stationary potential F is a constant, so in this case the
polymer measures coincide with the reference random walks and localization does not
hold).

In the continuous case where X = R, we take the field Fk to have finite range spatial
dependence. In the discrete case the field will be independent in space as well as in
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time. See Assumption 2.1 and Assumption 2.2 for the precise additional assumptions in
these two cases. We also give natural examples of random potentials for the continuous
case after Assumption 2.1.

We are studying directed polymer measures µm,na in environment F . Though µm,na

depends on the realization of the environment, this dependence will be omitted from the
notation for brevity.

We are interested in the joint behavior of polymer measures µm,na with varying a,m,
and n. To ensure that they all are well-defined probability measures for almost every
realization of F , we will need to check that

P(Ω1) = 1 (2.6)

where

Ω1 :=
⋂

m,n∈Z
m<n

{Zm,na <∞ for all a ∈ X}. (2.7)

We discuss this condition in Section 3. In particular, Theorem 3.1 implies that (2.6) holds
in the concrete cases that we consider.

Some of our results require additional sets of conditions that we collect together
as Assumption 2.1 (for the continuous space case) and Assumption 2.2 (for the lattice
case). In part these assumptions are carried over from [4, 5, 28, 9] to ensure that the
main results from these papers are applicable. More precisely, Assumption 2.1 fulfills
requirements on the environment stated in [4] and [5] on the continuous space case. In
this paper, we need an additional assumption of positive correlation, as well as a slightly
more restrictive exponential moment condition than in [4] and [5]. Assumption 2.2 is a
combination of requirements in [28] and [9] in the lattice case.

Assumption 2.1 (Continuous Environment Case). Here X = R, γ(dx) is Lebesgue mea-
sure, and λ is absolutely continuous with respect to Lebesgue measure. The requirements
on the environment are the following.

(I) For all α ∈ [−2, 3], E[eαF0(0)] < ∞. In addition, there exists η > 0 such that
E[eηF

∗
0 (0)] <∞, where F ∗k (x) = sup{Fk(y) : y ∈ [x, x+ 1]}.

(II) Nonnegative correlation, i.e., for all x ∈ R,

E
[(
e−F0(0) − eϑ

)(
e−F0(x) − eϑ

)]
≥ 0

where ϑ := logE[e−F0(0)].

(III) P-almost surely, Fk ∈ C1(R) for all k.

(IV) F0 is M -dependent for some M > 0, i.e., for all a ∈ R, the collection of random
variables (F0(x))x<a is independent of (F0(x))x>a+M .

While Assumptions 2.1.I, 2.1.II and 2.1.IV are essentially taken directly from [4]
and [5], we introduce Assumption 2.1.II to prove the very strong disorder property in
the continuous setting, see Theorem 2.12. Intuitively, positive correlation between the
environment at distinct points makes it more likely for the polymer to concentrate, or
localize, in small regions.

Natural examples of a field F satisfying the above conditions are: (i) a Poisson field
on Z × R mollified in the spatial variable by a compactly supported nonnegative C1

function; (ii) a smooth Gaussian field with positive covariance, with finite dependence
range in space and i.i.d. in time.
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Assumption 2.2 (SSRW Case). Here X = Z and λ(dx) = 1
2δ−1 + 1

2δ1. The requirements
on the environment are the following.

(I) For all α ∈ [−2, 2], E
[
eαF0(0)

]
<∞.

(II) The collection (F0(x))x∈Z is i.i.d.

Now we will define precisely the concepts of localization and joint localization that
we will consider. The following definition from [5] is a generalization of the definition for
lattice measures given in [9]. For brevity, we replace the term geometric localization used
in those papers by localization. For x ∈ X, K > 0, we denote BK(x) = {y : |y − x| ≤ K},
the closed ball of radius K centered at x ∈ X.

Definition 2.3. Localization with parameters (δ,K, θ) holds for a sequence (νn)n∈N of
probability measures on R if

lim inf
n→∞

1

n

n−1∑
k=0

1
{

sup
x∈R

νk(BK(x)) > 1− δ
}
≥ θ.

In other words, for every k from a set of natural numbers of density at least θ, the
measure νk assigns mass at least 1− δ to some region of fixed size 2K. In this paper, we
study a related notion of joint localization defined as follows.

Definition 2.4. Let A ⊂ X be any set. Joint localization with parameters (δ,K, θ) holds
for a family of probability measures (νna )n∈N,a∈A if

lim inf
n→∞

1

n

n−1∑
k=0

1
{

sup
x∈R

inf
a∈A

νka (BK(x)) > 1− δ
}
≥ θ.

If A contains more than one point, then this definition strengthens Definition 2.3 on
localization of individual measures and requires a uniformly heavy region BK(x) of fixed
size 2K to exist and to serve all the measures νka , a ∈ A, at the same time, i.e., all these
measures get localized to the same region.

The main results of this paper give sufficient conditions for joint localization to hold
for endpoint distributions ρna of random polymer measures µna defined by

ρna = µnaπ
−1
n , n ∈ N. (2.8)

Here and throughout the paper, πnx, n ∈ Z denotes the n-th coordinate of a vector (or
path) x.

Our main general result is Theorem 2.7. We give its implications for GRW and SSRW
polymers first.

Theorem 2.5. Suppose Assumption 2.1 holds and p = g, the standard Gaussian density
given in (2.2). Let δ > 0 and let a < b. Then, for P-almost every realization of F , there
are K, θ > 0 (depending on F ) such that joint localization with parameters (δ,K, θ) holds
for the family (ρnx)n∈N,x∈[a,b].

Theorem 2.6. Suppose Assumption 2.2 holds. Let δ > 0 and let A be a finite subset of
2Z. Then, for P-almost every realization of F , there are K, θ > 0 (depending on F ) such
that localization with parameters (δ,K, θ) holds for the family (ρnx)n∈N,x∈A.

We prove Theorem 2.5 in Section 5. We prove Theorem 2.6 in Section 6.
To state Theorem 2.7, we need to introduce point-to-point polymer measures. We

begin with the point-to-point reference walk distribution. For a, u ∈ X and n ∈ N, the
random walk Pna,u measure between points (a, 0) and (u, n) is defined by

Pna,u(dx0, . . . , dxn) = δa(dx0)λ(d(x1 − x0)) · · ·λ(d(xn − xn−1))δu(dxn). (2.9)
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The measure Pna,u has density with respect to δa ⊗ γ⊗(n−1) ⊗ δu given by

dPna,u
d(δa ⊗ γ⊗(n−1) ⊗ δu)

(x0, . . . , xn) =
n−1∏
i=0

p(xk+1 − xk).

Note that under our definition Pna,u is not a probability measure (indeed it may be zero if
(a, 0) and (u, n) are not connected by a random walk with steps λ). We use the notation
Pm,na,u := Pn−ma,u . We can define the point-to-point polymer measure as

µm,na,u (dxm, . . . , dxn) =
1

Zm,na,u
e−

∑n−1
k=m Fk(xk)Pm,na,u (dxm, . . . , dxn) (2.10)

where Zm,na,u is the point-to-point partition function (normalizing factor):

Zm,na,u =

∫
Rn−m+1

e−
∑n−1
k=m Fk(xk)Pm,na,u (dxm, . . . , dxn) (2.11)

=

∫
Rn−m+1

n−1∏
k=m

e−Fk(xk)p(xk+1 − xk)(δa ⊗ γ⊗(n−m−1) ⊗ δu)(dx).

Definition (2.10) makes sense only if Zm,na,u is positive and finite. If Zm,na,u = 0 then we
define µm,na,u := 0 where 0 is the zero measure. Finiteness of the point-to-point partition
functions is discussed in Section 3. In particular, Theorem 3.1 implies that in the cases
we consider,

P(Ω2) = 1, (2.12)

where
Ω2 =

⋂
m,n∈Z
m<n

{
Zm,na,u <∞ for all a, u ∈ X

}
. (2.13)

We will work on the set
Ω0 = Ω1 ∩ Ω2. (2.14)

We have P(Ω0) = 1 due to (2.6) and (2.12).
We will often use the notation Zna,u = Z0,n

a,u and µna,u = µ0,n
a,u. Let us extend (2.8) and

define endpoint distributions for polymers started at a general time:

ρm,na = µm,na π−1
n , m, n ∈ Z, n > m. (2.15)

Using (2.3), (2.4), (2.11), (2.15), we obtain

Zm,na =

∫
R

Zm,na,u γ(du), (2.16)

so

ρm,na (A) =
1

Zm,na

∫
A

Zm,na,u γ(du),

or, equivalently,

ρm,na (du) =
Zm,na,u

Zm,na
γ(du). (2.17)

We are ready to state our main result providing sufficient conditions for joint localiza-
tion. We believe that these conditions apply to a broad class of 1 + 1 polymer models. In
particular, Theorems 2.5 and 2.6 are corollaries of this general result.

Let G ⊂ X be a subset unbounded in both positive and negative directions. In
practical applications, G will be taken to be an additive subgroup of X associated to
the random walk measure (R in the continuous case and 2Z in the simple random walk
case). In essence, G is the subset of X where random walks started at two points a, b ∈ G
interact with the same environment.
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Theorem 2.7. Let A be a bounded subset of G. Suppose that for some realization of the
potential F ∈ Ω0, the following holds.

(a) For every δ > 0 and every m ∈ Z, there are K, θ > 0 such that localization with
parameters (δ,K, θ) holds for the sequence (ρm,n0 )∞n=m.

(b) For every a, b ∈ G satisfying a ≤ b, every n ∈ N, and γ⊗2-a.e. (u, v) ∈ X2 satisfying
u ≤ v,

Zna,uZ
n
b,v ≥ Zna,vZnb,u. (2.18)

(c) For every r > 0, there is an integer m < 0 such that

lim inf
n→∞

(µm,n0 π−1
0 )((−∞,−r) ∩G) > 0 (2.19)

and
lim inf
n→∞

(µm,n0 π−1
0 )((r,∞) ∩G) > 0. (2.20)

Then for every δ > 0, there are K, θ > 0 such that joint localization with parameters
(δ,K, θ) holds for (ρna)n∈N,a∈A.

We prove Theorem 2.7 in Section 4.
Requirement (a) is the obvious necessary condition that single polymer localization

should hold if we want joint localization to hold.
Requirement (b) can be interpreted as a path crossing inequality for polymers. The

function − logZna,u is the free energy associated to traveling from a to u in n units of time.
Relation (2.18) means that the sum of the energies associated to paths between a and u
and between b and v is less than the sum of the energies associated to paths between a
and v and between b and u. For the zero temperature last passage percolation case, the
analogous property for geodesics becomes the path crossing lemma (see Lemma B.2 in
[6]) and it is related to the cutting corner lemma for Lagrangian minimizers (see Fact 2
and Lemma 3.2 in [25]). Requirement (b) is essentially a fact about (1 + 1)-dimensional
polymers and implies monotonicity properties in the endpoint polymer measure (see
Lemma 4.2). This monotonicity is a key property used in the proof of Theorem 2.7.

We are able to verify Requirement (b) when the reference measure is log-concave
and when the reference measure is a simple random walk.

Requirement (c) is an assumption of the non-degeneracy of the marginals of the
polymer measure as n → ∞. It is tightly related to boundedness of partition function
ratios Z0,n

x /Z0,n
y from infinity and zero as n→∞. For GRW polymers a stronger condition

actually holds: the limits of these ratios are well-defined, positive, and can be interpreted
in terms of infinite volume polymer measures, see the discussion in Section 5.2 and, in
particular, Theorem 5.3.

We expect Requirements (a) to (c) to hold in large generality for (1 + 1)-dimensional
polymers. It is also natural to expect that single polymer localization implies joint
localization in high dimensions. However, our arguments based on the path crossing
inequality do not directly extend to these cases.

We are able to check Requirements (a) and (b) of Theorem 2.7 assuming that the ran-
dom walk density is log-concave, and so we derive the following corollary of Theorem 2.7.
We call the density p : R→ [0,∞) log-concave if the energy function V : R→ (−∞,∞]

given by (2.5) is convex. Some well-known examples of log-concave densities are
Gaussian densities (p(x) ∝ e−b(x−a)2), Laplace densities (p(x) ∝ e−b|x−a|), and uniform
densities (p(x) ∝ 1[a,b](x)).

Corollary 2.8. Suppose λ has a log-concave density with respect to Lebesgue measure
and that the environment satisfies Assumption 2.1. Also, suppose Requirement (c) of

EJP 0 (2020), paper 0.
Page 8/43

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint Localization of Directed Polymers

Theorem 2.7 holds P-almost surely for G = R. Let δ > 0 and a < b. Then, for P-almost
every realization of F , there are K, θ > 0 (depending on F ) such that joint localization
with parameters (δ,K, θ) holds for the family (ρnx)n∈N,x∈[a,b].

In Section 5, we will prove this corollary and then use it to derive Theorem 2.5.
The fact that localization holds for single polymers under Assumption 2.2 is a corollary

of results establishing very strong disorder [20] and results deriving localization from
very strong disorder for lattice polymers in [9]. However, no results demonstrating the
very strong disorder property are known to us for polymers in continuous space and
discrete time. We prove such a result in Section 7 using ideas from [20] to establish
very strong disorder for these models, and applying the main result from [5] to derive
localization from very strong disorder.

