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Abstract

Despite their successes, machine learning techniques are often 
stochastic, error-prone and blackbox. How could they then be used in 
fields such as theoretical physics and pure mathematics for which error-
free results and deep understanding are a must? In this Perspective, 
we discuss techniques for obtaining zero-error results with machine 
learning, with a focus on theoretical physics and pure mathematics. 
Non-rigorous methods can enable rigorous results via conjecture 
generation or verification by reinforcement learning. We survey 
applications of these techniques-for-rigor ranging from string theory 
to the smooth 4D Poincaré conjecture in low-dimensional topology. 
We also discuss connections between machine learning theory and 
mathematics or theoretical physics such as a new approach to field 
theory motivated by neural network theory, and a theory of Riemannian 
metric flows induced by neural network gradient descent, which 
encompasses Perelman’s formulation of the Ricci flow that was used to 
solve the 3D Poincaré conjecture.
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metric flows. These developments exploit recent results on the statis-
tics and dynamics of NNs (refs. 8–10). On the statistics side, we present 
a correspondence between NNs and quantum field theory (QFT). This 
correspondence has the potential to provide a non-perturbative defini-
tion of QFT in the continuum. We discuss the relation to the Feynman 
path integral, the NN origin of interactions and symmetries in a field 
theory, and the realization of ϕ4 theory as a NN field theory11. On the 
dynamics side, we consider a metric on a Riemannian manifold that is 
represented by a NN, trained with gradient descent. This framework 
has been used in approximations of numerical Calabi–Yau (CY) metrics, 
a crucial result in string theory. Neural tangent kernel (NTK) theory9,10 
is used to develop an associated theory of metric flows that generalizes 
known flows in mathematics, for instance Perelman’s formulation12 of 
Ricci flow13 as a gradient flow, which may be explicitly realized with a 
NN metric flow.

There are many research areas and directions not covered in this 
Perspective, in part due to space limitations. For example, one active 
area of research is the application of ML tools to automated proof assis-
tants14–17. These applications also provide rigorous results, by helping 
the automated prover to find the right sequence of logical steps to go 
from statement A to statement B, that is, to find a path among logical 
operations that connects assumptions of a theorem in question to its 
conclusion18. For the use of ML in various systems such as Lean, Isabelle 
and Mizar, see refs. 19–22.

Rigorous results from applied ML
One way in which ML can lead to rigorous results is its use in conjunction 
with domain experts. An example is conjecture generation, wherein a 
ML algorithm assists in formulating a conjecture that can subsequently 
be proven. Conjectures propose a relation between properties of an 
object that were previously not known to be related. NNs, being uni-
versal function approximators, can be used in a supervised setup to 
search for such relations: if the algorithm predicts one property from 
another, this hints at the existence of a relation. If the ML algorithm was 
a whitebox algorithm, such as decision trees or symbolic regression, 
the relation could be inferred directly. But in the case of a blackbox 
algorithm such as NNs, attribution techniques can be used, which 
help determine the features that are most relevant for NN predictions. 
In practice, moving from a trained ML algorithm to a mathematical 
theorem requires a back-and-forth between the ML and the human to 
refine the conjecture before it is proven.

Conjecture generation was introduced in ref. 23 in the context 
of string theory, which used a decision tree and logistic regression, 
whereas the use of NNs for this purpose was introduced in refs. 24–26. 
These ideas were also applied in knot and graph theory27–29. Moreover, 
the utility of performing simple feature reduction techniques such as 
principal component analysis has led to conjectures involving mirror 
symmetry for Fano varieties30 or Bogomol’nyi-Prasad-Sommerfield 
spectra for superconformal field theories (S Gukov & R-K Seong, pri-
vate communication). Many more examples can be found in refs. 3,4. 
See also ref. 31 for a recent theoretical approach to conjecture genera-
tion. Because conjecture generation requires interpretable AI, another 
avenue is to arrive at conjectures with symbolic regression, which fits 
data to simple mathematical expressions, for instance, in Newtonian 
mechanics and dark matter simulations32.

Another way in which ML can lead to rigorous results is to use 
a trained ML agent to play a game wherein winning corresponds to 
solving a scientific problem such that the solution may be rigorously 
verified. This is the domain of RL, which optimizes a policy function 

Introduction
We live in a remarkable time in the history of science: from the per-
spective of our distant descendants, we are near the beginning of the 
use of computer science for scientific discovery. In the future, some 
scientific discoveries may rely on the promise of quantum comput-
ing, but today there is an ongoing revolution in artificial intelligence 
(AI) and machine learning (ML) that is already transforming the natu-
ral sciences, for example, in protein folding1 (see also general2 and 
field-specific3,4 reviews).

Despite numerous success stories, ML techniques are often error-
prone, stochastic and blackbox. Classification problems always have 
some degree of error, and this error may be induced by the addition 
of adversarial noise that, for instance, can cause a neural network 
(NN) to mis-classify a turtle as a rifle and a cat as guacamole5,6. Such 
ML techniques are stochastic in a number of ways. In the supervised 
setting that tries to make predictions given model inputs, the predic-
tions of the NN, and therefore the errors, generally depend on both 
a random initialization and a random training process. In the deep 
reinforcement learning (RL) setting that tries to learn a strategy for 
gameplay that maximizes rewards, the training process is stochastic 
owing to randomness in the exploration of the environment. Finally, 
ML techniques are often blackbox in the sense that the trained ML 
algorithm has millions, or even billions, of parameters that are difficult 
to interpret and understand.

