2023 IEEE International Conference on Quantum Computing and Engineering (QCE) | 979-8-3503-4323-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/QCE57702.2023.00043

2023 IEEE International Conference on Quantum Computing and Engineering (QCE)

Grover’s Implementation of Quantum Binary Neural
Networks

Brody Wrighter*, Sonia Lopez Alarcon’
KGCOE Department of Computer Engineering, Rochester Institute of Technology
Rochester, New York, United States of America
Email: fslaeec @rit.edu

Abstract—Binary Neural Networks (BNNs) are the result of
a simplification of network parameters in Artificial Neural
Networks (ANNs). The computational complexity of training
ANN:Ss increases significantly as the size of the network increases.
This complexity can be greatly reduced if the parameters of
the network are binarized. Binarization, which is a one bit
quantization, can also come with complications including error
and information loss.

The implementation of BNNs on quantum hardware could
potentially provide a computational advantage over its classical
counterpart. This is due to the fact that binarized parameters
fit nicely to the nature of quantum hardware. Quantum su-
perposition allows the network to be trained more efficiently,
without using back propagation techniques, with the application
of Grover’s Algorithm for the training process. This paper looks
into two BNN designs that utilize only quantum hardware, as
opposed to hybrid quantum-classical implementations. It also
provides practical implementations for both of them. Looking
into their scalability, improvements on the design are proposed
to reduce complexity even further.

Index Terms—Binary Neural Networks, Grover’s algorithm,
Machine Learning

I. INTRODUCTION

RTIFICIAL Neural Networks (ANNs) are a form of

Machine Learning (ML) able to make decisions or clas-
sifications by using a set of tunable parameters (weights) in
a network of artificial neurons. The key to reaching accurate
decision making or classification comes from finding the right
set of weights by exposing the ANN to a training set of inputs,
so it can then classify new inputs on its own. Finding these
network’s weights is known as the training of the ANN, and
comes with growing computational cost as the network or
training data set grows.

Much research is focused on finding efficient ways of
training ANNs, or efficient ANN approaches, hoping to re-
duce this computational cost of the training process without
sacrificing the accuracy of the classification process. One of
these approaches is Binary Neural Networks(BNN), which
restricts the weights of the network to binary values. While
BNNs can reduce the complexity of Neural Networks(NNs),
efficient training is a challenge, given the step function nature
of its input/output model, the potential loss of accuracy of
this simplification, and, in any case, the still large data sets
necessary for effective training. Various approaches are being
explored, attempting to reduce this complexity or computa-
tion time further. One such method is the use of Quantum
Hardware to implement BNNs.

BNNs are particularly suitable for quantum implementa-
tions, given the binary nature of the weights. The problem of
finding the right set of weights can be framed as a Grover’s
search algorithm, in which the basis encoded solution(s) will
stand out among all other possible combinations with the
highest probability. This approach was already proposed [1],
but naive implementations can lead to poor scalability of
the quantum circuit. Two key parameter must be taken into
account when evaluating the scalability of the designs: width
and depth of the quantum circuit. Designing the oracle of the
Grover’s search algorithm to implement this specific search is
the key and challenging piece.

This work takes a close look at the previously proposed
algorithms [1], and expands on it by significantly reducing
the complexity of the original implementation. Two distinct
designs based on the Grover’s Search are explored: one
design uses Phase Estimation, while the other uses Register
Counting to train the neural network. The new work includes
implementations and two proof of concept test cases on real
binary classification.

II. BACKGROUND AND RELATED WORK

Artificial Neural Networks, are inspired by the brain’s
complex network of ~86 billion neurons, and are the most
successful of the Machine Learning implementations. When
neural networks are exposed to data sets, they are able to
“learn” from this data set to then make decisions or clas-
sifications on items that are new to them. Neural networks
have made significant achievements and have led to steady
improvement in the accuracy of the models for tasks like object
classification [2], voice recognition [3], machine translation
[4], and more. However, these improvements come at the
cost of the models’ size and complexity, with today’s state-
of-the-art models containing 100s of billions of parameters.
Moreover, implementing training and inference of these state-
of-the-art models on conventional CPU/GPU hardware incurs
large overheads that are incompatible with application domains
that have strict size, weight, and power (SWaP) constraints.
Neural network quantization is a particularly attractive solution
due to the super-linear reduction in compute resources with
linear scaling of parameter bits. However, as neural network
parameter precision is reduced, training with gradient descent
becomes challenging due to the discrete nature of the loss
landscape [5]. Therefore, methods that are able to efficiently

979-8-3503-4323-6/23/$31.00 ©2023 IEEE 313

DOI 10.1109/QCE57702.2023.00043

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

explore discrete parameter spaces are required to effectively
scale neural network quantization.

The use of Quantum Computing as an accelerator of ma-
chine learning algorithms has been proposed as a hybrid
algorithm. In particular, the use of Variational Quantum Eigen-
solver algorithms [6], [7] to solve the training of quantum
neural networks. This approach and the Quantum Approximate
Optimization Algorithm [8], [9] are quantum-classical imple-
mentations in which an initial quantum ansatz is implemented
in a parameterizable quantum circuit, and evaluated against
a classical cost function to adjust the quantum parameters.
This is a Hamiltonian encoded quantum approach, for which
practical uses are still being explored, with no quantum
advantage being demonstrated to date. The work around this
set of algorithms is extensively mathematical, exploring the
many theoretical challenges of the topology in the quantum
optimization algorithm, and of the extraction of information
in the NISQ era [10], [11], [12], [13], [14], [15], [16], [17].

