
Grover’s Implementation of Quantum Binary Neural
Networks

Brody Wrighter∗, Sonia Lopez Alarcon†

KGCOE Department of Computer Engineering, Rochester Institute of Technology

Rochester, New York, United States of America

Email: †slaeec@rit.edu

Abstract—Binary Neural Networks (BNNs) are the result of
a simplification of network parameters in Artificial Neural
Networks (ANNs). The computational complexity of training
ANNs increases significantly as the size of the network increases.
This complexity can be greatly reduced if the parameters of
the network are binarized. Binarization, which is a one bit
quantization, can also come with complications including error
and information loss.

The implementation of BNNs on quantum hardware could
potentially provide a computational advantage over its classical
counterpart. This is due to the fact that binarized parameters
fit nicely to the nature of quantum hardware. Quantum su-
perposition allows the network to be trained more efficiently,
without using back propagation techniques, with the application
of Grover’s Algorithm for the training process. This paper looks
into two BNN designs that utilize only quantum hardware, as
opposed to hybrid quantum-classical implementations. It also
provides practical implementations for both of them. Looking
into their scalability, improvements on the design are proposed
to reduce complexity even further.

Index Terms—Binary Neural Networks, Grover’s algorithm,
Machine Learning

I. INTRODUCTION

ARTIFICIAL Neural Networks (ANNs) are a form of

Machine Learning (ML) able to make decisions or clas-

sifications by using a set of tunable parameters (weights) in

a network of artificial neurons. The key to reaching accurate

decision making or classification comes from finding the right

set of weights by exposing the ANN to a training set of inputs,

so it can then classify new inputs on its own. Finding these

network’s weights is known as the training of the ANN, and

comes with growing computational cost as the network or

training data set grows.
Much research is focused on finding efficient ways of

training ANNs, or efficient ANN approaches, hoping to re-

duce this computational cost of the training process without

sacrificing the accuracy of the classification process. One of

these approaches is Binary Neural Networks(BNN), which

restricts the weights of the network to binary values. While

BNNs can reduce the complexity of Neural Networks(NNs),

efficient training is a challenge, given the step function nature

of its input/output model, the potential loss of accuracy of

this simplification, and, in any case, the still large data sets

necessary for effective training. Various approaches are being

explored, attempting to reduce this complexity or computa-

tion time further. One such method is the use of Quantum

Hardware to implement BNNs.

BNNs are particularly suitable for quantum implementa-

tions, given the binary nature of the weights. The problem of

finding the right set of weights can be framed as a Grover’s

search algorithm, in which the basis encoded solution(s) will

stand out among all other possible combinations with the

highest probability. This approach was already proposed [1],

but naive implementations can lead to poor scalability of

the quantum circuit. Two key parameter must be taken into

account when evaluating the scalability of the designs: width

and depth of the quantum circuit. Designing the oracle of the

Grover’s search algorithm to implement this specific search is

the key and challenging piece.

This work takes a close look at the previously proposed

algorithms [1], and expands on it by significantly reducing

the complexity of the original implementation. Two distinct

designs based on the Grover’s Search are explored: one

design uses Phase Estimation, while the other uses Register
Counting to train the neural network. The new work includes

implementations and two proof of concept test cases on real

binary classification.

II. BACKGROUND AND RELATED WORK

Artificial Neural Networks, are inspired by the brain’s

complex network of ∼86 billion neurons, and are the most

successful of the Machine Learning implementations. When

neural networks are exposed to data sets, they are able to

”learn” from this data set to then make decisions or clas-

sifications on items that are new to them. Neural networks

have made significant achievements and have led to steady

improvement in the accuracy of the models for tasks like object

classification [2], voice recognition [3], machine translation

[4], and more. However, these improvements come at the

cost of the models’ size and complexity, with today’s state-

of-the-art models containing 100s of billions of parameters.

Moreover, implementing training and inference of these state-

of-the-art models on conventional CPU/GPU hardware incurs

large overheads that are incompatible with application domains

that have strict size, weight, and power (SWaP) constraints.

Neural network quantization is a particularly attractive solution

due to the super-linear reduction in compute resources with

linear scaling of parameter bits. However, as neural network

parameter precision is reduced, training with gradient descent

becomes challenging due to the discrete nature of the loss

landscape [5]. Therefore, methods that are able to efficiently

313

2023 IEEE International Conference on Quantum Computing and Engineering (QCE)

979-8-3503-4323-6/23/$31.00 ©2023 IEEE
DOI 10.1109/QCE57702.2023.00043

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 Q

ua
nt

um
 C

om
pu

tin
g

an
d

En
gi

ne
er

in
g

(Q
CE

) |
 9

79
-8

-3
50

3-
43

23
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

Q
CE

57
70

2.
20

23
.0

00
43

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

explore discrete parameter spaces are required to effectively

scale neural network quantization.

The use of Quantum Computing as an accelerator of ma-

chine learning algorithms has been proposed as a hybrid

algorithm. In particular, the use of Variational Quantum Eigen-

solver algorithms [6], [7] to solve the training of quantum

neural networks. This approach and the Quantum Approximate

Optimization Algorithm [8], [9] are quantum-classical imple-

mentations in which an initial quantum ansatz is implemented

in a parameterizable quantum circuit, and evaluated against

a classical cost function to adjust the quantum parameters.

