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ABSTRACT

Most research on pharmaceutical presence in the environment to date has focused on smaller scale assessments of
freshwater and riverine systems, relying mainly on assays of water samples, while studies in marine ecosystems
and of exposed biota are sparse. This study investigated the pharmaceutical burden in bonefish (Albula vulpes), an
important recreational and artisanal fishery, to quantify pharmaceutical exposure throughout the Caribbean
Basin. We sampled 74 bonefish from five regions, and analyzed them for 102 pharmaceuticals. We assessed the
influence of sampling region on the number of pharmaceuticals, pharmaceutical assemblage, and risk of phar-
macological effects. To evaluate the risk of pharmacological effects at the scale of the individual, we proposed a
metric based on the human therapeutic plasma concentration (HtPC), comparing measured concentrations to a
threshold of 1/3 the HrPC for each pharmaceutical. Every bonefish had at least one pharmaceutical, with an
average of 4.9 and a maximum of 16 pharmaceuticals in one individual. At least one pharmaceutical was
detected in exceedance of the 1/3 HrPC threshold in 39% of bonefish, with an average of 0.6 and a maximum of
11 pharmaceuticals exceeding in a Key West individual. The number of pharmaceuticals (49 detected in total)
differed across regions, but the risk of pharmacological effects did not (23 pharmaceuticals exceeded the 1/3
H1PC threshold). The most common pharmaceuticals were venlafaxine (43 bonefish), atenolol (36), naloxone
(27), codeine (27), and trimethoprim (24). Findings suggest that pharmaceutical detections and concentration
may be independent, emphasizing the need to monitor risk to biota regardless of exposure diversity, and to focus
on risk quantified at the individual level. This study supports the widespread presence of pharmaceuticals in
marine systems and shows the utility of applying the HPC to assess the potential for pharmacological effects,
and thus quantify impact of exposure at large spatial scales.

1. Introduction

Pharmaceutical contaminants have become a concern worldwide as
production and consumption increases at an exponential rate, far out-
pacing the ability to conduct risk assessments and monitoring (Persson
et al., 2022). Globally in 2020, 4.5 trillion 30-day prescriptions were
dispensed (IQVIA Institute, 2022). This represents a 24% increase
relative to 2015 (IQVIA Institute, 2021), and a 2-6% annual growth rate
is expected by 2026 (IQVIA Institute, 2022). There is now substantial
evidence for the presence of pharmaceuticals in the terrestrial and
aquatic environments, and the potential for deleterious effects in
humans and exposed fauna (Branchet et al., 2021; Chaturvedi et al.,
2021; Mezzelani and Regoli, 2021; Swiacka et al., 2022), yet the extent
of their presence and ecological effects is not fully understood. Although
generally present at low concentrations without an immediate risk
(Fabbri and Franzellitti, 2016), pharmaceuticals bioaccumulate in fish
and marine biota at sublethal concentrations capable of eliciting
behavioral and physiological alterations with ecosystem-wide implica-
tions (Bertram et al., 2022; Kidd et al., 2023; Lagesson et al., 2016;
Prichard and Granek, 2016; Saaristo et al., 2018).

Pharmaceuticals reach the aquatic environment mainly via indus-
trial (pharmaceutical manufacturing, agricultural operations, and
landfill leachate) and domestic sources (human and animal excretion of
unmetabolized pharmaceuticals, wastewater treatment plants, and
septic system discharge), among others (Bavumiragira et al., 2022; Gaw
et al., 2014; Kumar et al., 2023). With conventional treatment meth-
odologies, wastewater treatment plants (WWTPs) are ineffective in
complete removal of pharmaceuticals, sometimes even increasing their
concentrations (Kumar et al., 2022), and consistent discharge combined
with potentially long half-lives results in pseudo-persistence and pro-
longed environmental exposure (Fahlman et al., 2018; Gros et al., 2010;
Mezzelani et al., 2018). As a result, recent surveys show widespread
presence of pharmaceuticals in aquatic environments, including in
remote and seemingly pristine ecosystems (Castillo et al., 2023; Husk
et al., 2019; Jiang et al., 2020; Kallenborn et al., 2018). For example,
Duarte et al. (2021) detected 70 different emerging contaminants in
Antarctic phytoplankton, 40 of which were pharmaceuticals, concluding
that exposure to organisms at the bottom of the marine food web
threatens the entire ecosystem’s trophic structure and function.

The majority of studies examining the presence of pharmaceutical
contaminants in aquatic environments have focused on surveys of
freshwater and riverine systems on smaller spatial scales, primarily
utilizing water samples as means of detection (Swiacka et al., 2022).

National surveys of riverine water and biota have been conducted, such
as a United States survey of 139 streams with detections in 80% of lo-
cations (Kolpin et al., 2002), numerous studies in China with detections
in over 40 different riverine and freshwater locations (Liu and Wong,
2013; Zhu et al., 2019), and an Australian survey of 73 rivers with de-
tections in 92% of samples, with 13 pharmaceuticals found at concen-
trations capable of adverse effects (Scott et al., 2014). Having shown
large scale contamination across riverine and freshwater systems, the
next step is to expand investigation of pharmaceuticals’ presence and
effects in marine and coastal systems, which are often the final recipient
of riverine pollution (Kotke et al., 2019; Mezzelani and Regoli, 2021;
Zandaryaa and Frank-Kamenetsky, 2021).