These techniques may, therefore, appear ill-suited for applica-
tion in fields such as theoretical physics and pure mathematics that 
prioritize rigorous results and deep understanding. Notions of rigor 
differ across scientific communities. Uncontrolled approximations are  
definitively not rigorous, and therefore controlled approximations are a  
significant upgrade, especially when accompanied by convergence 
guarantees that exist in certain limits, such as in Monte Carlo sampling 
in condensed matter physics or lattice field theory. However, unless 
one is truly in the limit in which convergence occurs, these are still 
techniques with non-zero, but controllable, error bars. Instead, in this 
Perspective, we are interested in presenting ‘zero-error’ results, the 
gold standard in many formal areas of theoretical physics and pure 
mathematics, which is henceforth what we mean by rigor.

In this Perspective, we survey techniques for obtaining rigor 
with ML, exemplified by recent results. We focus on two central ideas: 
making applied ML techniques rigorous and ensuring rigor by using 
theoretical ML from the outset.

We will consider conjecture generation and rigorous solution 
verification with RL as a means of making applied ML techniques rigor-
ous. In conjecture generation, a human domain expert is brought into 
the ML loop to understand model predictions with interpretable AI 
techniques, with the hope of generating a conjecture that can be rig-
orously proven by a human. We discuss applications of this technique 
in obtaining new theorems in string theory, algebraic geometry and 
knot theory. Rigorous results may also be obtained by RL, through the 
definition of a game whose objective is to find a trajectory through a 
space of states that establishes a mathematical fact. We will discuss 
applications of this approach to low-dimensional topology. This direc-
tion includes a state-of-the-art program that can establish ribbonness 
of knots (far beyond typical human expert abilities) and which was used 
to rule out hundreds of proposed counterexamples to the smooth 
Poincaré conjecture in four dimensions (SPC4)7.

We also discuss results in an emerging direction that seeks 
to use ML theory in theoretical physics and pure mathematics, 
including completely new approaches to both field theory and 

http://www.nature.com/natrevphys


Nature Reviews Physics | Volume 6 | May 2024 | 310–319 312

Perspective

that selects actions based on the current state of the system. As the 
agent explores an environment, it receives rewards that are used to 
update the policy function, leading to improved behaviour over time. 
RL was famously used in the games of Go and Chess, wherein through 
self-play and only knowing the rules of the game, the AI system was 
able to defeat the top human professional players. These techniques 
can be interpretable to domain experts by analysing the results of 
many games played by the trained AI agent. For instance in Chess, the 
games played by AlphaZero33 demonstrate that it rediscovered the most 
popular openings used by humans34 but also devised useful strategies 
that surprised grandmasters35, such as a proclivity to push the h-pawn 
or favour positional play over pawn grabbing. We will explore examples 
of both techniques in string theory and knot theory.

String theory and algebraic geometry
Computation of physical quantities in string theory regularly requires 
algebraic geometry. Therefore, the first use of neural networks in string 
theory targeted questions in computational algebraic geometry24–26, 
an area in which computations are notoriously challenging. In all those 
cases, the fact that NNs were able to predict the result with high accu-
racy suggested the existence of a hitherto unknown relation between 
the input features and the output. However, extracting an understand-
ing of the reason the NN manages to perform so well, or whiteboxing it, 
is difficult. Remarkably, the computation of dimensions of line bundle 
cohomologies, for which ref. 26 showed very good performance with 
a NN, was later discovered36–40 to be related to identifying patterns or 
regions in the input space, wherein a simple polynomial related to a 
topological index describes the individual cohomologies. Although 
this does not prove that the NN in ref. 26 made use of this fact, NNs have 
been shown to use pattern recognition and regression for predictions 
in other application areas. The relation uncovered in ref. 25, which 
conjecturally relates the minimum volume of a Sasaki–Einstein cone 
to simple toric data, remains unproven as of now.

Others papers23,41 followed a different route: instead of uncovering 
an unknown relation by using a NN as a means to check existence of a 
map from features to labels, the authors used whitebox ML techniques 
such as logistic regression or decision trees from the onset. Similar 
to the other papers24–26, they targeted algebraic geometry data. The 
conjecture uncovered in ref. 23 relates the existence of a ray in a toric 
variety that defines an elliptically fibred CY fourfold to a particular 
feature that is interesting for particle physics, E6 gauge symmetry, 
whereas ref. 41 is concerned with Brill–Noether theory.

Rigorous results may also be obtained in string theory with RL, 
which we will discuss in the next section in the context of knot theory 
(see refs. 42–47).

Knot theory and the Poincaré conjecture
ML is increasingly applied in pure mathematics. Here, we focus on low-
dimensional topology, especially knot theory. Knots are of interest not 
only as fundamental objects in mathematics but also because of their 
relation to observables in QFT and their relation to other aspects of 
topology, such as the Poincaré conjecture.

