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Abstract—For some images of a single stem cell, the boundary
delineating the cell is discontinuous or blurry at some locations. If
the statistical region merging (SRM) method is applied directly on
such images, the image segmentation results may not be ideal. In
this paper, for each such image, we add some gradient information
into the image; then apply a discontinuous filter on the image so
that the image is smoothed a bit and the edges of the image are
kept well. Next, closing operations of morphology are applied on
the filtered image; and the processed image is segmented using
SRM. Finally, apply a threshold on the segmented image to obtain
a binary image; apply a hole-filling function to the binary image;
extract the biggest connected component in the hole-filled image;
and apply a linear transform on the image of the biggest
component to match the input image as well as possible in terms
of the least squares fitting. This transformed image is the
segmentation result. We have applied SRM using connectivity of 4
and 8 as well as a hexagonal lattice. The corresponding
segmentation results are tabulated for convenient comparisons;
and the results can show that the proposed method may be helpful
for the segmentation of such images.
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I. INTRODUCTION

The usual methods and applications of image segmentation
can be found in papers such as [1-18]. Deshpande et al. have
shown in [15] that the statistical region merging (SRM) method
yields better output than seeded region growing. As reported in
[15], SRM is an effective image segmentation method for many
situations. However, SRM cannot segment some images well.
For example, the image of a bird shown in Table 5 in [15] is not
segmented well by SRM.

For the cell images (such as those displayed at the top-left of
Figs. 2-5 in this paper) shown in Examples 2 and 3 in [19] by
Zade, if we apply SRM on those images directly, the
segmentation results may be very bad because the boundaries of
a cell may be blurry. In [19], Zade combined entropy method
and some other image processing tools such as binarization and
hole-filling to perform segmentation on those images. However,
the computation of the entropy value on a given pixel must be
based on a neighborhood region of the pixel. The image values
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on the neighborhood may not represent the image value of the
pixel very well. Hence, as shown at the bottom-right of Fig. 2,
the boundary of the segmented image may not match the actual
boundary well.

In [20] by Chudasama et al., edge detection, morphological
operations and hole filling were applied for image segmentation.
However, as shown in [21], the edges (produced from the edge
detection) of a given object may not be connected; and hence the
segmentation effect using the method in [20] for those cell
images may be bad.

To overcome the deficiencies of those methods for the
segmentation of those cell images, in this paper, we combine
discontinuous filers, morphological operations, SRM,
hexagonal lattices, thresholds, and some other image processing
tools to perform image segmentation for those cell images. The
segmentation results are displayed and analyzed using some
efficient criteria. For those images of a single stem cell, this
algorithm usually has a better image segmentation effect than
the previous algorithms introduced.

II. IMAGE SEGMENTATION USING SRM AND SOME OTHER
IMAGE PROCESSING TOOLS

In this section, we show the details of the image
segmentation method based on filters, morphological closing
operations, SRM, and thresholds for the segmentation of those
cell images.

A. Discontinuous Filters

The usual Gaussian filters for image processing are smooth
filters, which effectively reduce noise but also blur out the edges.
For the purpose of image segmentation, the edges should be kept
as well as possible while performing image filtering. In this
paper, a discontinuous filter is constructed as follows.

Let W, = 11 and W_.,ter = 6. Let M be a matrix of size 11
by 11 such that M(6,6) = 100(W,)? and M(i,j) = 1ifi # 6
or j # 6. Let s be the sum of all entries of M and let hy = iM.
Then the sum of all entries of h, is 1. Because h((6,6) is much
bigger than other entries of h,, the matrix h, can serve as a

discontinuous image filter. Let hy be the Gaussian filter of size
11by 11. Finally, leth = 0.75(ho) + 0.25(hy). Then his



discontinuous because h, is discontinuous and h, is
continuous. In this paper, we use the filter h to perform image
filtering such that image edges are kept well.

B. Morphological Operations and Hexagonal Lattices

Morphological operations can be found in papers such as
[22-25]. Hexagonal lattices were introduced in [24-26]. In [24],
an efficient algorithm for morphological operations on
hexagonal lattices was developed.

Let SE, be the structuring represented by the 7 by 7 matrix
whose elements are ones except 3 zeros at each conner of the
square matrix. SE, canbe generated by the Matlab command
strel ('disk',4). Also letZ; be the regular hexagonal
structure corresponding to the structure shown in the left side of
Fig. 1 in [28] by Vince and Zheng. The detailed definitions of
SE, and 5 can be found in [25] by Zheng. SE, is a structuring
element for morphological operations on square lattices; and =3
is a structuring element for morphological operations on
hexagonal lattices. Each of SE, and Z5 has 37 entries that are
ones. Hence, those two structuring elements can be applied to
compare square lattices with hexagonal lattices fairly for the
effect of morphological operations.