Further, across marine and coastal pharmaceutical assessments,
certain geographic areas remain understudied, such as the Caribbean
Basin. For example, a review of pharmaceutical research in Latin
America through 2019 identified 24 studies conducted throughout
Mexico (Valdez-Carrillo et al., 2020), but only one study examined
marine environments, finding seven pharmaceuticals at four coastal
locations in the Yucatan Peninsula (Metcalfe et al., 2011). To our
knowledge, surveys of Bahamian and Belizean aquatic systems have not
been conducted. Puerto Rico, in contrast, has a long history of phar-
maceutical production and documented contamination (Ramcharran,
2011). Despite extensive pharmaceutical manufacturing and its impor-
tance to Puerto Rico’s economy, only four environmental studies were
conducted through 2019 (Valdez-Carrillo et al., 2020), with one in
coastal marine systems detecting carbamazepine at 16 of 17 sampling
sites (Wade et al., 2015). Most recently, Bradley et al. (2021) detected
pharmaceuticals in 9 of 14 drinking water sampling locations. In sub-
tropical South Florida, the extent of pharmaceutical presence and
ecological effects are also limited. Freshwater surveys detected phar-
maceuticals in water samples (Wang, 2012; Wang and Gardinali,
2013a), and mosquito fish (Gambusia affinis; Wang and Gardinali,
2013b; Wang and Gardinali, 2012), from systems directly affected by
reclaimed water and irrigation. Additional studies have detected phar-
maceuticals and indicators of wastewater contamination in marine
systems (Cejas, 2010; Gardinali and Zhao, 2002; Henderson et al.,
2020). Ng et al. (2021) recently detected hormones, pharmaceuticals,
and endocrine disrupting compounds at 28 of 29 sites throughout South
Florida, with hormones at concentrations high enough to elicit endo-
crine disruption. Clearly, the presence of pharmaceuticals in freshwater
and marine systems throughout the Caribbean Basin is likely, the extent
of their environmental exposure is not fully understood, and additional
sampling is needed.
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In this study, we examined the pharmaceutical burden and evaluated
the risk of pharmacological effects in a tropical and subtropical coastal
marine fish across the Caribbean Basin. Our focal species was bonefish
(Albula vulpes) due to their reliance on coastal and nearshore habitats,
potential high incidence of exposure, and substantial socio-economic
value in support of recreational and artisanal fisheries (Adams et al.,
2023; Rennert, 2017; Rennert et al., 2019). Additionally, as a mobile
higher order consumer, bonefish can provide information on spatio-
temporal trends in pharmaceutical contamination beyond that possible
from abiotic samples (Treu et al., 2022). Our study addressed two
questions: 1) To what extent were Caribbean bonefish exposed to
pharmaceutical contaminants? and 2) Were Caribbean bonefish exposed
to concentrations high enough to pose a risk of pharmacological effects?
To address these questions, we sampled bonefish blood plasma across
five distinct coastal regions in the Caribbean. We hypothesized that: 1)
Exposure would be highest in more urbanized and populous regions
compared to less populated and developed regions; and 2) Pharmaceu-
ticals would be detected at concentrations capable of eliciting pharma-
cological effects, with the highest risk of these effects in regions with the
highest degree of pharmaceutical exposure.

2. Materials and methods
2.1. Study species

We selected bonefish, an economically and culturally-important
species that supports a recreational catch-and-release fishery
throughout the Caribbean Sea and western North Atlantic Ocean (Adams
et al., 2014), and an artisanal fishery in some locations (e.g., Cuba;
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Rennert et al., 2019), because their ecology makes them particularly
susceptible to exposure of pharmaceutical contaminants. Bonefish rely
on shallow nearshore habitats consisting of seagrass beds, intertidal
sand flats, mangroves, and hardbottom, which can be in close proximity
to urbanized coastal areas and associated pollution sources (Brown-
scombe et al., 2017, 2019; Larkin, 2011). In addition to exposure via
respiration (i.e., dissolved exposure), bonefish primarily feed on benthic
vertebrates and invertebrates (Ault, 2008; Campbell et al., 2022; Colton
and Alevizon, 1983; Crabtree et al., 1998), which places them at an
elevated risk of pharmaceutical exposure since benthic invertebrates can
have higher levels of pharmaceuticals (Du et al., 2014a; Lagesson et al.,
2016). Bonefish exhibit high site fidelity with an average home range of
10 km (Boucek et al., 2019; Murchie et al., 2013; Pina-Amargos et al.,
2023), but undergo long-distance spawning migrations ranging from 20
km to 80 km (Adams et al., 2019, 2021; Boucek et al., 2019; Perez et al.,
2019b; Larkin et al., 2023), and recent South Florida tracking data show
longer-distance movements during the spawning season (>100 km,
October through April; Boucek et al. unp. data). This adds another
source of risk of pharmaceutical exposure since mobile mesoconsumers
can accumulate contaminants from numerous sources across a large
spatial area (Treu et al., 2022).

2.2. Sampling regions

The study expanded across five regions (Fig. 1, Table 1) of impor-
tance to the Caribbean bonefish fisheries (Boucek et al., 2022; Perez
et al., 2021; Sherman et al., 2018). The five regions were: the trans-
boundary region of Belize and Mexico (hereafter referred to as
Belize-Mexico), locations west of Key West (hereafter referred to as Key

The Bahamas
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Fig. 1. Map of the five Caribbean sampling regions. Exact bonefish sampling locations are omitted due to their status as a prohibited and protected species and the
sensitive nature of the fishing locations and instead polygons including all sampling locations are shown.
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Table 1
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Sampling effort, summary of pharmaceutical findings, and characteristics of the five regions sampled. Shown are the number of bonefish sampled per region,
pharmaceutical detections (total and mean), total and mean1,/3 HyPC (human therapeutic plasma concentration) exceedances, total number with at least one 1/3 HyPC
exceedance, and % of bonefish with at least one 1/3 HrPC exceedance. Total marine area and protected area pertains to the entire region (e.g., the entirety of The
Bahamas national waters). Annual visitation statistics for the Belize-Mexico and Puerto Rico regions were not available.

