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Abstract—For some images of a single stem cell, the boundary 

delineating the cell is discontinuous or blurry at some locations. If 

the statistical region merging (SRM) method is applied directly on 

such images, the image segmentation results may not be ideal. In 

this paper, for each such image, we add some gradient information 

into the image; then apply a discontinuous filter on the image so 

that the image is smoothed a bit and the edges of the image are 

kept well. Next, closing operations of morphology are applied on 

the filtered image; and the processed image is segmented using 

SRM. Finally, apply a threshold on the segmented image to obtain 

a binary image; apply a hole-filling function to the binary image; 

extract the biggest connected component in the hole-filled image; 

and apply a linear transform on the image of the biggest 

component to match the input image as well as possible in terms 

of the least squares fitting. This transformed image is the 

segmentation result. We have applied SRM using connectivity of 4 

and 8 as well as a hexagonal lattice. The corresponding 

segmentation results are tabulated for convenient comparisons; 

and the results can show that the proposed method may be helpful 

for the segmentation of such images.  
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I. INTRODUCTION 

The usual methods and applications of image segmentation 
can be found in papers such as [1-18]. Deshpande et al. have 
shown in [15] that the statistical region merging (SRM) method 
yields better output than seeded region growing. As reported in 
[15], SRM is an effective image segmentation method for many 
situations. However, SRM cannot segment some images well. 
For example, the image of a bird shown in Table 5 in [15] is not 
segmented well by SRM. 

For the cell images (such as those displayed at the top-left of 
Figs. 2-5 in this paper) shown in Examples 2 and 3 in [19] by 
Zade, if we apply SRM on those images directly, the 
segmentation results may be very bad because the boundaries of 
a cell may be blurry. In [19], Zade combined entropy method 
and some other image processing tools such as binarization and 
hole-filling to perform segmentation on those images. However, 
the computation of the entropy value on a given pixel must be 
based on a neighborhood region of the pixel. The image values 

on the neighborhood may not represent the image value of the 
pixel very well. Hence, as shown at the bottom-right of Fig. 2, 
the boundary of the segmented image may not match the actual 
boundary well. 

In [20] by Chudasama et al., edge detection, morphological 
operations and hole filling were applied for image segmentation. 
However, as shown in [21], the edges (produced from the edge 
detection) of a given object may not be connected; and hence the 
segmentation effect using the method in [20] for those cell 
images may be bad.  

To overcome the deficiencies of those methods for the 
segmentation of those cell images, in this paper, we combine 
discontinuous filers, morphological operations, SRM, 
hexagonal lattices, thresholds, and some other image processing 
tools to perform image segmentation for those cell images. The 
segmentation results are displayed and analyzed using some 
efficient criteria. For those images of a single stem cell, this 
algorithm usually has a better image segmentation effect than 
the previous algorithms introduced. 

II. IMAGE SEGMENTATION USING SRM AND SOME OTHER 

IMAGE PROCESSING TOOLS 

In this section, we show the details of the image 
segmentation method based on filters, morphological closing 
operations, SRM, and thresholds for the segmentation of those 
cell images. 

A. Discontinuous Filters 

The usual Gaussian filters for image processing are smooth 
filters, which effectively reduce noise but also blur out the edges. 
For the purpose of image segmentation, the edges should be kept 
as well as possible while performing image filtering. In this 
paper, a discontinuous filter is constructed as follows.  

Let 𝑊𝑧 = 11 and 𝑊𝑐𝑒𝑛𝑡𝑒𝑟 = 6. Let 𝑀 be a matrix of size 11 
by 11 such that 𝑀(6,6) = 100(𝑊𝑧)2  and 𝑀(𝑖, 𝑗) = 1 if 𝑖 ≠ 6 

or 𝑗 ≠ 6. Let 𝑠 be the sum of all entries of 𝑀 and let ℎ0 =
1

𝑠
𝑀. 

Then the sum of all entries of ℎ0 is 1. Because ℎ0(6,6) is much 
bigger than other entries of ℎ0 , the matrix ℎ0  can serve as a 
discontinuous image filter. Let ℎ𝑔 be the Gaussian filter of size 

11 by 11. Finally, let ℎ = 0.75(ℎ0) + 0.25(ℎ𝑔). Then ℎ is 
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discontinuous because ℎ0  is discontinuous and ℎ𝑔  is 

continuous. In this paper, we use the filter ℎ to perform image 
filtering such that image edges are kept well.  