This is a Hamiltonian encoded quantum approach, for which

practical uses are still being explored, with no quantum

advantage being demonstrated to date. The work around this

set of algorithms is extensively mathematical, exploring the

many theoretical challenges of the topology in the quantum

optimization algorithm, and of the extraction of information

in the NISQ era [10], [11], [12], [13], [14], [15], [16], [17].

The work proposed and discussed in this paper is on the

other hand, fully quantum, based on Grover’s search algorithm.

Grover’s algorithm [18] was initially proposed as a search

algorithm, but under the right angle, it can be reduced to the

search for a solution of a given optimization problem. This

approach is discussed in this paper, with special attention to

the scalability of the problem.

III. GROVER’S IMPLEMENTATION OF QUANTUM BINARY

NEURAL NETWORKS

Fig. 1: Summarizing representation of Grover’s algorithm

circuit. The qubit register is placed in a superposition state.

The oracle applied to the superposition state results in |f(x)〉.
If the target qubit is in the |−〉 state, the phase kickback

effect then leaves the target qubit unaffected and changes the

quantum register’s state to (−1)f(x) |x〉. The diffuser through

multiple executions amplifies the amplitudes of the right states

out of the superposition.

Grover’s algorithm [18] is one of the first quantum algo-

rithms to show true potential acceleration when compared to

similar classical problems. Its goal is to find a specific element

in an unsorted list of elements using a qubit-based quantum

computer. Grover’s algorithm can search a list of N elements

using O(
√
N) steps, compared to the O(N2) steps needed for

the average number of comparisons to search an unordered list

using a classical computer.

Grover’s algorithm works by iteratively increasing the am-

plitude of the solution states out of a superposition of states.

The maximum amplitude of the probability for the solution

states is achieved at approximately
√
N iterations. Grover’s

algorithm uses an oracle to determine which states will be

amplified in each iteration. The oracle, along with the phase

kickback with target qubit set to |−〉, results in (−1)f(x) |x〉.
Applying the oracle and the diffuser further increases the

solution states’ probabilities of being measured. The general

structure of Grover’s algorithm is shown in Figure 1. The

basis state with higher probability corresponds to the search’s

solution.

Hence, this algorithm aids with the identification of solu-

tions encoded as strings of 0s and 1s. In this work, Grover’s

algorithm is used as a mechanism to train a Binary Neural

Network (BNN) by finding the set of weights that will result in

the best classification accuracy. The problem is about correctly

defining the oracle that will amplify the right set of binary

weights.

A. Quantum Phase Estimation Binary Neural Network Imple-
mentation

Figure 3 summarizes the full implementation proposed in

[1], broken down into three parts. Being this a Grover’s search

algorithm, it can be broken down into initialization (before

the O border), oracle, and diffuser (D block after the O’
border.) The oracle is represented by all the computational

steps between O and O’.

input 0

input 1

output

weight 0

weight 1

Fig. 2: Two input example neuron

1) Qubit registers and initializations: Figure 3 implements

a two input neuron example such as the one shown in Figure

2, and it uses six different sets of qubits:

• marker: Grover’s must-have qubit to enable phase kick-

back, initialized to |−〉.
• weight: a (two) qubit register that contains the (two) bi-

nary weight vector, initialized to a uniform superposition.

The diffuser is applied at the end to this register and will

contain the solution to the training problem.

• input: a (two) qubit register containing the (two) binary

inputs to the neuron. In a NN, these come from other

neurons, and have corresponding weights associated with

them.

• output: the output produced by the neuron.

• expected output: the expected output, known and pro-

vided for training.
314

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

• QPE register: register of p qubits, used for quantum phase

estimation, and initialized to a uniform superposition. p
has an impact on the precision of the estimation.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

marker |0〉 X H |−〉

QPE Reg0 |0〉 H

QPE Reg1 |0〉 H

QPE Reg2 |0〉 H

weight0 |0〉 H

DS DS DS DS DS DS DS

weight1 |0〉 H

input0 |0〉
input1 |0〉
output |0〉

expected output |0〉

O

(a) First part: The controlled-DS blocks contain the training dataset
implementations, as shown in Figure 4.

.

.

.

.

.

.

.

.

.

.

marker |−〉

QPE Reg0

QFT † QFTQPE Reg1

QPE Reg2

weight0

weight1

input0

input1

output

expected

(b) Second Part: Using IQFT and QFT to apply the accuracy threshold.
IQFT converts the accumulated phases to a binary encoding with the
least significant bit being the top most qubit.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

marker |−〉
QPE Reg0

QPE Reg1

QPE Reg2

weight0

DS−1 DS−1 DS−1 DS−1 DS−1 DS−1 DS−1

D

weight1

input0

input1

output

expected output

O’

(c) Third Part: Uncomputing the controlled-DS blocks, followed by
Grover’s diffuser applied on the weights.

Fig. 3: Complete original QBNN circuit implemented through

Quantum Phase Estimation (QPE) for a two weight, two input,

one output example. The three parts top to bottom can be

connected left to right. The steps between O-O’ represent the

oracle that will help identify the correct set of weights to

provide the desired classification accuracy.