Summary Belize-Mexico Key West Lower Keys Bahamas Puerto Rico Total
Total Bonefish 15 15 16 19 9 74
Total Detections 98 80 93 60 33 364
Mean Detections 6.5 5.3 5.8 3.2 3.7 4.9
Total 1/3 HyPC 8 14 12 5 5 44
Mean 1/3 H{PC 0.53 0.93 0.75 0.26 0.55 0.59
Total with >1 1/3 H{PC 6 4 9 5 5 29

% with >1 1/3 H{PC 40.0% 26.7% 56.3% 26.3% 55.6% 39.2%
Total Marine Area (sq/km) 61,4887 11,2002 11,2002 619,785% 172,958"° 865,431
Protected Area (% of Total) 424 (<1%)" 488 (4.4%)" 488 (4.4%)" 710 (<1%)" 2144 (1.2%)" <1%
Human Population 17,685%%¢ 33,555" 22,622" 64,062 9,812¢ 147,776
Annual Visitation NA 2.8 m" 1.5m" 59,000' NA 4.4m
Land Area (sq/km) 62 47" 161" 1331 73¢ 684
People per sq/km 24344 706" 141° 48' 61° 83

 https://mpatlas.org/.

b https://censusreporter.org/.

¢ https://worldpopulationreview.com/.

4 https://en.mexico.pueblosamerica.com/i/xcalak/.
¢ https://sib.org.bz/statistics/population/.

f Bahamas Census Office, 2011.

& https://census.gov.

b Rockport Analytics, 2019.

! Fedler, 2018.

West), Lower Florida Keys (hereafter referred to as Lower Keys), two
islands in The Bahamas, Abaco and Grand Bahama (hereafter collec-
tively referred to as The Bahamas), and two islands east of Puerto Rico,
Culebra and Vieques (hereafter collectively referred to as Puerto Rico;
Fig. 1). Each region has varying degrees of urbanization, population
levels, and anthropogenic influence, allowing us to examine a wide
range of pharmaceutical pollution risk across a large geographic scale
and suite of environmental characteristics (Table 1).

The Lower Keys experiences a lower degree of anthropogenic influ-
ence and development compared to Key West, which has the highest
population density of all regions. Belize-Mexico and Puerto Rico are less
urbanized and have the lowest human population sizes. The Bahamas is
the most populated of all regions, yet has the lowest population density
and annual visitation rates. Overall, metrics of anthropogenic influence
(e.g., total population, population density, and annual visitation) are
variable across sampling regions (Table 1).

2.3. Sample collection

Bonefish were sampled using hook and line angling in Florida, Puerto
Rico, and The Bahamas, and using seine nets in Belize-Mexico and for a
subset of Bahamian bonefish. Key West (n = 15) and Lower Keys (n =
16) samples were collected between August 2019 and October 2020,
Belize-Mexico samples were collected in June 2019 (n = 15), Bahamas
samples were collected in June 2018 (n = 9) and November 2018 (n =
10), and Puerto Rico samples were collected in February 2019 (n = 1)
and December 2019 (n = 8). All fish were captured from shallow,
nearshore habitats (<10 m to 15 km from a shoreline with human
presence; Table 1, Fig. 1). Due to the difficulty of capture, bonefish were
opportunistically sampled within each region, but a concerted effort was
made for a broad spatial distribution within regions (e.g., 10 km be-
tween collection sites within a region). Upon capture, bonefish total
length, fork length, and girth measurements were taken, and GPS co-
ordinates of sampling location were recorded. A total of 3 mL of blood
for bonefish greater than 50 cm total length (1-2 mL for bonefish smaller
than 50 cm) was collected from the ventral caudal vein using a sterile
18-gauge needle (BD PrecisionGlide™ Sterile Single-use Needles) and a

sterile 5 mL syringe (BD Syringe), adhering to FIU IACUC-21-058 pro-
tocol. Blood samples were placed in 5 mL Lithium Heparin tubes
(Greiner Bio-One), shielded from sunlight using aluminum foil, and
stored on ice. Within 6 h of collection, samples were centrifuged for 15
min at 3500 rpm (LW Scientific USA E8 Portable Centrifuge) to separate
plasma. Plasma was then aliquoted using sterile polyethylene transfer
pipets (Corning Scientific™), placed in 2 mL cryovials (Corning Scien-
tific™), and stored in a —20 °C freezer until processing at the Depart-
ment of Chemistry, Ume& University, Ume&, Sweden within 6 months of
sampling.

2.4. Target pharmaceuticals, standards and analytical methods

A total of 102 pharmaceuticals were included in the analysis
(Table S1), and target analyte selection was based on detectability and
predicted ability to bioaccumulate in fish (Fick et al., 2010). A summary
of analytical procedures is provided here, and additional details are
provided in Grabic et al. (2012), Lindberg et al. (2014), and Sedvall et al.
(2022).

All surrogate and internal standards were classified as analytical
grade (>98%) and +20 internal/pseudo labeled standards were used
(Grabic et al., 2012; Lindberg et al., 2014), LC-MS/MS grade methanol
and acetonitrile (Lichrosolv — hypergrade) were used for the mobile
phase (Merck, Darmstadt, Germany). Purified water was prepared
in-house using a Mili-Q Advantage system, including a UV radiation
source (Millipore, Billerica, USA). Formic acid (Sigma-Aldrich, Stein-
heim, Germany) was used to prepare the 0.1% mobile phases for liquid
chromatography.

