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Despite their successes, machine learning techniques are often Introduction
stochastic, error-prone and blackbox. How could they then be used in Rigorous results from
fields such as theoretical physics and pure mathematics for which error- | appliedML

freeresults and deep understanding are a must? In this Perspective, Rigorous results from
we discuss techniques for obtaining zero-error results with machine ML theory
learning, with afocus on theoretical physics and pure mathematics. Outlook

Non-rigorous methods can enable rigorous results via conjecture
generation or verification by reinforcement learning. We survey
applications of these techniques-for-rigor ranging from string theory
to the smooth 4D Poincaré conjecture in low-dimensional topology.

We also discuss connections between machine learning theory and
mathematics or theoretical physics such as anew approachtofield
theory motivated by neural network theory, and a theory of Riemannian
metric flows induced by neural network gradient descent, which
encompasses Perelman’s formulation of the Ricci flow that was used to
solve the 3D Poincaré conjecture.
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Perspective

Introduction

We live in aremarkable time in the history of science: from the per-
spective of our distant descendants, we are near the beginning of the
use of computer science for scientific discovery. In the future, some
scientific discoveries may rely on the promise of quantum comput-
ing, but today there is an ongoing revolution in artificial intelligence
(Al) and machine learning (ML) that is already transforming the natu-
ral sciences, for example, in protein folding’ (see also general® and
field-specific** reviews).

Despite numerous success stories, ML techniques are often error-
prone, stochastic and blackbox. Classification problems always have
some degree of error, and this error may be induced by the addition
of adversarial noise that, for instance, can cause a neural network
(NN) to mis-classify a turtle as a rifle and a cat as guacamole®®. Such
ML techniques are stochastic in a number of ways. In the supervised
setting that tries to make predictions given model inputs, the predic-
tions of the NN, and therefore the errors, generally depend on both
arandom initialization and a random training process. In the deep
reinforcement learning (RL) setting that tries to learn a strategy for
gameplay that maximizes rewards, the training process is stochastic
owing to randomness in the exploration of the environment. Finally,
ML techniques are often blackbox in the sense that the trained ML
algorithm has millions, or evenbillions, of parameters that are difficult
tointerpretand understand.

These techniques may, therefore, appear ill-suited for applica-
tion in fields such as theoretical physics and pure mathematics that
prioritize rigorous results and deep understanding. Notions of rigor
differ across scientificcommunities. Uncontrolled approximations are
definitively notrigorous, and therefore controlled approximationsarea
significant upgrade, especially when accompanied by convergence
guarantees that exist in certain limits, such asin Monte Carlo sampling
in condensed matter physics or lattice field theory. However, unless
oneis truly in the limit in which convergence occurs, these are still
techniques with non-zero, but controllable, error bars. Instead, in this
Perspective, we are interested in presenting ‘zero-error’ results, the
gold standard in many formal areas of theoretical physics and pure
mathematics, which is henceforth what we mean by rigor.

In this Perspective, we survey techniques for obtaining rigor
with ML, exemplified by recent results. We focus on two central ideas:
making applied ML techniques rigorous and ensuring rigor by using
theoretical ML from the outset.

We will consider conjecture generation and rigorous solution
verification with RL as ameans of making applied ML techniques rigor-
ous. Inconjecture generation,ahuman domain expertis broughtinto
the ML loop to understand model predictions with interpretable Al
techniques, with the hope of generating a conjecture that can be rig-
orously proven by ahuman. We discuss applications of this technique
in obtaining new theorems in string theory, algebraic geometry and
knot theory. Rigorous results may also be obtained by RL, through the
definition of a game whose objective is to find a trajectory through a
space of states that establishes a mathematical fact. We will discuss
applications of thisapproach to low-dimensional topology. This direc-
tionincludes astate-of-the-art program that can establish ribbonness
ofknots (far beyond typical human expert abilities) and which was used
to rule out hundreds of proposed counterexamples to the smooth
Poincaré conjecture in four dimensions (SPC4)’.

We also discuss results in an emerging direction that seeks
to use ML theory in theoretical physics and pure mathematics,
including completely new approaches to both field theory and

metric flows. These developments exploit recent results on the statis-
ticsand dynamics of NNs (refs. 8-10). On the statistics side, we present
acorrespondence between NNs and quantum field theory (QFT). This
correspondence has the potential to provide anon-perturbative defini-
tion of QFT in the continuum. We discuss the relation to the Feynman
pathintegral, the NN origin of interactions and symmetries in a field
theory, and the realization of ¢* theory as a NN field theory". On the
dynamics side, we consider a metric on a Riemannian manifold that is
represented by a NN, trained with gradient descent. This framework
hasbeen used in approximations of numerical Calabi-Yau (CY) metrics,
acrucial resultin string theory. Neural tangent kernel (NTK) theory®'°
isusedto develop anassociated theory of metric flows that generalizes
known flows in mathematics, for instance Perelman’s formulation® of
Ricci flow" as a gradient flow, which may be explicitly realized with a
NN metric flow.