2) Oracle: The idea behind this implementation is to

accumulate phase rotations on the QPE Register when the

output and expected output are equal, thanks to the phase

kickback coming from the dataset training (DS blocks in

Figure 3a). Then, quantum phase estimation is used to identify

the sets of weights that produced correct outputs above a

certain accuracy threshold (Figure 3b). Last, the dataset blocks

are un-computed (Figure 3c.)

3) Dataset (DS) controlled unitary: The controlled DS
unitary contains the full training dataset for the NN. Figure

4 shows the training for the input values 10 with expected

output 1, and 11 with expected output 0. X-gates implement

and reverse these specific training datasets.

. . .

. . .

. . .

. . .

. . .

. . .

weight0 |+〉

QBNN QBNN

weight1 |+〉

input0 |0〉 X X X X

input1 |0〉 X X

output |0〉

expected output |0〉 X X

1 2 3

Fig. 4: Dataset (DS) implementation. The QBNN circuit

shown above represents the circuit in Figure 5. This circuit

is repeated for each entry in the training dataset. The dataset

binary values are implemented with the X-gates placed before

and after each QBNN block.

The QBNN blocks contain the actual Quantum Binary

Neural Network implementation, as depicted in Figure 5 for a

two input, two weight example. They take care of the training

of the NN, for each dataset that will determine the values

for the weights. Usually in NNs, the inputs and weights are

multiplied (ai ∗ wi), however, in this QBNN the operation is

ai⊕wi which is implemented with a CNOT operation among

the corresponding input and weight. The different computation

does not change the result of the training, as long as the

training is done consistently to this approach. A Toffoli gate

implements the activation function of the neuron, in this case

a discrete activation function that assigns a 1 value to the

output if both inputs are 1. Next, a phase of π
n is produced

in two cases: when the expected output and the neuron output

are both equal to 1, or when the expected output and neuron

output are both equal to 0, where n is the size of the training

dataset. Last, inputs and weights are returned to the original

state, reversing the computations.

Neurons in this shape are connected to form a Neural

Network, accumulating phase on the right sets of binary

weights out of the superposition. Repeated instances of these

QBNN are used to apply the training dataset (DS) (Figure

4), and multiple instances of these DS will accumulate an

approximate phase (precision depending on the number of

qubits in the QPE register [19]) through phase kickback on

the QPE register (Figure 3).

4) Quantum phase estimation and diffuser: The rest of

the algorithm (Figures 3b and 3c) completes the quantum

phase estimation (QPE) through a QFT−1 applied to the QPE

register to transfer the phase to a binary number. The phase

is really expressed as a multiplier θ applied to the π
n . An

accuracy threshold is applied, to set a minimum phase value

above which the set of weights is expected to behave. For

example, as shown in Figure 3b, if the expectation is that out
315

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

π
n

π
n

weight0

weight1

input0

input1

output

expected output

Fig. 5: Quantum phase estimation binary neural network two

input neuron example. This circuit implements the neuron

shown in Figure 2 for the QPE training implementations.

of n = 4 training cases, all four of them will be correct, then

a triple-controlled NOT gate encoding the number 4d = 100b
will mark (as in the phase inversion of Grover’s search) all

weight sets that result in θ = 4 accumulated in a phase 4 ∗ π
n .

The only thing left to do is to revert all the steps (QFT and

DS−1) to then apply the diffuser that will grow the probability

of the correct binary weight sets. O(
√
N) repetitions of these

steps will be sufficient to measure them, being N the size of

all possible weight combinations.

B. Improved Quantum Phase Estimation QBNN

There are two improvements to the Quantum Phase Estima-

tion implementation of the Quantum Binary Neural Network:

The first one is just the elimination of an unnecessary ancilla

qubit that was used in the original design for the phase

accumulation. Figure 5 already shows the design without that

extra qubit and the original design and discussion can be seen

in the original paper [1]. The second improvement removes

the many repetitions of the DS blocks, as explained next.

1) Dataset (DS) phase accumulation: In Figure 3 the

controlled DS blocks —with potential phase shift φ = π
n—

are applied repeatedly to the QPE register for quantum phase

estimation [19], depending on the bit significance. As in the

example (Figure 3), three QPE qubits require 1 + 2 + 4
DS blocks. If a fourth qubit were necessary to improve

the precision of the phase estimation, an additional eight

(1+2+4+8 total) DS blocks would be necessary. However,

with this information, it is possible to define the blocks with

the specific phase rotations needed, instead of accumulating

φ = π
n increments in each qubit. This is shown in Figure 6.

The DS blocks now implement a specific 2iφ, where i is the

significance of the qubit and φ = π
n , and n is the number of

cases in the training set, known beforehand. Only p controlled

DS blocks are necessary for a QPE register with p qubits, as

opposed to

p−1∑

i=0

2i

DS blocks for QPE register with p qubits. This reduces the

depth of the design very significantly, as it will be shown in

Section IV.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

marker |0〉 X H

QPE Reg0 |0〉 H

QPE Reg1 |0〉 H

QPE Reg2 |0〉 H

weight0 |0〉 H

DSφ DS2∗φ DS4∗φ

weight1 |0〉 H

input0 |0〉
input1 |0〉
output |0〉

expected output |0〉

1 2

Fig. 6: The QPE Improved training circuit follows the same

structure and order as the original QPE training circuit shown

in [1]. The improvement of this circuit can be seen within

the QPE portion of the training. Due to the fact that the

accumulation oracle is a set phase based on the number of

training dataset entries, the oracle phase can simply be doubled

for each higher significance qubit in the QPE register as seen

above. This reduces the depth of the circuitry greatly.