The very strong disorder property is a strict inequality between the limiting average
free energy of the model and the annealed upper bound. Under Assumption 2.2, assuming
finiteness of exponential moments of the environment, it was shown in Proposition 2.5 of
[18] that the average free energy,

ψ := lim
n→∞

1

n
logZn (2.21)

exists almost surely and equals limn→∞
1
nE[logZn]. This was improved in [32] to include

the setting of Assumption 2.2, where fewer exponential moments are assumed. The
quantity

ϑ := logE[e−F0(0)] (2.22)

is the annealed bound of the free energy, and upper bounds the free energy by Jensen’s
inequality. The results from [20] and [31] show that under Assumption 2.2 the very
strong disorder property holds:

ψ < ϑ. (2.23)

The quantity ϑ−ψ is called the Lyapunov exponent of the polymer model. Definitions 2.21
and (2.22) can be extended to the continuous setting in the natural way. The existence of
the limit in (2.21) in the continuous setting is an easy extension of the analogous result
in the discrete setting and is discussed at the beginning of Section 7.

The very strong disorder property (2.23) is equivalent to localization of the sequence
of endpoint measures ρn0 . Specifically, the following theorem was proved in [9] in the
context of Assumption 2.2 and then extended to the general continuous setting in [5].

Theorem 2.9 (Theorem 1.2 in [9] and Theorem 1.2 in [5]). The following holds under
either Assumption 2.1 or Assumption 2.2. If ψ < ϑ, then for all δ > 0 there are K, θ > 0

such that P-almost surely localization with parameters (δ,K, θ) holds for the sequence of
endpoint measures (ρn0 )n∈N.

Theorem 2.9 in fact holds in arbitrary dimension and requires weaker conditions than
Assumption 2.1 and Assumption 2.2. In Section 7 we derive (2.23), and hence single
point localization of the endpoint measures, in the continuous setting, thus checking
that Requirement (a) of Theorem 2.7 holds. Specifically, we require the setting of
Assumption 2.1 and some additional assumptions on the density p, described below.

Assumption 2.10. The measure λ is absolutely continuous with respect to Lebesgue
measure. There is a version of its density p that satisfies the following conditions.

(I)
∫
R
|x|νp(x)dx <∞ for some ν > 2.

(II) supx∈R p(x) <∞.

(III) There are L,R ∈ R satisfying L < R such that p is nondecreasing on (−∞, L] and
nonincreasing on [R,∞). In addition, p is bounded away from zero on [L,R].
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Assumption 2.10 defines a broad class of densities. We prove the following lemma at
the beginning of Section 5.1.

Lemma 2.11. If p is log-concave, then the measure λ(dx) = p(x)dx satisfies Assump-
tion 2.10.

Theorem 2.12. Suppose the environment satisfies Assumption 2.1 and the density p
satisfies Assumption 2.10. Then, the very strong disorder property (2.23) holds.

We prove Theorem 2.12 in Section 7. Theorem 2.12 and Theorem 2.9 immediately
imply the following one-point localization result in one dimension.

Theorem 2.13. Suppose the environment satisfies Assumption 2.1 and p satisfies As-
sumption 2.10. Then, for any δ > 0 there are K, θ > 0 such that P-almost surely
localization with parameters (δ,K, θ) holds for the sequence of endpoint measures
(ρn0 )n∈N.

The remainder of the paper is organized as follows: In Section 3, we prove that
partition functions are finite and that the polymer measures are well-defined. In Section 4,
we prove Theorem 2.7, a general result on joint localization. In Section 5, we apply this
general result in the continuous setting and prove Corollary 2.8 and Theorem 2.5. In
Section 6, we apply it in the lattice setting and prove Theorem 2.6. In Section 7, we
establish very strong disorder for continuous polymer models proving Theorem 2.12 and
hence Theorem 2.13. Section 7 is independent of Sections 4–6. In Section 8, we prove
two auxiliary estimates.

3 Finiteness of the Partition Functions

The goal of this section is to prove the following theorem on finiteness of partition
functions.

Theorem 3.1. Relations (2.6) and (2.12) hold under Assumption 2.2. They also hold
under the combination of Assumption 2.1 and Assumption 2.10.

We note that the conditions of the theorem are not the most general. For example,
if λ has bounded support, then all partition functions we consider are finite for every
realization of F ∈ Ω.

The part of the theorem concerning Assumption 2.2 is trivial because in this case
partition functions are finite sums of a.s.-finite r.v.’s. For the continuous case we will
need the following auxiliary lemma.

Lemma 3.2. Let G be a countable set of random nonnegative continuous functions
defined on the probability space Ω. Suppose that for all G ∈ G,

sup
x∈R

E[G(x)] <∞. (3.1)

Also suppose that there is h ∈ L1(R, dx) and a0 > 0 such that for all a ∈ [0, a0),

|p(x− a)− p(x)| ≤ h(x), Lebesgue-a.e. x ∈ R. (3.2)

Then, the set

Ω′ :=
⋂
G∈G

{∫
R

p(x− a)G(x)dx <∞ for all a ∈ R
}

(3.3)

satisfies P(Ω′) = 1.

Proof. Let us define a measurable set

Ω′′ =
⋂
G∈G

⋂
k∈Z

{∫
R

p(x− ka0)G(x)dx <∞
}
∩
{∫

R

h(x− ka0)G(x)dx <∞
}
. (3.4)
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Condition (3.1) implies

E

∫
R

p(x− ka0)G(x)dx <∞

and

E

∫
R

h(x− a)G(x)dx <∞.

Therefore, P(Ω′′) = 1. We will show that Ω′′ ⊂ Ω′, establishing (3.3).
Let G ∈ G. Let x0 ∈ R, k ∈ Z, and a ∈ [0, a0) satisfy x0 = ka0 + a. If F ∈ Ω′′, then∫

R

p(x− x0)G(x)dx

=

∫
R

p(x− ka0 − a)G(x)dx−
∫
R

p(x− ka0)G(x)dx+

∫
R

p(x− ka0)G(x)dx

≤
∫
R

|p(x− ka0 − a)− p(x− ka0)|G(x)dx+

∫
R

p(x− ka0)G(x)dx

≤
∫
R

h(x− ka0)G(x)dx+

∫
R

p(x− ka0)G(x)dx

<∞.

It follows that Ω′′ ⊂ Ω′.

Proof of Theorem 3.1: Assumption 2.1.I implies

E[e−F0(0)] <∞, (3.5)

so E[Zm,na ] < ∞ for all a ∈ X by Fubini’s theorem and thus P{Zm,na < ∞} = 1 for all
a ∈ R. To prove (2.6), we need to extend this to uncountable intersection over all a.
Since

Zm,na = e−Fm(a)

∫
R

p(x− a)Zm+1,n
x dx,

relation (2.6) will follow from Lemma 3.2 applied to the collection

G =
{
x 7→ Zm+1,n

x : m,n ∈ Z, m < n
}

once we check conditions (3.1) and (3.2). Condition (3.1) follows from (3.5). Condition
(3.2) with some function h ∈ L1 is satisfied if x 7→ supa∈(0,a0) p(x− a) is integrable on R.
Since the latter follows from Assumption 2.10, the proof of (2.6) under the combination
of Assumption 2.1 and Assumption 2.10 is complete.

Let us prove (2.12).
If F ∈ Ω1, then (2.16) implies that for all m,n ∈ Z satisfying m < n, all a ∈ R, and

γ–a.e. u ∈ R,

Zm,na,u <∞. (3.6)

To prove (2.12), we need to show that this relation holds for all a, u ∈ R (rather than just
γ-a.e. u), P-almost surely. We can apply Lemma 3.2 to

G =
{
x 7→

∫
R

Zm+1,n−1
x,y e−Fn−1(y)dy : m,n ∈ Z, m < n− 1

}
because (3.1) follows from (3.5) and we already checked condition (3.2) in our proof
of (2.6). Thus we have P(Ω′) = 1, where Ω′ is defined in (3.3).
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Let F ∈ Ω′. For every a, u ∈ R and every m,n ∈ Z satisfying m < n − 1, Assump-
tion 2.10.II and the definition of Ω′ imply

Zm,na,u =

∫
R

Zm,n−1
a,y e−Fn−1(y)p(u− y)dy

≤ sup
z∈R

p(z)

∫
R

Zm,n−1
a,y e−Fn−1(y)dy

≤ e−Fm(a) sup
z∈R

p(z)

∫
R

∫
R

p(x− a)Zm+1,n−1
x,y e−Fn−1(y)dxdy

<∞. (3.7)

If m = n− 1, then for every F ∈ Ω,

Zn−1,n
a,u = e−Fn−1(a)p(u− a) <∞.

Therefore, Ω′ ⊂ Ω2 implying (2.12) and completing the proof of Theorem 3.1. 2

4 Joint Localization for General Polymer Models

The main goal of this section is to prove Theorem 2.7. The main idea of the proof is
that for m < 0, the endpoint distribution ρm,n0 (dy) is a mixture of endpoint distributions
ρ0,n
x for x ∈ R. Thus, if localization holds for (ρm,n0 )n>m, i.e., the measures ρm,n0 , are

mostly concentrated in a compact region R, at least some measures ρ0,n
x also must assign

large mass to R. Finally, a monotonicity argument allows us to conclude. The endpoint
distributions (ρm,nx (dy))x∈X of point-to-line polymers can be viewed as probability kernels
from X to R equipped with Borel σ-algebras. We recall that for measurable spaces (S,S),
(E, E), a function κ : S×E → [0, 1] is a probability kernel (from S to E) if κx is a probability
measure on (E, E) for every x ∈ S, and x 7→ κx(A) is a measurable function for every
A ∈ E . If χ is a probability measure on S, then the convolution χκ is the probability
measure on (E, E) given by

χκ(A) =

∫
S

χ(dx)κx(A), A ∈ E .

For d ∈ N and x, y ∈ Rd we write x � y to mean xk ≤ yk for all k = 1, . . . , d. We will
say that a function f : Rd → R is coordinatewise nondecreasing or simply monotone (for
brevity) if f(x) ≤ f(y) for all x, y ∈ Rd satisfying x � y.

For measures ν, µ on Rd, we say that ν stochastically dominates µ, and write µ � ν, if∫
Rd
f(x)µ(dx) ≤

∫
Rd
f(x)ν(dx) (4.1)

for all monotone f : Rd → [0, 1]. Equivalently, one can require (4.1) to hold for all
monotone f : Rd → [0,∞) or for all monotone f : Rd → {0, 1}. In d = 1, µ � ν is
equivalent to µ((−∞, x]) ≥ ν((−∞, x]) for every x ∈ R.

4.1 Deterministic Joint Localization

We will derive Theorem 2.7 from the following general result.

Proposition 4.1. Let a < b and G ⊂ X be a measurable set. Assume that (κn)n∈N is a
sequence of probability kernels from X to X and (χn)n∈N is a sequence of probability
measures on X. Suppose the following conditions hold:

(a) (localization) For every δ > 0, there are K, θ > 0 such that localization with
parameters (δ,K, θ) holds for the sequence of probability measures (χnκn)n∈N.
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(b) (monotonicity) κnx � κny for every x, y ∈ G ⊂ X satisfying x ≤ y.

(c) (positive mass)

η− := lim inf
n→∞

χn((−∞, a) ∩G) > 0, (4.2)

η+ := lim inf
n→∞

χn((b,∞) ∩G) > 0. (4.3)

Then, for every δ > 0, there are K, θ > 0 such that joint localization with parameters
(δ,K, θ) holds for the sequence (κnx)n∈N, x∈(a,b)∩G.

Requirements (a) to (c) of Proposition 4.1 are counterparts of Requirements (a)
to (c) of Theorem 2.7. The dictionary between the notation in Proposition 4.1 and in
Theorem 2.7 is as follows. The collection of measures (κnx)x∈X, n∈N will correspond to the
endpoint measures (ρnx)x∈X, n∈N, the sequence (χn)n∈N will correspond to the marginals
(µm,n0 π−1

0 )n=m,m+1,..., and the convolutions (χnκn)n∈N will correspond to the sequence
(µm,n0 )n=m,m+1,....

Heuristically, condition (a) of Proposition 4.1 implies that for many n ∈ N, the
measure χnκn concentrates in a constant size region. Requirement (c) allows us to
show that if the measure χnκn is concentrated in some region, then there must be some
x− < a and x+ > b such that κnx− and κnx+

are concentrated in the same region. We then
use the monotonicity condition in Requirement (b) to deduce concentration of κnx in the
same region for arbitrary x ∈ [a, b].