The work proposed and discussed in this paper is on the
other hand, fully quantum, based on Grover’s search algorithm.
Grover’s algorithm [18] was initially proposed as a search
algorithm, but under the right angle, it can be reduced to the
search for a solution of a given optimization problem. This
approach is discussed in this paper, with special attention to
the scalability of the problem.

III. GROVER’S IMPLEMENTATION OF QUANTUM BINARY
NEURAL NETWORKS

Oracle Diffuser

==

Ul

=)

BETIE

.
Repeat ovn) times

Fig. 1: Summarizing representation of Grover’s algorithm
circuit. The qubit register is placed in a superposition state.
The oracle applied to the superposition state results in |f(x)).
If the target qubit is in the |—) state, the phase kickback
effect then leaves the target qubit unaffected and changes the
quantum register’s state to (—1)/(*) |z). The diffuser through
multiple executions amplifies the amplitudes of the right states
out of the superposition.

Grover’s algorithm [18] is one of the first quantum algo-
rithms to show true potential acceleration when compared to
similar classical problems. Its goal is to find a specific element
in an unsorted list of elements using a qubit-based quantum
computer. Grover’s algorithm can search a list of N elements
using O(v/N) steps, compared to the O(Z') steps needed for

the average number of comparisons to search an unordered list
using a classical computer.

Grover’s algorithm works by iteratively increasing the am-
plitude of the solution states out of a superposition of states.
The maximum amplitude of the probability for the solution
states is achieved at approximately /N iterations. Grover’s
algorithm uses an oracle to determine which states will be
amplified in each iteration. The oracle, along with the phase
kickback with target qubit set to |—), results in (—1)/(®) |z).
Applying the oracle and the diffuser further increases the
solution states’ probabilities of being measured. The general
structure of Grover’s algorithm is shown in Figure 1. The
basis state with higher probability corresponds to the search’s
solution.

Hence, this algorithm aids with the identification of solu-
tions encoded as strings of Os and 1Is. In this work, Grover’s
algorithm is used as a mechanism to train a Binary Neural
Network (BNN) by finding the set of weights that will result in
the best classification accuracy. The problem is about correctly
defining the oracle that will amplify the right set of binary
weights.

A. Quantum Phase Estimation Binary Neural Network Imple-
mentation

Figure 3 summarizes the full implementation proposed in
[1], broken down into three parts. Being this a Grover’s search
algorithm, it can be broken down into initialization (before
the O border), oracle, and diffuser (D block after the O’
border.) The oracle is represented by all the computational
steps between O and O’.

Fig. 2: Two input example neuron

1) Qubit registers and initializations: Figure 3 implements
a two input neuron example such as the one shown in Figure
2, and it uses six different sets of qubits:

o marker: Grover’s must-have qubit to enable phase kick-
back, initialized to |—).

o weight: a (two) qubit register that contains the (two) bi-
nary weight vector, initialized to a uniform superposition.
The diffuser is applied at the end to this register and will
contain the solution to the training problem.

e input: a (two) qubit register containing the (two) binary
MS to the neuron. In a NN, these come from other
neurons, and have corresponding weights associated with
them.

o output: the output produced by the neuron.

o expected output: the expected output, known and pro-
vided for training.

314

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

o QPE register: register of p qubits, used for quantum phase
estimation, and initialized to a uniform superposition. p
has an impact on the precision of the estimation.

o)

I

marker |0)

I

I
QPE Regy |0) — 1 ‘
—i—
I
QPE Reg |0) —{ 1 ;
I
I
I
I
|

=)

QPE Reg;|0) —{ 1]
weighty [0)

weighty [0)

inputg |0)

I
inputy |0)

output |0) ‘

I
expected output |0) —:
I

(a) First part: The controlled-DS blocks contain the training dataset

implementations, as shown in Figure 4.
a

marker |—) -

QPE Regg ---

QPE Reg, - — QFT? QFT

QPE Regs ---

weighty - -

weighty - -

inputy - -

inputy - -

output - -

expected - -

(b) Second Part: Using IQFT and QFT to apply the accuracy threshold.
IQFT converts the accumulated phases to a binary encoding with the

least significant bit being the top most qubit.
0

marker |—) -+

L
]
QPE Regq -- %
QPE Reg; -- }
|
QPE Regs -
1 1 1 |
weighty - — — — — — - —
| p
weighty - - —— — — — — — — !
I
inputy +-— pS~1 — DS~! — DS~ —{ DS~' DS | DS~ DS~ H———
inputy - -— — — — — 1 — %
output - .— — ‘
I
expected output -+ -—| — — — — - -

(c) Third Part: Uncomputing the controlled-DS blocks, followed by
Grover’s diffuser applied on the weights.

Fig. 3: Complete original QBNN circuit implemented through
Quantum Phase Estimation (QPE) for a two weight, two input,
one output example. The three parts top to bottom can be
connected left to right. The steps between O-O’ represent the
oracle that will help identify the correct set of weights to
provide the desired classification accuracy.

2) Oracle: The idea behind this implementation is to
accumulate phase rotations on the QPE Register when the
output and expected output are equal, thanks to the phase
kickback coming from the dataset training (DS blocks in
Figure 3a). Then, quantum phase estimation is used to identify

the sets of weights that produced correct outputs above a
certain accuracy threshold (Figure 3b). Last, the dataset blocks
are un-computed (Figure 3c.)