There are many research areas and directions not covered in this
Perspective, in part due to space limitations. For example, one active
areaofresearchis the application of ML tools to automated proof assis-
tants'". These applications also provide rigorous results, by helping
the automated prover to find the right sequence of logical steps to go
from statement A to statement B, that is, to find a path among logical
operations that connects assumptions of atheoremin question toits
conclusion®. For the use of MLin various systems such as Lean, Isabelle
and Mizar, see refs. 19-22.

Rigorous results from applied ML

Oneway inwhich ML canlead torigorous resultsisits usein conjunction
with domain experts. An exampleis conjecture generation, whereina
ML algorithm assistsin formulating a conjecture that can subsequently
be proven. Conjectures propose arelation between properties of an
object that were previously not known to be related. NNs, being uni-
versal function approximators, can be used in a supervised setup to
search for suchrelations: if the algorithm predicts one property from
another, this hints at the existence of arelation. If the ML algorithm was
awhitebox algorithm, such as decision trees or symbolic regression,
the relation could be inferred directly. But in the case of a blackbox
algorithm such as NN, attribution techniques can be used, which
help determine the features that are mostrelevant for NN predictions.
In practice, moving from a trained ML algorithm to a mathematical
theorem requires aback-and-forth between the ML and the humanto
refine the conjecture before it is proven.

Conjecture generation was introduced in ref. 23 in the context
of string theory, which used a decision tree and logistic regression,
whereas the use of NNs for this purpose was introduced in refs. 24-26.
Theseideas werealso appliedinknotand graph theory”*°. Moreover,
the utility of performing simple feature reduction techniques such as
principal component analysis has led to conjectures involving mirror
symmetry for Fano varieties’® or Bogomol'nyi-Prasad-Sommerfield
spectra for superconformal field theories (S Gukov & R-K Seong, pri-
vate communication). Many more examples can be found in refs. 3,4.
Seealsoref.31forarecenttheoretical approachto conjecture genera-
tion. Because conjecture generationrequiresinterpretable Al, another
avenueisto arrive at conjectures with symbolic regression, which fits
data to simple mathematical expressions, for instance, in Newtonian
mechanics and dark matter simulations®.

Another way in which ML can lead to rigorous results is to use
a trained ML agent to play a game wherein winning corresponds to
solving a scientific problem such that the solution may be rigorously
verified. This is the domain of RL, which optimizes a policy function
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that selects actions based on the current state of the system. As the
agent explores an environment, it receives rewards that are used to
update the policy function, leading toimproved behaviour over time.
RL was famously used in the games of Go and Chess, wherein through
self-play and only knowing the rules of the game, the Al system was
able to defeat the top human professional players. These techniques
can be interpretable to domain experts by analysing the results of
many games played by the trained Al agent. For instance in Chess, the
games played by AlphaZero® demonstrate that it rediscovered the most
popular openings used by humans®* but also devised useful strategies
thatsurprised grandmasters®, such as a proclivity to push the h-pawn
orfavour positional play over pawn grabbing. We will explore examples
of bothtechniquesin string theory and knot theory.

String theory and algebraic geometry
Computation of physical quantitiesin string theory regularly requires
algebraicgeometry. Therefore, the first use of neural networks instring
theory targeted questions in computational algebraic geometry* ¢,
anareainwhich computations are notoriously challenging. In all those
cases, the fact that NNs were able to predict the result with high accu-
racy suggested the existence of a hitherto unknown relation between
theinput features and the output. However, extracting an understand-
ing of the reason the NN manages to perform so well, or whiteboxingit,
isdifficult. Remarkably, the computation of dimensions of line bundle
cohomologies, for which ref. 26 showed very good performance with
aNN, was later discovered®*° to be related to identifying patterns or
regions in the input space, wherein a simple polynomial related to a
topological index describes the individual cohomologies. Although
this does not prove that the NNinref. 26 made use of this fact, NNs have
beenshownto use pattern recognition and regression for predictions
in other application areas. The relation uncovered in ref. 25, which
conjecturally relates the minimum volume of a Sasaki-Einstein cone
to simple toric data, remains unproven as of now.

Others papers™* followed a different route: instead of uncovering
an unknown relation by using a NN as a means to check existence of a
map from features to labels, the authors used whitebox ML techniques
such as logistic regression or decision trees from the onset. Similar
to the other papers* 2, they targeted algebraic geometry data. The
conjecture uncovered in ref. 23 relates the existence of aray in a toric
variety that defines an elliptically fibred CY fourfold to a particular
feature that is interesting for particle physics, E, gauge symmetry,
whereas ref. 41is concerned with Brill-Noether theory.

Rigorous results may also be obtained in string theory with RL,
which we will discuss in the next section in the context of knot theory
(seerefs.42-47).

