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Abstract

The COVID-19 pandemic offered a unique opportunity to study shifts in environmental
antibiotic resistance that could be associated with the changes in disinfectant and/or antibiotic
usage patterns, co-infections, or other behaviors. The aim of this study was to document
temporal changes (pre-, early-, versus later-pandemic) in antibiotic resistance genes (ARGs),
ARG hosts, biomarkers of potential co-infections, and the total microbiome in municipal
wastewater influent from one separate sanitary and one combined sewer system. The 16S rRNA
gene copy normalized concentration of gacE was higher in early- than pre-pandemic samples,
and su/1 and feft(G) were higher in early- than later-pandemic samples. Metagenomics revealed
significant changes in the abundance of the macrolide and sulfonamide ARG classes. COVID-19
cases positively correlated with the disinfectants/antiseptics group of ARGs and negatively
correlated with the sulfonamide and aminoglycoside resistance classes. Discussion is provided
regarding the correspondence of these observations with antibiotic prescription pattern changes

during the study period. Putative waterborne pathogens were identified, which is of potential
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interest for understanding the prevalence of community co-infections. No changes in host-ARG
associations were observed. Overall, the results of this study may help in understanding the

impact of the pandemic/lack thereof on another public health crisis: antibiotic resistance.

Keywords

Nanopore sequencing, ARGs, microbiome, co-infection, waterborne pathogens, wastewater-

based epidemiology

Synopsis: Using wastewater-based epidemiology to measure changes in antimicrobial resistance

during the COVID-19 pandemic can guide how to protect public health.

1 Introduction

The recent COVID-19 pandemic may have direct implications for antimicrobial resistance. Many
of the EPA-recommended disinfectants for SARS-CoV-2 contain quaternary ammonium
compounds (QACs) as their active ingredient, and the use of these disinfectants increased
significantly during the pandemic.! Apart from QACs, disinfectants can also contain other
biocides that are antimicrobials.> During the pandemic, a wastewater treatment plant (WWTP) in
Greece was reported to have received 152% more biocides as compared to pre-pandemic time in
2019 3! Likewise, a high concentration of disinfectants and their positive correlation with
COVID-19 cases was observed in residential dormitory wastewater in Singapore.* Studies
measuring the concentration QAC residues in wastewaters in USA during the pandemic are
presently not available. Given the concern with increased used of disinfectants during the
pandemic, several researchers have reviewed the potential implications on wastewater treatment

and receiving waters.> ® Of particular concern is whether the increased use of disinfectants
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resulted in increases in antimicrobial resistance (AMR). Notably, if the biocide concentrations
reach the sub-minimum inhibitory concentration for most of the bacteria found in the system,
this increase in selection pressure can promote AMR evolution [as postulated by several

researchers reviewed by McBain et al.”].

The consumption of antibiotics surged in hospitalized patients during the initial months of
COVID-19 pandemic to treat or prevent other secondary infections. During the early stages of
the pandemic, 72% of COVID-19 patients were prescribed and using antimicrobials even though
the incidence of bacterial or fungal co-infection in COVID-19 infected patients was around 8%.8
The lack of decision support and rapid diagnostic tools early in the pandemic also lead to
increased and unnecessary use of antimicrobials.” Some antibiotics that were prescribed and used
commonly during this time were penicillin, meropenem, moxifloxacin, cephalosporins,
macrolides, and quinolones.!® ! However, for outpatient-health care, the usage of antibiotics
dropped in 2020 compared to 2019, which could be attributed to lower incidences of other
respiratory diseases.!?> Given that a range of antibiotic concentrations can select for antibiotic
resistance,'? the pandemic offers an opportunity to study the potential effects of changes in

antibiotic consumption on antibiotic resistance in the wastewater environment.

Wastewater-based epidemiology (WBE) has extensively been used to study the spread of SARS-
CoV-2 during the COVID-19 pandemic.'*?* WBE is also a useful tool for tracking the spread of
antibiotic resistance in communities with sewage collection systems and the environment.?*’
Pre-pandemic studies from our team showed that the variance in wastewater influent abundance
of ARGs such as sull, tet(G), tet( W), tet(O), vanA and ermF was explained by season as well as

water quality factors such as pH and heavy metals.?® In addition to ARG monitoring, WBE also
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allows for studying the total microbial community®® and can aid in our understanding the co-