Plasma samples (20 pl) were pretreated by adding 50 ng of each
internal standard, 50 pl methanol and 20 pl of water (with 0.1% formic
acid). Samples were then frozen at —18 °C overnight, thawed, and
centrifuged at 17,500 g for 10 min. All samples were analyzed using a
triple-stage quadrupole mass spectrometer (Quantum Ultra EMR,
Thermo Fisher Scientific, San Jose, CA), coupled with a liquid chro-
matographic pump (Accela, Thermo Fisher Scientific) and an autosam-
pler (PAL HTC, CTC Analytics AG, Zwingen, Switzerland). Heated
electrospray (HESI), krypton 10.6 eV, in positive ion mode was used for
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ionization of pharmaceutical compounds. Chromatography was done
using a C18 phase Hypersil GOLD column (50 mm, 2.1 mm ID, 5 pm
particles, Thermo Fisher Scientific, San Jose, CA, USA), and a guard
column (2 mm, 2.1 mm, i.d. 5 pm particles). Two MS/MS transitions
were used for positive identifications of analytes with a criterion that the
ratio between the transitions may not deviate more than+30% from the
ratio in the corresponding calibration standard. Retention times for all
analytes were within+2.5% of the retention time in the corresponding
calibration standard. Limit of quantification (LOQ) was determined from
standard curves based on repeated measurements of low-level spiked
plasma samples, and the lowest point in the standard curve that had a
signal/noise ratio of 10 was considered to be equal to the LOQ. A seven-
point matrix adjusted calibration curve over the range of 0.05-100 ng/
ml was used for linearity evaluation and quantification. Carry-over ef-
fects were evaluated by injecting standards at 100 ng/L followed by two
mobile phase blanks. Several instrumental and procedural blanks were
included in each analytical run. Additional details on the determination
of pharmaceuticals including HESI ionizations, polarities, precursor/
product ions, collision energies, tube lens values, and retention times are
described elsewhere (Grabic et al., 2012; Lindberg et al., 2014; Sedvall
et al., 2022).

2.5. Human therapeutic plasma concentration (HrPC)

To evaluate the potential for pharmacological effects from pharma-
ceutical plasma concentrations, we drew upon the Biological Read-
Across Hypothesis, which asserts that pharmacological effects can
occur in non-target organisms as a result of conservation of mammalian
pharmaceutical target sites (Huggett et al., 2003). Behavioral and/or
physiological alterations in fish can occur at internal plasma concen-
trations within the human therapeutic plasma concentration (HtPC), or
the concentration required for a pharmaceutical to elicit a therapeutic
effect in humans (Sumpter and Margiotta-Casaluci, 2022; Valenti et al.,
2012). Application of this hypothesis in hazard and risk estimates in fish
has been substantiated since up to 86% of human drug targets are
conserved (Brown et al., 2014; Gunnarsson et al., 2008; Rand-Weaver
et al., 2013; Schreiber et al., 2011). For our study, we selected a
threshold of 1/3 the HfPC as a conservative estimate of potential
pharmacological effect, informed by Huerta et al. (2016), who found
behavioral effects in fathead minnows (Pimephales promelas) with
plasma concentrations at 1/3 the HrPC for oxazepam. Even though the
utility of comparing measured pharmaceutical concentrations to their
respective HrPCs as an assessment of risk for pharmacological effects has
been shown to be applicable (Fabbri, 2015; Fabbri and Franzellitti,
2016; Sumpter and Margiotta-Casaluci, 2022), it assumes the presence
of the pharmaceutical’s drug target in fish, which is consistent with the
read across hypothesis, yet this information is absent for many phar-
maceuticals. Thus, in our study, we apply a 1/3 HPC threshold and
interpret pharmaceutical concentrations at or above 1/3 the HPC as
those showing a moderate to high potential for pharmacological effects.
Use of the 1/3 H1PC as a threshold allows us to compare the potential of
pharmacological effects for the large number of pharmaceuticals in our
study, since for many of those lowest observable effect concentrations
are not available. The HrPC values used for comparison were those re-
ported by Fick et al. (2010), and Schulz et al. (2020).

2.6. Statistical analyses

We used a combined univariate and multivariate analytical approach
to examine variation in the number of pharmaceuticals and the number
of 1/3 HtPC exceedances (i.e., concentrations above the 1/3 HtPC
threshold). All univariate and multivariate models quantified variation
as a function of sampling region, and all statistical analyses were per-
formed using R v 4.3.1 (R Core Team, 2023).

Chemosphere 349 (2024) 140949

2.6.1. Variation in the number of pharmaceutical detections

The influence of region on the number of pharmaceuticals detected
per bonefish was assessed using Generalized Linear Models (GLMs) with
a Poisson distribution. GLMs were performed using the base R package
stats (R Core Team, 2023), tests of model assumptions were performed
using R package performance (Liidecke et al., 2021), and model per-
formance was assessed using R packages MuMInN (Barton, 2023) and
car (Fox and Weisberg, 2008). Pairwise comparisons of model contrasts
for region were analyzed using Tukey’s HSD tests in the R package
emmeans (Lenth, 2023), and p-values with Holm-Bonferroni adjust-
ments were derived using R package multcomp (Hothorn et al., 2008).

The influence of region in multivariate space using the presence and
absence of pharmaceuticals was examined using Permutational Analysis
of Variance (PERMANOVA) with 999 permutations on a Jaccard dis-
tance matrix. Pairwise PERMANOVA tests followed a significant region
effect using Holm-Bonferroni p-value adjustments. Similarity in the
presence/absence of pharmaceuticals were visually represented in
multidimensional ordination space using non-metric multidimensional
scaling (nMDS). PERMANOVAs and nMDS were performed using the R
package vegan (Oksanen et al., 2022), and multilevel pairwise com-
parisons (pairwise PERMANOVA) were performed using the vegan
wrapper function pairwiseAdonis (Martinez Arbizu, 2017).

2.6.2. Variation in pharmaceutical risk

GLMs with a negative binomial distribution were used to assess the
influence of region on the number of 1/3 HtPC exceedances per bone-
fish. Negative binomial distributions were used to account for over-
dispersion of the distribution using the R package MASS (Venables and
Ripley, 2002). Model performance was assessed as described in section
2.6.1, and pairwise comparisons of model contrasts for region were
analyzed using Tukey’s HSD tests.