A mathematical knot is a circle embedded in the 3D space; an 
embedded collection of circles is a generalization known as a link. Its 
projection to a generic 2D plane yields a planar diagram, represented 
by strands of the knot that cross over or under each other. For a fixed 
knot or link K, the diagram is not unique because K can be continuously 
deformed and different projections may be chosen. Two diagrams rep-
resent the same link or knot if and only if they are related by a sequence 

of simple moves known as Reidemeister moves: the first three moves 
are illustrated in Fig. 1a. Quantities associated to a knot K that are  
invariant under Reidemeister moves (or ambient space isotopy)  
are topological invariants of the knot and may be integers, vectors or 
polynomials, for example. For studies using supervised ML to predict 
knot invariants, see refs. 28,29,48. We will focus on works that obtain 
rigorous results about knots via conjecture generation or RL.

Conjecture generation was used to prove a new theorem about 
knots27. A fully connected feed-forward network was trained to pre-
dict an invariant of a knot K, known as the signature σ(K), from a set 
of 12 knot invariants. The model was trained to high accuracy, and 
an attribution technique called gradient saliency49, which computes 
a score

∑r
X

L
x

=
1 ∂

∂
(1)

x X
i

∈ i

that averages the gradient of the loss function L with respect to a given 
input feature xi over all of the examples x in a dataset X. This helps 
identify the invariants that are most important for predicting σ(K). 
This interpretability analysis identified three invariants (the complex 
meridional and real longitudinal translations on the boundary torus of 
the knot complement) as much more significant than the other invari-
ants for determining the knot signature, and they were used by domain 
experts to generate a conjecture about the signature of a knot. As in 
an earlier string theory work23, the conjecture needed refinement by 
human experts. A final conjecture was proven, leading to a new theorem 
that for any hyperbolic knot, there exists a constant c such that

σ K K K K2 ( ) − slope( ) ≤ vol( ) inj ( ) , (2)−3

in terms of the knot slope, hyperbolic volume and injectivity radius. 
Conceptually, the theorem was a surprise to some topologists because 
it relates geometric topological invariants, such as the slope and vol-
ume, to algebraic topological invariants, such as the signature, which 
a priori seem to be of different character.

One may also use RL to rigorously establish properties of knots. 
A knot K is said to be the unknot, which is topologically trivial, if there 
is a sequence of Reidemeister moves that simplifies any planar diagram 
representing the knot to a standard circle. The unknotting problem 
(or UNKNOT) seeks to determine whether or not K is the unknot, a prob-
lem that clearly has complexity growing with the number of crossings 
N in the planar diagram. The problem is known to be in NP ∩ co-NP 
(refs. 50–52), which means that both its positive and negative instances 
can be verified in polynomial time. In ref. 53, various RL agents were 
trained to find sequences of Reidemeister moves that simplify repre
sentatives of the unknot to the standard circle. The RL agents sig-
nificantly outperformed a random walker that selected Reidemeister 
moves from a uniform distribution. In particular, a trust region policy 
optimization agent showed consistent performance for unknots 
described in terms of braids with increasing number of crossings, 
which correlates with how tangled up a knot representative is (Fig. 2). 
(Every knot can be written in terms of an element in a non-Abelian group 
called the braid group54. The length ℓ of the corresponding braid word 
is at least as big as the minimum number Nmin of crossings in the knot 
projection, ℓ ≥ Nmin.)

A close cousin of the unknotting problem is the problem of distin-
guishing Kirby diagrams that represent 3-manifolds or 4-manifolds. 
A Kirby diagram basically consists of the data of a link with some integer 
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labels, one for each link component. Much like planar knot projections 
that are related by Reidemeister moves, Kirby diagrams representing 
the same manifold are related by a small set of moves called Kirby 
moves. In a simplified setting wherein all link components are copies 
of the unknot, this data can be conveniently encoded in a combinato-
rial structure of a graph, called the plumbing graph. Graph neural 
networks provide a natural choice of architectures to study this prob-
lem, on which a trained asynchronous advantage actor–critic agent 
performed extremely well55, outperforming, for example, a Deep-Q 
Network RL agent.

Another variant of the unknotting problem may be used to estab-
lish that a knot is ribbon, which is related to SPC4. A knot is ribbon 
if it bounds a ribbon disk, which is one that lives in a 3D space and 
has appropriately mild self-intersections. A knot is slice if it bounds 
a smoothly embedded disk in 4D space. Singularities of a ribbon disk 
are mild enough that there is a canonical procedure to add a dimension 
and turn it into a smoothly embedded disk in 4D; every ribbon knot is, 
therefore, slice.

SPC4 states that if a smooth 4-manifold is homoeomorphic to 
4-sphere S4, then it is diffeomorphic to S4. SPC4 and sliceness are 
directly related to one another. Namely, if there is a pair of knots  
satisfying the following conditions:

•	 K1 and K2 have the same 0-surgery,
•	 K1 is slice, and
•	 K2 is not slice,

then an exotic 4-sphere may be constructed as homoeomorphic, but 
not diffeomorphic, to S4, disproving the long-standing conjecture. 
(For the definition of 0-surgery, see conjecture 2.2 in ref. 7). Many 
pairs of knots satisfying the first condition are known. The computa-
tion of topological invariants, known as slice obstructions, may be used 
to establish the third condition, but there is no known algorithm for 
establishing sliceness or ribonness. One may address ribbonness by 
modifying the allowed actions of the unknotting problem by adding 
band addition (see the last move in Fig. 1a). A knot is ribbon if there 
is a sequence of Reidemeister moves and band additions that simplify 
a planar diagram representing the knot to a collection of unlinked 
unknots (Fig. 1b).