C. Quantum Register Counting Binary Neural Network Imple-
mentation

The Register Counting implementation follows a similar

structure to the Quantum Phase Estimation case. The differ-

ence, however, is that instead of accumulating phase to then

be estimated through QPE, this RC approach simply keeps a

count of the number of times that a set of weights returns an

output equal to the expected output. Figure 7 summarizes this

approach. Due to the fact that the RC implementation records

each successful weight string with a binary encoding, per-

qubit phase accumulation is not necessary. This means that the

training dataset only needs to be implemented once before the

accuracy threshold. The caveat is that the Register Counting

implementation needs to have enough qubits to represent the

number of training data in a binary encoding.

The QBNN circuit is shown in Figure 8. Each QBNN

block in this case contains the circuitry necessary to increment

the counting register by one on each correct output-expected
output match. Just like in the QPE case, the weights are

applied to the inputs through CNOT gates (ai⊕wi), followed

by a threshold that implements the activated function, a Toffoli

gate, in this case, implements output = 1 when both ai ⊕wi

are equal to 1. When both output and expected-output are equal

(00 or 11) then an incrementing controlled unitary is applied

to the counting register. The incrementing unitary is shown in

Figure 9. The activation function and XOR gates are reversed

to train the next data point.

After the system has been trained on all training data

points, the accuracy threshold is applied, just like in the

QPE case. Last, all computations are un-computed before
316

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

marker |0〉 X H |−〉

RC Reg0 |0〉

QBNN QBNN

RC Reg1 |0〉
RC Reg2 |0〉

weight0 |0〉 H

weight1 |0〉 H

input0 |0〉 X X X X

input1 |0〉 X X

output |0〉

expected output |0〉 X X

O

(a) First Part: The Circuit is initialized like any Grover’s search.
The QBNN block implements the increments for each correct output-
expected output match, and it is applied on each data point of the
training dataset implemented with x-gates. The counting register is
directly related to the maximum size of the training dataset. The above
example can only handle up to 7 dataset entries.

marker |−〉 . . .

RC Reg0 . . .

Q
B
N
N

−
1

Q
B
N
N

−
1

DRC Reg1 . . .

RC Reg2 . . .

weight0 . . .

weight1 . . .

input0 . . . X X X X

input1 . . . X X

output . . .

expected output . . . X X

O’

(b) This circuit continues the circuit shown in 7a. The triple-controlled
NOT gate implements the accuracy threshold for the QBNN training,
in this case the threshold is 4d = 100b. Other thresholds can be set
by varying the sets of CNOT gates. The training is then uncomputed
to return the states of all qubits to their original state. The Grover’s
diffuser is then applied.

Fig. 7: QBNN implemented with the Register Counting ap-

proach.

applying the Grover’s search diffuser. Reversing the order of

the incrementing circuit in Figure 9 will decrement the RC

register by one for each correct training case.

IV. SCALABILITY RESULTS

The scalability of these implementations is crucial to prove

their usefulness. The original design proposed in [1] could

not be applied to any practical implementations due to their

poor scalability, from two perspectives: its width, or number

of qubits required; and its depth, or number of computational

steps necessary for completion. This scalability had such an

impact on the circuit’s width and depth of the original imple-

mentation that its simulation was prohibitive. In this work, the

size of these designs, lack of access to large enough quantum

hardware, and current hardware’s noise levels do not allow

for actual performance metrics. However, depth is a good

RC Reg0

Uinc UincRC Reg1

RC Reg2

weight0

weight1

input0

input1

output |0〉
expected output

Fig. 8: The complete register counting QBNN implementation

is shown, implementing the 2-input neuron example. Here the

RC oracle is implemented instead of the QPE oracle.

. . .

. . .

. . .

...
.

. . .

n

X

Fig. 9: Register incrementing circuit. When a number n is

presented at the input, n + 1 is produced at the output. This

circuit can then be converted to a controlled circuit and used

as the oracle for the RC QBNN.

first approximation to performance, given that it represents

the number of steps to completion. Therefore, lower depth

numbers are better from a performance perspective. They are

also better from a noise perspective, since depth challenges

coherence times. As this work will show in Section V, the

new implementations allowed to demonstrate their accuracy

on a practical problem, convolution edge detection, with a

significant reduction of the descriptive depth of the circuit

design.

Therefore, three different implementations are compared in

this section:

• Quantum Phase Estimation BNN: This is the original

implementation as presented in [1], in which the neurons

accumulate phase on the QPE register on each correct

output-expected output match.

• Improved QPE BNN: This is the improved QPE version

proposed in this work. Since the phase rotation in each

QPE qubit is known, and only dependent on the training

dataset size, there is no need to repeat generic DS blocks,

but implementing the right rotation is sufficient.