Proof. Let δ > 0 and define δ′ = δ
3 min(η−, η+). By Requirement (a) we can find K, θ > 0

such that localization with parameters (δ′,K, θ) holds for (χnκn)n∈N.
Suppose that for some n ∈ N and some z ∈ R we have

χnκn(BK(z)) > 1− δ′. (4.4)

Define R = {x ∈ G : κnx(BK(z)) > 1 − δ}. We will show that sets R ∩ (−∞, a) and
R ∩ (b,∞) are not empty by showing that χn assigns positive mass to each of them. By
(4.4),

1− δ′ <
∫
X

κnx(BK(z))χn(dx)

≤ χn (X \G) + (1− δ)χn (G \R) + χn (R)

= 1− δχn (G \R) ,

so

χn (G \R) <
δ′

δ
. (4.5)

The definition of localization does not change if we discard finitely many values of n,
and so, due to (4.2) and (4.3), without loss of generality we will assume that n is large
enough to ensure that χn((−∞, a) ∩G) > η−/2 and χn((b,∞) ∩G) > η+/2. By (4.4) and
(4.5),

1− δ′ <
∫
X

κnx(BK(z))χn(dx)

≤ χn (R ∩ (−∞, a)) + (1− δ)χn (G \R) + χn (G ∩ [a,∞)) + χn (X \G)

< χn (R ∩ (−∞, a)) + (1− δ)δ
′

δ
+ χn (G)− η−

2
+ χn (X \G)

= χn (R ∩ (−∞, a)) + (1− δ)δ
′

δ
+ 1− η−

2
.
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Therefore,

χn(R ∩ (−∞, a)) >
η−
2
− δ′

δ
> 0,

where the second inequality follows from the definition of δ′. Thus, R ∩ (−∞, a) 6= ∅, and
there is x− ∈ G with x− < a such that

κnx−(BK(z)) > 1− δ. (4.6)

A similar proof shows that there is x+ ∈ G with x+ > b such that

κnx+(BK(z)) > 1− δ. (4.7)

If y ∈ (a, b) ∩G, then x− < y < x+, so (4.6), (4.7) and Requirement (b) imply

κny ((−∞, z −K)) ≤ κnx−((−∞, z −K)) ≤ 1− κnx−(BK(z)) < δ

and

κny ((z +K,∞)) ≤ κnx+
((z +K,∞)) ≤ 1− κnx+

(BK(z)) < δ.

The last two displays imply

κny (BK(z)) > 1− 2δ, ∀y ∈ (a, b) ∩G. (4.8)

In summary, for sufficiently large n ∈ N, if (4.4) holds, then so does (4.8). Therefore,

lim inf
n→∞

1

n

n∑
i=1

1
{

sup
z∈R

inf
x∈(a,b)∩G

κix(BK(z)) > 1− 2δ
}

= lim inf
n→∞

1

n

n∑
i=1

1
{
∃z s.t. ∀x ∈ (a, b) ∩G, κix(BK(z)) > 1− 2δ

}
≥ lim inf

n→∞

1

n

n−1∑
i=0

1
{

sup
z∈R

χiκi(BK(z)) > 1− δ′
}

≥ θ.

This completes the proof since δ > 0 is arbitrary.

4.2 Proof of Theorem 2.7

Let us check that the assumptions of Proposition 4.1 hold true for the polymer
endpoint distributions. The dictionary between Proposition 4.1 and Theorem 2.7 was
introduced right after the statement of Proposition 4.1.

Requirement (b) of Proposition 4.1 is implied by the following lemma. Note that it
requires neither Assumption 2.1 nor 2.2. Recall the definition of Ω0 given (2.14) as the
set on which all point-to-point and point-to-line partition functions are finite.

Lemma 4.2. Suppose that F ∈ Ω0. Also suppose that (2.18) holds for some n ∈ N, some
a and b satisfying a ≤ b, and γ⊗2-a.e. (u, v) satisfying u ≤ v. Then ρna � ρnb .

Proof. Fix y ∈ R. Using (2.18) and the symmetry of the set {(u, v) : u ≤ y, v ≤ y}, we
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have ∫
u≤y

Zna,uγ(du)

∫
v∈R

Znb,vγ(dv)

=

∫
u≤y

∫
v∈R

Zna,uZ
n
b,vγ(du)γ(dv)

=

∫
u≤y

∫
v≤y

Zna,uZ
n
b,vγ(du)γ(dv) +

∫
u≤y

∫
v>y

Zna,uZ
n
b,vγ(du)γ(dv)

≥
∫
u≤y

∫
v≤y

Zna,vZ
n
b,uγ(du)γ(dv) +

∫
u≤y

∫
v>y

Zna,vZ
n
b,uγ(du)γ(dv)

=

∫
u≤y

∫
v∈R

Zna,vZ
n
b,uγ(du)γ(dv)

=

∫
u≤y

Znb,uγ(du)

∫
v∈R

Zna,vγ(dv).

Dividing both sides by the finite, nonzero number
∫
v∈R Z

n
b,vγ(dv)

∫
v∈R Z

n
a,vγ(dv), we

obtain

ρna((−∞, y]) =

∫
(−∞,y]

Zna,uγ(du)∫
R
Zna,vγ(dv)

≥

∫
(−∞,y]

Znb,uγ(du)∫
R
Znb,vγ(dv)

= ρnb ((−∞, y]),

completing the proof.

The following lemma shows that the polymer endpoint distributions are transition
kernels as claimed and gives a disintegration formula.

Lemma 4.3. Let m < k < n. For every F ∈ Ω0,

ρm,n0 (A) =

∫
R

ρk,nx (A)(µm,n0 π−1
k )(dx) = (µm,n0 π−1

k )ρk,n· (A), A ∈ B.

Proof. For any B ∈ B,

(µm,n0 π−1
k )(B) =

1

Zm,n0

∫
Rk−m−1×B×Rn−k−1

e−
∑n−1
`=m F`(x`)Pm,n0 (dxm, . . . , dxn)

=
1

Zm,n0

∫
B

Zm,k0,y Z
k,n
y γ(dy),

which may be abbreviated to

(µm,n0 π−1
k )(dy) =

1

Zm,n0

Zm,k0,y Z
k,n
y γ(dy).

Using this along with (2.17) and Fubini’s theorem we obtain, for any A ∈ B:

ρm,n0 (A) =
1

Zm,n0

∫
A

Zm,n0,y γ(dy)

=
1

Zm,n0

∫
A

∫
R

Zm,k0,x Z
k,n
x,y γ(dx)γ(dy)

=
1

Zm,n0

∫
R

Zm,k0,x Z
k,n
x

∫
A

Zk,nx,y

Zk,nx
γ(dy)γ(dx)

=
1

Zm,n0

∫
R

Zm,k0,x Z
k,n
x ρk,nx (A)γ(dx)

=

∫
R

ρk,nx (A)(µm,n0 π−1
k )(dx),

which completes the proof.
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Let us now derive Theorem 2.7 from Proposition 4.1.

Proof of Theorem 2.7. We are going to apply Proposition 4.1 to κnx = ρnx and χn =

µm,n0 π−1
0 , with an appropriately chosen m. Lemma 4.3 implies that ρm,n0 = χnκn. Require-

ment (a) of Theorem 2.7 means that for any δ > 0 there are K, θ > 0 such that localization
with parameters (δ,K, θ) holds for (ρm,n0 )n≥0. Thus, Requirement (a) of Proposition 4.1 is
verified. Requirement (b) of Proposition 4.1 follows from Requirement (b) of Theorem 2.7
combined with Lemma 4.2.

Requirement (c) of Proposition 4.1 holds if we (i) choose a = −r and b = r, where
r > 0 is chosen to ensure A ⊂ [−r, r] and (ii) use Requirement (c) of Theorem 2.7 to find
m > 0 such that (2.19) and (2.20) hold.

5 Continuous Space Joint Localization

In this section, we prove Corollary 2.8 and Theorem 2.5 using Theorem 2.7. The
standing setting in the rest of this section is that of Assumption 2.1 and in addition we
always assume that p is log-concave with energy V given by (2.5).

5.1 Proof of Corollary 2.8

We need to check that the conditions of Theorem 2.7 hold P-almost surely for G = R.

Due to Theorem 3.1, we may restrict ourselves to the event Ω0.
Since p is log-concave, the set

E = {x ∈ R : p(x) > 0} (5.1)

is an interval. Adjusting the values of p at the endpoints of E if needed, we will always
assume that p is continuous on E, the closure of E. Clearly, Zna,u > 0 if and only if
u− a ∈ nE = {nx : x ∈ E}.

First we check Requirement (a) of Theorem 2.7. Due to Theorem 2.13, this amounts
to proving Lemma 2.11.

Proof of Lemma 2.11. By Lemma 1 in [23], p has all finite moments and in particular
satisfies Assumption 2.10.I.

Assumption 2.10.II holds true because V is a convex function satisfying V (x) > −∞
for all x ∈ R and lim|x|→∞ V (x) = +∞.

Let us check Assumption 2.10.III. As p is continuous on E, there is x0 ∈ E such that p
attains its (positive) maximum at x0. Equivalently, V attains its (finite) minimum at x0.

There exist L,R ∈ E such that x0 ∈ [L,R] ⊂ E and supx∈[L,R] V (x) < ∞. Indeed, if x0

is in the interior of E, pick L,R so that [L,R] is in the interior of E and contains x0. If
x0 ∈ {inf E, supE}, we can use V (x0) <∞ to choose a sufficiently small segment [L,R]

with one of the endpoints coinciding with x0 to ensure supx∈[L,R] V (x) <∞.
It follows that p is strictly positive on [L,R]. The convexity of V implies that it is

nonincreasing on (−∞, L] and nondecreasing on [R,∞), so V = − log p is nondecreasing
on (−∞, L] and nonincreasing on [R,∞).

Now we establish Requirement (b) of Theorem 2.7. First we require a lemma proving
a monotonicity property of polymer measures with log-concave step distributions.

Lemma 5.1. For all F ∈ Ω0, a ∈ R and all u, v ∈ a + nE satisfying u ≤ v, we have
µna,u � µna,v.

Our proof is an extension of the argument used for Lemma 7.3 in [4], a specific case
of our lemma, with p(x) = 1√

2π
e−x

2/2. It relies on the following fact.
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Lemma 5.2. Let ν be a positive measure on R and let

A =

{
z ∈ R : 0 <

∫
R

p(z − x)ν(dx) <∞
}
. (5.2)

Then, for all z, z′ ∈ A satisfying z ≤ z′, we have∫
(−∞,y]

p(z − x)ν(dx)∫
R
p(z − x)ν(dx)

≥

∫
(−∞,y]

p(z′ − x)ν(dx)∫
R
p(z′ − x)ν(dx)

. (5.3)

We derive Lemma 5.1 from Lemma 5.2 first.

Proof of Lemma 5.1. We prove the lemma only for a = 0 since the proof is almost
identical for arbitrary a. Let πk,n denote the projection of a path (x0, x1, . . . ) to the
coordinates k through n, an element of Rn−k+1. We will prove

µn0,zπ
−1
k,n � µ

n
0,z′π

−1
k,n, ∀z, z′ ∈ nE, z ≤ z′, (5.4)

for all k ∈ {n, n − 1, . . . , 0} using induction. The statement of the lemma is (5.4) with
k = 0. Note that (5.4) with k = n is trivially true because µn0,xπ

−1
n,n = δx for all x ∈ nE,

and δz � δz′ for all z, z′ ∈ R with z ≤ z′.
Suppose that (5.4) holds for some k ∈ {n, . . . , 1}. Let f : Rn−k+2 → [0, 1] be a bounded

monotone function.
Denoting x = (xk−1, . . . , xn) ∈ Rn−k+2, disintegrating µn0,zπ

−1
k−1,n, and using Fubini’s

theorem, we obtain∫
Rn−k+2

f(x)µn0,zπ
−1
k−1,n(dx)

=

∫
Rn−k+2

f(xk−1, . . . , xn)
Z0,k−1

0,xk−1

∏n−1
`=k Z

`,`+1
x`,x`+1

Zn0,z
dx

=

∫
Rn−k+2

f(xk−1, . . . , xn)
Z0,k−1

0,xk−1

Zn0,xk

Zn0,xk
∏n−1
`=k Z

`,`+1
x`,x`+1

Zn0,z
dx (5.5)

=

∫
Rn−k+2

f(xk−1, . . . , xn)µk0,xkπ
−1
k−1(dxk−1)µn0,zπ

−1
k,n(dxk, . . . , dxn)

=

∫
Rn−k+1

f̄(xk, . . . , xn)µn0,zπ
−1
k,n(dxk, . . . , dxn),

where

f̄(xk, . . . , xn) =

∫
R

f(xk−1, . . . , xn)µk0,xkπ
−1
k−1(dxk−1). (5.6)

It will be convenient to redefine f̄ on the set of (xk, . . . , xn) for which µk0,xk is the zero
measure. Let

S = {(xk, . . . , xn) ∈ Rn−k+1 : xk ∈ kE}.

For x ∈ S define f̄(x) by (5.6). For x /∈ S define

f̄(x) =

{
sup{f̄(y) : y ∈ S, y � x}, ∃y ∈ S s.t. y � x
0, otherwise.

(5.7)

If f̄ is monotone on S then it is easy to check using (5.7) that f̄ is monotone on all of
Rn−k+1.

We will now show that f̄ is monotone on S. For every x, x′ ∈ S with x � x′,∫
R

f(xk−1, xk, . . . , xn)µk0,xkπ
−1
k−1(dxk−1) ≤

∫
R

f(xk−1, x
′
k, . . . , x

′
n)µk0,xkπ

−1
k−1(dxk−1) (5.8)
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due to monotonicity of f . Now let

ν(dx) = Z0,k−1
0,x dx.