3) Dataset (DS) controlled unitary: The controlled DS
unitary contains the full training dataset for the NN. Figure
4 shows the training for the input values 10 with expected
output I, and 11 with expected output 0. X-gates implement
and reverse these specific training datasets.

1 2 3
I I I
weighto |+) : : :
I I I
weighty |+) ‘ ; .
I I I
\ QBNN \ QBNN \
- wH "
I I I
output |0) ; ; ;
I I I
expected output |0) —E ; ;

Fig. 4: Dataset (DS) implementation. The QBNN circuit
shown above represents the circuit in Figure 5. This circuit
is repeated for each entry in the training dataset. The dataset
binary values are implemented with the X-gates placed before
and after each QBNN block.

The QOBNN blocks contain the actual Quantum Binary
Neural Network implementation, as depicted in Figure 5 for a
two input, two weight example. They take care of the training
of the NN, for each dataset that will determine the values
for the weights. Usually in NNs, the inputs and weights are
multiplied (a; * w;), however, in this QBNN the operation is
a; ®w; which is implemented with a CNOT operation among
the corresponding input and weight. The different computation
does not change the result of the training, as long as the
training is done consistently to this approach. A Toffoli gate
implements the activation function of the neuron, in this case
a discrete activation function that assigns a 1 value to the
output if both inputs are 1. Next, a phase of - is produced
in two cases: when the expected output and the neuron output
are both equal to 1, or when the expected output and neuron
output are both equal to 0, where n is the size of the training
dataset. Last, inputs and weights are returned to the original
state, reversing the computations.

Neurons in this shape are connected to form a Neural
Network, accumulating phase on the right sets of binary
weights out of the superposition. Repeated instances of these
QBNN are used to apply the training dataset (DS) (Figure
4), and multiple instances of these DS will accumulate an
approximate phase (precision depending on the number of
qubits in the QPE register [19]) through phase kickback on
the QPE register (Figure 3).

4) Quantum phase estimation and diffuser: The rest of
the algorithm (Figures 3b and 3c) completes the quantum
phase estimation (QPE) through a QFT~! applied to the QPE
register to transfer the phase to a binary number. The phase
is really expressed as a multiplier 6 applied to the 7. An
accuracy threshold is applied, to set a minimum phase value
above which the set of weights is expected to behave. For
example, as shown in Figure 3b, if the expectation is that out

315

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

weighty

weighty

inputy

fany
A\
fany
A\

inputy

fany
A%
fany
AV

i FanY
nI A\
Fig. 5: Quantum phase estimation binary neural network two

input neuron example. This circuit implements the neuron
shown in Figure 2 for the QPE training implementations.

output

D
AV
Y

expected output

of n = 4 training cases, all four of them will be correct, then
a triple-controlled NOT gate encoding the number 45 = 100,
will mark (as in the phase inversion of Grover’s search) all
weight sets that result in § = 4 accumulated in a phase 4 * 7.

The only thing left to do is to revert all the steps (QFT and
DS™1) to then apply the diffuser that will grow the probability
of the correct binary weight sets. O(\/N) repetitions of these
steps will be sufficient to measure them, being N the size of
all possible weight combinations.

B. Improved Quantum Phase Estimation QBNN

There are two improvements to the Quantum Phase Estima-
tion implementation of the Quantum Binary Neural Network:
The first one is just the elimination of an unnecessary ancilla
qubit that was used in the original design for the phase
accumulation. Figure 5 already shows the design without that
extra qubit and the original design and discussion can be seen
in the original paper [1]. The second improvement removes
the many repetitions of the DS blocks, as explained next.

1) Dataset (DS) phase accumulation: In Figure 3 the
controlled DS blocks —with potential phase shift ¢ = ~—
are applied repeatedly to the QPE register for quantum phase
estimation [19], depending on the bit significance. As in the
example (Figure 3), three QPE qubits require 1 + 2 4 4
DS blocks. If a fourth qubit were necessary to improve
the precision of the phase estimation, an additional eight
(14244 +8 total) DS blocks would be necessary. However,
with this information, it is possible to define the blocks with
the specific phase rotations needed, instead of accumulating
¢ = I increments in each qubit. This is shown in Figure 6.
The DS blocks now implement a specific 2'¢, where i is the
significance of the qubit and ¢ = 7, and n is the number of
cases in the training set, known beforehand. Only p controlled
DS blocks are necessary for a QPE register with p qubits, as
opposed to

p—1
52
i=0

DS blocks for QPE register with p qubits. This reduces the
depth of the design very significantly, as it will be shown in
Section IV.

H
QPE Rego |0) —{H]
QPE Reg, |0) —{ H]
QPE Regz|0) —{ 1]
weighto |0) - -
weight, |0) i -

DSy = DSy DSius

marker |0)

—_——t e - L - =

inputy |0) |

inputy |0) !

output |0) ;

I

expected output |0) ————— — —
I

Fig. 6: The QPE Improved training circuit follows the same
structure and order as the original QPE training circuit shown
in [1]. The improvement of this circuit can be seen within
the QPE portion of the training. Due to the fact that the
accumulation oracle is a set phase based on the number of
training dataset entries, the oracle phase can simply be doubled
for each higher significance qubit in the QPE register as seen
above. This reduces the depth of the circuitry greatly.