infecting pathogens and other changes in the sewage microbiome.*

WBE studies monitoring ARG during the pandemic are emerging in the literature with varying
durations, ARG targets, and methods. A wastewater surveillance study from Las Vegas, Nevada
demonstrated that the abundance of ARGs belonging to fluoroquinolone and beta-lactam classes
increased during a COVID-19 surge in December 2020 compared to November 2020. The study
used a combination of qPCR and metagenomic sequencing for analyzing the samples.*! Using
metagenomics, a positive correlation was also observed between the macrolide, tetracycline,
sulfonamide and some beta-lactamase ARG classes and time over three months in hospital
wastewater from Saudi Arabia.’? Likewise, a study from India noted significant increases in
antidrug resistance of E.coli in 2020 compared to 2018 using the culture based Kirby-Bauer disk
diffusion method.** To our knowledge, there are no reports to-date of the relative abundance of
ARGs and their hosts in wastewater influent nor comparisons of pre- and during-pandemic
concentrations of ARGs and their hosts in wastewater influent. Understanding not only the
abundance and diversity of antibiotic resistance genes, but also their hosts and genetic context is

of interest for risk assessment.?% 33

The objectives of this study were to (O1) study the abundance of ARGs in wastewater across
time at two WWTPs during the COVID-19 pandemic, (O2) determine if there were microbial
community changes during the pandemic and (O3) identify the hosts of these ARGs and
determine whether a shift in ARG-hosts is observable before/during the pandemic. Wastewater
influent samples were analyzed using qPCR for selected ARGs and long read nanopore

sequencing to study the wastewater resistome and microbiome, the latter with a focus on
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identifying putative pathogens. Overall, the results presented seek to help in understanding the

potential impact of the pandemic on another public health crisis: antibiotic resistance.

2 Materials and Methods

2.1 Sampling, DNA extraction, and qPCR

Composite Wastewater influent samples were collected from two WWTPs every week from June
2020 to March/May 2021.%®* WWTP-A has a design flow <10 MGD and is connected to a
separate sanitary sewer system. WWTP-D has a design flow of 330 MGD and is connected to a
combined sewer system (these WWTP names are selected to match those used in Fahrenfeld et
al.>%). Samples were collected every week on Tuesdays/Wednesdays. Automatic samplers were
used for collecting composite 24-hour samples (1 Liter) from the WWTPs. All samples were
transported on ice to the lab. Before filtering the samples, they were pasteurized to inactivate
viruses *’. Around 200-300 mL of each composite sample was filter concentrated using 0.22 pm
mixed cellulose ester membrane filters (Millipore Sigma, St. Louis, MO, USA), and the filters
were stored at -80°C until DNA extraction. One sample per month was chosen for DNA
extraction from each WWTP, avoiding the days on which rainfall was recorded. DNA extraction
from the selected filters was performed using the FastDNA Spin Kit for Soil (MP Biomedicals,

Solon, OH, USA).

Archived wastewater influent sample DNA extracts stored at -20°C collected in 2015- 2016 from
WWTP-D were retrieved for comparison. Briefly, composite samples were composed of WWTP
grab samples (500-mL each) collected at 8 am, 10 am and 12 pm. All samples were collected

during baseflow conditions in sterile 500-mL Nalgene bottles, transported to the lab on ice, and



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

stored at 4°C prior to filter concentration (90-230 mL) using 0.22 um nitrocellulose filters
(Millipore Corporation, Billerica, MA). These DNA extracts were categorized as pre-pandemic

samples.

Water quality parameters monitored in the pandemic wastewater samples included pH, total
suspended solids (TSS), and chemical oxygen demand (COD), as previously described.’® gPCR
was performed for 16S rRNA gene®® and for select resistance genes. ARGs analyzed included

sull,® tet(G),* blaTEM,*! and gacE.*

Details on COVID-19 cases estimation for each sampling event at each WWTP are provided in a
previous study by the lab.*® In brief, publicly available county data (NJ COVID-19 Dashboard)
was used for estimating the COVID-19 cases. The population of towns served by the WWTP
were estimated using US census data. The number of COVID cases was obtained for each
sampling event by multiplying the percentage of the county population residing in the towns

served by the WWTP (Table S2).

qPCR reactions were prepared with 0.4 uM forward and reverse primers, 5 ul SsoFast™
EvaGreen® Supermix (Bio-Rad, Hercules, CA), and 1 pl sample to make a total of 10 pul
reaction volume per well. All DNA extracts were diluted by a factor of 1:100 to reduce the
inhibitors present in the samples. No-template controls (NTC) consisting of sterile molecular
biology grade water were included in every run. Pre-quantified standards were diluted 10-fold to
produce a seven-point calibration curve from 10® to 10* gene copies for ARGs orto 10° gene
copies for 16S rRNA. The standards, samples, field blanks and the NTC were run in triplicate

(i.e., technical replicates). Melt curve analysis was performed for each gene to check the
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specificity of the reaction. The primers, annealing temperatures, efficiencies, and R? values are

listed in Table S3.