Then, for all w ∈ kE,

µk0,wπ
−1
k−1(dx) =

p(w − x)ν(dx)∫
R
p(w − x′)ν(dx′)

. (5.9)

Since F ∈ Ω0, (5.9) defines a well-defined probability measure for all w ∈ kE. Lemma 5.2
and (5.9) imply that for all w,w′ ∈ kE satisfying w ≤ w′,

µk0,wπ
−1
k−1 � µ

k
0,w′π

−1
k−1. (5.10)

Since for every (xk, xk+1, . . . , xn) ∈ Rn−k+1 the map xk−1 7→ f(xk−1, xk, . . . , xn) is mono-
tone, (5.10) implies that for all x′ ∈ Rn−k+1 and all xk ≤ x′k,∫

R

f(xk−1, x
′
k, . . . , x

′
n)µk0,xkπ

−1
k−1(dxk−1) ≤

∫
R

f(xk−1, x
′
k, . . . , x

′
n)µk0,x′k

π−1
k−1(dxk−1).

(5.11)
Inequalities (5.8) and (5.11) imply that for all x, x′ ∈ S with x � x′,

f̄(x) =

∫
R

f(xk−1, xk, . . . , xn)µk0,xkπ
−1
k−1(dxk−1)

≤
∫
R

f(xk−1, x
′
k, . . . , x

′
n)µk0,x′k

π−1
k−1(dxk−1)

= f̄(x′),

so f̄ is monotone on S.
The inductive assumption that (5.4) holds for k, equality (5.5), and the fact that f̄ is

monotone imply that the left-hand side of (5.5) is monotone in z ∈ nE. As this statement
holds for every monotone function f : Rn−k+2 → [0, 1], we conclude that (5.4) holds true
for k − 1, which completes the induction step. The proof of Lemma 5.1 will be complete
once we prove Lemma 5.2.

Proof of Lemma 5.2. Let us first show that if x, x′, z, z′ ∈ R satisfy x ≤ x′ and z ≤ z′,
then

p(z − x)p(z′ − x′) ≥ p(z′ − x)p(z − x′). (5.12)

We can assume p(z′ − x) > 0, because otherwise (5.12) is trivially satisfied. In this case,
z′ − x ∈ E. If p(z − x) = 0, then z − x /∈ E and thus, since E is convex, we must also
have z − x′ /∈ E, due to our assumptions on x, x′, z, z′. This implies p(z − x′) = 0, so
(5.12) is satisfied. We now consider the case where p(z′ − x) > 0 and p(z − x) > 0, i.e.
V (z′ − x), V (z − x) <∞, where V is the convex function defined in (2.5).

We have z − x′ ≤ z − x, x′ − x ≥ 0, and z′ − z ≥ 0. Since the difference quotient of a
convex function is an increasing function, we have

V (z − x)− V (z − x′)
x′ − x

≤ V (z − x+ (z′ − z))− V (z − x′ + (z′ − z))
x′ − x

=
V (z′ − x)− V (z′ − x′)

x′ − x
. (5.13)

Multiplying both sides of (5.13) by x′ − x and rearranging, we obtain

−V (z − x)− V (z′ − x′) ≥ −V (z′ − x)− V (z − x′).

Taking the exponential of both sides, we obtain (5.12).
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Now we can use (5.12) to write∫
(−∞,y]

p(z − x)ν(dx)

∫
R

p(z′ − x′)ν(dx′)

=

∫
x≤y

∫
x′∈R

p(z − x)p(z′ − x′)ν(dx′)ν(dx)

=

∫
x≤y

∫
x′≤y

p(z − x)p(z′ − x′)ν(dx′)ν(dx) +

∫
x≤y

∫
x′>y

p(z − x)p(z′ − x′)ν(dx′)ν(dx)

≥
∫
x≤y

∫
x′≤y

p(z − x′)p(z′ − x)ν(dx′)ν(dx) +

∫
x≤y

∫
x′>y

p(z′ − x)p(z − x′)ν(dx′)ν(dx)

=

∫
x≤y

∫
x′∈R

p(z′ − x)p(z − x′)ν(dx′)ν(dx)

=

∫
(−∞,y]

p(z′ − x)ν(dx)

∫
R

p(z − x′)ν(dx′).

Dividing both sides by
∫
R
p(z′ − x′)ν(dx′)

∫
R
p(z − x′)ν(dx′) we obtain (5.3).

Proof of Requirement (b) of Theorem 2.7. We assume that F ∈ Ω0. If Znb,u = 0, then
(2.18) holds trivially, so let us assume that Znb,u > 0, or, equivalently, recalling the
definition of E in (5.1), u− b ∈ nE.

First, consider the case Znb,v = 0, i.e., v − b /∈ nE. Since v − a > v − b > u − b and
v − b /∈ nE while u− b ∈ nE, we must have v − a /∈ nE by convexity of nE. As a result, in
this case Zna,v = 0 and so (2.18) is satisfied.

We now consider the case Znb,v > 0. By disintegrating the point-to-point partition
function in the first coordinate we have

Zna,u
Znb,u

=
e−F0(a)

∫
R
p(x− a)Z1,n

x,udx

Znb,u

=
e−F0(a)+F0(b)

∫
R

p(x−a)
p(x−b) p(x− b)Z

1,n
x,ue

−F0(b)dx

Znb,u

= e−F0(a)+F0(b)

∫
R

p(x− a)

p(x− b)
µnb,uπ

−1
1 (dx). (5.14)

Note that for µnb,uπ
−1
1 -a.e. x, we have p(x− b) > 0, hence the right-hand side of (5.14) is

well-defined. Equation (5.12) shows that for a, b ∈ R satisfying a ≤ b, the map y 7→ p(y−a)
p(y−b)

is nonincreasing on the set {y ∈ R : p(y − b) > 0}, which has full measure under µnb,uπ
−1
1

and µnb,vπ
−1
1 . Since Znb,u > 0 and Znb,v > 0, Lemma 5.1 implies that µnb,u � µnb,v. Therefore,

e−F0(a)+F0(b)

∫
R

p(x− a)

p(x− b)
µnb,uπ

−1
1 (dx) ≥ e−F0(a)+F0(b)

∫
R

p(x− a)

p(x− b)
µnb,vπ

−1
1 (dx).

Under the assumption Znb,v > 0, the same computation as in (5.14) shows that the

right-hand side is
Zna,v
Znb,v

, and (2.18) follows.

Corollary 2.8 then follows because we have proven that if the environment satisfies
Assumption 2.1 and p is log-concave, then Requirements (a) and (b) of Theorem 2.7 hold
P-almost surely.
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5.2 Proof of Theorem 2.5

In this section, we prove Theorem 2.5 on joint localization for GRW polymers under
Assumption 2.1. In this case, p is Gaussian, hence log-concave, so to apply Corollary 2.8
it remains to prove that Requirement (c) of Theorem 2.7 holds P-almost surely.

We need to know that the marginals of finite-dimensional point-to-line polymer
measures have uniformly positive density with respect to the random walk reference
measure. For GRW polymers under Assumption 2.1, one can actually prove a stronger
result, convergence of densities to a positive limit, uniform on compact sets. Expressing
densities of marginals of polymer measures via partition functions, one can see that
convergence of those densities is tightly related to convergence of ratios of certain
partition functions. The latter convergence is a direct corollary of Theorem 3.2 of [4],
one of the main results of that paper describing the basins of attraction for global
solutions of the Burgers equation with random kick forcing:

Theorem 5.3 ([4]). Let p = g under Assumption 2.1. Then, with P-probability 1, for
every x, y ∈ R, the sequence (Znx /Z

n
y )n∈N converges uniformly on compact sets to a

C1(R×R) function v(x, y). The function v satisfies

0 < v(x, y) <∞,
log v(x, y) = o(|x|), x→ ±∞,
log v(x, y) = o(|y|), y → ±∞.

For our purposes it is more convenient to use an intermediate result proved in [4] as
a part of the argument for Theorem 3.2 in [4]:

Theorem 5.4 ([4]). Let p = g under Assumption 2.1. Then there is a probability one
event Ω̄ ⊂ Ω such that for every F ∈ Ω̄ the following holds. For any m ∈ Z, x ∈ R,

there is a measure µm,∞x on the space of paths γ : {m,m+ 1 . . . , } → R such that for any
k > m, the sequence (µm,nx π−1

k )∞n=m converges in distribution to µm,∞x π−1
k . Further, the

marginals of µm,∞x are absolutely continuous with respect to Lebesgue measure, with
everywhere positive density.

In fact, the conditions under which Theorems 5.3 and 5.4 holds are weaker than
Assumption 2.1 and in particular positive correlation is not required.

Proof of Theorem 2.5. Using Corollary 2.8 we need only verify that Requirement (c) of
Theorem 2.7 holds P-almost surely, with G = R. Theorem 5.4 shows that

lim inf
n→∞

(µ−1,n
x π−1

0 )(U) > 0

for any set U with positive Lebesgue measure, and so in particular P-almost surely
Requirement (c) holds for any r > 0 with m = −1.

6 Joint Localization Under Assumption 2.2

In this section, we prove Theorem 2.6 and hence establish joint localization for
the simple random walk model with one-step measure λ = 1

2δ−1 + 1
2δ1. This model

is equivalent to the up-right path model of [28] obtained from ours by a coordinate
change (rotation by π/2 and scaling by

√
2). Throughout this section we work under

Assumption 2.2 designed to ensure that the assumptions in [28] are satisfied.
Our goal is to check that all three requirements of Theorem 2.7 hold for this model

for any bounded subset A of 2Z.
Proof of Requirement (a) of Theorem 2.7: We recall that for any non-constant environ-
ment in dimension one, the very strong disorder property

lim
n→∞

1

n
logZn < logEe−F0(0)
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was shown to hold true when the collection (F0(x))x∈Z is i.i.d. and F0(0) has all exponen-
tial moments in [20]. The same result under Assumption 2.2 was shown to be true in
[32]. It was shown in [9] (one can also apply generalizations in [5], [8]) that this property
(i.e., the discrepancy between the annealed and quenched average free energies) implies
localization, thus ensuring Requirement (a). 2

To see that Requirement (b) of Theorem 2.7 holds, we will use the following lemma
which is only a restatement of Lemma B.2 of [28] for our coordinate system in a conve-
nient form.

For n ∈ N, we will need

Vn = {−n,−n+ 2, . . . , n− 2, n}, (6.1)

the set of points accessible by the simple random walk at time n.

Lemma 6.1 ([28]). Let F ∈ Ω, a ∈ 2Z, u, v ∈ Z, u ≤ v, and n ∈ N. If

u, v ∈ a+ 1 + Vn−1, (6.2)

then
Z1,n
a+1,v

Z0,n
a,v

≥
Z1,n
a+1,u

Z0,n
a,u

. (6.3)

If
u, v ∈ a− 1 + Vn−1, (6.4)

then
Z1,n
a−1,v

Z0,n
a,v

≤
Z1,n
a−1,u

Z0,n
a,u

. (6.5)

Proof of Requirement (b) of Theorem 2.7: Let us fix n ∈ N. The claim is obvious if a = b

or u = v, so let us assume a, b ∈ 2Z and u, v ∈ Z satisfy a < b and u < v. Assuming

Z0,n
a,v , Z

0,n
b,u > 0, (6.6)

we obtain v ∈ a+ Vn and u ∈ b+ Vn and see that for all x ∈ {a+ 1, a+ 3, . . . , b− 1}, u, v ∈
x+ Vn−1. This allows to check conditions (6.2), (6.4) and apply inequalities (6.3), (6.5)
to these intermediate values. In particular, for every y ∈ {a, a+ 2, . . . , b− 2}, we obtain

Z0,n
y,u

Z0,n
y,v

≥
Z1,n
y+1,u

Z1,n
y+1,v

≥
Z0,n
y+2,u

Z0,n
y+2,v

.

Combining these inequalities over all these values of y, we obtain

Zna,u
Zna,v

≥
Znb,u
Znb,v

, (6.7)

which is equivalent to (2.18) under our assumption (6.6).
It remains to consider the case where (6.6) is violated. If Z0,n

a,v = 0, then (2.18)

obviously holds. Also, if Z0,n
b,v = 0, then Z0,n

a,v = 0 and thus (2.18) holds. This completes
the proof of Requirement (b) for an arbitrary A ⊂ 2Z. 2

Finally, we establish Requirement (c) using boundedness of point-to-point partition
function ratios. The following lemma is a simple corollary of Theorem 4.14 in [28].

Lemma 6.2. For P-almost every F ∈ Ω, every v ∈ (−1, 1), and every sequence (xn)n∈N
such that limn→∞

xn
n = v, and a, b ∈ 2Z,

0 < lim inf
n→∞

Zna,xn
Znb,xn

≤ lim sup
n→∞

Zna,xn
Znb,xn

<∞. (6.8)
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Proof. Theorem 4.14 of [28] shows that

0 < lim inf
n→∞

Z1,n
a+1,xn

Z0,n
a,xn

≤ lim sup
n→∞

Z1,n
a+1,xn

Z0,n
a,xn

<∞ (6.9)

and

0 < lim inf
n→∞

Z1,n
a−1,xn

Z0,n
a,xn

≤ lim sup
n→∞

Z1,n
a−1,xn

Z0,n
a,xn

<∞ (6.10)

P-almost surely for every a ∈ Z. If a ≤ b, then we can write
Zna,xn
Znb,xn

as the telescoping

product

Zna,xn
Znb,xn

=
b−1∏
`=a

Ze`,n`,xn

Z
e`+1,n
`+1,xn

where ea = 0 and e` = 1− e`−1 for ` = a+ 1, . . . , b. We can then apply the displays (6.9)
and (6.10) to obtain the result.