C. Quantum Register Counting Binary Neural Network Imple-
mentation

The Register Counting implementation follows a similar
structure to the Quantum Phase Estimation case. The differ-
ence, however, is that instead of accumulating phase to then
be estimated through QPE, this RC approach simply keeps a
count of the number of times that a set of weights returns an
output equal to the expected output. Figure 7 summarizes this
approach. Due to the fact that the RC implementation records
each successful weight string with a binary encoding, per-
qubit phase accumulation is not necessary. This means that the
training dataset only needs to be implemented once before the
accuracy threshold. The caveat is that the Register Counting
implementation needs to have enough qubits to represent the
number of training data in a binary encoding.

The QBNN circuit is shown in Figure 8. Each QBNN
block in this case contains the circuitry necessary to increment
the counting register by one on each correct output-expected
output match. Just like in the QPE case, the weights are
applied to the inputs through CNOT gates (a; ©w;), followed
by a threshold that implements the activated function, a Toffoli
gate, in this case, implements output = 1 when both a; ® w;
are equal to 1. When both output and expected-output are equal
(00 or 11) then an incrementing controlled unitary is applied
to the counting register. The incrementing unitary is shown in
Figure 9. The activation function and XOR gates are reversed
to train the next data point.

After the system has been trained on all training data
points, the accuracy threshold is applied, just like in the
QPE case. Last, all computations are un-computed before

316

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

o

marker |0)

RC' Regy |0)

|

|

|

|

;

RC Reg, |0) }
RC Reg, |0) !
|

|

|

|

|

|

|

|

weighto |0) —E
weighty |0) —E

QBNN QBNN
inputg |0) ' .
!
!
—_ : o e
output |0) :
expected output |0) —E
|

(a) First Part: The Circuit is initialized like any Grover’s search.
The QBNN block implements the increments for each correct output-
expected output match, and it is applied on each data point of the
training dataset implemented with x-gates. The counting register is
directly related to the maximum size of the training dataset. The above
example can only handle up to 7 dataset entries.

0

marker|—) ... T

RC Reygy . ..

RC Reg ... D

RC Regs . ..

weighty .. .

weight; ...

QBNN-!
QBNN-!

inputy . ..

inputy ...

output . ..

expected output . . .

(b) This circuit continues the circuit shown in 7a. The triple-controlled
NOT gate implements the accuracy threshold for the QBNN training,
in this case the threshold is 4, = 100;. Other thresholds can be set
by varying the sets of CNOT gates. The training is then uncomputed
to return the states of all qubits to their original state. The Grover’s
diffuser is then applied.

Fig. 7: QBNN implemented with the Register Counting ap-
proach.

applying the Grover’s search diffuser. Reversing the order of
the incrementing circuit in Figure 9 will decrement the RC
register by one for each correct training case.

IV. SCALABILITY RESULTS

The scalability of these implementations is crucial to prove
their usefulness. The original design proposed in [1] could
not be applied to any practical implementations due to their
poor scalability, from two perspectives: its width, or number
of qubits required; and its depth, or number of computational
steps necessary for completion. This scalability had such an
impact on the circuit’s width and depth of the original imple-
mentation that its simulation was prohibitive. In this work, the
size of these designs, lack of access to large enough quantum
hardware, and current hardware’s noise levels do not allow
for actual performance metrics. However, depth is a good

317

RC' Regg

RC Reg1 Umc 1 Uinc

RC Regs

weighty

weighty

inputy

fan)
A\
fan)
A\

inputy

o
AV
o
A%

output |0)

fan)
Y
fan)
A\

|

expected output

Fig. 8: The complete register counting QBNN implementation
is shown, implementing the 2-input neuron example. Here the
RC oracle is implemented instead of the QPE oracle.

[

fany
A%

FanY
A\

Fig. 9: Register incrementing circuit. When a number n is
presented at the input, n + 1 is produced at the output. This
circuit can then be converted to a controlled circuit and used
as the oracle for the RC QBNN.

first approximation to performance, given that it represents
the number of steps to completion. Therefore, lower depth
numbers are better from a performance perspective. They are
also better from a noise perspective, since depth challenges
coherence times. As this work will show in Section V, the
new implementations allowed to demonstrate their accuracy
on a practical problem, convolution edge detection, with a
significant reduction of the descriptive depth of the circuit
design.

Therefore, three different implementations are compared in
this section:

e Quantum Phase Estimation BNN: This is the original
implementation as presented in [1], in which the neurons
accumulate phase on the QPE register on each correct
output-expected output match.

Improved QPE BNN: This is the improved QPE version
proposed in this work. Since the phase rotation in each
QPE qubit is known, and only dependent on the training
dataset size, there is no need to repeat generic DS blocks,
but implementing the right rotation is sufficient.
Register Counting BNN: This new implementation of the
QBNN uses a direct binary count of the number of correct
outputs rather than a phase accumulation. This allows to
train the NN with the dataset only once, as opposed to
the repeated training for each phase in the cases above.

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

There are multiple parameters that need to be balanced in
the design of Binary Neural Networks, and that have an impact
on the width and depth of the circuit’s design. These are:

o Size of the network’s architecture: number of nodes per

hidden layer and number of hidden layers,

o Activation function,

o Size of the training dataset, and

o Quantum phase estimation precision.

An approximate depth (in number of computational descrip-
tive steps) and width have been calculated through expressions
that depend on the parameters above. These expressions are
not shown here for the sake of space, and for being all different
factors rather convoluted to explain. Details can be found in
[20]. The next sections explain their trends and the reasons
behind them.

A. Size of the network’s architecture

Two aspects are considered regarding the size of the neural
network: the number of nodes per hidden layer and the number
of hidden layers. With the parameters shown in Table I, the
number of nodes per hidden layer and the number of hidden
layers were varied.