In ref. 7, RL and Bayesian optimization of a Markov decision process 
were used to establish that a knot is ribbon, via the generalization of 
the unknotting game. The most effective overall agent was Bayesian 
optimized by taking speed into account, leading to a state-of-the-art 
ribbon verifier56, which was able to establish ribbonness of some knots 
with many crossings (this was tested for up to 70 crossings). The agent 
was used to demonstrate that certain pairs of knots satisfying the first 
condition are both ribbon and, therefore, both slice. This ruled out over 
800 potential counterexamples to SPC4.

Rigorous results from ML theory
Another option for obtaining rigorous results with ML is to use 
results from ML theory, instead of making numerical results rigorous. 

a
R1

b

c

Band

Band

R2

R3

~

Fig. 1 | Moves and singularities of ribbon knots. 
a, The three Reidemeister moves (R1, R2 and R3). 
b, The band move, depicted, needs to preserve 
orientations on the link. c, After applying a band 
move to the square knot, the result can be deformed 
(via Reidemeister moves) into the unlink with two 
components7.
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This promising approach is still in its infancy, and we will restrict our-
selves to summarizing a work in physics and mathematics that uses ML 
theory results on NN statistics or learning dynamics.

Central to our discussion will be the use of NN theory. A NN is 
simply a family of functions

ϕ : , (3)θ
n nin out→R R

with parameters θ, wherein one may choose a more general domain 
and co-domain, if desired. The input and output dimension of the 
NN are defined to be nin and nout, respectively. We will often suppress 
the subscript θ for notational simplicity. Specifying a NN requires 
choosing a concrete functional form, known as the architecture, that 
is usually a composition of simpler functions. When a NN is initial-
ized on a computer, however, initial values of the parameters must 
be chosen by sampling θ from an initialization parameter distribu-
tion P(θ). The architecture and P(θ), therefore, specify an ensemble 
of functions at initialization, and an actively researched question 
in ML theory relates to the statistics of these ensembles (see, for 
instance, ref. 10).

One aspect of NN statistics that we will discuss below is known as 
the neural network–Gaussian process (NNGP) correspondence. It was 
first discovered8 in the 1990s in the simplest case of a single-layer fully 
connected width-N NN, which in the case nout = 1, and there is no bias 
in the linear layers. The architecture and parameter densities given by

N N


















∑ ∑ϕ x w a w x P w

σ
N

P w
σ
n

( ) = ′ ( ), ( ′) = 0, , ( ) = 0, , (4)
i

N

j

n

i ij j
w w

=1 =1

′
2 2

in

in

where a : →R R  is an element-wise non-linearity that is part of the 
architecture choice, the parameter set θ in this case corresponds to 
the matrix components w ′i  and wij, σ is the standard deviation, and N  
denotes the normal (Gaussian) distribution. It has been shown that 
as N → ∞, ϕ is drawn from a Gaussian process8, which means that for 
any set of NN inputs {xi}, the associated vector of outputs ϕ({xi}) is 
drawn from a multivariate Gaussian distribution. Alternatively, in the 
case of continuous inputs, the functions ϕ(x) are drawn from a 
Gaussian distribution whose covariance is given by the two-point 

function G x y ϕ x ϕ y( , ) = [ ( ) ( )](2) E , where E denotes the expectation 
over the ensemble of functions, which may be computed57 by 
integrating over the NN parameters

E ∫G x y ϕ x ϕ y θ P θ ϕ x ϕ y( , ) = [ ( ) ( )] = d ( ) ( ) ( ). (5)(2)

The corresponding function distribution P(ϕ) ≔ e−S(ϕ) is specified 
in terms of the functional

∫S ϕ x y ϕ x G x y ϕ y[ ] =
1
2

d d ( ) ( , ) ( ), (6)n n (2) −1in in

known in physics as the (quadratic) action with Euclidean correla-
tor G(2)(x, y) that is an analogue of the Feynman propagator. The quan-
tity G(2)(x, y)−1 is defined via yG x y G y z δ x zd ( , ) ( , ) = ( − )n (2) −1 (2)in∫ . The 
NNGP correspondence has been extended to many more archi
tectures58, wherein the generality of the phenomenon arises from  
the ubiquity of the central limit behaviour in NNs, generalizing the 
notion of ‘width’. The higher moments are correlation functions 

EG x x ϕ x ϕ x( , …, ) = [ ( )… ( )]n
n n

( )
1 1  which may also be computed by a para

meter space integral akin to equation (5), or alternatively via free 
theory Feynman diagrams with propagator given by G(2)(x, y). Fore-
shadowing, the NNGP is a free field theory that one may turn into an 
interacting theory by including 1/N corrections.