B. Morphological Operations and Hexagonal Lattices 

Morphological operations can be found in papers such as 
[22-25]. Hexagonal lattices were introduced in [24-26]. In [24], 
an efficient algorithm for morphological operations on 
hexagonal lattices was developed.  

Let 𝑆𝐸4 be the structuring represented by the 7 by 7 matrix 
whose elements are ones except 3 zeros at each conner of the 
square matrix. 𝑆𝐸4 can be generated by the Matlab command 

strel('disk',4). Also let Ξ3 be the regular hexagonal 

structure corresponding to the structure shown in the left side of 
Fig. 1 in [28] by Vince and Zheng. The detailed definitions of 
𝑆𝐸4 and Ξ3 can be found in [25] by Zheng. 𝑆𝐸4 is a structuring 
element for morphological operations on square lattices; and Ξ3 
is a structuring element for morphological operations on 
hexagonal lattices. Each of 𝑆𝐸4  and Ξ3  has 37 entries that are 
ones. Hence, those two structuring elements can be applied to 
compare square lattices with hexagonal lattices fairly for the 
effect of morphological operations.  

A morphological closing operation dilates an image with a 
structuring element and then erodes the dilated image using the 
same structuring element. The closing operation is useful for 
filling out small holes in an image. For any integer 𝑘 > 0 , an 
image can be dilated using one of the structuring elements for 𝑘 
times. Then the image can be eroded using the same structuring 
element elements for 𝑘  times. The value of 𝑘  can be chosen 
according to the segmentation effects of different kinds of 
images. 

C. The SRM Method for Image Segmentation 

In [12], the SRM method for hexagonally sampled images 
was implemented. In [12], the SRM method for a 2-dimensional 
Cartesian image with 8-connectivity was also implemented. It 
was shown that the hexagonal lattices or square lattices with 
connectivity 8 usually obtain better effect than square lattices 
with connectivity 4 for image segmentation using SRM. In this 
paper, we perform image segmentation utilizing hexagonal 
lattices as well as square lattices with connectivity 4 or 8.  

D. Thresholds, Hole Filling, and Extracting the Biggest 

Connected Component 

Because the segmented image from SRM may have more 
than two components, we need to apply a suitable threshold on 
the segmented image so that the final image has just two 
components. The threshold can be expressed as the mean value 
of the segmented image from SRM times a positive number, 
which is named as the threshold coefficient. The threshold 
coefficient should be suitably chosen to obtain good 
segmentation results. After the threshold, the image may have 
holes; and the image may consist of more than two connected 
components. Hence, we need to apply a hole filling function and 
another function extracting the biggest connected component. 
The final segmentation result is based on the biggest connected 
component.  

E. Least Squares Fitting to Obatin the Final Image 

Segmentation Result 

Because of the previous image processing steps, the values 
of the original input image may have been changed much. We 
need to apply a linear transform on the image of the biggest 
connected component so that the transformed image can match 
the input image as well as possible in terms of the least squares 
fitting.  

F. The Detailed Steps of the Algorithm Based on Morphology 

and SRM 

Now we show details of this algorithm. For an input image 
𝐼0 of size 𝑚0 by 𝑛0 by 𝑑, our algorithm consists of the following 
12 steps to obtain the segmented image. To compare this 
algorithm with the algorithm based on entropy, we assume that 
𝑑 = 1. Let us call this algorithm MorphSRM. 

1. Set the values for the gradient coefficient 𝐺𝑐 to be used  

in Step 4, the exponent index 𝑝 > 1  (for image 
processing before filtering) to be used in Step 5, the 
number 𝑁𝑚𝑜𝑟𝑝ℎ  of closing operations to be used in 

Step 8, and the threshold coefficient 𝑇𝑐 to be used in 
Step 10. 

2. Convert 𝐼0 to double type; and let 𝐼 be a sub-image of 
𝐼0  such that the single cell is contained in 𝐼  more 
compactly than in 𝐼0. For the images constituting the 
video in [19], we let  

𝐼 = {𝐼0(𝑖, 𝑗) | 91 ≤ 𝑖 ≤ 𝑚0 − 390, 191 ≤ 𝑗 ≤ 𝑛0 − 290 }. 

3. Apply a linear transformation such that the minimal 
and maximal value of the transformed image to be 0 
and 255, respectively. Let 𝐼2 denote the transformed  

image. 