Knot theory and the Poincaré conjecture

MLisincreasingly applied in pure mathematics. Here, we focus on low-
dimensional topology, especially knot theory.Knots are of interest not
only as fundamental objects in mathematics but also because of their
relation to observables in QFT and their relation to other aspects of
topology, such as the Poincaré conjecture.

A mathematical knot is a circle embedded in the 3D space; an
embedded collection of circles is a generalization known as a link. Its
projectionto ageneric 2D plane yields a planar diagram, represented
by strands of the knot that cross over or under each other. For a fixed
knotorlink K, the diagramis not unique because K can be continuously
deformed and different projections may be chosen. Two diagrams rep-
resent the samelink orknotifandonlyiftheyarerelated by asequence

of simple moves known as Reidemeister moves: the first three moves
are illustrated in Fig. 1a. Quantities associated to a knot K that are
invariant under Reidemeister moves (or ambient space isotopy)
are topological invariants of the knot and may be integers, vectors or
polynomials, for example. For studies using supervised ML to predict
knot invariants, see refs. 28,29,48. We will focus on works that obtain
rigorous results about knots via conjecture generation or RL.

Conjecture generation was used to prove a new theorem about
knots®. A fully connected feed-forward network was trained to pre-
dict an invariant of a knot K, known as the signature g(K), from a set
of 12 knot invariants. The model was trained to high accuracy, and
an attribution technique called gradient saliency*’, which computes
ascore
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thataverages the gradient of the loss function L with respecttoagiven
input feature x; over all of the examples x in a dataset X. This helps
identify the invariants that are most important for predicting o(K).
This interpretability analysis identified three invariants (the complex
meridional and real longitudinal translations on the boundary torus of
the knot complement) as much more significant than the otherinvari-
ants for determining the knot signature, and they were used by domain
experts to generate a conjecture about the signature of a knot. Asin
an earlier string theory work?, the conjecture needed refinement by
human experts. Afinal conjecture was proven, leading to anew theorem
that for any hyperbolic knot, there exists a constant c such that

[20(K) - slope(K)| < vol(K) inj (K)3, (2)

in terms of the knot slope, hyperbolic volume and injectivity radius.
Conceptually, the theorem was a surprise to some topologists because
it relates geometric topological invariants, such as the slope and vol-
ume, to algebraic topological invariants, such as the signature, which
aprioriseemto be of different character.

One may also use RL to rigorously establish properties of knots.
AknotKis said to be the unknot, whichis topologically trivial, if there
is asequence of Reidemeister moves that simplifies any planar diagram
representing the knot to a standard circle. The unknotting problem
(or UNKNOT) seeks to determine whether or not K'is the unknot, a prob-
lem that clearly has complexity growing with the number of crossings
Nin the planar diagram. The problem is known to be in NP n co-NP
(refs. 50-52), which means that bothiits positive and negative instances
can be verified in polynomial time. In ref. 53, various RL agents were
trained to find sequences of Reidemeister moves that simplify repre-
sentatives of the unknot to the standard circle. The RL agents sig-
nificantly outperformed arandom walker that selected Reidemeister
moves from auniformdistribution. In particular, atrust region policy
optimization agent showed consistent performance for unknots
described in terms of braids with increasing number of crossings,
which correlates with how tangled up aknot representative is (Fig. 2).
(Everyknotcanbewrittenin terms of anelementinanon-Abeliangroup
called thebraid group®*. The length £ of the corresponding braid word
is at least as big as the minimum number N, of crossings in the knot
projection, > N;..)

A close cousin of the unknotting problem s the problem of distin-
guishing Kirby diagrams that represent 3-manifolds or 4-manifolds.
AKirby diagrambasically consists of the data of alink withsome integer
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Fig.1|Moves and singularities of ribbon knots.

a, The three Reidemeister moves (R1, R2 and R3).

b, The band move, depicted, needs to preserve
orientations on thelink. ¢, After applying aband
move to the square knot, the result can be deformed
(viaReidemeister moves) into the unlink with two
components’.

labels, one for each link component. Much like planar knot projections
that arerelated by Reidemeister moves, Kirby diagrams representing
the same manifold are related by a small set of moves called Kirby
moves. In a simplified setting wherein all link components are copies
of the unknot, this data can be conveniently encoded in acombinato-
rial structure of a graph, called the plumbing graph. Graph neural
networks provide a natural choice of architectures to study this prob-
lem, on which a trained asynchronous advantage actor-critic agent
performed extremely well”’, outperforming, for example, a Deep-Q
Network RL agent.

Another variant of the unknotting problem may be used to estab-
lish that a knot is ribbon, which is related to SPC4. A knot is ribbon
if it bounds a ribbon disk, which is one that lives in a 3D space and
has appropriately mild self-intersections. A knot is slice if it bounds
asmoothly embedded disk in 4D space. Singularities of a ribbon disk
aremildenoughthat thereisacanonical procedure toadd adimension
andturnitintoasmoothly embedded diskin4D;every ribbonknotis,
therefore, slice.