Samples were assigned to seasons based on the date of sampling: Spring season being from
March 1 to May 31, Summer from June 1 to August 31, Fall from September 1 to November 30

and Winter from December 1 to February 28 (Table S2).

2.2 Nanopore Sequencing & Bioinformatics

Eight samples from WWTP-D along with four archived samples from the same WWTP were
selected for long-read shotgun sequencing using the Minion MK1C platform. Samples were
chosen from the same months as that of pre-pandemic samples when possible or randomly. All
samples were purified using the Genomic DNA Clean & Concentrator Kit (gDCC, Zymo
Research, Tustin, CA) and quantified using Qubit (Invitrogen) before library prep. The native
barcoding kit 24 (SQK-NBD112.24) was used for library prep and three samples were barcoded
per run. At least 1000 ng DNA was used per sample, with the exception of two samples with low
DNA concentrations as measured via Qubit (Table S4). Library prep was performed following
the manufacturer’s protocol with the following minor modifications to reduce DNA losses and
avoid size selection. In the DNA repair and end prep stage, AMPure beads (1.8X concentration)
were added and after resuspending the pellet in nuclease free water, the incubation time was
increased to 10 minutes at 37°C. AMPure beads (0.8X concentration) were used in the Native
barcode ligation and for the final Adapter ligation and clean up stage. During all stages of the
AMPure bead clean-up, when the pellet was resuspended in nuclease-free water to elute the
DNA, gentle pipette mixing was done before incubation to encourage the elution of DNA. At the

end of each step, Qubit analysis was performed to quantify the DNA remaining at each stage.
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Loading beads were used for loading samples on the flow cell. Barcoded samples were loaded
onto a flow cell (FLO-MIN106-D) following the manufacturer’s instructions and run for 72
hours, until the flow cells were used up. A total of four runs were performed with three barcodes
per run, resulting in a total of 12 samples. The flow cell pore count was checked before starting

each run.

DNA extracts were prepared, cleaned, barcoded, and sequenced (details in Supplemental
Information). Sequences were deposited in the National Centre for Biotechnology Information

Sequence Read Archive (NCBI-SRA-PRINA977080).

Raw reads were generated in fast5 format and all details of quality and depth are provided in
Table S5. The average sequencing data generated was 1.46 Gb per sample. Recent literature
reporting the resistome and microbiome of wastewater influent samples through nanopore
sequencing reported 1.25-6.07 Gb per sample.*** Notably, Dai et al. (2022)’s results suggested

that rate of ARG detection did not change with the sequencing depth.*’

Reads were basecalled using Guppy basecalling software (v6.4.6, GPU version) to return fastQ
reads. Barcoding, demultiplexing, and barcode trimming were done using the Guppy barcoding
software (v6.4.6). N50 and quality of the fastQ reads was checked using stats.sh command from
BBMap.*® Samples were then analyzed using the FastQ Antimicrobial Resistance pipeline
(v2022.08.16-15679) in EPI2ME software. The FastQ Antimicrobial resistance pipeline has been
designed for reads generated through the Oxford Nanopore platform. The pipeline uses the
Centrifuge database for taxonomic classification and the comprehensive antimicrobial resistance
database (CARD) for antimicrobial resistance genes identification *’ and has been used in

previous studies to identify ARGs and their hosts.**°. However, the classification of reads
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provides the likely host-ARG association and there is an uncertainty in these analyses,* which is
greater for ARGs associated with mobile genetic elements *°. Hence, the term “putative host-

ARG association” has been used in this study.

Lineage was derived from the taxids provided in the output file using the NCBITax2Lin code

(https://github.com/zyxue/ncbitax2lin). Custom python scripts were used for data filtering and

sorting for ARGs and hosts. Only the hits obtained from the Kingdom Bacteria were retained for
further analysis. The percent abundance of different genera was found by dividing the number of

reads classified by the total number of reads for the sample after QC filtering.

Only the ARG hits identified through the protein homolog model were considered for further
analysis.* ARGs were then grouped into categories based on The CARD database

(https://card.mcmaster.ca/, downloaded on 3/25/23°%). The abundance of ARGs was found using

the following formula.*’

Alignment,,q — Alignmentg; gyt
Lengthreference
2111 lengthread (Gb)

ARG Abundance (gene copies/Gb) =

Here, Alignmentend and Alignmentstrt are the positions in the read where alignment started and
ended, Lengthreference (bp) 1s the length of the respective ARG and n represents the total number
of reads present in the sample after QC. All the parameters for calculating ARG abundance were

obtained from the output file from the EPI2ME pipeline.

The abundance of each ARG type associated with a particular host was calculated by summing
up the abundances of each ARG (of that ARG type) that was assigned to the particular host. For

example, for sulfonamide ARG type linked to the putative host Vibrio, the abundances of all
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ARGs belonging to the sulfonamide category (such as sull, sul2 etc.) and classified as Vibrio

were summed.