Another result we discuss concerns NN training dynamics. It arises 
when a NN is trained by continuous-time gradient descent, in which 
case the dynamics of learning over time t (which is independent of 
network input x) are given by

∑ ∑ϕ x
t

x x
δL ϕ x

δϕ x
x x

ϕ x
θ

ϕ x
θ

d ( )
d

= Θ( , ′)
[ ( ′)]

( ′)
, Θ( , ′) =

∂ ( )
∂

∂ ( ′)
∂

, (7)
x D I I I′∈

where x xΘ( , ′) is called the empirical NTK, D is the full training dataset 
(not a mini-batch) and L is the loss function evaluated on inputs x ′. This 
equation arises from a short computation that utilizes only chain rules 
and the gradient descent update rule θ t L ϕ x θd /d = − ∑ ∂ [ ( ′)]/∂I x D I′∈ . 
The empirical NTK governs the gradient descent dynamics of the finite-
width NN but is difficult to compute because modern NNs have millions, 
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Fig. 2 | Performance comparison of the TRPO, A3C and RW algorithms on 
the unknotting problem. a, Fraction of unknots whose braid words could be 
reduced to the empty braid word as a function of initial braid word length ℓ. 
b, Average number of actions necessary to reduce the input braid word to the 

empty braid word as a function of ℓ. Figure reproduced with permission from 
ref. 53, CC-BY 4.0. A3C, asynchronous advantage actor–critic; RW, random walker; 
TRPO, trust region policy optimization.
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or billions, of parameters that evolve in time. However, for many archi-
tectures, the dynamics simplify in the large-N limit owing to the law of 
large numbers and a natural linearization, yielding

≕
→

x x x xlim Θ( , ′) Θ( , ′), (8)
N ∞

where x xΘ( , ′) is a t-independent deterministic kernel that may be com-
puted once and for all at initialization. Θ may be referred to as the NTK, 
or the frozen-NTK. If L is the mean-squared error loss, the dynamics 
for all times may be computed exactly analytically10 and one may com-
pute the expected prediction of an infinite number of infinite-N neural 
networks trained to infinite time, allowing a computation that otherwise 
would not be possible.

NN–FT correspondence
From the discussion in the previous section, it is clear that NNs describe 
ensembles of functions, akin to statistical field theories in physics. In 
this sense, a NN architecture and parameter distribution P(θ) give a 
new way to define a field theory. We focus on the applications of these 
ideas within physics, though using them for ML is also interesting (see, 
for instance, ref. 59).

By the NNGP correspondence, there are many NN architec-
tures that admit an N → ∞ limit in which the NN is drawn from a Gaussian 
process at initialization. Gaussians are determined by the mean and 
variance, that is,  their one-point correlation function 

∫G x ϕ x θ P θ ϕ x( ) = [ ( )] = d ( ) ( )(1) E  (which is often zero) and two-point 
correlation function G(2)(x, y) defined in equation (5). Any n-point cor-
relation function can be computed in parameter space, generalizing 
the two-point calculation57, via

∫G x x ϕ x ϕ x θ P θ ϕ x ϕ x( , …, ) = [ ( )… ( )] = d ( ) ( )… ( ). (9)n
n θ n n

( )
1 1 1E

Crucially, these integrals are explicitly computable for some NN 
architectures, yielding exact correlation functions. In the Gaussian 
case, G(1)(x, y) and G(2)(x, y) determine an associated Gaussian action, 
which takes the form in equation (6) in the case of vanishing one-point 
function. Given that action, the correlators may be computed via the 
Feynman path integral. Hence, the NNGP correspondence is a duality 
between a Gaussian process and a free field theory.

This idea can be generalized to a NN–FT correspondence60,61, 
which describes interacting, non-Gaussian theories (see ref. 11 for 
an introduction and summary of the current status of research on 
this topic). Central to the duality is the idea that field theories may be 
considered in either the parameter space or function space descrip-
tions. For example, defining a field theory by a NN architecture and 
parameter distribution makes the parameter description manifest, 
but determining the associated interacting action S[ϕ] that general-
izes equation (6) of the NNGP correspondence requires some work. 
Conversely, one could define a field theory in terms of an action S[ϕ], 
as in QFT classes, and then attempt to determine a NN architecture and 
parameter distribution that realizes it.

These field theories are usually Euclidean, because most NNs are 
defined on nR . If the correlators of the Euclidean theory satisfy the 
Osterwalder–Schrader axioms62, the theory can be continued to a 
Lorentzian signature, defining a NN QFT (ref. 61). For other physics-
motivated NN–FT works, see refs. 63–65, and see ref. 66 for work that 
relates NN dynamics and cosmological dynamics. For ML work on 
finite-width corrections, see ref. 59 and references therein, and the 
introduction of ref. 11 for a discussion of more recent literature.