SPC4 states that if a smooth 4-manifold is homoeomorphic to
4-sphere S*, then it is diffeomorphic to S*. SPC4 and sliceness are
directly related to one another. Namely, if there is a pair of knots
satisfying the following conditions:

* K,andK,have the same O-surgery,
 Kisslice,and
» K,isnotslice,

then an exotic 4-sphere may be constructed as homoeomorphic, but
not diffeomorphic, to $*, disproving the long-standing conjecture.
(For the definition of O-surgery, see conjecture 2.2 in ref. 7). Many
pairs of knots satisfying the first condition are known. The computa-
tion of topological invariants, known as slice obstructions, may be used
to establish the third condition, but there is no known algorithm for
establishing sliceness or ribonness. One may address ribbonness by
modifying the allowed actions of the unknotting problem by adding
band addition (see the last move in Fig. 1a). A knot is ribbon if there
isasequence of Reidemeister moves and band additions that simplify
aplanar diagram representing the knot to a collection of unlinked
unknots (Fig. 1b).

Inref.7,RLand Bayesian optimization of aMarkov decision process
were used to establish that a knot is ribbon, via the generalization of
the unknotting game. The most effective overall agent was Bayesian
optimized by taking speed into account, leading to a state-of-the-art
ribbon verifier*®, which was able to establish ribbonness of some knots
with many crossings (this was tested for up to 70 crossings). The agent
was used to demonstrate that certain pairs of knots satisfying the first
conditionarebothribbonand, therefore, bothslice. This ruled out over
800 potential counterexamples to SPC4.

Rigorous results from ML theory
Another option for obtaining rigorous results with ML is to use
results from ML theory, instead of making numerical results rigorous.
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This promising approachisstill inits infancy, and we will restrict our-
selves tosummarizingaworkin physics and mathematics that uses ML
theory results on NN statistics or learning dynamics.

Central to our discussion will be the use of NN theory. A NN is
simply a family of functions

¢6:Rﬂin — Rtout, 3)
with parameters 8, wherein one may choose a more general domain
and co-domain, if desired. The input and output dimension of the
NN are defined to be n;, and n,,,, respectively. We will often suppress
the subscript 6 for notational simplicity. Specifying a NN requires
choosing aconcrete functional form, known as the architecture, that
is usually a composition of simpler functions. When a NN is initial-
ized on a computer, however, initial values of the parameters must
be chosen by sampling 8 from an initialization parameter distribu-
tion P(6). The architecture and P(6), therefore, specify an ensemble
of functions at initialization, and an actively researched question
in ML theory relates to the statistics of these ensembles (see, for
instance, ref.10).

One aspect of NN statistics that we will discuss below is known as
the neural network-Gaussian process (NNGP) correspondence. It was
first discovered®in the 1990s in the simplest case of asingle-layer fully
connected width-N NN, which in the case n,,, =1, and there is no bias
inthelinearlayers. The architecture and parameter densities given by

N nj, 02,
o) =) > wialw;x), Pw)=N [ o

o2
0, | Pw)=N0,—%|, (4)
i=1 j=1 NJ “ [ n J

in

wherea:R — R is an element-wise non-linearity that is part of the
architecture choice, the parameter set 8 in this case corresponds to
the matrix components w;’ and wy, ois the standard deviation,and N/
denotes the normal (Gaussian) distribution. It has been shown that
as N — o, ¢ is drawn from a Gaussian process®, which means that for
any set of NN inputs {x;}, the associated vector of outputs ¢({x;}) is
drawn from a multivariate Gaussian distribution. Alternatively, in the
case of continuous inputs, the functions ¢(x) are drawn from a
Gaussian distribution whose covariance is given by the two-point
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Fig. 2| Performance comparison of the TRPO, A3C and RW algorithms on
the unknotting problem. a, Fraction of unknots whose braid words could be
reduced to the empty braid word as a function of initial braid word length €.
b, Average number of actions necessary to reduce the input braid word to the

function G?(x, y) = E[p(x)¢(»)], where E denotes the expectation
over the ensemble of functions, which may be computed®’ by
integrating over the NN parameters
G2(x,y) =Elp(x)p(y)]= [d6 P(6) p(x)(). (5)
The corresponding function distribution P(¢) := 5@ is specified
in terms of the functional

SIpl=7 fatox dny pOOGx, )90, ©

known in physics as the (quadratic) action with Euclidean correla-
tor G?(x, y) thatis an analogue of the Feynman propagator. The quan-
tity G?(x, y) " is defined via [d"nyG?(x,y) 'G?(y,2) = 6(x - 2). The
NNGP correspondence has been extended to many more archi-
tectures®, wherein the generality of the phenomenon arises from
the ubiquity of the central limit behaviour in NNs, generalizing the
notion of ‘width’. The higher moments are correlation functions
Gx, ..., x,) = E[p(x)...¢p(x,)] which may also be computed by a para-
meter space integral akin to equation (5), or alternatively via free
theory Feynman diagrams with propagator given by G®(x, y). Fore-
shadowing, the NNGP is a free field theory that one may turn into an
interacting theory by including 1/N corrections.