To assess the potential risk of pharmacological effects posed by
pharmaceutical exposure in multivariate space using pharmaceutical
concentrations, we calculated a proportion of the measured pharma-
ceutical concentration to a 1/3 HtPC threshold for each pharmaceutical
detected. In other words, for each pharmaceutical detected, we divided
the observed concentration by 1/3 of the pharmaceutical’s HrPC to
obtain a proportion. This proportion, rather than the raw concentration
values, was used to scale the risk of each detected pharmaceutical
concentration to its respective threshold of effect, accounting for dif-
ferences in concentrations necessary to elicit an effect unique to each
pharmaceutical. The influence of region on this 1/3 HrPC pharmaceu-
tical assemblage was assessed using PERMANOVA (with 999 permuta-
tions) based on a Bray-Curtis distance matrix, with square-root
transformed data of 1/3 HTPC exceedances. Pairwise PERMANOVAs
with a Holm-Bonferroni adjusted p-value were used to compare indi-
vidual regions. Variation in the 1/3 HtPC proportions across all phar-
maceuticals and samples was visualized using nMDS.

2.6.3. Influence of pharmaceutical identity on multivariate assemblages
The influence of individual pharmaceuticals on the observed phar-
maceutical presence and absence and on the 1/3 HPC assemblages,
explained by ordination scores, was calculated with 999 permutations.
This allowed us to examine which of the 102 pharmaceuticals were most
important to driving correlations, similarities, and dissimilarities in both
assemblages. Scores were then fitted to each nMDS plot using the R
package vegan (Oksanen et al., 2022). Values were squared by their
correlation (square root of the rz), and arrow vectors were used to
represent the magnitude and direction of the correlation between the
ordination scores and the corresponding pharmaceutical. Arrow vectors
point in the direction of the most rapid change in the gradient and arrow
length indicates the strength of the gradient. This is equivalent to fitting
a linear trend surface (plane in 2 dimensions), with the arrows showing
its gradient (direction of steepest increase). The arrows representing the
pharmaceuticals were adjusted to the plot dimensions using a constant
multiplier, retaining the scaled r? correlations. The significance of the
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fitted pharmaceutical vectors was assessed with 999 permutations, and
pharmaceuticals displayed in the nMDS plots are those that had a
p-value <0.01. Last, the contribution of specific pharmaceuticals to
driving dissimilarities among regions (regional contrasts) was assessed
using similarity percentage analysis (SIMPER) with the R package vegan
(Oksanen et al., 2022).

3. Results
3.1. Variation in pharmaceutical detections across bonefish samples

Pharmaceuticals were detected in all 74 plasma samples tested,
indicating widespread exposure throughout the Caribbean (Fig. 1,
Table 1). All samples had at least one pharmaceutical, with a maximum
of 16 pharmaceuticals in an individual bonefish from Key West. On
average, we detected 4.9 pharmaceuticals per bonefish across the 5 re-
gions (Table 1). Across all samples, 49 unique pharmaceuticals were
detected, for a total of 364 pharmaceutical detections (Table S1). Of the
364 detections, the 10 most frequently detected pharmaceuticals
accounted for 232 (63.7%) of all detections (Table S1).

Venlafaxine, atenolol, naloxone, codeine, and trimethoprim were the
top 5 most frequently detected pharmaceuticals across all samples (ac-
counting for 43.1% of detections; Table S1). Venlafaxine, a selective
serotonin and norepinephrine reuptake inhibitor (SNRI) frequently
prescribed for the treatment of major depressive disorder, generalized
anxiety, social anxiety disorder, and panic disorder, was detected in 43
bonefish (58.1% of samples, 0.61-22.28 ng/mL). Atenolol, a beta-1 se-
lective blocker used in the management of hypertension and chronic
angina, was detected in 36 bonefish (48.6% of samples, 5.1-49 ng/mL).
Both codeine (0.57-5.52 ng/mL), an opioid analgesic used to treat
moderate to severe pain, and naloxone (1.23-9.66 ng/mL), an opioid
receptor antagonist used to rapidly reverse an opioid overdose, were
detected in 27 bonefish (36.5% of samples). Trimethoprim, an antifolate
antibiotic used to treat various infections, was detected in 24 bonefish
(32.4% of samples, 0.11-58 ng/mL; Table S1).

3.2. Regional differences in pharmaceutical exposure

Across regions, Belize-Mexico had the most detections (98 de-
tections), followed by the Lower Keys (93 detections), Key West (80
detections), The Bahamas (60 detections), and Puerto Rico (33 de-
tections; Table 1, Table S1). Region was significant (p < 0.001) in
driving variation in the number of pharmaceuticals detected per bone-
fish (Table 2, Fig. 2a).

Tukey pairwise comparisons indicated significant differences be-
tween The Bahamas and three other regions; Belize-Mexico (p < 0.001),
Lower Keys (p = 0.002), and Key West (p < 0.05; Table S2). The number
of pharmaceuticals detected in The Bahamas (3.2 pharmaceuticals/
bonefish) was lower than Belize-Mexico (6.5 pharmaceuticals/bone-
fish), Lower Keys (5.8 pharmaceuticals/bonefish), and Key West (5.3
pharmaceuticals/bonefish; Table 1). And the number detected in Belize-
Mexico was higher than those detected in Puerto Rico (3.7 pharma-
ceuticals/bonefish, p < 0.05; Fig. 2a).

In multivariate ordination space, region significantly influenced the
presence/absence pharmaceutical assemblage (p = 0.001; Fig. 3a,
Table 3). In particular, Lower Keys differed significantly from the other 4
regions sampled, suggesting a distinct assemblage of pharmaceuticals

Chemosphere 349 (2024) 140949

(Table S3). Two other regions showed significant differences from at
least 2 regions, and those included Key West and The Bahamas. Seven
pharmaceuticals influenced the pharmaceutical assemblage (p < 0.01).
These included, in order of influence; atenolol, paracetamol, naloxone,
risperidone, ranitidine, trimethoprim, and azelastine. Atenolol, para-
cetamol, and naloxone were found to be the most influential, all with a
p-value = 0.001 (Fig. 3a). In SIMPER analysis, paracetamol, trimetho-
prim, and azelastine were the most influential pharmaceuticals driving
regional dissimilarities (Table S3). Paracetamol was the most important
pharmaceutical driving this dissimilarity, contributing to four of the
seven significant regional contrasts, and because of its higher detections
in the Lower Keys, separating that region from the other 4 regions.
Trimethoprim was more commonly detected in The Bahamas, driving
dissimilarity from Key West and Belize-Mexico. Azelastine was most
commonly detected in Puerto Rico, driving dissimilarity from Key West
(Table S3, Fig. 3a).