We emphasize that the duality works both ways and a theory may 
be studied in parameter space even if the action is unknown! In other 
words, the properties of a field theory are determined simply by the 
architecture and P(θ). To illustrate this, consider a toy model, wherein 
the functions that describe the fields are simply linear functions

R R→ϕ ϕ x θx: , ( ) = , (10)

where the slope θ is sampled from some distribution P(θ). The correla-
tors in equation (9) can be computed exactly in this case, 
G(n)(x1, …, xn) = μn x1…xn, where μ θ= [ ]n θ

nE  are the moments of P(θ). 
The theory has non-Gaussian interactions when P(θ) is non-Gaussian, 
which means that its moments are non-zero for at least some n > 2. 
Because the Gaussianity of a theory is a consequence of the central 
limit theorem (CLT), such interactions arise by breaking the assump-
tions of the CLT: one can either keep N finite or break statistical inde-
pendence of parameters in P(θ). Put differently, the change of P(θ) in 
parameter space leads to a modification of the function space action 
that can manifest itself in interaction terms11,61.

We will see an example, but before that, let us discuss symme-
tries67 in the NN–FT correspondence, using again the example in equa-
tion (10). One can see from the exact correlators G(n)(x1, …, xn) that the 
theory is scale invariant, but not translation invariant. If μ2n+1 = 0, P(θ) 
is even and the theory is parity invariant, because the negative sign in 
x → −x may be absorbed into a redefinition of θ. Thus, symmetries of 
the architecture and parameter space distribution lead to symmetries 
in function space and vice versa.

To summarize, even without knowing the action, one can do the 
following:

•	 determine symmetries of the underlying field theory from the 
architecture and symmetries of P(θ),

•	 introduce interactions by manipulating P(θ) or the width N such 
that it breaks the assumptions of the CLT, and

•	 determine interactions by computing parameter space integrals 
over P(θ).

In fact, by inverting the correspondence outlined above, one 
can find the action from the parameter space description of the 
NN–FT correspondence by computing couplings in terms of Feynman 
diagrams, whose vertices are the connected correlators11.

To illustrate how a change in P(θ) turns on interactions, we look at 
a canonical example in QFT known as ϕ4 theory. This theory adds an 
interaction term S xϕ x= d ( )λ n

int 4 !
4in∫ , where λ is the coupling constant, 

to the free scalar action ∫ ◻S ϕ d x ϕ x m ϕ x[ ] = ( )( + ) ( )n 2in , where ◻ = ∂i∂
i 

and m is the mass, a specification of the Gaussian process action in 
equation (6). A NN field theory realizing the free scalar has the 
architecture
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with parameters θ = {a, b, c} drawn from
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Here, PG(bi) and PG(ci) are uniform distributions over an  
nin-dimensional ball of radius Λ and the interval [−π, π], respectively. 
It is perhaps not surprising that the architecture is a normalized plane 
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wave, mirroring the canonical functional form for non-NN treatments 
in quantum field theory, though other NNGP realizations of the free 
scalar might exist. Adding the λ-dependent term Sint to the function 
distribution P[ϕ] corresponds, in the parameter space description, to 
a λ-dependent deformation of the parameter distribution

∫P θ P a b c P a P b P c e( ) = ( , , ) = ( ) ( ) ( ) , (13)
G G G

λ d xϕ x−
4!

( )d
a b c, ,

4

which only depends on θ = {a, b, c} through their distributions and 
through ϕa,b,c in equation (11). The existence of interactions in the NN 
picture arises owing to the breaking of statistical independence via the 
parameter distribution deformation, violating the assumption of 
independence in the CLT. The result is standard Euclidean ϕ4 theory 
with cut-off Λ, wherein the cutoff Λ appears in the NN description via 
Bd

Λ , the ball of b-type parameters. This NN–FT recovers the NNGP of 
equation (6) in the limit λ → 0 (ref. 61), which then has only a single 
non-vanishing moment,

G p
p m

( ) =
1
+

, (14)(2)
2 2

that is, λ → 0 recovers a free scalar with mass m.

Metric flows with NNS and the Ricci flow
If a NN is used to represent a metric gij on a Riemannian manifold M, 
the training dynamics of the NN corresponds to a flow in the space of 
Riemannian metrics. We will characterize this flow, following ref. 68.

This idea is partly motivated by recent results on numerical met-
rics on CY manifolds69–74. Physically, a CY manifold is a solution to the 
leading-order string theory equations of motion, and therefore, they 
are one of the most-studied types of compactification manifolds for 
yielding a 4D low-energy effective theory. The particle content and 
low energy couplings are determined at leading order by the geometry 
and topology of the CY manifold. Mathematically, a CY manifold is a 
complex Kähler manifold with vanishing first Chern class c1(TM) = 0, 
where TM is the tangent bundle. By the theorem of Yau75, any CY mani-
fold with fixed Kähler class admits a Ricci-flat Kähler metric known as 
the CY metric, which is unique due to a theorem of Calabi76.

The proof is non-constructive, however, and zero non-trivial 
explicit CY metrics are known for compact M, even though CY mani-
folds have been studied by mathematicians and string theorists  
for decades. These facts motivate the use of numerical techniques, for 
example, via Donaldson’s algorithm77, or more recently via NNs that 
represent the metric69–74, which give the current state-of-the-art results. 
For instance, one could train the NN gij to minimize a loss given by

∑L g R g[ ] = | ( )| , (15)
i j

ij
,

2

which would drive gij toward the Ricci-flat metric (Rij is the Ricci tensor). 
In practice, it is more efficient to optimize surrogate losses that build in 
more structure of the problem, for instance, rephrasing the problem as 
a second-order differential equation of Monge–Ampère type75.