QPE, RC Qubits 5
Dataset Size 16
Grover’s Iterations 1
Accuracy Threshold 3
Activation Function Threshold 2

TABLE I: NN parameters used for the variation of hidden
layer nodes.

The width, or number of qubits required, is shown in Figure
10a and Figure 10b. In this case and all other comparisons, it
is the same for all three implementations —as long as the RC
and QPE registers are using the same number of qubits, see
Section IV-C.— The width increases linearly with the number
of nodes and hidden layers. The number of nodes is the critical
factor in the growth in this case, since each node implements
a neuron with its own outputs, inputs, and associated weights.
In the case when those nodes are distributed across multiple
layers, the number is slightly lower (174 qubits in 20 nodes
across 5 hidden layers in Figure 10b, as opposed to 208 qubits
for 20 nodes in one hidden layer in Figure 10a). This is due
to the fact that some outputs of the neurons of one layer are
inputs to the next, so some input qubits are saved in that case.
In any case, the width is not a critically limiting factor to the
implementation of this size BNN, although the trend predicts
quickly surpassing the 1000 qubit width for approximately 100
node implementations.

The depth on the other hand displays different behaviors
depending on the quantum implementation of the BNN. Figure
11 shows exponential growth of the approximate depth of
the circuit with the number of nodes for all three cases.
However, the original design, QPE, reaches over 13M (million)
computational steps for 19 nodes, while, the improved QPE
barely surpasses 2M and RC requires about 422K steps. The
cost in number of steps of these implementations is prohibitive.

The 20 node case made the trends impossible to display
318

250

200 o
—e—QPE = Impr. QPE RC ot
el
150 _ar
s -~
= 100 o
el
>
-
50 e

2 3456 7 8 91011121314151617 181920
Hidden Layer Nodes

(a) Variation of the number of nodes within one
single hidden layer containing 2-20 nodes. 4 input

nodes-1 output node.
200

—e— QPE =& Impr. QPE RC
180 Py
~
160 _~
-
140 A
’/
< 120 o
= ,/
g 100 7
-
80 P A
o
60 -
40
20
0
1 2 3 4 5

Hidden Layers

(b) Variation of the number of hidden layer con-
taining 4 nodes each. 4 input nodes-1 output node.

Fig. 10: Number of hidden layer

reasonably due to the high exponential of the QPE case, and
it was left out for that reason.

N
>
o

x 100000
=
N
(=}

100

—e—QPE —¢—=Impr. QPE RC

Depth

60
40

20

123456 7 8 91011121314151617 1819
Hidden Layer Nodes

Fig. 11: Approximate depth with variation of the number of
nodes within one single hidden layer containing 2-19 nodes.
4 input nodes-1 output node.

When the approximate depth is looked at per hidden layer
as opposed to nodes in one single hidden layer, the trend is
linear, still demonstrating much better behavior for the new
approaches. The reason for this linear trend as opposed to
exponential is that the nodes are distributed in different layers
in this case. For the 20 node case (5 layers with 4 nodes
each) there is no need to implement all possible combinations
of the 20 nodes, but just all possible combinations of 4 nodes,
as many times as layers are implemented. In this plot, RC is
approximately 30x better than QPE and 5x better than Impr.
QPE. The RC depth value for the 5 layer case is approximately
25.5K computational steps.

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

80
70
60
50
40
30
20

10 //‘

1 2 3 4 5
Hidden Layers

——QPE —e—Impr. QPE RC

x 10000

Depth

Fig. 12: Approximate depth with variation of the number of
hidden layer containing 4 nodes each. 4 input nodes-1 output
node.

B. Size of the training dataset

When the size of the training dataset is varied from 4 to 64
cases, again the RC case shows the best approximate depth
numbers. In this case, a 4-4-3-1 BNN is implemented: four
input nodes, four node hidden layer followed by a three node
hidden layer, and finally one single output node. Figure 13
shows again a linear trend with the size of the training dataset
when all other parameters are fixed. It is notable that in this
case again, RC is approximately 30x better than QPE and
approximately 5x better than QPE Impr. There is a reason for
this:

For QPE and Impr. QPE, the size of the QPE register is fixed
to five qubits for these experiments. The Width of the counting
register in RC is also fixed to five qubits. Remember from
Section III that in the QPE and Impr. QPE methods, phase
was accumulated in the QPE register through repetitions of the
dataset (DS) training blocks. In the QPE case, the number of
repetitions doubles for each of the qubits in the QPE registers.
For five qubits, that is 1 +2+4 + 8 4 16 = 31. For the Impr.
QPE these repetitions were avoided by applying the correct
phase shift for each qubit in the QPE register, for a total of 5
DS blocks. In the case of RC, the DS blocks only have to be
implemented once. Hence, the 30x and 5x better approximate
the depth of the RC case. One key conclusion is that the depth
of the QPE cases is highly dependent on the precision of the
phase estimation.

120
—e—(QPE
100
80
60
40
" M
0
4 81216202428323640444852566064
Dataset Size

=o—|mpr. QPE RC

x 10000

Depth

Fig. 13: Approximate depth with variations of the dataset size
implemented on a 4-4-3-1 BNN.

The size of the training dataset does have an impact on the
31

width of the implementation, as the counting register of the
implementation will count correct outputs for each case and
needs at most [n(n) qubits where n is the size of this training
dataset. Therefore, in this case, only five qubits are necessary
to cover the 32-63 dataset size cases. This is represented in
Figure 14.