• Register Counting BNN: This new implementation of the

QBNN uses a direct binary count of the number of correct

outputs rather than a phase accumulation. This allows to

train the NN with the dataset only once, as opposed to

the repeated training for each phase in the cases above.
317

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

There are multiple parameters that need to be balanced in

the design of Binary Neural Networks, and that have an impact

on the width and depth of the circuit’s design. These are:

• Size of the network’s architecture: number of nodes per

hidden layer and number of hidden layers,

• Activation function,

• Size of the training dataset, and

• Quantum phase estimation precision.

An approximate depth (in number of computational descrip-

tive steps) and width have been calculated through expressions

that depend on the parameters above. These expressions are

not shown here for the sake of space, and for being all different

factors rather convoluted to explain. Details can be found in

[20]. The next sections explain their trends and the reasons

behind them.

A. Size of the network’s architecture

Two aspects are considered regarding the size of the neural

network: the number of nodes per hidden layer and the number

of hidden layers. With the parameters shown in Table I, the

number of nodes per hidden layer and the number of hidden

layers were varied.

QPE, RC Qubits 5
Dataset Size 16
Grover’s Iterations 1
Accuracy Threshold 3
Activation Function Threshold 2

TABLE I: NN parameters used for the variation of hidden

layer nodes.

The width, or number of qubits required, is shown in Figure

10a and Figure 10b. In this case and all other comparisons, it

is the same for all three implementations —as long as the RC

and QPE registers are using the same number of qubits, see

Section IV-C.— The width increases linearly with the number

of nodes and hidden layers. The number of nodes is the critical

factor in the growth in this case, since each node implements

a neuron with its own outputs, inputs, and associated weights.

In the case when those nodes are distributed across multiple

layers, the number is slightly lower (174 qubits in 20 nodes

across 5 hidden layers in Figure 10b, as opposed to 208 qubits

for 20 nodes in one hidden layer in Figure 10a). This is due

to the fact that some outputs of the neurons of one layer are

inputs to the next, so some input qubits are saved in that case.

In any case, the width is not a critically limiting factor to the

implementation of this size BNN, although the trend predicts

quickly surpassing the 1000 qubit width for approximately 100

node implementations.

The depth on the other hand displays different behaviors

depending on the quantum implementation of the BNN. Figure

11 shows exponential growth of the approximate depth of

the circuit with the number of nodes for all three cases.

However, the original design, QPE, reaches over 13M (million)

computational steps for 19 nodes, while, the improved QPE

barely surpasses 2M and RC requires about 422K steps. The

cost in number of steps of these implementations is prohibitive.

The 20 node case made the trends impossible to display

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

W
id
th

Hidden Layer Nodes

QPE Impr. QPE RC

(a) Variation of the number of nodes within one
single hidden layer containing 2-20 nodes. 4 input
nodes-1 output node.

(b) Variation of the number of hidden layer con-
taining 4 nodes each. 4 input nodes-1 output node.

Fig. 10: Number of hidden layer

reasonably due to the high exponential of the QPE case, and

it was left out for that reason.

Fig. 11: Approximate depth with variation of the number of

nodes within one single hidden layer containing 2-19 nodes.

4 input nodes-1 output node.

When the approximate depth is looked at per hidden layer

as opposed to nodes in one single hidden layer, the trend is

linear, still demonstrating much better behavior for the new

approaches. The reason for this linear trend as opposed to

exponential is that the nodes are distributed in different layers

in this case. For the 20 node case (5 layers with 4 nodes

each) there is no need to implement all possible combinations

of the 20 nodes, but just all possible combinations of 4 nodes,

as many times as layers are implemented. In this plot, RC is

approximately 30x better than QPE and 5x better than Impr.

QPE. The RC depth value for the 5 layer case is approximately

25.5K computational steps.
318

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 12: Approximate depth with variation of the number of

hidden layer containing 4 nodes each. 4 input nodes-1 output

node.

B. Size of the training dataset

When the size of the training dataset is varied from 4 to 64

cases, again the RC case shows the best approximate depth

numbers. In this case, a 4-4-3-1 BNN is implemented: four

input nodes, four node hidden layer followed by a three node

hidden layer, and finally one single output node. Figure 13

shows again a linear trend with the size of the training dataset

when all other parameters are fixed. It is notable that in this

case again, RC is approximately 30x better than QPE and

approximately 5x better than QPE Impr. There is a reason for

this:

For QPE and Impr. QPE, the size of the QPE register is fixed

to five qubits for these experiments. The Width of the counting

register in RC is also fixed to five qubits. Remember from

Section III that in the QPE and Impr. QPE methods, phase

was accumulated in the QPE register through repetitions of the

dataset (DS) training blocks. In the QPE case, the number of

repetitions doubles for each of the qubits in the QPE registers.

For five qubits, that is 1+ 2+ 4+ 8+ 16 = 31. For the Impr.

QPE these repetitions were avoided by applying the correct

phase shift for each qubit in the QPE register, for a total of 5
DS blocks. In the case of RC, the DS blocks only have to be

implemented once. Hence, the 30× and 5× better approximate

the depth of the RC case. One key conclusion is that the depth

of the QPE cases is highly dependent on the precision of the

phase estimation.

Fig. 13: Approximate depth with variations of the dataset size

implemented on a 4-4-3-1 BNN.