The limiting behavior of ratios of partition functions is tightly connected to the
properties of the shape function. As discussed in [28], [35], and [16], there is a concave,
continuous, deterministic, even function Λ : [−1, 1]→ R, called the shape function, such
that

lim
n→∞

max
x∈a+Vn

∣∣∣∣ 1n logZna,x − Λ((x− a)/n)

∣∣∣∣ = 0 (6.11)

P-almost surely. In addition, Λ is not constant if the environment is not deterministic.

Remark 6.3. Theorem 4.14 of [28] gives a stronger result than what we used in the
proof of Lemma 6.2. It gives upper and lower bounds for (6.9) and (6.10) in terms of
Busemann functions. In addition, Theorem 3.8 in [28] implies that if the shape function
Λ is differentiable on (−1, 1) then for every v ∈ (−1, 1) there is a probability one event
such that the ratios in (6.8) converge on it.

Convergence of ratios of point-to-line partition functions to finite positive random
variables (exponentials of Busemann functions) follows immediately from Theorem 3.8
in [28] under the assumption that the shape function is differentiable everywhere.
It is widely believed that this differentiability assumption holds for a broad class of
potentials F .

Although no direct analogue of Theorem 5.3 is available for lattice polymers, we are
still able to prove the following useful result without any differentiability assumptions:

Lemma 6.4. For P-almost every F ∈ Ω and for every a, b ∈ 2Z,

0 < lim inf
n→∞

Zna
Znb
≤ lim sup

n→∞

Zna
Znb

<∞. (6.12)

Proof. We will prove that (6.12) holds on the probability one event that (6.11) and the
conclusion of Lemma 6.2 hold.

Suppose first that b > a. Recalling the definition of Vn in (6.1), for any v ∈ (−1, 1), we
can write

Zna =
∑

x∈a+Vn

Zna,x

=
∑

x∈a+Vn,
x<vn+a

Zna,x +
∑

x∈a+Vn,
x≥vn+a

Zna,x

≤ (Σ1(v, n) + Σ2(v, n))Znb ,
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where

Σ1(v, n) =

∑
x∈a+Vn,
x<vn+a

Zna,x

Znb
,

Σ2(v, n) = max
x∈a+Vn,
x≥vn+a

{
Zna,x
Znb,x

}
.

We note that if x ∈ a + Vn and x ≥ vn + a, then x ∈ b + Vn, so Znb,x > 0 and Σ2(v, n) is
well-defined. Let us show that

lim sup
n→∞

Σ2(v, n) <∞, ∀v ∈ (−1, 1). (6.13)

Let xn(v) = min{x ∈ a+ Vn : x ≥ vn+ a}. It follows from (6.7) (or, equivalently from
Requirement (b) of Theorem 2.7) that for all x ≥ xn(v)

Zna,x
Znb,x

≤
Zna,xn(v)

Znb,xn(v)

,

so

Σ2(v, n) ≤
Zna,xn(v)

Znb,xn(v)

.

Since limn→∞
xn(v)
n = v, we can apply Lemma 6.2 to the right-hand side of the above and

obtain

lim sup
n→∞

Σ2(v, n) ≤ lim sup
n→∞

Zna,xn(v)

Znb,xn(v)

<∞,

proving (6.13).
Our next goal is to find v∗ ∈ (−1, 1) such that

lim sup
n→∞

Σ1(v∗, n) <∞. (6.14)

This estimate along with (6.13) applied to v = v∗ implies the upper bound in the lemma
for the case b > a.

Since Λ is concave and not constant, there is v∗ ∈ (−1, 1) such that

max
w∈[−1,1]

Λ(w) > Λ(v∗)

and Λ(v) ≤ Λ(v∗) for all −1 ≤ v < v∗. Then, by (6.11) and the choice of v∗,∑
x∈a+Vn,
x<v∗n+a

Zna,x =
∑

x∈a+Vn,
x<v∗n+a

enΛ((x−a)/n)+o(n) ≤ (n+ 1)enΛ(v∗)+o(n). (6.15)

Here o(n) is uniform over x in the summation.
Consider a maximizer u∗ ∈ (−1, 1) of Λ. There is ε > 0 such that

λ∗ := inf
|w−u∗|<ε

Λ(w) > Λ(v∗). (6.16)

For sufficiently large n, we have

Znb ≥
∑

x∈b+Vn,
|(x−b)/n−u∗|<ε

Znb,x ≥
1

2
εnenλ

∗+o(n). (6.17)
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Inequalities (6.15), (6.16), and (6.17) imply

Σ1(v∗, n) ≤ 2(n+ 1)

nε
en(Λ(v∗)−λ∗)+o(n) → 0

as n→∞. Thus, (6.14) is established, which completes the proof of the upper bound for
the case b > a.

The proof of the upper bound for the case where b < a is similar. For the lower bound
it suffices to reverse the roles of a and b and apply the upper bound.

With Lemma 6.4 at hand, we can prove the following result.

Proposition 6.5. If m < k < n and y ∈ a+ Vk−m, then P-almost surely,

lim inf
n→∞

(µm,na π−1
k )({y}) > 0.

Proof. For all y ∈ a+ Vk−m, we have

(µm,na π−1
k )({y}) =

Zm,ka,y Z
k,n
y

Zm,na
.

The factor Zm,ka,y > 0 on the right-hand side does not depend on n. The remaining factors
satisfy

Zk,ny
Zm,na

= Zk,ny

 ∑
z∈a+Vk−m

Zm,ka,z Z
k,n
z

−1

=

 ∑
z∈a+Vk−m

Zm,ka,z

Zk,nz

Zk,ny

−1

.

From Lemma 6.4, lim supn→∞
Zk,nz
Zk,ny

<∞ for all z ∈ a+ Vk−m. The result follows because

a+ Vk−m is a finite set.

Proof of Requirement (c) of Theorem 2.7: Let m < 0 be an integer such that V−m∩ (r,∞)

is not empty. Then, for any y in this set, Proposition 6.5 implies

lim inf
n→∞

(µm,n0 π−1
0 )((r,∞)) ≥ lim inf

n→∞
(µm,n0 π−1

0 )({y}) > 0,

so (2.20) holds. The argument for (2.19) is similar. This completes the proof of Require-
ment (c) under Assumption 2.2 and the proof of the entire Theorem 2.6. 2

7 Very Strong Disorder in Continuous Space

7.1 Derivation of the theorem from auxiliary results

In this section, we establish Theorem 2.12 in the setting of Assumption 2.1 and
Assumption 2.10.

We use (Sk, . . . , Sm) to denote the path of a random walk distrbuted according to
Pm,Pk,mx , or Pk,mx,y (see (2.1) and (2.9) for definitions). Recall that in the setting of
Assumption 2.10, these random walk measures have one-step density given by λ(dx) =

p(x)dx. For a probability measure ν and a random variable X distributed according to ν,
we define ν(f(X)) =

∫
f(x)ν(dx) for a measurable function f and ν{X ∈ A} = ν(A) for a

measurable set A.
First, we briefly discuss the existence of the limit in (2.21). The reasoning is almost

exactly the same as in the discrete case, given for example in [18]. We give a sketch of the
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argument here for completeness. It is easy to prove that the sequence ( 1
nE[logZn])n∈N

is subadditive which implies that the limit

ψ = lim
n→∞

1

n
E[logZn] (7.1)

exists. Then, one can use an exponential concentration inequality which easily adapts to
our continuous space setting:

Theorem 7.1 (Theorem 1.4 in [32]). Suppose E[e|F0(0)|] <∞. Then, there is a constant
a > 0 such that

P

{
1

n
|logZn − E[logZn]| > t

}
≤

{
2e−nat

2

, 0 ≤ t ≤ 1

2e−nat, t > 1.

It follows that the sequence ( 1
n logZn)n∈N converges P-a.s. and in Lp(Ω) for any

p ∈ [1,∞) and

lim
n→∞

1

n
logZn = ψ.

Recall that ϑ = logE[e−F0(0)]. To prove Theorem 2.12, it suffices to prove

lim inf
n→∞

1

n
E[logZn] < ϑ. (7.2)

Our proof of (7.2) uses comparison of 1
nE[logZn] with fractional moments of Zn and

extends the ideas used in [20] and [18] in the discrete case to the continuous case. The
discretization portion of our method is similar to the proof of very strong disorder in
[31]. However, it is not obvious how to use the change of measure argument from [31]
in our setting due to the lack of the i.i.d. property in space.

There are some additional difficulties in the continuous setting. First, the authors in
[20] rely on the inequality(∑

i

|xi|

)θ
≤
∑
i

|xi|θ, xi ∈ R, i ∈ Z, θ ∈ (0, 1). (7.3)

The version of this inequality where the sum is replaced by an integral does not hold
in general. However, we are able to employ a discretization procedure that enables
effective use of (7.3). Our discretization method is described in Section 7.2.

Second, the analysis in [18] uses the following overlap metric of the endpoint distri-
bution ρn:

In = (ρn)⊗2{X = Y } (7.4)

where X,Y ∼ ρn are independent. Equivalently, (7.4) is the square of the `2(Z) norm of
the density of ρn. In the continuous setting, In = 0 and so the same object is not useful.
In addition, we found that the L2(R) norm of the density did not have the same desirable
properties as (7.4). Instead, we employ the new family of overlap measurements defined
on probability measures ν on R by

I(r, ν) := ν⊗2{|X − Y | < r}, r > 0. (7.5)

A similar but slightly different metric was used in [36] in the continuous space and
continuous time setting. In Section 7.3 we prove an important comparison property
between I(r, ν) and I(R, ν) for R 6= r and then use arguments from [18] to conclude.
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Additionally, to simplify the presentation we will assume throughout this section
that p has mean zero, i.e. c :=

∫
R
xp(x)dx = 0. In fact, if c 6= 0, then we can reduce this

noncentered case to the centered one using the stationarity of the environment:

Zn = Pm
(
e−

∑m−1
k=0 Fk(Sk)

)
d
= Z̃n,

where Z̃n = Pm
(
e−

∑m−1
k=0 Fk(Sk−kc)

)
is the partition function associated to the centered

random walk density p̃(x) = p(x− c), and

1

n
E[logZn] =

1

n
E[log Z̃n].

In the remainder of this section, we state several auxiliary lemmas and derive
Theorem 2.12 from them. The proofs of the auxiliary lemmas are given in Sections 7.2
and 7.3. We must introduce some notation first. Let

Wn,m
a,u := Zn,ma,u e

−ϑ(m−n), Wm := Zme−ϑm (7.6)

be the normalized point-to-point and point-to-line partition functions, respectively. Note
that (Wm)m∈N is a martingale, and in particular E[Wm] = 1 for all m. We define W k,i

x,J =∫
J
W k,i
x,ydy. For δ > 0, let

J δ = {Jδk , k ∈ Z}, (7.7)

where
Jδk = [kδ, (k + 1)δ). (7.8)

The collection J δ is a disjoint covering of R by intervals of length δ. We frequently omit
the δ superscript for brevity. In addition, constants denoted by C or C ′ may change line
by line.

The following lemma can be seen as an approximate factorization of the partition
function that allows us to relate the quenched free energy at step nm to a fractional
moment at step m.

Lemma 7.2. For any δ > 0, θ ∈ (0, 1), and m ∈ N :

1

nm
E[logWnm] ≤ 1

θm
log

∑
J∈J δ

E

[(
sup
x∈J0

W 0,m
x,J

)θ]
.

The next result is an involved technical proposition that allows us to get rid of the
supremum in Lemma 7.2 and replace it with evaluation of W 0,m

x,Jk
at x = 0.

Lemma 7.3. Let ε > 0. There are numbers θ0 ∈ (0, 1) and δ0 > 0 such that for all
θ ∈ (θ0, 1) and δ ∈ (0, δ0), there is a positive constant C such that for all m ∈ N

∑
J∈J δ

E

[(
sup
x∈J0

W 0,m
x,J

)θ]
≤ C

∑
J∈J δ

E

[(
W 0,m

0,J

)θ]
+ Cδ−

1
2−εm−

1
2 +ε + Cδ

3
4−εm

7
20 +ε. (7.9)

The next proposition replaces the sum of partial fractional moments on the right-hand
side of (7.9) with the fractional moment E[(Wm)θ].

Lemma 7.4. Let ε > 0. There is a number θ0 ∈ (0, 1) such that for all θ ∈ (θ0, 1) there is
a positive constant C such that for all m ∈ N and δ ∈ (0, 1),

∑
J∈J δ

E

[(
W 0,m

0,J

)θ]
≤ C

(
δ−1+ 1

2 εm
1
2−

1
4 ε(E[(Wm)θ])1−ε

) 1
2−ε

. (7.10)
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We will also need the following proposition giving a decay rate of the fractional
moment E[(Wm)θ]. Recall that ν is the number of moments of λ as stated in Assump-
tion 2.10.I.

Lemma 7.5. Let ε > 0. There is number θ0 ∈ (0, 1) such that if θ ∈ (θ0, 1) then there is a
positive constant C such that for all n ∈ N,

E[(Wn)θ] ≤ Cn− 1
2 ν+ε.