A morphological closing operation dilates an image with a
structuring element and then erodes the dilated image using the
same structuring element. The closing operation is useful for
filling out small holes in an image. For any integer k > 0, an
image can be dilated using one of the structuring elements for k
times. Then the image can be eroded using the same structuring
element elements for k times. The value of k can be chosen
according to the segmentation effects of different kinds of
images.

C. The SRM Method for Image Segmentation

In [12], the SRM method for hexagonally sampled images
was implemented. In [12], the SRM method for a 2-dimensional
Cartesian image with 8-connectivity was also implemented. It
was shown that the hexagonal lattices or square lattices with
connectivity 8 usually obtain better effect than square lattices
with connectivity 4 for image segmentation using SRM. In this
paper, we perform image segmentation utilizing hexagonal
lattices as well as square lattices with connectivity 4 or 8.

D. Thresholds, Hole Filling, and Extracting the Biggest
Connected Component

Because the segmented image from SRM may have more
than two components, we need to apply a suitable threshold on
the segmented image so that the final image has just two
components. The threshold can be expressed as the mean value
of the segmented image from SRM times a positive number,
which is named as the threshold coefficient. The threshold
coefficient should be suitably chosen to obtain good
segmentation results. After the threshold, the image may have
holes; and the image may consist of more than two connected
components. Hence, we need to apply a hole filling function and
another function extracting the biggest connected component.
The final segmentation result is based on the biggest connected
component.

E. Least Squares Fitting to Obatin the Final Image
Segmentation Result

Because of the previous image processing steps, the values
of the original input image may have been changed much. We
need to apply a linear transform on the image of the biggest
connected component so that the transformed image can match
the input image as well as possible in terms of the least squares
fitting.

F. The Detailed Steps of the Algorithm Based on Morphology
and SRM

Now we show details of this algorithm. For an input image
I, of size m, by n, by d, our algorithm consists of the following
12 steps to obtain the segmented image. To compare this
algorithm with the algorithm based on entropy, we assume that
d = 1. Let us call this algorithm MorphSRM.

1. Set the values for the gradient coefficient G, to be used

in Step 4, the exponent index p > 1 (for image
processing before filtering) to be used in Step 5, the
number Np,o,pp Of closing operations to be used in
Step 8, and the threshold coefficient T, to be used in
Step 10.

2. Convert I, to double type; and let I be a sub-image of
Iy such that the single cell is contained in I more
compactly than in I,. For the images constituting the
video in [19], we let

I={,G, )91 <i<my—390,191 < <ny—290}.
3. Apply a linear transformation such that the minimal

and maximal value of the transformed image to be 0
and 255, respectively. Let I, denote the transformed

image.

4. For each pixel (i,j) of I, compute the 2-norm
IVI(i, ) of the gradient of I. Let I, be the image

defined by I, (i, j) = I1(i,j) + G - IVI(@, I

4"Ig(i:j) sa d
255

let I, be the image defined by L,(i,/) = (I3 (L',j))p.

Because p > 1, this step and the next step usually

make the salient features in the image more evident as
shown at the top-right of Fig. 2.

5. Let I; be the image defined by I5(i,j) =

6. Perform filtering on the image I, using the filter h. Let
I5 denote the filtered image; and let I be the image

1
defined by I (i, /) = (Is(i, j))P. Let Mg denote the
maximal value of the image I. Let I; be the image
defined by I, (i, j) = 226D
Mg
7. To apply a hexagonal lattice for image segmentation,

as in [12], resample the image to a hexagonal lattice
with the same sampling rate as the usual square lattice.



8. Perform the dilations for Np,.pp times using the
structuring element SE, for the 2D Cartesian image
and using the structuring element Z; for the

hexagonally sampled image. Then perform the
corresponding erosions for Ny, times; and let Ig

denote the image after those operations. The value of
Nporpn depends on image size and kinds of images.
For the images in this paper, we set Nyporpn = 3.

9. Asin[12], we use 0.4 as the weight of Sobel derivative
and use g = 256 to perform image segmentation using
SRM on the square lattice (with connectivity 4 or 8)
and the hexagonal lattice. In this paper, for each image,
we apply SRM twice to obtain better image
segmentation effect. First, we let Q = 2% and let 3 be
the minimal size to obtain a segmented image using
SRM. In the 2™ time, the segmented image is used as
the input image; let 4 be the minimal size; and let Q =
2 with i taking values 12, 11, 10, 9, and 8 to perform
image segmentation using SRM. Let I, denote the
image after the second application of SRM.

10. Apply the threshold (introduced before) on I, to
obtain the corresponding binary image I;,s4-

11. As in [19], apply a hole-filling function (imfill in
Matlab) on the image I;p.sq ; extract the biggest
connected component (bwpropfilt in Matlab) in the
hole-filled image; and denote the resulting image as

Ilargest-

12. Apply a linear transformation on the image 4y gest SO
that the transformed image matches the input image I,
as well as possible in terms of the least squares fitting;
and denote the transformed image as Isegmenteq, Which
is the final result of the segmentation by this algorithm.
Finally, as in [12], compute the mean absolute error
(MAE) between Igogmenteq and .