4. For each pixel (𝑖, 𝑗)  of 𝐼 , compute the 2-norm 
‖∇𝐼(𝑖, 𝑗)‖ of the gradient of 𝐼. Let 𝐼𝑔 be the image  

defined by 𝐼𝑔(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) + 𝐺𝑐 ∙ ‖∇𝐼(𝑖, 𝑗)‖. 

5. Let 𝐼3 be the image defined by 𝐼3(𝑖, 𝑗) =
4∙𝐼𝑔(𝑖,𝑗)

255
 ; and  

let 𝐼4  be the image defined by 𝐼4(𝑖, 𝑗) = (𝐼3(𝑖, 𝑗))
𝑝

. 

Because 𝑝 > 1  , this step and the next step usually 
make the salient features in the image more evident as 
shown at the top-right of Fig. 2. 

6. Perform filtering on the image 𝐼4 using the filter ℎ. Let 
𝐼5 denote the filtered image; and let 𝐼6 be the image  

defined by 𝐼6(𝑖, 𝑗) = (𝐼5(𝑖, 𝑗))
1

𝑝. Let 𝑀6 denote the  

maximal value of the image 𝐼6. Let 𝐼7 be the image  

defined by 𝐼7(𝑖, 𝑗) =
255∙𝐼6(𝑖,𝑗)

𝑀6
 . 

7. To apply a hexagonal lattice for image segmentation, 
as in [12], resample the image to a hexagonal lattice 
with the same sampling rate as the usual square lattice. 



8. Perform the dilations for 𝑁𝑚𝑜𝑟𝑝ℎ  times using the 

structuring element 𝑆𝐸4  for the 2D Cartesian image 
and using the structuring element Ξ3 for the 

 hexagonally sampled image. Then perform the 
corresponding erosions for 𝑁𝑚𝑜𝑟𝑝ℎ times; and let 𝐼8  

denote the image after those operations. The value of 
𝑁𝑚𝑜𝑟𝑝ℎ  depends on image size and kinds of images. 

For the images in this paper, we set 𝑁𝑚𝑜𝑟𝑝ℎ = 3. 

9. As in [12], we use 0.4 as the weight of Sobel derivative 
and use 𝑔 = 256 to perform image segmentation using 
SRM on the square lattice (with connectivity 4 or 8) 
and the hexagonal lattice. In this paper, for each image, 
we apply SRM twice to obtain better image 
segmentation effect. First, we let 𝑄 = 214 and let 3 be 
the minimal size to obtain a segmented image using 
SRM. In the 2nd time, the segmented image is used as 
the input image; let 4 be the minimal size; and let 𝑄 =
2𝑖 with 𝑖 taking values 12, 11, 10, 9, and 8 to perform 
image segmentation using SRM. Let 𝐼𝑠𝑟𝑚  denote the 
image after the second application of SRM. 

10. Apply the threshold (introduced before) on 𝐼𝑠𝑟𝑚  to 
obtain the corresponding binary image 𝐼𝑡ℎ𝑟𝑠𝑑. 

11. As in [19], apply a hole-filling function (imfill in 
Matlab) on the image 𝐼𝑡ℎ𝑟𝑠𝑑 ; extract the biggest 
connected component (bwpropfilt in Matlab) in the 
hole-filled image; and denote the resulting image as 
𝐼𝑙𝑎𝑟𝑔𝑒𝑠𝑡 .  

12. Apply a linear transformation on the image 𝐼𝑙𝑎𝑟𝑔𝑒𝑠𝑡  so 

that the transformed image matches the input image 𝐼2 
as well as possible in terms of the least squares fitting; 
and denote the transformed image as 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 , which 

is the final result of the segmentation by this algorithm. 
Finally, as in [12], compute the mean absolute error 
(𝑀𝐴𝐸) between 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑  and 𝐼2.  

III. EXPERIMENTAL RESULTS  

For the video (stem_cell_migration.mp4) in Example 3 in 
[19], in Step 1 of the algorithm MorphSRM, we set 𝐺𝑐 = 1.4, 
𝑝 = 8 , 𝑁𝑚𝑜𝑟𝑝ℎ = 3 , and 𝑇𝑐 = 1.05 . We tested the first 30 

frames (images) of the video, and computed the average of the 
corresponding 30 𝑀𝐴𝐸𝑠 for each algorithm. For the algorithm 
in this paper, we applied the square lattice (with connection 4 
and 8) as well as the hexagonal lattice. Then the best one among 
the 3 outputs is chosen to compare with the result of the 
algorithm based on entropy method. The 𝑀𝐴𝐸𝑠  for the 
segmentation of those frames are shown in Fig. 1. The average 
𝑀𝐴𝐸𝑠  for the algorithm MorphSRM and the entropy-based 
algorithm are 5.6339 and 5.6743, respectively. They imply that 
MorphSRM is better than the entropy-based algorithm.   