The size of the training dataset does have an impact on the

width of the implementation, as the counting register of the

implementation will count correct outputs for each case and

needs at most ln(n) qubits where n is the size of this training

dataset. Therefore, in this case, only five qubits are necessary

to cover the 32-63 dataset size cases. This is represented in

Figure 14.

Fig. 14: Width as the size of the training dataset grows. With

a smaller dataset, the counting register does not need 5 qubits

to account for correct cases.

C. Precision of the phase estimation
The precision of the phase estimation is only a parameter in

QPE and Impr. QPE., and depends directly on the size of the

QPE register. Given that QPE requires
∑p−1

i=0 2i for a p−qubit
register, the trend is exponential in this case, while it is linear

in the case of Impr. QPE, which requires only p repetitions if

the DS blocks. This can be seen in Figure 15

(a)

(b) Closer look at the Impr. QPE only

Fig. 15: QPE and Impr. QPE approximate depth with varying

QPE register size (QPE qubits) for the 4-4-3-1 BNN.

D. Activation function
For each neuron with N inputs and corresponding N

weights, the weights are applied to the inputs by performing
319

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

ai ⊕ wi of each pair. Then, an activation function will set

the output to 1 when the number of 1’s among the XORed

pairs is higher than a threshold t. In Figure 5 for example,

this threshold is set to 2 using a Toffoli gate. Other thresholds

could be used, and there is more margin for different activation

functions when the neuron has multiple (as in more than two)

inputs.

Neural Network 4-16-16-1
QPE, RC Qubits 5
Dataset Size 16
Grover’s Iterations 1
Accuracy Threshold 3

TABLE II: Parameters for the variation of node activation

threshold.

To be able to vary the activation function within a range of

parameters, a BNN according to Table II is tested. The large

number of nodes in the hidden layers naturally leads to neurons

with multiple inputs (up to 16 possible input-weight pairs).

Figure 16 shows the three different plots, one for each design,

showing very similar depth trends but at very different scales.

As the node threshold of the activation function grows, the

depth decreases. The implementation of the activation function

makes it such that if the threshold is set to 16, one multi-

controlled Toffoli gate will suffice, while, if the threshold is

set to eight for example, the output qubit is set to 1 for the 16

input case, for the 15 input case, for the 14 input case,..., for

the 9 input case, each one requiring its own multi-controlled

Toffoli gate. Hence, higher thresholds result in lower depth

numbers. Higher thresholds also result in better accuracy in

the proof of concept cases, as it will be shown in Section V

V. CONVOLUTION EDGE DETECTION

The designs of these QPE, Impr. QPE and RC imple-

mentations were developed using IBM’s tools and quantum

gate model [21]. These implementations were tested on a

small scale, real world problem to demonstrate the poten-

tial of Grover’s search in solving the BNN problem: the

convolutional edge detection image filters, as simple edge

detection networks. In order to check the correctness of the

implementations, they were tested using Qiskit’s simulation

tools without noise. The simulations were performed in RIT’s

Research Computing resources [22].
Two filters, 3x3 and 2x2 convolution edge detection circuits,

were tested using the three versions of the QBNN training

circuits. For these tests, a neural network was created to

identify vertical edges from given pixel values. The output

of the network is a 1 when the pixels in the filter make a

vertical edge, and a zero when the pixels do not represent

a vertical edge. The binary strings of weights extracted out

of these quantum implementations were compared with those

found in classical training. For the 3x3 case, the weights were

also used to find the accuracy of the BNN trained in this

manner. The findings are summarized next.

A. 2x2 Convolutional edge detection
Figure 17 shows all possible 16 combinations of the 2x2

pixel structure, highlighting the two that are vertical edges.

(a) QPE

(b) Impr. QPE

(c) RC

Fig. 16: Approximate depth with varying activation function

(node threshold).

This case is not a true test of the training of the BNN, since

the training dataset was this full set of possible inputs, and

hence, the prediction was tested against the same set. But this

test case was a good first approximation to check the viability

of the training process.

0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1

0 1 0 1 0 1 0 1

0 0 0 1 1 0 1 1

1 0 1 0 1 0 1 0

0 0 0 1 1 0 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 0 1 1

Fig. 17: 2x2 convolutional edge detection dataset.

The Neural Network is shown in Figure 18. It is a 4-2-1 NN,

that is: four input nodes, one hidden layer with two additional

nodes, and one final output layer with one node. This adds up

to ten different weights to be determined. The details of the

three implementations are shown in Table III.
320

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 18: 2x2 Convolution edge detection filter neural network.

4-2-1

QBNN Width Depth Runtime
Implementation (h:m:s)
QPE 28 41714 13:23:50
Impr. QPE 28 6770 2:46:39
RC 28 1620 1:22:05

TABLE III: 4-2-1 Network width, depth and simulation run-

time (in hours:minutes:seconds).

Something to keep in mind is that with ten possible weights,

the number of possible outcomes out of the Grover’s search

implementation adds up to 1024 binary strings. Besides the

cost in time of the simulation to generate the state vector,

building the histogram was challenging when done through

simulated “shots”, and it was also hard to represent. Instead,

the state vector was manipulated to extract the probabilities

of each possible binary string. The abbreviated version of the

histogram is represented in Figure 19. The results of all three

implementations correctly found the best weight strings for the

4-2-1 NN and the dataset shown in Figure 17. In this case, the

accuracy testing resulted in 100% accuracy, which is expected,

given that the training dataset is the full dataset.