Another result we discuss concerns NN training dynamics. It arises
when a NN is trained by continuous-time gradient descent, in which
case the dynamics of learning over time ¢ (which is independent of
network inputx) are given by

do(x) _
de

OLIp(x")]
op(x’) ’

0P (x) dp(x”)
06, 06, '

Y 0(x,x)

x’'€D

o0, x)=) @)
1

whereO(x, x’)is called the empirical NTK, Dis the full training dataset
(notamini-batch) and Listheloss function evaluated oninputs x”. This
equationarises fromashort computation that utilizes only chainrules
and the gradient descent update rule d6,/dt=~} ..., OL[¢(x’)1/086,.
The empirical NTK governs the gradient descent dynamics of the finite-
width NN but is difficult to compute because modern NNs have millions,

b Average number of steps versus braid length
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empty braid word as a function of £. Figure reproduced with permission from
ref.53, CC-BY 4.0. A3C, asynchronous advantage actor-critic; RW, random walker;
TRPO, trust region policy optimization.
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or billions, of parameters that evolve in time. However, for many archi-
tectures, the dynamics simplifyin the large-Nlimit owing to the law of
large numbers and a natural linearization, yielding

/!li_r:nl O(x, x")=:0(x,x’), (8)

where®(x, x")isat-independent deterministic kernel that may be com-
puted once and for all atinitialization. © may be referred to as the NTK,
or the frozen-NTK. If L is the mean-squared error loss, the dynamics
forall times may be computed exactly analytically'® and one may com-
pute the expected prediction of aninfinite number of infinite-Nneural
networkstrained toinfinite time, allowing a computation that otherwise
would not be possible.

NN-FT correspondence

Fromthe discussioninthe previoussection, itis clear that NNs describe
ensembles of functions, akin to statistical field theories in physics. In
this sense, a NN architecture and parameter distribution P(0) give a
new way to define afield theory. We focus on the applications of these
ideas within physics, though using them for MLis also interesting (see,
forinstance, ref. 59).

By the NNGP correspondence, there are many NN architec-
turesthatadmitan N — «limitin which the NN is drawn from a Gaussian
process at initialization. Gaussians are determined by the mean and
variance, that is, their one-point correlation function
GOx) =Elp(x)]= /d6 P(6) ¢(x) (which is often zero) and two-point
correlation function G?(x, y) defined in equation (5). Any n-point cor-
relation function can be computed in parameter space, generalizing
the two-point calculation, via

G0, ..., X)) =Eglp(x)...0(x,)1 = [dOP(O)P(x,)...0(x;,). 9)

Crucially, these integrals are explicitly computable for some NN
architectures, yielding exact correlation functions. In the Gaussian
case, G®(x, y) and G®(x, y) determine an associated Gaussian action,
which takes the forminequation (6) in the case of vanishing one-point
function. Given that action, the correlators may be computed via the
Feynman pathintegral. Hence, the NNGP correspondence is a duality
between a Gaussian process and a free field theory.

This idea can be generalized to a NN-FT correspondence
which describes interacting, non-Gaussian theories (see ref. 11 for
an introduction and summary of the current status of research on
this topic). Central to the duality is the idea that field theories may be
considered in either the parameter space or function space descrip-
tions. For example, defining a field theory by a NN architecture and
parameter distribution makes the parameter description manifest,
but determining the associated interacting action S[¢] that general-
izes equation (6) of the NNGP correspondence requires some work.
Conversely, one could define afield theory in terms of an action S[¢],
asin QFT classes, and thenattempt to determine aNN architecture and
parameter distribution that realizes it.

These field theories are usually Euclidean, because most NNs are
defined on R". If the correlators of the Euclidean theory satisfy the
Osterwalder-Schrader axioms®, the theory can be continued to a
Lorentzian signature, defining a NN QFT (ref. 61). For other physics-
motivated NN-FT works, see refs. 63-65, and see ref. 66 for work that
relates NN dynamics and cosmological dynamics. For ML work on
finite-width corrections, see ref. 59 and references therein, and the
introduction of ref. 11 for a discussion of more recent literature.

60,61
y

We emphasize that the duality works both ways and atheory may
be studied in parameter space evenif the action is unknown! In other
words, the properties of a field theory are determined simply by the
architecture and P(6). Toillustrate this, consider atoy model, wherein
the functions that describe the fields are simply linear functions

¢:R->R, ¢(x)=0x, (10)

where the slope fis sampled from some distribution P(6). The correla-
tors in equation (9) can be computed exactly in this case,
G™(xy, ..., X,) = U, X;...X,,, Where H,= [E4[6"] are the moments of P(6).
The theory has non-Gaussian interactions when P(0) is non-Gaussian,
which means that its moments are non-zero for at least some n > 2.
Because the Gaussianity of a theory is a consequence of the central
limit theorem (CLT), such interactions arise by breaking the assump-
tions of the CLT: one can either keep Nfinite or break statistical inde-
pendence of parameters in P(6). Put differently, the change of P(6) in
parameter space leads to a modification of the function space action
that can manifest itselfin interaction terms™*'.