The proofs of Lemmas 7.2–7.4 are given in Section 7.2. The proof of Lemma 7.5 is
given in Section 7.3.

Proof of Theorem 2.12. Let h ∈ (0, 1) and ε > 0, to be chosen later. Let δm = m−h.
Taking ε < 1

2ν − 1, we can use Lemma 7.5 to see that for m sufficiently large,

E[(Wm)θ] < m−1. (7.11)

Lemmas 7.2–7.4 and (7.11) imply that there is a constant θ ∈ (0, 1) and a positive
constant C such that for all m sufficiently large,

1

nm
E[logWnm]

≤ 1

θm
log

(
C
(
δ
−1+ 1

2 ε
m m

1
2−

1
4 ε(E[(Wm)θ])1−ε

) 1
2−ε

+ Cδ
− 1

2−ε
m m−

1
2 +ε + Cδ

3
4−ε
m m

7
20 +ε

)
=

1

θm
log

(
C
(
mh− 1

2hε+
1
2−

1
4 ε(E[(Wm)θ])1−ε

) 1
2−ε

+ Cm
1
2h−

1
2 +hε+ε + Cm−

3
4h+ 7

20 +hε+ε

)
(7.12)

≤ 1

θm
log

(
C
(
mh− 1

2−
1
2hε+

3
4 ε
) 1

2−ε
+ Cm

1
2h−

1
2 +hε+ε + Cm−

3
4h+ 7

20 +hε+ε

)
.

Choose h ∈ (0, 1
2 ) close enough to 1

2 such that − 3
4h+ 7

20 < 0. For instance h = 29
60 suffices.

Then, choose ε > 0 so that

h− 1

2
− 1

2
hε+

3

4
ε < 0,

1

2
h− 1

2
+ hε+ ε < 0,

and

−3

4
h+

7

20
+ hε+ ε < 0.

Then all the powers of m in (7.12) are negative, so

1

nm
E[logWnm] ≤ 1

θm
log (om(1)) , m→∞.

Taking m large enough, we obtain that there is a constant ∆ such that

1

nm
E[logWnm] < ∆ < 0, n ∈ N.

Combining this with 1
nmE[logWnm] = 1

nmE[logZnm]− ϑ, we obtain (7.2) and complete
the proof of the theorem.
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7.2 Fractional Moment Upper Bounds for Free Energy

In this section, we prove Lemmas 7.2–7.4. We first prove a short lemma concerning
the expectation of the normalized partition function.

Lemma 7.6. If U ⊂ R is a measurable set, k,m ∈ Z, k < m, and x ∈ R, then

E[W k,m
x,U ] = Pk,mx {Sm ∈ U}. (7.13)

Proof. We have

E[W k,m
x,U ] = E

∫
U

W k,m
x,y dy

= E

∫
U

Pk,mx,y

(
e−

∑m−1
i=k Fi(Si)e−(m−k)ϑ

)
dy

=

∫
U

Pk,mx,y

(
E
[
e−

∑m−1
i=k Fi(Si)e−(m−k)ϑ

])
dy

=

∫
U

Pk,mx,y (1)dy

= Pk,mx {Sm ∈ U},

proving (7.13).

Proof of Lemma 7.2. For x1, . . . , xn ∈ R, we define

Wm
x1,...,xn := W 0,m

0,x1
· · ·W (n−1)m,nm

xn−1,xn .

Then, we use Jensen’s inequality and (7.3):

1

nm
E logWnm =

1

nm
E log

∑
Jk1 ,...,Jkn∈J δ

∫
Jk1×···×Jkn

Wm
x1,...,xndx

=
1

θnm
E log

( ∑
Jk1 ,...,Jkn∈J δ

∫
Jk1×···×Jkn

Wm
x1,...,xndx

)θ
(7.14)

≤ 1

θnm
log

∑
Jk1 ,...,Jkn∈J δ

E

(∫
Jk1×···×Jkn

Wm
x1,...,xndx

)θ
.

We can use an inductive argument to obtain a product estimate on each of the integrals
on the right-hand side:∫

Jk1×···×Jkn
Wm
x1,...,xndx =

∫
Jk1×···×Jkn−1

Wm−1
x1,...,xn−1

∫
Jkn

W (n−1)m,nm
xn−1,xn dxndx1 . . . dxn−1

≤
∫
Jk1×···×Jkn−1

Wm−1
x1,...,xn−1

dx1 . . . dxn−1 · sup
xn−1∈Jkn−1

∫
Jkn

W (n−1)m,nm
xn−1,xn dxn

≤ · · · ≤
n∏
`=1

sup
y∈Jk`−1

∫
Jk`

W (`−1)m,`m
y,x dx,

where in the above we define Jk0 = J0. By the independence of the environment at
different times and spatial stationarity,

E

(∫
Jk1×···×Jkn

Wm
x1,...,xndx

)θ
≤

n∏
`=1

E

(
sup
y∈J0

W 0,m
y,(Jk`−k`−1δ)

)θ
.
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So,

∑
Jk1 ,...,Jkn∈J δ

E

(∫
Jk1×···×Jkn

Wm
x1,...,xndx

)θ
≤
( ∑
Jk∈J δ

E

(
sup
y∈J0

W 0,m
y,Jk

)θ)n
.

Using this estimate on the right-hand side of (7.14), we complete the proof.

Proof of Lemma 7.3. First, note that

sup
|x|<δ

W 0,m
x,Jk
≤ sup
|x|<δ

e−F0(x) · sup
|x|<δ

W 0,m
x,Jk

eF0(x).

Also, W 0,m
x,Jk

eF0(x) is independent from F0, since, by the definitions in (2.4) and (7.6),

W 0,m
x,Jk

eF0(x) =

∫
Rm−2×Jk

e−
∑m−1
k=1 Fk(yk)

m−1∏
k=0

p(yk+1 − yk)dy1 · · · dym,

where in the above y0 = x. From this independence, we get

E

[(
sup
|x|<δ

W 0,m
x,Jk

)θ]
≤ E

[(
sup
|x|<δ
{e−F0(x)} · sup

|x|<δ
{W 0,m

x,Jk
eF0(x)}

)θ]

= E

(
sup
|x|<δ

e−θF0(x)

)
E

[(
sup
|x|<δ

W 0,m
x,Jk

eF0(x)

)θ]

= E

(
sup
|x|<δ

e−θF0(x)

)[
E
(
e−θF0(0)

)]−1

E
(
e−θF0(0)

)
E

( sup
|x|<δ

W 0,m
x,Jk

eF0(x)

)θ
≤ C0E

[(
sup
|x|<δ

W 0,m
x,Jk

eF0(x)−F0(0)

)θ]
, (7.15)

where

C0 := E

(
sup
|x|<1

e−θF0(x)

)[
E

(
e−θF0(0)

)]−1

.

Note that we assume here δ < 1 so that the constant C0 does not depend on δ.

We define

r0 = 2
supx∈R p(x)

infx∈[L,R] p(x)
, (7.16)

where L and R are as in Assumption 2.10.III. Assumptions 2.10.II and 2.10.III imply that
r0 <∞. We also define

Aδ :=
{
y ∈ R : sup

|x|<δ
p(y − x) ≥ r2

0p(y)
}
. (7.17)
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Using (7.3), (2.22), and (7.17) we obtain(
sup
|x|<δ
{W 0,m

x,Jk
eF0(x)−F0(0)}

)θ
=

(
sup
|x|<δ
{Z0,m

x,Jk
eF0(x)−F0(0)−mϑ}

)θ
=

(
sup
|x|<δ

∫
R

p(y − x)Z1,m
y,Jk

e−F0(0)−ϑmdy

)θ
=

(
sup
|x|<δ

∫
R

p(y − x)W 1,m
y,Jk

e−F0(0)−ϑdy

)θ
≤
(∫

Acδ

sup
|x|<δ

p(y − x)W 1,m
y,Jk

e−F0(0)−ϑdy

)θ
+

(∫
Aδ

sup
|x|<δ

p(y − x)W 1,m
y,Jk

e−F0(0)−ϑdy

)θ
≤ r2θ

0

(∫
Acδ

p(y)W 1,m
y,Jk

e−F0(0)−ϑdy

)θ
+

(∫
Aδ

sup
|x|<δ

p(y − x)W 1,m
y,Jk

e−F0(0)−ϑdy

)θ
.

Taking expectations of both sides of the above and applying Jensen’s inequality and
Lemma 7.6, we get

E

( sup
|x|<δ
{W 0,m

x,Jk
eF0(x)−F0(0)}

)θ
≤ r2θ

0 E

[(∫
Acδ

p(y)W 1,m
y,Jk

e−F0(0)−ϑdy

)θ]
+

(∫
Aδ

sup
|x|<δ

p(y − x)E[W 1,m
y,Jk

]e−F0(0)−ϑdy

)θ
≤ r2θ

0 E[(W 0,m
0,Jk

)θ] +Rθk, (7.18)

where

Rk :=

∫
Aδ

sup
|x|<δ

p(y − x)P1,m
y {Sm ∈ Jk}dy. (7.19)

The lemma will follow once we find θ0 ∈ (0, 1) such that for all θ ∈ (θ0, 1),∑
k∈Z

Rθk = O(δ−
1
2−εm−

1
2 +ε + δ

3
4−εm

7
20 +ε). (7.20)

The lemma will follow from (7.20), (7.18), and (7.15).
Let us take any D ∈ R and δ0 > 0 such that (D − δ0, D + δ0) ⊂ (L,R). We claim that

for δ ∈ (0, δ0),

sup
|x|<δ

p(y − x) ≤ r0p(y − δ), ∀y ≥ D (7.21)

sup
|x|<δ

p(y − x) ≤ r0p(y + δ), ∀y ≤ D. (7.22)

We verify (7.21), and the analysis for (7.22) is similar. Note that for y ∈ [R+ δ,∞),

sup
|x|<δ

p(y − x) ≤ p(y − δ)

since p is nonincreasing on [R,∞) by Assumption 2.10.III. Also, for all y ∈ [D,R + δ),

since δ < δ0 we have
p(y − δ) ≥ inf

z∈[L,R]
p(z)

and
sup
|x|<δ

p(y − x) ≤ sup
z∈R

p(z).
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This implies (7.21) since

sup
|x|<δ

p(y − x) ≤
supx∈R p(y − x)

infz∈[L,R] p(z)
p(y − δ) < r0p(y − δ).

By (7.21) and (7.22),

Rk ≤ r0R
−
k + r0R

+
k , (7.23)

where

R−k =

∫
Aδ∩[D,∞)

p(y − δ)P 1,m
y {Sm ∈ Jk}dy, (7.24)

R+
k =

∫
Aδ∩(−∞,D)

p(y + δ)P 1,m
y {Sm ∈ Jk}dy. (7.25)

One can view these integrals as expectations with respect to the random walk measures
P0,m
δ and P0,m

−δ .
Due to (7.23) – (7.25), the estimate (7.20) will follow from∑

k∈Z

(R−k )θ = O(δ−
1
2−εm−

1
2 +ε + δ

3
4−εm

7
20 +ε), (7.26)∑

k∈Z

(R+
k )θ = O(δ−

1
2−εm−

1
2 +ε + δ

3
4−εm

7
20 +ε). (7.27)

Let us prove (7.26). Note that if y ∈ Aδ ∩ [D,∞), then by (7.21) and the definition
of Aδ,

r0p(y − δ) ≥ sup
|x|<δ

p(y − x) ≥ r2
0p(y).

Hence, Aδ ∩ [D,∞) ⊂
{
x ∈ R : p(x− δ) ≥ r0p(x)

}
. This and (7.24) imply

R−k = P0,m
δ

{
S1 ∈ Aδ ∩ [D,∞), Sm ∈ Jk

}
≤ P0,m

δ

{
p(S1 − δ) ≥ r0p(S1), Sm ∈ Jk

}
, (7.28)

where (S1, . . . , Sm) is the realization of a random walk with distribution P0,m
δ .

The following two lemmas will allow us to give upper bounds on R−k and R+
k . We give

the proofs of both lemmas in Section 8. We define Et = {y ∈ R : p(y) ≥ r0p(y + t)} for
t ∈ R and recall that λ(dx) = p(x)dx denotes the distribution of one step of the random
walk.

Lemma 7.7. We have
λ(Et) = O(|t|), t→ 0. (7.29)

The above lemma would not be true without the factor of 2 (or any other factor
exceeding 1) in the definition of r0 in (7.16).

Lemma 7.8. There is a constant C such that for all z ∈ R, δ ∈ (0, 1), and n ∈ N

Pn{Sn ∈ [z, z + δ)} ≤ Cδ√
n(1 + z2n−1)

. (7.30)

Note that for t ∈ R,

P0,m
t

{
p(S1 − t) ≥ r0p(S1))

}
=

∫
{x∈R : p(x−t)≥r0p(x)}

p(x− t)dx

=

∫
{y∈R : p(y)≥r0p(y+t)}

p(y)dy

= λ(Et). (7.31)
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Equality (7.31) and Lemma 7.7 imply that there is C > 0 such that for all δ > 0 sufficiently
small,

P0,m
δ

{
p(S1 − δ) ≥ r0p(S1)

}
≤ Cδ. (7.32)

We next derive two bounds on the right-hand side of (7.28) useful for small and
large k, respectively. Inequality (7.28), inequality (7.32) and the Markov property of
random walks imply

R−k = P0,m
δ

{
p(S1 − δ) ≥ r0p(S1)

}
· P0,m

δ

{
Sm ∈ Jk | p(S1 − δ) ≥ r0p(S1)

}
≤ P0,m

δ

{
p(S1 − δ) ≥ r0p(S1)

}
· sup
x∈R

P1,m
x

{
Sm ∈ Jk

}
.