3.3. Variation in 1/3 HPC exceedances across bonefish samples

Pharmaceutical exposure exceeding the 1/3 HtPC threshold was
present in all sampling regions. Across all regions 23 pharmaceuticals of
the 49 detected (46.9%) were observed at least once at a concentration
exceeding 1/3 of the HrPC. Of the 364 total detections, 44 were at
concentrations in exceedance (12.1%; Fig. 4). Notably, almost 40% of
the 74 bonefish sampled (29 bonefish, 39.2%) had at least one phar-
maceutical at a concentration exceeding the 1/3 HtPC threshold, with a
maximum of 11 pharmaceuticals in exceedance of the 16 total phar-
maceuticals detected in a Key West bonefish (Table 1, Table S1). The
percentage of bonefish with at least 1 1/3 HyPC was highest in the Lower
Keys and Puerto Rico (>55%), intermediate in Belize-Mexico (40%), and
lowest in Key West and The Bahamas (<27%; Fig. 4).

Naloxone, azelastine, metoprolol, biperiden, and clemastine were
the top 5 pharmaceuticals detected above 1/3 H{PC (Table 1, Table S1).
Naloxone was most frequently detected in exceedance — in 9 bonefish
(12.2% of samples). Azelastine, a histamine H1-receptor antagonist used
intranasally to treat allergic and vasomotor rhinitis, and in an
ophthalmic solution to treat allergic conjunctivitis, was detected above
the 1/3 HrPC threshold in 4 bonefish (5.4% of samples). Metoprolol,
biperiden, and clemastine were all detected at concentrations exceeding
the 1/3 HtPC threshold in 3 bonefish (4.1% of samples; Table S1).
Metoprolol is a beta-blocker used in the treatment of hypertension and
angina, and used to reduce mortality due to myocardial infarction.
Biperiden is a muscarinic receptor antagonist used to treat parkinsonism
and control extrapyramidal side effects of neuroleptic drugs. Clemastine
is an antihistamine with sedative and anticholinergic effects used to
treat the symptoms of allergic rhinitis. Importantly, of these 5 phar-
maceuticals detected above 1/3 HrPC, only naloxone had a high inci-
dence of detections — third most detected and in 27 bonefish (Table S1).
This suggests that the number of detections does not necessarily corre-
late with the potential for pharmacological effects.

3.4. Regional differences in 1/3 HrPC exceedances

In contrast to the number of pharmaceutical detections, there was no
significant regional variation for 1/3 HrPC exceedances (p = 0.3;
Fig. 2b, Table 2). In multivariate ordination space, however, region (p =
0.001) drove dissimilarity in the 1/3 HrPC pharmaceutical assemblage

Table 2

Summary of the GLM model for the number of pharmaceuticals per bonefish and the number of 1/3 HrPC exceedances per bonefish by sampling region.
Variable Predictor p Null Deviance Residual Deviance AlCc $ D?
Pharmaceutical Number Region 1.9E-05%*** 106.2 79.1 336.3 27.0 0.24
1/3 HyPC Exceedances Region 0.30 65.4 60.6 164.2 4.87 0.01

p-value < 0.001 *** p-value <0.01 **, p-value <0.05 *.
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Fig. 2. Violin plots with: a) the number of pharmaceuticals detected per bonefish, and b) the number of 1/3 HtPC exceedances, across the five regions sampled. In
the violin plot, colored points are samples values, width shows the distribution of those values, black diamonds denote regional means, and black bars show standard
errors. Letters indicate significant regional differences per Tukey pairwise tests (only detected for number of pharmaceuticals).

(Fig. 3b, Table 3). In particular, the Lower Keys and Key West had as-
semblages that despite their geographical proximity were distinct from
each other, and from all other regions (Table S3). Five pharmaceuticals
were found to influence the observed pharmaceutical risk assemblage:
trimethoprim, codeine, naloxone, desloratadine, and azelastine
(Fig. 3b). Of these, codeine, naloxone, and azelastine were found to be
the most influential in regional dissimilarities (Table S3). Of the eight
significant regional contrasts, azelastine and codeine were the most
influential, both contributing to three significant contrasts, while
naloxone contributed to two significant regional contrasts. Codeine
drove the dissimilarities between the Lower Keys and The Bahamas
(more frequently exceeding 1/3 of the HTPC in The Bahamas), and be-
tween Key West and The Bahamas, and Key West and Belize-Mexico
(more frequently exceeding 1/3 HrPC in Key West for both contrasts).
Azelastine was highest in concentration (i.e., more frequently in ex-
ceedance of the 1/3 HtPC) in Puerto Rico, driving the dissimilarity be-
tween Puerto Rico and the Lower Keys, Key West, and The Bahamas.
Last, naloxone was most influential in the dissimilarities between the

Lower Keys and Key West (more frequently exceeding 1/3 of the HrPC in
Key West), and Lower Keys and Belize-Mexico (more frequently
exceeding 1/3 of the HrPC in Belize-Mexico; Table S3).

4. Discussion

Our examination of bonefish exposure shows widespread presence of
pharmaceuticals throughout coastal marine ecosystems of the Caribbean
Basin. Pharmaceuticals were detected in every fish sampled across all
five regions, yet showed significant regional differences. Results indi-
cated that pharmaceutical exposure is high in both urban populous re-
gions and those less developed and less populous. Further, our results
demonstrate the potential for pharmaceuticals to bioaccumulate in
marine biota at concentrations capable of eliciting pharmacological ef-
fects. Pharmaceuticals in exceedance of the 1/3 HyPC threshold were
present in 39.2% of all bonefish, indicating a potential risk posed by
pharmaceutical exposure throughout the Caribbean Basin. The inci-
dence of pharmaceuticals detected at concentrations capable of
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Fig. 3. nMDS plots showing: a) the presence/absence pharmaceutical assemblage, and b) the 1/3 HyPC proportion assemblage, in multidimensional ordination space
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desloratadine, COD = codeine. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 3

Summary of PERMANOVA main effects for the presence/absence of pharmaceuticals and for the 1/3 HtPC exceedances (calculated as a proportion of each phar-

maceutical’s human therapeutic concentration, please see text for details).