We will see an example, but before that, let us discuss symme-
tries® inthe NN-FT correspondence, using again the example in equa-
tion (10). One can see from the exact correlators G™(x,, ..., x,) that the
theory is scale invariant, but not translation invariant. If t,,,,, = 0, P(6)
is evenand the theory is parity invariant, because the negative signin
Xx — —xmay be absorbed into a redefinition of . Thus, symmetries of
thearchitecture and parameter space distribution lead to symmetries
infunction space and vice versa.

To summarize, even without knowing the action, one can do the
following:

» determine symmetries of the underlying field theory from the

architecture and symmetries of P(6),

« introduce interactions by manipulating P(8) or the width N such
thatit breaks the assumptions of the CLT, and
 determineinteractions by computing parameter space integrals

over P(0).

In fact, by inverting the correspondence outlined above, one
can find the action from the parameter space description of the
NN-FT correspondence by computing couplings in terms of Feynman
diagrams, whose vertices are the connected correlators".

Toillustrate how achangein P(6) turns oninteractions, we look at
a canonical example in QFT known as ¢* theory. This theory adds an
interactionterm S, = % /d"inxgy*(x), whereAis the coupling constant,
tothe freescalaraction S[g] = /d"i"x @ (x)(O+m?)p(x), where =00’
and m is the mass, a specification of the Gaussian process action in
equation (6). A NN field theory realizing the free scalar has the
architecture

_ | 2vol(8) a; cos(byx; + ;)
¢a,b,c(x) T 0‘12(2”)%1 g 'Jbi2+m2 : (D
with parameters 6 ={q, b, c} drawn from
’L“iai
Pela)=[]e 2¢ ", Pb)=[]Rotb), Plo)=[]Plc).  (12)

Here, P;(b;)) and P;(c;) are uniform distributions over an
n;,-dimensional ball of radius A and the interval [-T, t], respectively.
Itis perhaps not surprising that the architectureis anormalized plane
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wave, mirroring the canonical functional form for non-NN treatments
in quantum field theory, though other NNGP realizations of the free
scalar might exist. Adding the A-dependent term S, to the function
distribution P[¢] corresponds, in the parameter space description, to
aA-dependent deformation of the parameter distribution

P(6) = P(a, b, ¢) = P@)P(b)Py(c) e 41 /4 Fanct)’ (13)

which only depends on 8 ={a, b, c} through their distributions and
through ¢, ,.in equation (11). The existence of interactions in the NN
picture arises owing to the breaking of statisticalindependence via the
parameter distribution deformation, violating the assumption of
independence in the CLT. The result is standard Euclidean ¢* theory
with cut-off A, wherein the cutoff A appears in the NN description via
B,‘\’, the ball of b-type parameters. This NN-FT recovers the NNGP of
equation (6) in the limit A — O (ref. 61), which then has only a single
non-vanishing moment,

)=

pr+m?

(14)

thatis, A — O recovers a free scalar with mass m.

Metric flows with NNS and the Ricci flow

Ifa NN is used to represent a metric g; on a Riemannian manifold M,
the training dynamics of the NN corresponds to a flow in the space of
Riemannian metrics. We will characterize this flow, following ref. 68.

Thisideais partly motivated by recent results on numerical met-
rics on CY manifolds® 7. Physically, a CY manifold is a solution to the
leading-order string theory equations of motion, and therefore, they
are one of the most-studied types of compactification manifolds for
yielding a 4D low-energy effective theory. The particle content and
low energy couplings are determined atleading order by the geometry
and topology of the CY manifold. Mathematically, a CY manifold is a
complex Kihler manifold with vanishing first Chern class ¢,(TM) =0,
where TMis the tangent bundle. By the theorem of Yau™, any CY mani-
fold with fixed Kéhler class admits a Ricci-flat Kdhler metric known as
the CY metric, which is unique due to a theorem of Calabi™.

The proof is non-constructive, however, and zero non-trivial
explicit CY metrics are known for compact M, even though CY mani-
folds have been studied by mathematicians and string theorists
for decades. These facts motivate the use of numerical techniques, for
example, via Donaldson’s algorithm’’, or more recently via NNs that
represent the metric® 7, which give the current state-of-the-artresults.
Forinstance, one could train the NN g;; to minimize aloss given by