Fig. 19: 2x2 Convolution histogram results. Two states have

a much higher probability than all other states, meaning that

those are the two resulting weight strings. All states that are

not the two amplified states are represented by the lower bars.

B. 3x3 convolutional edge detection

The 3x3 edge detection filter was implemented using the

quantum neural network. With nine input values associated

with the 3x3 filter, there is a potential of 29 = 512 possible

input combinations. However, the training dataset is reduced to

16 entries. They are shown in Figure 20, with the two that were

0 1 1 0 0 0 1 1 0 1 1 1

0 1 1 1 1 1 1 1 0 1 1 1

0 1 1 1 1 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 0 1 0 0 0

1 0 0 1 1 1 0 0 1 0 0 0

0 0 1 1 0 0 1 1 1 1 1 1

0 1 1 1 1 0 1 1 0 0 1 1

1 1 1 1 1 1 1 0 0 0 0 1

0 0 0 1 0 0 1 1 1 0 1 1

0 1 1 1 1 0 1 1 0 0 1 1

1 1 1 1 1 0 0 0 0 0 0 1

Fig. 20: 3x3 convolutional edge detection dataset.

QBNN Width Depth Runtime
Implementation
QPE 32 41702 ∼10 Days
Impr. QPE 32 6758 ∼48 hrs
RC 32 1608 22:02:49

TABLE IV: Depth, width and simulation runtime (∼Days or

hours:minutes:seconds) of the 9-3-1 neural network training

methods. The QPE method described in [1] was not able to

complete within the allowed runtime of the research computing

resources [22]. This shows the benefits of using the designs

proposed.

selected as vertical edges highlighted. As shown in Figure 21,

the neural network is not fully connected. There are only 3

input nodes connected to each hidden layer node instead of

the full nine. This was found to be the best configuration that

could be reasonably simulated while providing good accuracy.

The details of the BNN implementations are shown in Table

IV. This case requires a total of 32 qubits used for all three

implementations, with QPE and Impr. QPE using the same

QPE register size as needed for the counting register. The QPE

and Impr. QPE simulation times were only estimated, and only

the RC case was fully simulated to extract the trained weight

set.

There is a total of twelve weight values in this circuit,

meaning that there are 212 = 4096 binary weight strings

that this circuit evaluates. Similar to the 2x2 edge detection

example, the state vector was manipulated to extract the

probabilities associated with each of the 4096 binary strings

(or basis states). The abbreviated histogram results of the

training are shown in Figure 22.

Out of the set of 30 probable weights, the weight strings

[0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1] and [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
were also classically produced. These result in a 96.4%

accuracy when testing against the complete dataset of 512

entries. Given that the classes were highly unbalanced, the full

confusion matrix is reproduced in Figure 23. These numbers
321

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 21: 3x3 Convolution edge detection filter. This is a not-

fully connected 9-3-1 BNN

Fig. 22: 9-3-1 Neural network weight strings. These 30 weight

strings are able to correctly identify all of the edges in the

dataset. The ’others’ bar represents the probability of each

weight string that was not amplified.

result in good accuracy (0.96) and specificity (0.96) values,

but bad precision (0.09) due to the 20 false negative results.

However, this is not due to the quantum implementation, since

both classical and quantum implementations result in the same

weight strings for this NN configuration. The number of false

negatives is resolved with a fully connected BNN, as opposed

to this partially connected one.

VI. CONCLUSION

In this paper, we have discussed two different quantum

implementations for the training of binary neural networks,

based on the Grover’s search algorithm. As we look at the

post-NISQ era, depth becomes more relevant, as a first approx-

imation of the performance of the circuit implementations. For

Fig. 23: 3x3 confusion matrix results on all 512 test cases.

current quantum systems, the depths discussed in this paper are

unreachable, but this work puts the focus on the reductions in

number of approximate steps that are achieved when different

approaches are used.

The oracles of these two Grover’s search implementations

are based on two different approaches. Quantum Phase Esti-

mation (QPE) accumulates phase rotations on a register when

the output of training that data point out of a dataset is

correct. The phase will then be examined by the Grover’s

oracle to select the best possible weight string out of the

superposition of all possible strings. An improved version of

QPE was also proposed and implemented, with more efficient

phase accumulation. The Register Counting (RC) approach

uses a much more ”classical” perspective, simply counting the

number of correct cases.

The effectiveness of this training approach for the proof of

concept case —implementing convolutional edge detection—

was proven to be the same as could be achieved classi-

cally with this network design. The network was not fully

connected, and therefore, a number of false negative results

were found. The most significant finding is reflected in the

simulation time, which was prohibitive in the original design.

The QPE approach required repeated implementations of the

training dataset, while the RC implementation can train the

NN with only one implementation of the dataset block. This

results in a reduction of the simulation time of this quantum

circuit from approximately 10 days in the original case to 22

hours in the RC case.

As quantum systems evolve to support more complex com-

putations with higher number of qubits, it is necessary to

identify the best practices that result in increased parallelism

of the computation and reduced depth of the circuit. Future

work will look into exact depth calculations, and the trade-offs

between phase accumulation repeated DS implementation and

the incrementing implementations of the RC case.