——QPE ——Impr. QPE RC

Width

4 8 121620242832 3640444852 56 60 64
Dataset Size

Fig. 14: Width as the size of the training dataset grows. With
a smaller dataset, the counting register does not need 5 qubits
to account for correct cases.

C. Precision of the phase estimation

The precision of the phase estimation is only a parameter in
QPE and Impr. QPE., and depends directly on the size of the
QPE register. Given that QPE requires S _ 2/ for a p—qubit
register, the trend is exponential in this case, while it is linear
in the case of Impr. QPE, which requires only p repetitions if
the DS blocks. This can be seen in Figure 15

200

—e—QPE —¢—Impr. QPE
150

x 100000

100

Depth

50

QPE Qubits
(a)

——Impr. QPE
1.5

x 100000

Depth
=

0.5

1 2 3 4 5 6 7 8 9 10
QPE Qubits

(b) Closer look at the Impr. QPE only

Fig. 15: QPE and Impr. QPE approximate depth with varying
QPE register size (QPE qubits) for the 4-4-3-1 BNN.

D. Activation function

For each neuron with N inputs and corresponding N

weights, the weights are applied to the inputs by performing
9

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

a; & w; of each pair. Then, an activation function will set
the output to 1 when the number of 1’s among the XORed
pairs is higher than a threshold ¢. In Figure 5 for example,
this threshold is set to 2 using a Toffoli gate. Other thresholds
could be used, and there is more margin for different activation
functions when the neuron has multiple (as in more than two)
mputs.

Neural Network 4-16-16-1
QPE, RC Qubits 5
Dataset Size 16

Grover’s Iterations 1
Accuracy Threshold | 3

TABLE II: Parameters for the variation of node activation
threshold.

To be able to vary the activation function within a range of
parameters, a BNN according to Table II is tested. The large
number of nodes in the hidden layers naturally leads to neurons
with multiple inputs (up to 16 possible input-weight pairs).
Figure 16 shows the three different plots, one for each design,
showing very similar depth trends but at very different scales.
As the node threshold of the activation function grows, the
depth decreases. The implementation of the activation function
makes it such that if the threshold is set to 16, one multi-
controlled Toffoli gate will suffice, while, if the threshold is
set to eight for example, the output qubit is set to 1 for the 16
input case, for the 15 input case, for the 14 input case,..., for
the 9 input case, each one requiring its own multi-controlled
Toffoli gate. Hence, higher thresholds result in lower depth
numbers. Higher thresholds also result in better accuracy in
the proof of concept cases, as it will be shown in Section V

V. CONVOLUTION EDGE DETECTION

The designs of these QPE, Impr. QPE and RC imple-
mentations were developed using IBM’s tools and quantum
gate model [21]. These implementations were tested on a
small scale, real world problem to demonstrate the poten-
tial of Grover’s search in solving the BNN problem: the
convolutional edge detection image filters, as simple edge
detection networks. In order to check the correctness of the
implementations, they were tested using Qiskit’s simulation
tools without noise. The simulations were performed in RIT’s
Research Computing resources [22].

Two filters, 3x3 and 2x2 convolution edge detection circuits,
were tested using the three versions of the QBNN training
circuits. For these tests, a neural network was created to
identify vertical edges from given pixel values. The output
of the network is a 1 when the pixels in the filter make a
vertical edge, and a zero when the pixels do not represent
a vertical edge. The binary strings of weights extracted out
of these quantum implementations were compared with those
found in classical training. For the 3x3 case, the weights were
also used to find the accuracy of the BNN trained in this
manner. The findings are summarized next.

A. 2x2 Convolutional edge detection

Figure 17 shows all possible 16 combinations of the 2x2
pixel structure, highlighting the two that are vertical edges.

86.8

86.6
—eo—(QPE

Millions

86.4

Depth

86.2
86
85.8

=

2 3 4
Node Threshold

(a) QPE

(%2}

14

—o—Impr. QPE
13.95

Millions

Depth

13.85

=

2 3 4
Node Threshold

(b) Impr. QPE

wv

2.8
2.795
2.79
2.785
2.78
2.775
2.77

Millions
x
3

Depth

1 2 3 4 5
Node Threshold

(c) RC

Fig. 16: Approximate depth with varying activation function
(node threshold).

This case is not a true test of the training of the BNN, since
the training dataset was this full set of possible inputs, and
hence, the prediction was tested against the same set. But this
test case was a good first approximation to check the viability
of the training process.

i1 (1|1 (11} (1|1

010 01 110 11

Fig. 17: 2x2 convolutional edge detection dataset.

The Neural Network is shown in Figure 18. It is a 4-2-1 NN,
that is: four input nodes, one hidden layer with two additional
nodes, and one final output layer with one node. This adds up
to ten different weights to be determined. The details of the

three implementations are shown in Table III.
0

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 18: 2x2 Convolution edge detection filter neural network.
4-2-1

QBNN Width | Depth | Runtime
Implementation (h:m:s)
QPE 28 41714 | 13:23:50
Impr. QPE 28 6770 2:46:39
RC 28 1620 1:22:05

TABLE III: 4-2-1 Network width,
time (in hours:minutes:seconds).

depth and simulation run-

Something to keep in mind is that with ten possible weights,
the number of possible outcomes out of the Grover’s search
implementation adds up to 1024 binary strings. Besides the
cost in time of the simulation to generate the state vector,
building the histogram was challenging when done through
simulated “shots”, and it was also hard to represent. Instead,
the state vector was manipulated to extract the probabilities
of each possible binary string. The abbreviated version of the
histogram is represented in Figure 19. The results of all three
implementations correctly found the best weight strings for the
4-2-1 NN and the dataset shown in Figure 17. In this case, the
accuracy testing resulted in 100% accuracy, which is expected,
given that the training dataset is the full dataset.

x10°

Probability
o 4 N W B o ® N ® ©

Fig. 19: 2x2 Convolution histogram results. Two states have
a much higher probability than all other states, meaning that
those are the two resulting weight strings. All states that are
not the two amplified states are represented by the lower bars.