≤ Cδ sup
x∈R

P1,m
x

{
Sm ∈ Jk

}
. (7.33)

Lemma 7.8 implies that for m ≥ 2

sup
x∈R

P1,m
x

{
Sm ∈ Jk

}
= sup
x∈R

Pm−1
x

{
Sm−1 ∈ Jk

}
≤ sup
x∈R

Cδ√
m− 1(1 + (kδ − x)2(m− 1)−1)

≤ C ′δm−1/2.

Combining this with (7.33) we obtain

R−k ≤ Cδ
2m−1/2 (7.34)

for some constant C. This upper bound is mostly useful for small k, since it does not take
into account the tail decay of Sm. Let us now derive an upper bound useful for large k.
Hölder’s inequality and (7.32) give us the bound

R−k ≤ P0,m
δ

{
p(S1 − δ) ≥ r0p(S1)

}1/5 · P0,m
δ

{
Sm ∈ Jk

}4/5

≤ Cδ1/5P0,m
δ

{
Sm ∈ Jk

}4/5
. (7.35)

Let α > 0 be a number to be specified later. Applying (7.34) and (7.35) to |k| ≤ δ−α and
|k| > δ−α, respectively, we obtain∑

k∈Z

(R−k )θ =
∑
|k|≤δ−α

(R−k )θ +
∑
|k|>δ−α

(R−k )θ

≤
∑
|k|≤δ−α

Cδ2θm−θ/2 +
∑
|k|>δ−α

Cδθ/5P0,m
δ

{
Sm ∈ Jk

}4θ/5

≤ Cδ2θ−αm−θ/2 + Cδθ/5
∑
|k|>δ−α

P0,m
δ

{
Sm ∈ Jk

}4θ/5
. (7.36)

Lemma 7.8 implies that for all k ∈ Z \ {0} and δ > 0,

P0,m
δ

{
Sm ∈ Jk

}4θ/5 ≤ Cδ4θ/5m−2θ/5

(1 + (kδ − δ)2m−1)4θ/5
≤ C ′δ4θ/5m−2θ/5

(1 + k2δ2m−1)4θ/5

for some constant C ′ independent of δ,m, and k. This implies∑
|k|>δ−α

P0,m
δ

{
Sm ∈ Jk

}4θ/5 ≤ C ′δ4θ/5m−2θ/5
∑
|k|>δ−α

1

(1 + k2δ2m−1)4θ/5

≤ 2C ′δ4θ/5m−2θ/5

∫ ∞
δ−α−1

1

(1 + y2δ2m−1)4θ/5
dy

= 2C ′δ4θ/5−1m1/2−2θ/5

∫ ∞
m−1/2δ(δ−α−1)

1

(1 + z2)4θ/5
dz. (7.37)
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In the above we use the symmetry and monotonicity of (1 + y2)−1, and the change of
variables z = yδm−1/2. We can then use Markov’s inequality for r > 0 and 1/2 > δ > 0 to
obtain ∫ ∞

m−1/2δ(δ−α−1)

1

(1 + z2)4θ/5
dz ≤ 1

(m−1/2δ(δ−α − 1))r

∫ ∞
−∞

|z|r

(1 + z2)4θ/5
dz

≤ C

m−r/2δr−rα

∫ ∞
−∞

|z|r

(1 + z2)4θ/5
dz. (7.38)

As long as r < 8θ
5 −1, the right-hand side of (7.38) is finite. Inequalities (7.37) and (7.38)

imply that for such r, there is a positive constant C such that∑
|k|>δ−α

P0,m
δ

{
Sm ∈ Jk

}4θ/5 ≤ Cδ4θ/5−1−r+rαm1/2−2θ/5+r/2. (7.39)

Displays (7.36) and (7.39) imply that for any (θ, r, α) satisfying 0 < θ < 1, 0 < r < 8θ
5 − 1,

and α > 0, there is a finite constant C such that∑
k∈Z

(R−k )θ ≤ Cδ2θ−αm−θ/2 + Cδθ−1−r+rαm1/2−2θ/5+r/2. (7.40)

Set

α =
5

2
, r =

1

2
. (7.41)

Since r = 1
2 <

3
5 = 8

5 − 1, we can find θ1 ∈ (0, 1) such that if θ ∈ (θ1, 1), then

r =
1

2
<

8θ

5
− 1.

Using (7.41) in (7.40), we obtain∑
k∈Z

(R−k )θ ≤ Cδ2θ− 5
2m−θ/2 + Cδθ−

1
4m

3
4−

2θ
5 . (7.42)

Therefore, for any ε > 0, we can find θ2 ∈ [θ1, 1) such that if θ ∈ (θ2, 1) then (7.26) holds.
The proof of (7.27) is similar, and the lemma follows.

Proof of Lemma 7.4. Let us fix δ ∈ (0, 1) and q > 2. Observing that Wm ≥ Wm
0,J for all

J ∈ J δ, we obtain ∑
J∈J δ

(
Wm

0,J

)θ
=
∑
|k|≤q

(
Wm

0,Jk

)θ
+
∑
|k|>q

(
Wm

0,Jk

)θ
≤ 3q(Wm)θ +

∑
|k|>q

(
Wm

0,Jk

)θ
. (7.43)

Assuming q > 2, using Jensen’s inequality,∑
|k|>q

E[(Wm
0,Jk

)θ] ≤
∑
|k|>q

(
E[Wm

0,Jk
]
)θ

Lemma 7.6
=

∑
|k|>q

(
Pm
{
Sm ∈ Jk

})θ
Lemma 7.8
≤

∑
|k|>q

C ′δθm−θ/2

(1 + k2δ2m−1)θ

≤ 2C ′δθm−θ/2
∫ ∞
q−1

1

(1 + y2δ2m−1)θ
dy

= 2C ′δθ−1m1/2−θ/2
∫ ∞
m−1/2δ(q−1)

1

(1 + z2)θ
dz. (7.44)
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In the last line of (7.44), we use the substitution z = yδm−1/2. Next, letting r > 0 to be
chosen later, we can use Markov’s inequality to get the bound∫ ∞

m−1/2δ(q−1)

1

(1 + z2)θ
dz ≤ 1

m−r/2δr(q − 1)r

∫ ∞
−∞

|z|r

(1 + z2)θ
dz

≤ Cmr/2δ−rq−r. (7.45)

In order for the integral
∫∞
−∞

|z|r
(1+z2)θ

dz in (7.45) to be finite we need r < 2θ−1. Combining
(7.43), (7.44), and (7.45) we obtain∑

Jk∈J δ
E[(Wm

0,Jk
)θ] ≤ 3qE[(Wm)θ] + Cδθ−1−rm

1
2 + r

2−
θ
2 q−r. (7.46)

Set

q =

(
δθ−1−rm

1
2 + r

2−
θ
2

E[(Wm)θ]

) 1
1+r

.

We have E[(Wm)θ] ≤ 1 by Jensen’s inequality, and δ < 1 by assumption, and so q > 2 for
large enough m. This choice of R and (7.46) imply∑

Jk∈J δ
E[(Wm

0,Jk
)θ] ≤ C

(
δθ−1−rm

1
2 + r

2−
θ
2

(
E[(Wm)θ]

)r) 1
1+r

. (7.47)

Let ε ∈ (0, 1). Set r = 1− ε and θ0 = 1− 1
2ε. Now if θ ∈ (θ0, 1), then

1− ε = r < 2θ − 1

and so the integral in (7.45) is finite. Finally, with this choice of r and θ0, (7.47) implies
that for all θ ∈ (θ0, 1), (7.10) holds, which completes the proof.

7.3 Decay of Fractional Moments

The main purpose of this section is to prove Lemma 7.5. Our study of the overlap
metric on probability distributions in Section 7.3.1 is of independent interest.

Our proof of Lemma 7.5 is based on the following lemma, proved in Section 7.3.2.

Lemma 7.9. For any θ ∈ (0, 1), there are positive constants C1, C2 such that

E[(Wn+1)θ] ≤
(

1− C1

t

)
E[(Wn)θ] +

C2

t

(
Pn
{
|Sn| ≥ t

})θ
, t ≥ 1, n ∈ N.

Proof of Lemma 7.5. Let α = ν/2− ε. If α ≤ 0 then the lemma is easily verified because

E[(Wm)θ] ≤ (E[Wm])θ = 1, m ∈ N.

We now consider ε small enough so that α > 0.

Using Markov’s inequality and the Marcinkiewicz–Zygmund inequality (see [33] or
Chapter 5 of [34]), we obtain

Pn
{
|Sn| ≥ t

}
≤ Pn[|Sn|ν ]t−ν ≤ Cνnν/2t−ν .

Thus Lemma 7.9 implies that there are constants C1, C such that

E[(Wn+1)θ] ≤
(
1− C1t

−1
)
E[(Wn)θ] + Ct−1−νθnνθ/2. (7.48)

Let us fix θ0 ∈ (0, 1) and β ∈ (0, 1) such that

α2 := β + νθβ − 1

2
νθ > 1 + α (7.49)
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holds for all θ ∈ (θ0, 1). Consider the sequence given by t = tn = nβ . We have by (7.48),
for θ ∈ (θ0, 1),

E[(Wn+1)θ] ≤ (1− C1n
−β)E[(Wn)θ] + Cn−α2 . (7.50)

We now prove that there is N ∈ N such that for all K > 1 and n ≥ N ,

K(1− C1n
−β)n−α + Cn−α2 ≤ K(n+ 1)−α. (7.51)

Since β < 1 and α− α2 < −1, there is N ∈ N such that the inequality

Cnα−α2 ≤ KC1n
−β − αKn−1 (7.52)

holds for all n ≥ N and all K > 1. Using the Taylor expansion identity

(1 + n−1)−α = 1− αn−1 + o(n−1)

and rearranging (7.52), we conclude that we can adjust N so that

Cnα−α2 ≤ −K(1− C1n
−β) +K(1 + n−1)−α

for all n ≥ N and all K > 1. Multiplying both sides of this inequality by n−α and
rearranging we obtain that (7.51) holds for all n ≥ N .

Let us fix this N and define K = max(1, NαE[(WN )θ]). Note that E[(WN )θ] ≤ KN−α.
Then, (7.50) and (7.51) imply

E[(WN+1)θ] ≤ (1− C1N
−β)E[(WN )θ] + CN−α2

≤ K(1− C1N
−β)N−α + CN−α2

≤ K(N + 1)−α.

Using this computation as an induction step, one can then show that

E[(Wn)θ] ≤ Kn−α

for all n ≥ N, which proves the lemma because α = ν/2− ε.

7.3.1 Analysis of I(r, µ)

First we define the following measurement of concentration of a probability measure µ.

Definition 7.10. For a probability measure µ on Rd, let

I(r, µ) = µ⊗2{(X,Y ) ∈ (Rd)2 : |X − Y | < r}, r > 0.

Here and below, (X,Y ) is the canonical pair of i.i.d. r.v.’s with distribution µ.
Lemma 7.11 gives a bound on how I(µ, r) changes with r and compares it to the

concentration function of µ. This comparison is a continuous version of display (2.8) in
[18] valid for the lattice setting. We will need notation for Euclidean balls:

B(x, r) = {y ∈ Rd : |y − x| < r}, x ∈ Rd, r > 0.

Lemma 7.11. Let d ∈ N. There are constants c = cd, C = Cd, and C ′d = C ′ such that for
all R, r ∈ R satisfying R ≥ r > 0 and for all probability measures µ on Rd,

I(r, µ) ≤ I(R,µ) ≤ CR
d

rd
I(r, µ) (7.53)

and
c sup
x∈Rd

µ (B(x, r))
2 ≤ I(r, µ) ≤ C ′ sup

x∈Rd
µ (B(x, r)) . (7.54)
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Proof. Let us prove (7.53) first. The first inequality follows from the inclusion

{(x, y) ∈ (Rd)2 : |x− y| < r} ⊂ {(x, y) ∈ (Rd)2 : |x− y| < R}, R ≥ r.

To prove the second inequality in (7.53), it suffices to prove

µ⊗2{|X − Y | < Kr} ≤ CKdµ⊗2{|X − Y | < r} (7.55)

for K = dRr e ∈ N and some constant C independent of µ and K, because K ≤ 2Rr .

Let J r denote the collection of disjoint cubes Jr~k of diagonal length r of the form

~krd−1/2 + [0, rd−1/2)d, ~k ∈ Zd.