322

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Liao et al, “Quantum Speed-up in Global Optimization of Binary
Neural Nets,” New J. Phys., vol. 23, no. 063013, 2021.

[2] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of Continuous-Valued Deep Networks to Efficient Event-driven
Networks for Image Classification,” Frontiers in neuroscience, vol. 11,
p. 682, 2017.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent Pre-
trained Deep Neural Networks for Large-Vocabulary Speech Recogni-
tion,” IEEE Transactions on audio, speech, and language processing,
vol. 20, no. 1, pp. 30–42, 2011.

[4] F. Seide, G. Li, and D. Yu, “Conversational Speech Transcription
Using Context-dependent Deep Neural Networks,” in Twelfth annual
conference of the international speech communication association, 2011.

[5] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[6] M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles, “Variational
Quantum State Eigensolver,” npj Quantum Information, vol. 8, no. 1,
pp. 1–11, Sep. 2022. [Online]. Available: https://www.nature.com/
articles/s41534-022-00611-6

[7] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, “The Variational
Quantum Eigensolver: A Review of Methods and Best Practices,”
Physics Reports, vol. 986, pp. 1–128, Nov. 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0370157322003118

[8] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross,
D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn,
A. Kandala, A. Mezzacapo, P. Müller, W. Riess, G. Salis, J. Smolin,
I. Tavernelli, and K. Temme, “Quantum Optimization using Variational
Algorithms on Near-term Quantum Devices,” Quantum Science and
Technology, vol. 3, no. 3, p. 030503, Jul. 2018. [Online]. Available:
https://iopscience.iop.org/article/10.1088/2058-9565/aab822

[9] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate
Optimization Algorithm,” 2014, publisher: arXiv Version Number: 1.
[Online]. Available: https://arxiv.org/abs/1411.4028

[10] F. Sauvage, M. Larocca, P. J. Coles, and M. Cerezo, “Building
Spatial Symmetries into Parameterized Quantum Circuits for Faster
Training,” Jul. 2022, arXiv:2207.14413 [quant-ph]. [Online]. Available:
http://arxiv.org/abs/2207.14413

[11] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A. Sornborger,
L. Cincio, and P. J. Coles, “Generalization in Quantum Machine
Learning from Few Training Data,” Nature Communications, vol. 13,
no. 1, p. 4919, Aug. 2022. [Online]. Available: https://www.nature.
com/articles/s41467-022-32550-3

[12] E. Fontana, M. Cerezo, A. Arrasmith, I. Rungger, and P. J. Coles,
“Non-trivial Symmetries in Quantum Landscapes and their Resilience to
Quantum Noise,” Quantum, vol. 6, p. 804, Sep. 2022, arXiv:2011.08763
[quant-ph, stat]. [Online]. Available: http://arxiv.org/abs/2011.08763

[13] M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan, P. J. Coles, and
M. Cerezo, “Diagnosing Barren Plateaus with Tools from Quantum
Optimal Control,” Quantum, vol. 6, p. 824, Sep. 2022, arXiv:2105.14377
[quant-ph]. [Online]. Available: http://arxiv.org/abs/2105.14377

[14] Q. T. Nguyen, L. Schatzki, P. Braccia, M. Ragone, P. J. Coles,
F. Sauvage, M. Larocca, and M. Cerezo, “Theory for Equivariant
Quantum Neural Networks,” Oct. 2022, arXiv:2210.08566 [quant-ph,
stat]. [Online]. Available: http://arxiv.org/abs/2210.08566

[15] L. Schatzki, M. Larocca, Q. T. Nguyen, F. Sauvage, and M. Cerezo,
“Theoretical Guarantees for Permutation-Equivariant Quantum Neural
Networks,” Nov. 2022, arXiv:2210.09974 [quant-ph, stat]. [Online].
Available: http://arxiv.org/abs/2210.09974

[16] L. Leone, S. F. E. Oliviero, L. Cincio, and M. Cerezo, “On the
practical usefulness of the Hardware Efficient Ansatz,” Nov. 2022,
arXiv:2211.01477 [quant-ph]. [Online]. Available: http://arxiv.org/abs/
2211.01477

[17] C. Moussa, M. H. Gordon, M. Baczyk, M. Cerezo, L. Cincio, and P. J.
Coles, “Resource Frugal Optimizer for Quantum Machine Learning,”
Nov. 2022, arXiv:2211.04965 [quant-ph, stat]. [Online]. Available:
http://arxiv.org/abs/2211.04965

[18] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database
Search,” Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing - STOC 96, 1996.

[19] A. Y. Kitaev, “Quantum Measurements and the Abelian Stabilizer
Problem,” arXiv:quant-ph/9511026, 1995.

[20] B. A. Wrighter, “Improved Grover’s Implementation of Quantum Binary
Neural Networks,” 2023. [Online]. Available: https://scholarworks.rit.
edu/theses/11459

[21] IBM, “IBM Quantum Experience.” [Online]. Available: https://www.
research.ibm.com/ibm-q/

[22] Rochester Institute of Technology, “Research computing services,”
2022. [Online]. Available: https://www.rit.edu/researchcomputing/

323

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