Llgl= Z |R,'j(g)|2, (15)
ij
whichwould drive g; toward the Ricci-flat metric (R;is the Ricci tensor).
Inpractice, itis more efficient to optimize surrogate losses that build in
more structure of the problem, forinstance, rephrasing the problem as
asecond-order differential equation of Monge-Ampére type”.
Returningto flows, ifaNNrepresents ametricon Manditistrained
to approximate the CY metric, thenthe CY metricisafixed point of the
NN metric flow. Another famous metric flow is the Ricci flow" given by

where R;(x) isthe Riccitensor. The CY metricis also afixed point of the
Ricciflowbecauseitis Ricci-flat, R;(x) = 0. Are these two flows related?
Apriori, theylook very different because the NN metric flow is defined
by gradient descent onascalarloss functional (gradient flow) and the
Ricci flow has a tensorial metric update that is not obviously a gradi-
ent flow. However, in his work that proved the 3D Poincaré conjecture,
Perelman®showed that at-dependent diffeomorphism of the Ricci flow
isagradient flow defined by

dg, ()  sF[gp, gl
——= W ==2[R;(x) + V}V;0(x)]

Fig,gl= [, (R+Vol)e ?dV

17)

where adilaton field ¢(x) that hasits own dynamics dictated by 6F/5¢
isintroduced. Because this version of the Ricci flow is a gradient flow,
it might be possible to realize it as a NN metric flow.

Motivated by these results, Halverson and Ruehle®® devel-
oped a theory of NN metrics flows, assuming that a NN represents
a metric g;on M and the metric is trained by updating the param-
eters via gradient descent with respect to a scalar loss functional
L[gl. The dynamics of the metric at x may be computed either
from afinite set of points {x;} sampled according to some measure on
M, or inthe continuum (infinite-data) limit. In the continuum case, the
metric flow is given by

dg, ()
de

OLIg(x)]

=_/de(x’) Oy (0, X") 6g,,(x)

(18)
o0g..(x 4
Oy (X, X7) =) La"; ng;x ).

/ I I

where ©, (x, x’)is the empirical metric-NTK thatis derived in the same
way as the NTK, but keeps track of the tensorial indices associated to
the metric. In practice, anatural choiceisto take the measure tobe the
volume measure, dv = dV. This general equation for NN metric flows is
markedly different from Perelman’s formulation of Ricci flow. Unlike
the Ricci flow, a general NN metric flow is governed by the kernel ©,
that (1) changes the nature of the update equation as it evolves, (2) is
non-local, communicating loss fluctuations at x’ to metric updates at
X, and (3) mixes components of the metric in a non-trivial way owing
to the tensor indices.

To obtain Perelman’s Ricci flow, one must fix the kernel in time,
induce locality and eliminate component mixing. To fix the kernel
in time, take an N — < limit in which the NTK becomes frozen (see
ref. 78 for various simple architectures that do this). In such a case,
the dynamics becomes

6L(g(x"))

dg’,.(x) 0O.,.,(x,x X
4__/)((“(’(') ijkl( ) 0g,,(x") ,
kl

i (19)
where @, is the metric-NTKin the frozen N — . We call these dynam-
ics an infinite NN metric flow. Architectures for which the frozen
metric-NTK is of the form @,-jk,(x,x’) =Qx)6(x—x") Oy0; for some
function Qeliminate non-locality and component mixing in the kernel,
simplifying the dynamics to

dg;(x) gy _ .y SLlg)]

_ =— —= = 2
T ==2 RU(X)’ (16) dr Q(x) 6g’f(x) . (20)
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We call these dynamics alocal NN metric flow. For any architecture
giving suchaflow (for which an explicit exampleis presentedinref. 68),
Perelman’s formulation of the Ricci flow is obtained simply by choosing
thelosstobe L[ g(x)]=F[g]/Q(x).

NTK theory gives a natural characterization of metric flows
induced by NN gradient descent, demonstrating that they are animpor-
tant generalization of the Ricci flow. In particular, for finite NNs, the
metric evolves according to a non-local, time-dependent kernel that
mixes components.

Renormalization group flows, optimal transport and Bayesian
inference

ML theory has also beguntointerface with physicsin ways that provide
new insights into renormalization in field theory, using ideas from
Bayesian inference and diffusion.

Diffusion models have become popular generative models; for
example, to generate one-megapixel images of galaxies, one can draw
randomly from a 3M-dimensional pixel space (3M because there are
three colours per pixel), subject to the constraint that the drawn pixels
lead to an image of a galaxy. Achieving this requires drawing from a
complicated distributionin pixel space. Diffusion models go the oppo-
site route: starting fromimages of galaxies, the pixels undergo diffusion
and mix until they look like random noise. Inverting this process then
leads to amap from noise toimages of galaxies. In terms of probability
distributions, one can think of the generation process or the inverse
diffusion process as changing the distribution from seemingly random
pixels to galaxy picture pixels and the flow in distribution space as an
(optimal) transport problem.

From a physics perspective, one can think of diffusion as ‘destroy-
ing’informationin theimage; removing data points fromaninference
problem has asimilar effect. As a process, this resembles renormaliza-
tion group flow in QFT, wherein information is lost through coarse
graining which forgets about irrelevant operators. Keeping track of
these operatorsleads to the notion of an exact renormalization group
flow. This idea is used in three studies”® to connect the exact renor-
malization group flow to an optimal transport and Bayesian inference
problem, respectively. Phrasing in terms of Bayesianinference, wherein
the information is added through updating the prior as new observa-
tions come in, allows to give an information-theoretic meaning to
exactrenormalization. By providing new ways to understand and think
aboutrenormalization, these works may lead to new insights into the
structure of QFTs.