B. 3x3 convolutional edge detection

The 3x3 edge detection filter was implemented using the
quantum neural network. With nine input values associated
with the 3x3 filter, there is a potential of 2 = 512 possible
input combinations. However, the training dataset is reduced to
16 entries. They are shown in Figure 20, with the two that were

321

0(0f0O] |00} 1|1 |1] |O0]1]1

Of1 (1| 1|10} |1]1|0] |0]1]1

{11 [1[1]0] [0O]O[O| |O|O]1

Fig. 20: 3x3 convolutional edge detection dataset.
QBNN Width | Depth | Runtime
Implementation
QPE 32 41702 | ~10 Days
Impr. QPE 32 6758 ~48 hrs
RC 32 1608 22:02:49

TABLE IV: Depth, width and simulation runtime (~Days or
hours:minutes:seconds) of the 9-3-1 neural network training
methods. The QPE method described in [1] was not able to
complete within the allowed runtime of the research computing
resources [22]. This shows the benefits of using the designs
proposed.

selected as vertical edges highlighted. As shown in Figure 21,
the neural network is not fully connected. There are only 3
input nodes connected to each hidden layer node instead of
the full nine. This was found to be the best configuration that
could be reasonably simulated while providing good accuracy.

The details of the BNN implementations are shown in Table
IV. This case requires a total of 32 qubits used for all three
implementations, with QPE and Impr. QPE using the same
QPE register size as needed for the counting register. The QPE
and Impr. QPE simulation times were only estimated, and only
the RC case was fully simulated to extract the trained weight
set.

There is a total of twelve weight values in this circuit,
meaning that there are 2'2 = 4096 binary weight strings
that this circuit evaluates. Similar to the 2x2 edge detection
example, the state vector was manipulated to extract the
probabilities associated with each of the 4096 binary strings
(or basis states). The abbreviated histogram results of the
training are shown in Figure 22.

Out of the set of 30 probable weights, the weight strings
[0,0,0,1,0,1,1,0,1,1,0,1] and [0,0,0,0,0,0,0,0,0,0,0,0]
were also classically produced. These result in a 96.4%
accuracy when testing against the complete dataset of 512
entries. Given that the classes were highly unbalanced, the full
confusion matrix is reproduced in Figure 23. These numbers

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 21: 3x3 Convolution edge detection filter. This is a not-
fully connected 9-3-1 BNN

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

o

Probability

0.5

00001001
01000001
01000100
01001001
01100100
00101100
01001100
00000001
00001001
00001100
00101100
01000001
00000101001
00001000100
00001100001
00001100100
00001101001
00100100001
00101000100
000000001
000001100
000100001
000101001
000101100
001100001
100001100
101101000
Others

Bt T T T T T

0
0
0
0

000001100100
0
0
0
0

000000000000
000000101100

00
00
00
00

Rk ek e

Fig. 22: 9-3-1 Neural network weight strings. These 30 weight
strings are able to correctly identify all of the edges in the
dataset. The ’others’ bar represents the probability of each
weight string that was not amplified.

result in good accuracy (0.96) and specificity (0.96) values,
but bad precision (0.09) due to the 20 false negative results.
However, this is not due to the quantum implementation, since
both classical and quantum implementations result in the same
weight strings for this NN configuration. The number of false
negatives is resolved with a fully connected BNN, as opposed
to this partially connected one.

VI. CONCLUSION

In this paper, we have discussed two different quantum
implementations for the training of binary neural networks,
based on the Grover’s search algorithm. As we look at the
post-NISQ era, depth becomes more relevant, as a first approx-
imation of the performance of the circuit implementations. For

Actual Values
Positive [Negative

2 20

Predicted Values
Negative [Positive

Fig. 23: 3x3 confusion matrix results on all 512 test cases.

current quantum systems, the depths discussed in this paper are
unreachable, but this work puts the focus on the reductions in
number of approximate steps that are achieved when different
approaches are used.

The oracles of these two Grover’s search implementations
are based on two different approaches. Quantum Phase Esti-
mation (QPE) accumulates phase rotations on a register when
the output of training that data point out of a dataset is
correct. The phase will then be examined by the Grover’s
oracle to select the best possible weight string out of the
superposition of all possible strings. An improved version of
QPE was also proposed and implemented, with more efficient
phase accumulation. The Register Counting (RC) approach
uses a much more “classical” perspective, simply counting the
number of correct cases.

The effectiveness of this training approach for the proof of
concept case —implementing convolutional edge detection—
was proven to be the same as could be achieved classi-
cally with this network design. The network was not fully
connected, and therefore, a number of false negative results
were found. The most significant finding is reflected in the
simulation time, which was prohibitive in the original design.
The QPE approach required repeated implementations of the
training dataset, while the RC implementation can train the
NN with only one implementation of the dataset block. This
results in a reduction of the simulation time of this quantum
circuit from approximately 10 days in the original case to 22
hours in the RC case.