Returning to flows, if a NN represents a metric on M and it is trained 
to approximate the CY metric, then the CY metric is a fixed point of the 
NN metric flow. Another famous metric flow is the Ricci flow13 given by

g x

t
R x

d ( )

d
= −2 ( ), (16)ij

ij

where Rij(x) is the Ricci tensor. The CY metric is also a fixed point of the 
Ricci flow because it is Ricci-flat, Rij(x) = 0. Are these two flows related? 
A priori, they look very different because the NN metric flow is defined 
by gradient descent on a scalar loss functional (gradient flow) and the 
Ricci flow has a tensorial metric update that is not obviously a gradi-
ent flow. However, in his work that proved the 3D Poincaré conjecture, 
Perelman12 showed that a t-dependent diffeomorphism of the Ricci flow 
is a gradient flow defined by

g x

t
δF ϕ g

δg x
R x ϕ x
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d
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ij
ij i j

M
ϕ2 −∫

where a dilaton field ϕ(x) that has its own dynamics dictated by δF/δϕ 
is introduced. Because this version of the Ricci flow is a gradient flow, 
it might be possible to realize it as a NN metric flow.

Motivated by these results, Halverson and Ruehle68 devel-
oped a theory of NN metrics flows, assuming that a NN represents 
a metric gij on M and the metric is trained by updating the param-
eters via gradient descent with respect to a scalar loss functional 
L[ g]. The dynamics of the metric at x may be computed either  
from a finite set of points {xi} sampled according to some measure on 
M, or in the continuum (infinite-data) limit. In the continuum case, the 
metric flow is given by

∫

≔ ∑

g x

t
ν x x x

δL g x
δg x

x x
g x
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d
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where x xΘ ( , ′)ijkl  is the empirical metric-NTK that is derived in the same 
way as the NTK, but keeps track of the tensorial indices associated to 
the metric. In practice, a natural choice is to take the measure to be the 
volume measure, dν = dV. This general equation for NN metric flows is 
markedly different from Perelman’s formulation of Ricci flow. Unlike 
the Ricci flow, a general NN metric flow is governed by the kernel Θijkl 
that (1) changes the nature of the update equation as it evolves, (2) is 
non-local, communicating loss fluctuations at x ′ to metric updates at 
x, and (3) mixes components of the metric in a non-trivial way owing 
to the tensor indices.

To obtain Perelman’s Ricci flow, one must fix the kernel in time, 
induce locality and eliminate component mixing. To fix the kernel 
in time, take an N → ∞ limit in which the NTK becomes frozen (see 
ref. 78 for various simple architectures that do this). In such a case, 
the dynamics becomes

g x

t
ν x x x

δL g x
δg x

d ( )

d
= − d ( ′) Θ ( , ′)

( ( ′))
( ′)

, (19)ij

X ijkl
kl

∫

where Θijkl is the metric-NTK in the frozen N → ∞. We call these dynam-
ics an infinite NN metric flow. Architectures for which the frozen  
metric-NTK is of the form x x x δ x x δ δΘ ( , ′) = Ω( ) ( − ′)ijkl ik jl  for some  
function Ω eliminate non-locality and component mixing in the kernel, 
simplifying the dynamics to

g x

t
x

δL g x
δg x

d ( )

d
= − Ω( )

[ ( )]
( )

. (20)ij
ij
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We call these dynamics a local NN metric flow. For any architecture 
giving such a flow (for which an explicit example is presented in ref. 68), 
Perelman’s formulation of the Ricci flow is obtained simply by choosing 
the loss to be L g x F g x[ ( )] = [ ]/Ω( ).

NTK theory gives a natural characterization of metric flows 
induced by NN gradient descent, demonstrating that they are an impor-
tant generalization of the Ricci flow. In particular, for finite NNs, the 
metric evolves according to a non-local, time-dependent kernel that 
mixes components.

Renormalization group flows, optimal transport and Bayesian 
inference
ML theory has also begun to interface with physics in ways that provide 
new insights into renormalization in field theory, using ideas from 
Bayesian inference and diffusion.

Diffusion models have become popular generative models; for 
example, to generate one-megapixel images of galaxies, one can draw 
randomly from a 3M-dimensional pixel space (3M because there are 
three colours per pixel), subject to the constraint that the drawn pixels 
lead to an image of a galaxy. Achieving this requires drawing from a 
complicated distribution in pixel space. Diffusion models go the oppo-
site route: starting from images of galaxies, the pixels undergo diffusion 
and mix until they look like random noise. Inverting this process then 
leads to a map from noise to images of galaxies. In terms of probability 
distributions, one can think of the generation process or the inverse 
diffusion process as changing the distribution from seemingly random 
pixels to galaxy picture pixels and the flow in distribution space as an 
(optimal) transport problem.