Model Terms df Sum of sq R? F Model P
Presence/Absence Region 4 4.4 0.14 2.9 0.001%**
Residual 69 26.6 0.86
Total 73 311 1.00
1/3 HyPC Exceedances Region 4 3.7 0.14 2.9 0.001%**
Residual 69 22.2 0.86
Total 73 25.8 1.00

p-value < 0.001 *** p-value <0.01 **, p-value <0.05 *.

pharmacological effects did not vary across regions, nor did the number
of 1/3 HtPC exceedances correspond to elevated levels of exposure. A
total of 49 pharmaceuticals were detected, and 23 of these were detected
at concentrations above thel/3 H{PC.

4.1. Patterns in number of pharmaceuticals detected across regions

We hypothesized that pharmaceutical exposure would positively
correlate with population density; however, exposure was prevalent
across both densely and sparsely populated regions. The number of
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Fig. 4. Percentage of bonefish in each region with at least 1 detected pharmaceutical exceeding 1/3 of the HrPC.

pharmaceuticals detected in the two most populated regions, Lower
Keys and Key West, and the second least populated region, Belize-
Mexico, were similarly high. The Bahamas had the lowest number of
pharmaceutical detections across all regions, followed by Puerto Rico,
the least populated region. Further, the number of detections in The
Bahamas was significantly different to all other regions except Puerto
Rico. Although pharmaceutical exposure is often highest near urban and
populous areas, which are influenced by consistent wastewater effluent
discharge from WWT and septic systems, and industrial livestock oper-
ations (Osorio et al., 2016; Tang et al., 2021), other factors can result in
pharmaceutical contamination of less developed areas (Kallenborn
et al., 2018; Mandaric et al., 2017; Wilkinson et al., 2022). A survey of
258 rivers in 104 countries found that exposure was not exclusively
related to population and degree of urbanization; rather, some of the
least developed areas had elevated pharmaceutical detections, likely as a
result of ineffective or entirely absent wastewater treatment (Bou-
zas-Monroy et al., 2022; Wilkinson et al., 2022).

Many of the potential sources of pharmaceutical contamination
associated with populous areas are present in the Lower Keys and Key
West, and although likely present in the other 3 Caribbean regions,
specific information is lacking. Even though Belize-Mexico is less
populated compared to the other regions, inadequate wastewater
infrastructure and a high density of people per sq/km could result in
elevated pharmaceutical exposure (Jameel et al., 2020; Osorio et al.,
2016). Such instances of inadequate infrastructure and a relatively high
population density resulting in pharmaceutical exposure in less popu-
lous regions have been documented. Mandaric et al. (2017) found
extensive pharmaceutical contamination in remote Alpine rivers and
that the extent of contamination was influenced by visitation, increasing
during the tourist season. Further, pharmaceutical contamination
sources such as distant coastal wastewater discharge (Lara-Martin et al.,
2020), proximity to shipping lanes (Alygizakis et al., 2016), and ocean
current transport (Alygizakis et al., 2021; Brumovsky et al., 2017) may
have influenced the observed high number of detections in the less
populated regions. With variable degrees of pharmaceutical exposure in
populous and less populated regions, our results support the necessity
for further examination of pharmaceutical exposure at large spatial
scales (Branchet et al., 2021; Bu et al., 2016), and provide additional
evidence for widespread pharmaceutical contamination independent of
anthropogenic influence. A Key West bonefish had comparatively high
pharmaceutical detections (16 total pharmaceuticals) and 1/3 HtPC
exceedances (11 total exceedances), the causes of which could be

diverse and are difficult to determine. It is possible that individual
variability, such as increased feeding of contaminated prey or a higher
residence time in an area with increased pharmaceutical contamination
led to higher pharmaceutical number and concentrations. Additional
variables outside of those tested in our study would be necessary to
determine the potential causes of this increased exposure.

Temporal variability in pharmaceutical exposure to aquatic systems
may have also influenced our observed regional differences. Bonefish
sample collections across all regions were cross-sectional and not
temporally matched, limiting our ability to examine the influence of
time of collection on the observed number of pharmaceutical detections.
Seasonal variation of pharmaceutical detections occurs in freshwater
tributaries (Burns et al., 2018; Ebele et al., 2020; Im et al., 2020), and in
estuarine and marine ecosystems (Branchet et al., 2021; Lu et al., 2020;
Tanabe and Ramu, 2012), the causes of which can be diverse. Seasonal
patterns in pharmaceutical use can also impact the number and identity
of pharmaceuticals in aquatic systems (Kot-Wasik et al., 2016; Narita
et al., 2021; Sui et al., 2011). The effects of seasonal tourism on phar-
maceutical exposure can also be substantial in coastal systems adjacent
to populated areas (Maasz et al., 2019), and in less populated areas
(Mandaric et al., 2017), particularly when visitation is spatially
concentrated. Last, seasonal variation in hydrological conditions,
physio-chemical water properties, and seasonal fluctuations in climate
are additional factors driving pharmaceutical presence in the environ-
ment (Bayen et al., 2013; Branchet et al., 2021).