Note that if X,Y ∈ Jr~k then |X − Y | < r. It follows that for all x0 ∈ Rd,

µ⊗2{|X − Y | < r} ≥ µ⊗2

( ⋃
~k∈Zd

{X,Y ∈ Jr~k + x0}
)

=
∑
~k∈Zd

µ
(
Jr~k + x0

)2

. (7.56)

Inequality (7.56) with x0 = 0 and the Cauchy-Schwarz inequality implies

µ⊗2{|X − Y | < r} ≥
∑
~k∈Zd

∑
~̀∈[0,K)d∩Zd

µ
(
Jr
K~k+~̀

)2

≥
∑
~k∈Zd

1

Kd

( ∑
~̀∈[0,K)d∩Zd

µ
(
Jr
K~k+~̀

))2

=
1

Kd

∑
~k∈Zd

µ
(
JrK~k

)2

. (7.57)

Also, if |X − Y | < rK, then there is some ~k ∈ Zd such that X ∈ JrK~k and Y ∈ JrK~k′ for

some ~k′ within distance
√
d of ~k. For ~k ∈ Zd, let N(k) = {~k′ ∈ Zd : |~k − ~k′| ≤

√
d}. It

follows that

µ⊗2{|X − Y | < Kr} ≤ µ⊗2
( ⋃
~k∈Zd

{
X,Y ∈

⋃
~k′∈N(k)

JrK~k′

})
≤
∑
~k∈Zd

µ
( ⋃
~k′∈N(k)

JrK~k′

)2

≤
∑
~k∈Zd

( ∑
~k′∈N(k)

µ
(
JrK~k′

))2

≤ |N(0)|
∑
~k∈Zd

∑
~k′∈N(k)

µ
(
JrK~k′

)2
= |N(0)|2

∑
~k∈Zd

µ
(
JrK~k

)2
. (7.58)

Inequalities (7.57) and (7.58) imply

µ⊗2{|X − Y | < Kr} ≤ |N(0)|2Kdµ⊗2{|X − Y | < r},

which proves (7.55) and establishes (7.53).
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Now we establish (7.54). Let x ∈ Rd and let y = x − (r, . . . , r). Inequality (7.56)
applied to

√
dr instead of r and x0 = y, and the inclusion

B(x, r) ⊂ J2
√
dr

~0
+ y

imply

µ⊗2{|X − Y | < 2
√
dr} ≥ µ

(
J2
√
dr

~0
+ y
)2

≥ µ(B(x, r))2.

This and (7.53) imply

µ(B(x, r))2 ≤ µ⊗2{|X − Y | < 2
√
dr} ≤ Cd2ddd/2µ⊗2{|X − Y | < r},

which establishes the lower bound in (7.54). For the upper bound, we apply (7.58) with
K = 1:

µ⊗2{|X − Y | < r} ≤ |N(0)|2 sup
~k∈Zd

µ
(
Jr~k
) ∑
~k∈Zd

µ
(
Jr~k
)

= |N(0)|2 sup
~k∈Zd

µ
(
Jr~k
)

≤ |N(0)|2 sup
x∈Rd

µ (B(x, r)) , (7.59)

and the proof is complete.

Let C be the space of continuous functions from Rd to R equipped with the topology
of uniform convergence on compact sets and let Q be a measure on the Borel σ-algebra
of C . The symbol η(x) will represent the random variable η 7→ η(x) defined on C . We
next prove a lemma relating I(r, µ) to the random variable η 7→

∫
Rd
η(x)µ(dx) defined on

C . This is a continuous setting extension of the lattice setting Lemma 3.1 of [18].

Lemma 7.12. Suppose Q satisfies the following conditions:

(a) The stochastic process (η(x))x∈Rd is stationary with respect to spatial shifts.

(b) Q[|η(0)|3] <∞ and Q[η(0)] = 0.

(c) If R(x) = Q[η(0)η(x)] and W (x, y) = E[η(0)η(x)η(y)] for x, y ∈ Rd, then R is non-
negative, is bounded away from zero in a neighborhood around the origin, and is
compactly supported. W is compactly supported.

Then for every r > 0 there are constants c1, c2, c3 > 0 such that the following holds for
all probability measures µ on Rd. If U =

∫
Rd
η(x)µ(dx), then

c1I(r, µ) ≤ Q
[
U2
]
≤ c2I(r, µ) (7.60)

and

Q

[
U2

2 + U

]
≥ c3I(r, µ). (7.61)

Proof. Due to Lemma 7.11, it suffices to prove (7.60), (7.61) for one value r = r0 of our
choice. Using Requirements (b) and (c), we can find a number r0 > 0 and numbers
C1, C2, C3,K,K

′ > 0 such that for all x, y ∈ Rd

C11|x|<r0 ≤ R(x), (7.62)

C21|x|<K ≥ R(x), (7.63)

C31|x|<K′ ≥W (x, y). (7.64)
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Fubini’s theorem and stationarity of η imply

Q
[
U2
]

= Q

[(∫
Rd
η(x)µ(dx)

)2
]

=

∫
(Rd)2

R(x− y)µ(dx)µ(dy). (7.65)

Inequality (7.62) and equality (7.65) imply

Q
[
U2
]
≥ C1µ

⊗2{|X − Y | < r0} = C1I(r0, µ). (7.66)

Inequality (7.63) and equality (7.65) imply

Q
[
U2
]
≤ C2µ

⊗2{|X − Y | < K} = C2I(K,µ). (7.67)

Lemma 7.11 then implies
I(K,µ) ≤ CI(r0, µ)

for some constant C independent of µ. Equation (7.60) is then proved for this r0, and
thus for any r with possibly different constants.

Similarly,

Q
[
U3
]

=

∫
(Rd)3

W (x− z, y − z)µ(dx)µ(dy)µ(dz)

(7.64)
≤ C3I(K ′, µ)

Lemma 7.11
≤ C ′I(r0, µ). (7.68)

Now we can use exactly the same argument as in [18]:

C1I(r0, µ)
(7.66)
≤ Q

[
U√

2 + U
U
√

2 + U

]
≤
(
Q

[
U2

2 + U

])1/2 (
Q
[
2U2 + U3

])1/2
(7.67),(7.68)
≤ C ′′I(r0, µ)1/2

(
Q

[
U2

2 + U

])1/2

.

Equation (7.61) then follows for any r > 0 with a possibly different constant.

7.3.2 Proof of Lemma 7.9

Recall that ρn is the polymer endpoint measure at step n. The lattice version of
Lemma 7.13 can be found in Lemma 4.2 of [18].

Lemma 7.13. For any θ ∈ (0, 1) and R, r > 0, satisfying R ≥ r there are positive
constants C1, C2 such that

E[(Wn)θI(r, ρn)] ≥ C1r

R
E[(Wn)θ]− C2r

R

(
Pn
{
|Sn| ≥ R

})θ
. (7.69)

Proof. Inequalities (7.53) and (7.54) of Lemma 7.11 imply that for some constants C and
C ′ depending on neither r,R nor ρn,

I(r, ρn) ≥ C r

R
I(2R, ρn) ≥ C ′ r

R
ρn([−R,R))2. (7.70)

Since ρn([−R,R)c) ∈ [0, 1],

ρn([−R,R))2 = (1− ρn([−R,R)c))2

≥ 1− 2ρn([−R,R)c)

≥ 1− 2ρn([−R,R)c)θ. (7.71)
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Using Jensen’s inequality and Lemma 7.6 we obtain

E[(Wn)θρn([−R,R)c)θ] ≤ (E[Wnρn([−R,R)c)])θ

= (E[W 0,n
0,[−R,R)c ])

θ

=
(
Pn
{
|Sn| > R

})θ
. (7.72)

Putting (7.70), (7.71), and (7.72) together, we obtain (7.69).

Proof of Lemma 7.9. We are going to apply Lemma 7.12, so we set

η(x) = e−Fn(x)−ϑ − 1

and define the measure Q on C to be the marginal of P associated to the n-th time
coordinate. Equivalently, Q is a version of the conditional expectation given (Fk)k 6=n.
Assumption 2.1 implies that P-a.s., Q satisfies the conditions of Lemma 7.12.

Since

Wn+1

Wn
=

1

Wn

∫
R

∫
R

Wn
x e
−Fn(x)−ϑp(y − x)dxdy

=
1

Wn

∫
R

Wn
x e
−Fn(x)−ϑdx

=

∫
R

e−Fn(x)−ϑρn(dx),

we obtain

U =

∫
R

η(x)µ(dx)

for µ = ρn and U = Wn+1

Wn − 1, and we can apply Lemma 7.12.
Equation (7.61) of Lemma 7.12 implies that there is a deterministic constant C such

that P-a.s.,

Q

[
U2

2 + U

]
≥ CI(1, ρn). (7.73)

Since θ ∈ (0, 1), there is c > 0 such that

(u+ 1)θ − θu− 1 ≤ −c u2

2 + u
, u ≥ −1, (7.74)

(see equation (4.5) in [18]). Since Q[U ] = 0, for all t ≥ 1, we have

E[(Wn+1)θ − (Wn)θ] = E
[
(Wn)θQ[(U + 1)θ − 1]

]
= E

[
(Wn)θQ[(U + 1)θ − θU − 1]

]
(7.74)
≤ −cE

[
(Wn)θQ

[
U2

2 + U

]]
(7.73)
≤ −CE

[
(Wn)θI(1, ρn)

]
Lemma 7.13
≤ −C1

t
E[(Wn)θ] +

C2

t

(
Pn
{
|Sn| ≥ t

})θ
.

Then,

E[(Wn+1)θ] = E[(Wn)θ] + E[(Wn+1)θ − (Wn)θ]

≤
(

1− C1

t

)
E[(Wn)θ] +

C2

t

(
Pn
{
|Sn| ≥ t

})θ
as claimed.
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8 Random walk estimates

In this section, we prove Lemmas 7.7 and 7.8.

Proof of Lemma 7.7. We consider only t > 0 (the proof for t < 0 is similar). Suppose that
0 < t < R − L. If x, x + t ∈ [L,R] then p(x) < r0p(x + t) by the definition of r0 in (7.16)
and so x /∈ Et. It follows that

λ
(
Et ∩ [L,R]

)
≤ λ([R− t, R]) ≤ t sup

x∈R
p(x). (8.1)

Now we consider Et ∩ (−∞, L]. If x ∈ (−∞, L− t] and p(x) > 0, then x /∈ Et because
p is nondecreasing on (−∞, L]. Also, if x ∈ (L− t, L], then x+ t ∈ [L,R] and so p(x+ t) ≥
infz∈[L,R] p(z). This implies p(x) < r0p(x+ t). It follows that

λ(Et ∩ (−∞, L]) = 0. (8.2)

Now we consider the set Et ∩ [R,∞), where p is nonincreasing. Define xn = R+ nt

for n ∈ N. If p(x) ≥ r0p(x + t) for some x ∈ [xn, xn+1], then x + t ∈ [xn+1, xn+2] and so
p(xn) ≥ r0p(xn+2). It follows that

λ (Et ∩ [R,∞)) =

∫
[R,∞)

1{p(x)≥r0p(x+t)}p(x)dx

=
∞∑
n=0

∫ xn+1

xn

1{p(x)≥r0p(x+t)}p(x)dx

≤ t
∞∑
n=0

1{p(xn)≥r0p(xn+2)}p(xn). (8.3)

Let

Cn = |{2 ≤ k ≤ n : k even and p(xk−2) ≥ r0p(xk)}| =
∑
k∈2N

2≤k≤n

1{p(xk−2)≥r0p(xk)},

Bn = |{3 ≤ k ≤ n : k odd and p(xk−2) ≥ r0p(xk)}| =
∑

k∈2N+1
3≤k≤n

1{p(xk−2)≥r0p(xk)}.

Due to the monotonicity of p,

p(xn) ≤ r−Cn0 p(x0) = r−Cn0 p(R), n ∈ 2N,

p(xn) ≤ r−Bn0 p(x1) ≤ r−Bn0 p(R), n ∈ 2N + 1.

Thus, using (8.3) we obtain

λ (Et ∩ [R,∞)) ≤ tp(R)

[ ∑
n even

1{p(xn)≥r0p(xn+2)}r
−Cn
0 +

∑
n odd

1{p(xn)≥r0p(xn+2)}r
−Bn
0

]

≤ 2tp(R)

∞∑
m=0

r−m0

≤ 2r0

r0 − 1
tp(R). (8.4)

Finally, (8.1), (8.2), and (8.4) imply that

λ(Et) ≤ t sup
x∈R

p(x) + 0 +
2r0

r0 − 1
tp(R) = O(t),

and the proof is completed.
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Proof of Lemma 7.8. Let pn be the density of the centered random variable Sn =
∑n
i=1Xi

where Xi ∼ λ are i.i.d.. We use the non-uniform local limit theorems from [37]. Corollary
2 and Corollary 5 of [37] imply that

lim sup
n→∞

nmin(ν−2,1)/2 sup
x∈R

(1 + |x|2)|
√
npn(x

√
n)− g(xσ−1)| < c <∞, (8.5)

where g is the standard normal and σ2 =
∫
x2λ(dx), for some constant c depending on ν,∫

x2λ(dx), and
∫
|x|νλ(dx). Display (8.5) implies in particular that there is a constant C

such that for sufficiently large n,

pn(y) ≤ C√
n(1 + y2n−1)

(8.6)

for all y ∈ R. Therefore,

Pn{Sn ∈ [z, z + δ)} =

∫ z+δ

z

pn(y)dy

≤
∫ z+δ

z

C√
n(1 + y2n−1)

dy

≤ δ sup
y∈[z,z+δ)

C√
n(1 + y2n−1)

≤ 2Cδ√
n(1 + z2n−1)

and the lemma is proved.
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