Outlook

Inthis Perspective, we have discussed zero-error applications of ML to
theoretical physics and pure mathematics. These fields are late adop-
ters of ML because they require rigor (by which we mean zero-error
results) and interpretability, whereas in general, ML techniques are
often stochastic, error-prone and blackbox. The application of ML
methods to these fields, thus, requires rethinking and modifying tech-
niques that are readily applied in other natural sciences. We focused
on two main directions: making applied ML rigorous and applying
theoretical ML. We exemplified the former with conjecture generation
and rigorous verification by RL, and the latter using NN theory.

In conjecture generation, a human is brought into the loop to
interpret what the ML algorithm has learned and turnitinto a conjec-
ture which can then be refined and proven by domain experts. This
has beendonein supervised ML:if a NN or other algorithm (symbolic
regression or decision trees) canlearn a high-accuracy map frominputs

to the labels, for which no known relation exists, this hints at a new
connection. Given that setting up such supervised learning problems
can be done very quickly, this allows for scanning theoretical data for
new relations. We gave examples of thisideain string theory, algebraic
geometry and knot theory.

Asecond avenueistouseRLfor problemsinmathematics. Theidea
is not to attempt to whitebox the ML algorithm but instead to look at
episoderollouts of the RLagent toinfer the solution strategy learned by
theagent. In particular, RL rollouts can be used to obtain (provably cor-
rect) truth certificates for decision problems of the type ‘Does object
O have property X?". RL is useful in such cases because one can set up
anRL algorithm that manipulates object O until property X is manifest
andthe algorithmreaches aterminal state. Therollouts of the episode
thatlead to the terminal state are then the truth certificate for the deci-
sion problem. Rollouts were used to rule out hundreds of proposed
counterexamples to SPC4, and to establish sliceness for new knots.

Adifferentapproachistouse MLtheory to obtainrigorousresults,
entirely avoiding the error introduced by applied ML techniques. For
instance, owing to the CLT, the statistics of the functions expressed
by NNs become tractable in the infinite-parameter regime; they are
draws from Gaussian processes. In the context of physics, this leads to
a correspondence between NN and statistical field theories, wherein
theinfinite-parameter regime defines generalized free field theories,
and leaving this regime corresponds to turning on interactions. This
correspondence provides anew definition of afield theory, motivated
by ML theory, and therefore opens a different approach to the study
of new and existing field theories. We exemplified a few aspects of this
correspondence, including the role of the CLT, the origin of symmetries
and therealization of ¢* theory as aNN field theory. Hopefully, this cor-
respondence can lead to a better understanding of non-perturbative
QFTsinthefuture, which at present is one of the major open problems
infield theory.

We also discussed the theory of flows in the space of Riemannian
metrics induced by gradient descent when the metric is modelled as
aNN. This theoretical framework encompasses, for instance, recent
empirical resultsthat use NNs as state-of-the-art approximationsto CY
metrics. Intheinfinite-parameter limit, the metric flow simplifies and
NTK theory may be used. Under some additional architecture assump-
tions, the flow may be made local, and Perelman’s formulation of Ricci
flow as agradient flow is realized as a special case of NN metric flows.

Further progress with ML techniques to obtain zero-error rigorous
results could proceed along anumber of directions.

Oneavenueis to extend or systematize the techniques discussed
in this Perspective. For instance, conjecture generation and subse-
quent theorem proving is effective but still haphazard in process;
it would be advantageous to have a more systematic framework for
conjecture generation, potentially in collaboration with automated
theorem-proving systems. Further developments that obtain rigorous
results by using ML theory are also natural. Inthe context of the NN-FT
correspondence, one might wish to study conformal field theories,
fermions or gauge fields.

Asecond avenue is to expand the types of ML techniques used in
obtaining rigorous results. For instance, we have discussed applica-
tions of supervised learning, RL, and ML theory, but deep generative
models are notably absent. A natural application is to generate inter-
esting examples thataid in obtaining rigorousresults. For example, in
certain conjecture generation applications??, the initial ML-inspired
conjectures have counterexamples obtained cleverly by humans that
are used to refine the conjecture; it would be useful to automate the
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counterexample-finding process with a generative model. In other
applications wherein rigor is sought, it would be useful to have a gen-
erative model that could produce examples conditional on certain
properties. For instance, in the context of the discussed approach to
SPC4, one would like to have a generative model that produces pairs
ofknots (K, K,) with the same zero surgeries, subject to the constraint
that K, definitely has a slice obstruction, and K; has no known slice
obstruction. Thiswasnot the caseinref. 7, and such agenerative model
has the advantage that if K; can be shown to be ribbon or slice for any
such pair, then SPC4 is false.

Published online: 8 April 2024
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