Variation in bonefish movement associated with spawning could
have influenced the observed regional differences. Castillo et al., (2023)
documented differences in pharmaceutical detections and concentra-
tions in South Florida bonefish associated with their spawning season,
finding that a lower degree of variability in pharmaceutical assemblage
and concentrations during the spawning season. Bonefish have localized
spatial preferences, with an average home range of 10 km (Boucek et al.,
2019; Murchie et al., 2013; Pina-Amargos et al., 2023), but undertake
seasonal long-distance spawning migrations ranging from 20 km to 80
km (Adams et al., 2019, Boucek et al., 2019; Perez et al., 2019; Adams
et al., 2021). This variability in bonefish movement patterns could
contribute to the observed variation in pharmaceutical assemblage.
Additional temporally explicit sampling is needed to identify the specific
mechanisms (e.g., seasonal bonefish movement patterns vs. seasonal
pharmaceutical use) on patterns of pharmaceutical exposure and phar-
maceutical assemblage.
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4.2. Patterns in the potential for pharmacological effects

We hypothesized that the number of detected pharmaceutical con-
centrations exceeding the 1/3 HyPC threshold would be present in re-
gions with the highest degree of pharmaceutical exposure, but our
results did not show a positive correlation between exposure and risk of
pharmacological effects. In contrast to the number of pharmaceuticals
detected, region did not affect the incidence of exposure to concentra-
tions capable of pharmacological effects. The greatest risk of pharma-
cological effects was present in the Lower Keys (56.3% of samples),
which had the second highest number of pharmaceutical detections (5.8
pharmaceuticals/bonefish). Puerto Rico had a comparably high inci-
dence of detected pharmaceutical concentrations exceeding 1/3 the
H1PC (55.6% of samples), yet the region had the second lowest number
of pharmaceuticals detected (3.7 pharmaceuticals/bonefish), showing
that despite a lower degree of pharmaceutical exposure, there can still
be a higher risk of pharmacological effects. Collectively, our results
highlight the variability in the relationship between elevated risk of
pharmacological effect and high pharmaceutical exposure and popula-
tion density (Hong et al., 2018; Letsinger et al., 2019; Nodler et al.,
2014), suggesting that other factors (e.g., wastewater treatment infra-
structure, tourism, and currents) may contribute to risk distribution
(Dehm et al.,, 2021; Fonseca et al., 2020; Wilkinson et al., 2022).
Consequently, regions with more pharmaceuticals in exposed biota are
not necessarily those at highest risk of exposure to pharmacologically
active concentrations.

Although similar mechanisms that influence regional variation in
pharmaceutical diversity and exposure can also influence pharmaceu-
tical concentrations (Branchet et al., 2021; Im et al., 2020; Lu et al.,
2020; Tanabe and Ramu, 2012), this was not the case in our bonefish
samples. Regional variation in environmental conditions (e.g., hydro-
logical dynamics, ocean currents, water physio-chemical properties,
climate), could influence the ability for pharmaceuticals to remain
present in water at high concentrations and subsequent bioaccumulation
to higher concentrations in bonefish (Branchet et al., 2021; Cerveny
etal., 2021; Chen et al., 2021; Dehm et al., 2021). Anthropogenic factors
(e.g., population density, tourism, WWT processing), could also reduce
the ability to identify a clear regional trend in 1/3 HPC exceedances
(Osorio et al., 2016; Wilkinson et al., 2017, 2018). Thus, we suggest
pharmaceutical identity and exposure can be more regionally depen-
dent, yet factors influencing concentration may be more nuanced and
variable. In order to determine the most influential drivers of risk posed
by bioaccumulation of pharmaceuticals to concentrations capable of
pharmacological effect, additional investigation accounting for a greater
set of variables is required (e.g., pharmaceutical physio-chemical
properties, production and consumption rates, WWTP removal effi-
ciency, seasonal variability, population density, climate, and ecological
composition).

4.3. Strengths and limitations

Our study allows for comparison of pharmaceutical exposure on a
large spatial scale across multiple regions. By comparing measured
concentrations to 1/3 of each pharmaceutical’s HPC, we were able to
combine analysis of pharmaceutical exposure with an assessment of
potential risk of pharmacological effect posed by exposure. This method
can be implored in future studies to determine the potential for risks to
exposed biota while assessing the prevalence of pharmaceuticals in
aquatic systems and can serve as a preliminary assessment of risk. The
lack of available data on effect concentrations in relationship to each
pharmaceutical’s HrPC is a limitation of this study in that the presence
of effects cannot be extrapolated, rather we can only report the potential
risk of pharmacological effects. Future studies should expand the in-
formation on sublethal effect concentrations to a wide range of phar-
maceuticals frequently detected in natural systems. Further, the
individual variability, mismatch in timing of sampling, and unequal
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distribution of bonefish size could also have influenced relative exposure
and is a limiting factor in our study. Continued research into patterns of
pharmaceutical exposure and the potential for pharmacological effects
in biota should expand the variables tested by imploring a balanced
temporal design and also reduce morphological variability across
individuals.

5. Conclusion

Our study establishes the widespread presence of pharmaceuticals in
subtropical coastal marine environments, bioaccumulating to concern-
ing concentrations in exposed fish. Regional numbers in pharmaceutical
detections did not directly correlate with exposure to pharmacologically
active concentrations, highlighting the need to go beyond documenting
the presence of pharmaceuticals to evaluating detected concentrations
in relation to their potential for pharmacological effects at the scale of
individual organisms. For this, we propose the use of thresholds relative
to pharmaceutical effect concentrations in humans, such as the 1/3
HrPC, used in this study. The use of these thresholds can provide
additional information on the levels of exposure, serve as preliminary
risk assessments, and be used as starting points for quantifying the
consequences of exposure. In our study, the presence of multiple phar-
maceuticals (average of 4.9 pharmaceuticals per bonefish) in every
bonefish and the high frequency of concentrations exceeding a threshold
of pharmacological effect (39.2%) poses concerns for the regions, due to
the uncertain and often considerable effects posed by pharmaceutical
mixtures (Backhaus, 2014; Kidd et al., 2023). Future research needs to
expand beyond pharmaceutical detection and relate concentrations to
the potential for pharmacological effects at the scale of the individual
and investigate possible behavioral and physiological alterations to
better understand the effects of exposure.
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