III. EXPERIMENTAL RESULTS

For the video (stem_cell migration.mp4) in Example 3 in
[19], in Step 1 of the algorithm MorphSRM, we set G, = 1.4,
P =8, Nyorpn =3, and T, = 1.05. We tested the first 30
frames (images) of the video, and computed the average of the
corresponding 30 MAESs for each algorithm. For the algorithm
in this paper, we applied the square lattice (with connection 4
and 8) as well as the hexagonal lattice. Then the best one among
the 3 outputs is chosen to compare with the result of the
algorithm based on entropy method. The MAEs for the
segmentation of those frames are shown in Fig. 1. The average
MAESs for the algorithm MorphSRM and the entropy-based
algorithm are 5.6339 and 5.6743, respectively. They imply that
MorphSRM is better than the entropy-based algorithm.

For Frame 19 of the video, the input and segmented images
are shown in Fig. 2. We can see that the segmented cell from the
entropy-based algorithm has a hole; furthermore, the boundary
of the segmented cell is not ideal. The segmented image from
MorphSRM is obviously better.

—©— diff values of this algorithm
——#— diff values by entropy method

L1 norm of the difference image
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Fig. 1. The MAEs for the segmentation of the first 30 frames of the video in
Example 3 in [19]. The green and the blue indicate the MAEs for the entropy-
based algorithm and MorphSRM, respectively.
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Fig. 2. The input and segmented images for Frame 19 of the video. Top-left is
the input; top-right is the image after the closing operation from the input;
bottom-left is the segmented image from MorphSRM; and bottom-right is the
segmented image using entropy.
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Fig. 3. The input and segmented images when G. = 1.4 and T, = 1.05 for
Frame 20 of the video. Top-left is the input; top-right is the image after the
closing operation from the input; bottom-left is the segmented image from
MorphSRM; and bottom-right is the segmented image using entropy.

For a given frame, we may change the values of G, and T, to
achieve better segmentation effect. For example, for Frame 20,
the result using the original values of G, and T, is not very good
because a few small pieces of the cell are lost as shown at the
bottom-left of Fig. 3. This deficiency is remedied when G, = 2
and T, = 1 as shown at the bottom-left of Fig. 4.

For the image in Ex. 2 in [19], we set G, = 2 and T, = 0.98.



The segmented images are shown in Fig. 5. The segmented
image from MorphSRM may provide some useful information,
or may be complementary to the result from the entropy-based
algorithm.

IV. CONCLUSION AND FUTURE WORK

We have developed a novel computer algorithm for the
segmentation of those cell images. The algorithm is tested using
some images. The experimental results are evaluated using the
MAE measure. The segmented images are displayed, and the
MAE values are computed for convenient comparisons. We
have implemented the algorithm for the hexagonal lattice as well
as the square lattice with connectivity 4 or 8. Hence, for the same
input image, there are three segmented images. Those
segmented 1images may be Dbetter than (or provide
complementary information to) the segmentation results using
entropy. The MAE values for the tested images can show that
our algorithm usually performs better than the entropy-based
algorithm. The segmented images using our algorithm usually
do not have such default as those using entropy.

The input image

250
100 200
200 150
300 100
400 50
500 °

100 200 300 400 500

Image after the closing operation

- sto

100 200 300 400 500

Segmtedim by this algorithm

92
100

920
200 -
300 88
400

86
500

100 200 300 400 500

Segmtedim by entropy method

91
90
89
88
87
86

100 200 300 400 500

Fig. 4. The input and segmented images when G, = 2 and T, = 1 for Frame
20 of the video. Top-left is the input; top-right is the image after the closing
operation from the input; bottom-left is the segmented image from MorphSRM;
and bottom-right is the segmented image using entropy.
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Fig. 5. The input and segmented images when G. = 2 and T, = 0.98 for the
image in Example 2 in [19]. Top-left is the input; top-right is the image after
the closing operation from the input; bottom-left is the segmented image from
MorphSRM; and bottom-right is the segmented image using entropy.

Among the first 30 frames of the video, 20 of those frames
achieve best segmentation results from the hexagonal lattice;
and 10 of those frames achieve best segmentation results from
the square lattice with connectivity 8. Hence, for the

segmentation of the stem cell images, usually the hexagonal
lattice performs better than the square lattice; and for the square
lattice, connectivity 8 performs better than connectivity 4. To
achieve better segmentation result, the rectangular image should
contain the cell as compactly as possible. Otherwise, the biggest
connected component extracted in Step 11 of the algorithm may
not consist of the pixels of the cell.

In the future, we may analyze the parameters in the algorithm
MorphSRM or perform some statistics. Because image
segmentation techniques continue to advance, we may compare
this algorithm with some other recent works for image
segmentation. We may also apply this algorithm to other
application domains or to 3D images as in [27].
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