From a physics perspective, one can think of diffusion as ‘destroy-
ing’ information in the image; removing data points from an inference 
problem has a similar effect. As a process, this resembles renormaliza-
tion group flow in QFT, wherein information is lost through coarse 
graining which forgets about irrelevant operators. Keeping track of 
these operators leads to the notion of an exact renormalization group 
flow. This idea is used in three studies79–81 to connect the exact renor-
malization group flow to an optimal transport and Bayesian inference 
problem, respectively. Phrasing in terms of Bayesian inference, wherein 
the information is added through updating the prior as new observa-
tions come in, allows to give an information-theoretic meaning to 
exact renormalization. By providing new ways to understand and think 
about renormalization, these works may lead to new insights into the 
structure of QFTs.

Outlook
In this Perspective, we have discussed zero-error applications of ML to 
theoretical physics and pure mathematics. These fields are late adop-
ters of ML because they require rigor (by which we mean zero-error 
results) and interpretability, whereas in general, ML techniques are 
often stochastic, error-prone and blackbox. The application of ML 
methods to these fields, thus, requires rethinking and modifying tech-
niques that are readily applied in other natural sciences. We focused 
on two main directions: making applied ML rigorous and applying 
theoretical ML. We exemplified the former with conjecture generation 
and rigorous verification by RL, and the latter using NN theory.

In conjecture generation, a human is brought into the loop to 
interpret what the ML algorithm has learned and turn it into a conjec-
ture which can then be refined and proven by domain experts. This 
has been done in supervised ML: if a NN or other algorithm (symbolic 
regression or decision trees) can learn a high-accuracy map from inputs 

to the labels, for which no known relation exists, this hints at a new 
connection. Given that setting up such supervised learning problems 
can be done very quickly, this allows for scanning theoretical data for 
new relations. We gave examples of this idea in string theory, algebraic 
geometry and knot theory.

A second avenue is to use RL for problems in mathematics. The idea 
is not to attempt to whitebox the ML algorithm but instead to look at 
episode rollouts of the RL agent to infer the solution strategy learned by 
the agent. In particular, RL rollouts can be used to obtain (provably cor-
rect) truth certificates for decision problems of the type ‘Does object 
O have property X?’. RL is useful in such cases because one can set up 
an RL algorithm that manipulates object O until property X is manifest 
and the algorithm reaches a terminal state. The rollouts of the episode 
that lead to the terminal state are then the truth certificate for the deci-
sion problem. Rollouts were used to rule out hundreds of proposed 
counterexamples to SPC4, and to establish sliceness for new knots.

A different approach is to use ML theory to obtain rigorous results, 
entirely avoiding the error introduced by applied ML techniques. For 
instance, owing to the CLT, the statistics of the functions expressed 
by NNs become tractable in the infinite-parameter regime; they are 
draws from Gaussian processes. In the context of physics, this leads to 
a correspondence between NN and statistical field theories, wherein 
the infinite-parameter regime defines generalized free field theories, 
and leaving this regime corresponds to turning on interactions. This 
correspondence provides a new definition of a field theory, motivated 
by ML theory, and therefore opens a different approach to the study 
of new and existing field theories. We exemplified a few aspects of this 
correspondence, including the role of the CLT, the origin of symmetries 
and the realization of ϕ4 theory as a NN field theory. Hopefully, this cor-
respondence can lead to a better understanding of non-perturbative 
QFTs in the future, which at present is one of the major open problems 
in field theory.

We also discussed the theory of flows in the space of Riemannian 
metrics induced by gradient descent when the metric is modelled as 
a NN. This theoretical framework encompasses, for instance, recent 
empirical results that use NNs as state-of-the-art approximations to CY 
metrics. In the infinite-parameter limit, the metric flow simplifies and 
NTK theory may be used. Under some additional architecture assump-
tions, the flow may be made local, and Perelman’s formulation of Ricci 
flow as a gradient flow is realized as a special case of NN metric flows.

Further progress with ML techniques to obtain zero-error rigorous 
results could proceed along a number of directions.

One avenue is to extend or systematize the techniques discussed 
in this Perspective. For instance, conjecture generation and subse-
quent theorem proving is effective but still haphazard in process; 
it would be advantageous to have a more systematic framework for 
conjecture generation, potentially in collaboration with automated 
theorem-proving systems. Further developments that obtain rigorous 
results by using ML theory are also natural. In the context of the NN–FT 
correspondence, one might wish to study conformal field theories, 
fermions or gauge fields.

A second avenue is to expand the types of ML techniques used in 
obtaining rigorous results. For instance, we have discussed applica-
tions of supervised learning, RL, and ML theory, but deep generative 
models are notably absent. A natural application is to generate inter-
esting examples that aid in obtaining rigorous results. For example, in 
certain conjecture generation applications23,27, the initial ML-inspired 
conjectures have counterexamples obtained cleverly by humans that 
are used to refine the conjecture; it would be useful to automate the 
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counterexample-finding process with a generative model. In other 
applications wherein rigor is sought, it would be useful to have a gen-
erative model that could produce examples conditional on certain 
properties. For instance, in the context of the discussed approach to 
SPC4, one would like to have a generative model that produces pairs 
of knots (K1, K2) with the same zero surgeries, subject to the constraint 
that K2 definitely has a slice obstruction, and K1 has no known slice 
obstruction. This was not the case in ref. 7, and such a generative model 
has the advantage that if K1 can be shown to be ribbon or slice for any 
such pair, then SPC4 is false.

Published online: 8 April 2024
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