As quantum systems evolve to support more complex com-
putations with higher number of qubits, it is necessary to
identify the best practices that result in increased parallelism
of the computation and reduced depth of the circuit. Future
work will look into exact depth calculations, and the trade-offs
between phase accumulation repeated DS implementation and
the incrementing implementations of the RC case.

322

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]

[5]

[6]

[9]

[10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

Y. Liao et al, “Quantum Speed-up in Global Optimization of Binary
Neural Nets,” New J. Phys., vol. 23, no. 063013, 2021.

B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of Continuous-Valued Deep Networks to Efficient Event-driven
Networks for Image Classification,” Frontiers in neuroscience, vol. 11,
p- 682, 2017.

G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent Pre-
trained Deep Neural Networks for Large-Vocabulary Speech Recogni-
tion,” IEEE Transactions on audio, speech, and language processing,
vol. 20, no. 1, pp. 3042, 2011.

F. Seide, G. Li, and D. Yu, “Conversational Speech Transcription
Using Context-dependent Deep Neural Networks,” in Twelfth annual
conference of the international speech communication association, 2011.
I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869-6898, 2017.

M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles, “Variational
Quantum State Eigensolver,” npj Quantum Information, vol. 8, no. 1,
pp. 1-11, Sep. 2022. [Online]. Available: https://www.nature.com/
articles/s41534-022-00611-6

J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, “The Variational
Quantum Eigensolver: A Review of Methods and Best Practices,”
Physics Reports, vol. 986, pp. 1-128, Nov. 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0370157322003118

N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross,
D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn,
A. Kandala, A. Mezzacapo, P. Miiller, W. Riess, G. Salis, J. Smolin,
I. Tavernelli, and K. Temme, “Quantum Optimization using Variational
Algorithms on Near-term Quantum Devices,” Quantum Science and
Technology, vol. 3, no. 3, p. 030503, Jul. 2018. [Online]. Available:
https://iopscience.iop.org/article/10.1088/2058-9565/aab822

E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate
Optimization Algorithm,” 2014, publisher: arXiv Version Number: 1.
[Online]. Available: https://arxiv.org/abs/1411.4028

F. Sauvage, M. Larocca, P. J. Coles, and M. Cerezo, “Building
Spatial Symmetries into Parameterized Quantum Circuits for Faster
Training,” Jul. 2022, arXiv:2207.14413 [quant-ph]. [Online]. Available:
http://arxiv.org/abs/2207.14413

M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A. Sornborger,
L. Cincio, and P. J. Coles, “Generalization in Quantum Machine
Learning from Few Training Data,” Nature Communications, vol. 13,
no. 1, p. 4919, Aug. 2022. [Online]. Available: https://www.nature.
com/articles/s41467-022-32550-3

E. Fontana, M. Cerezo, A. Arrasmith, I. Rungger, and P. J. Coles,
“Non-trivial Symmetries in Quantum Landscapes and their Resilience to
Quantum Noise,” Quantum, vol. 6, p. 804, Sep. 2022, arXiv:2011.08763
[quant-ph, stat]. [Online]. Available: http://arxiv.org/abs/2011.08763
M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan, P. J. Coles, and
M. Cerezo, “Diagnosing Barren Plateaus with Tools from Quantum
Optimal Control,” Quantum, vol. 6, p. 824, Sep. 2022, arXiv:2105.14377
[quant-ph]. [Online]. Available: http://arxiv.org/abs/2105.14377

Q. T. Nguyen, L. Schatzki, P. Braccia, M. Ragone, P. J. Coles,
F. Sauvage, M. Larocca, and M. Cerezo, “Theory for Equivariant
Quantum Neural Networks,” Oct. 2022, arXiv:2210.08566 [quant-ph,
stat]. [Online]. Available: http://arxiv.org/abs/2210.08566

L. Schatzki, M. Larocca, Q. T. Nguyen, F. Sauvage, and M. Cerezo,
“Theoretical Guarantees for Permutation-Equivariant Quantum Neural
Networks,” Nov. 2022, arXiv:2210.09974 [quant-ph, stat]. [Online].
Available: http://arxiv.org/abs/2210.09974

L. Leone, S. F. E. Oliviero, L. Cincio, and M. Cerezo, “On the
practical usefulness of the Hardware Efficient Ansatz,” Nov. 2022,
arXiv:2211.01477 [quant-ph]. [Online]. Available: http://arxiv.org/abs/
2211.01477

C. Moussa, M. H. Gordon, M. Baczyk, M. Cerezo, L. Cincio, and P. J.
Coles, “Resource Frugal Optimizer for Quantum Machine Learning,”
Nov. 2022, arXiv:2211.04965 [quant-ph, stat]. [Online]. Available:
http://arxiv.org/abs/2211.04965

L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database
Search,” Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing - STOC 96, 1996.

A. Y. Kitaev, “Quantum Measurements and the Abelian Stabilizer
Problem,” arXiv:quant-ph/9511026, 1995.

323

[20] B. A. Wrighter, “Improved Grover’s Implementation of Quantum Binary

Neural Networks,” 2023. [Online]. Available: https://scholarworks.rit.
edu/theses/11459

[21] IBM, “IBM Quantum Experience.” [Online]. Available: https://www.

research.ibm.com/ibm-q/

[22] Rochester Institute of Technology, “Research computing services,”

2022. [Online]. Available: https://www.rit.edu/researchcomputing/

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on May 28,2024 at 20:19:49 UTC from IEEE Xplore. Restrictions apply.