For Frame 19 of the video, the input and segmented images 
are shown in Fig. 2. We can see that the segmented cell from the 
entropy-based algorithm has a hole; furthermore, the boundary 
of the segmented cell is not ideal. The segmented image from 
MorphSRM is obviously better. 

 

Fig. 1. The MAEs for the segmentation of the first 30 frames of the video in 

Example 3 in [19]. The green and the blue indicate the MAEs for the entropy-

based algorithm and MorphSRM, respectively. 

 

Fig. 2. The input and segmented images for Frame 19 of the video. Top-left is 
the input; top-right is the image after the closing operation from the input; 

bottom-left is the segmented image from MorphSRM; and bottom-right is the 

segmented image using entropy. 

 

Fig. 3. The input and segmented images when Gc = 1.4 and Tc = 1.05 for 

Frame 20 of the video. Top-left is the input; top-right is the image after the 

closing operation from the input; bottom-left is the segmented image from 

MorphSRM; and bottom-right is the segmented image using entropy. 

For a given frame, we may change the values of 𝐺𝑐 and 𝑇𝑐 to 
achieve better segmentation effect. For example, for Frame 20, 
the result using the original values of 𝐺𝑐 and 𝑇𝑐 is not very good 
because a few small pieces of the cell are lost as shown at the 
bottom-left of Fig. 3. This deficiency is remedied when 𝐺𝑐 = 2 
and 𝑇𝑐 = 1 as shown at the bottom-left of Fig. 4.  

For the image in Ex. 2 in [19], we set 𝐺𝑐 = 2 and 𝑇𝑐 = 0.98.  



The segmented images are shown in Fig. 5. The segmented 
image from MorphSRM may provide some useful information, 
or may be complementary to the result from the entropy-based 
algorithm. 

IV. CONCLUSION AND FUTURE WORK 

We have developed a novel computer algorithm for the 
segmentation of those cell images. The algorithm is tested using 
some images. The experimental results are evaluated using the 
𝑀𝐴𝐸  measure. The segmented images are displayed, and the 
𝑀𝐴𝐸  values are computed for convenient comparisons. We 
have implemented the algorithm for the hexagonal lattice as well 
as the square lattice with connectivity 4 or 8. Hence, for the same 
input image, there are three segmented images. Those 
segmented images may be better than (or provide 
complementary information to) the segmentation results using 
entropy. The 𝑀𝐴𝐸 values for the tested images can show that 
our algorithm usually performs better than the entropy-based 
algorithm. The segmented images using our algorithm usually 
do not have such default as those using entropy. 

 

Fig. 4. The input and segmented images when Gc = 2 and Tc = 1 for Frame 

20 of the video. Top-left is the input; top-right is the image after the closing 

operation from the input; bottom-left is the segmented image from MorphSRM; 

and bottom-right is the segmented image using entropy. 

 

Fig. 5. The input and segmented images when Gc = 2 and Tc = 0.98 for the 

image in Example 2 in [19]. Top-left is the input; top-right is the image after 

the closing operation from the input; bottom-left is the segmented image from 

MorphSRM; and bottom-right is the segmented image using entropy. 

Among the first 30 frames of the video, 20 of those frames 
achieve best segmentation results from the hexagonal lattice; 
and 10 of those frames achieve best segmentation results from 
the square lattice with connectivity 8. Hence, for the 

segmentation of the stem cell images, usually the hexagonal 
lattice performs better than the square lattice; and for the square 
lattice, connectivity 8 performs better than connectivity 4. To 
achieve better segmentation result, the rectangular image should 
contain the cell as compactly as possible. Otherwise, the biggest 
connected component extracted in Step 11 of the algorithm may 
not consist of the pixels of the cell. 

In the future, we may analyze the parameters in the algorithm 
MorphSRM or perform some statistics. Because image 
segmentation techniques continue to advance, we may compare 
this algorithm with some other recent works for image 
segmentation. We may also apply this algorithm to other 
application domains or to 3D images as in [27]. 
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