2.3 Data Analysis

All statistical tests were performed in RStudio version 4.1.3 (www.r-project.org). Normality of

data was checked using a Shapiro-Wilk test. Homogeneity of variances was confirmed using a
Bartlett test. Two-way ANOVA with a posthoc TukeyHSD was performed on parametric gPCR
data (i.e., gacE, tet(G), bla(TEM)). For non-parametric qPCR data (i.e.,16S rRNA, sull), the
Kruskal-Wallis test followed by the post-hoc Dunn test was with Bonferroni correction
performed. Oneway.test was used with a posthoc pairwise t-test (pairwise.t.tet) with Bonferroni
correction for qPCR data that were normal but did not have equal variance (i.e., fet(G)).
Spearman’s correlations were tested between the qPCR measured concentration of ARGs and the
number of COVID-19 cases reported in the sewer catchment one week prior to the date of
sampling (previously shown to have moderate correlation with the SARS-CoV-2 N1 gene copies
per capita per day*®). PERMANOVA (adonis) analysis was performed to understand the relative
importance of factors (pH, conductivity, COD, TSS, COVID cases, season, time phase)

impacting qPCR measured ARG concentrations.”!

For the NGS data, a one-way ANOVA was performed on all ARG types (i.e., ARG classes such
as macrolide, sulfonamide, etc.) against different pandemic phases (i.e., pre-, early-, and later-
pandemic), followed by TukeyHSD posthoc test if the p-value was significant (<0.05). Samples
collected during the pandemic from June 2020 to March/May 2021 were divided into two time

phases: early second wave designated as early-pandemic (June 2020-December 2020) and later
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second-wave designated as later-pandemic (January 2021- March/May 2021). A one-way
ANOVA was also performed on the total abundance of all ARGs to test for differences in the
sampling periods. Shannon, Simpson and InverseSimpson diversity indices were calculated for
ARGs and the total microbial community. A Kruskal-Wallis rank sum test was performed on
ARG diversity indices. Linear discriminant analysis effect size (LEfSe) test was performed on
ARG hosts and total microbial community to identify the biomarkers™ in the pre-, early-, and
later-pandemic samples. Spearman’s correlations were performed between ARG abundances and
the number of COVID-19 cases reported in the sewer catchment one week prior to the date of
sampling (non-parametric correlation test). Bray-Curtis dissimilarity matrices were calculated for
(1) the total microbial community at genus level and (2) ARG abundances. Then, non-metric

multidimensional scaling (nMDS) and otherer plots were made using ggplot2 package.™

3 Results and discussion

3.1 Differences in normalized ARG concentration observed in qPCR analysis

Differences were seen for selected ARGs normalized to 16S rRNA gene copies when comparing
pre- early-, and later-pandemic samples (Fig. 1, Fig S1). For WWTP-D, gacE was significantly
higher in early-pandemic samples than pre- and later-pandemic samples from WWTP-D
(TukeyHSD, both p<0.04) and te#(G) was significantly higher in early pandemic samples
compared to pre-pandemic samples (post hoc pairwise t-test, p=0.002). The 16S rRNA gene
copy normalized concentration of su/l gene was higher in early- than later-pandemic samples
(Dunn test, p=0.003). No differences were observed between b/laTEM gene normalized
concentrations comparing pre- and early- and later- pandemic samples (2-way ANOVA, all p>

0.7). For WWTP-A, where only early- and later-pandemic samples were available, no
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differences were observed for normalized gacE, tet(G), sull and blaTEM gene copies between

early- and later- pandemic samples (TukeyHSD, all p> 0.059) (Fig. 1).

The absolute concentration of 16S rRNA gene copies/mL was higher in Pre-pandemic than
early- and later pandemic samples (Dunn Test, both p< 0.02), while there were no differences in

WWTP-A (Kruskal-Wallis test, p=0.3).

WWTP-A WWTP-D

ié =

By

Category
E Pre- pandemic

‘# * . Early- pandemic
81 é : * = Latet—‘:)andemic
F o A

blaTEM gacE sul1 tet(G) blaTEM gacE sul1 tet(G)
ARG

log10(ARG copes/ 16S rRNA gene copies)

Fig. 1 Normalized ARG abundances (ARG gene copies/ 16S rRNA gene copies) for blaTEM,
qacE, sull, and tet(G) in wastewater observed in pre-, early-, and later-pandemic samples. Pre-
pandemic samples were collected in 2015-16 while early- and later-pandemic samples were
collected during the early second wave and the later second wave during the pandemic in 2020-

21. Boxplots represent N=5 samples for each time phase and gene combination.

A moderate negative correlation was observed between the 16S rRNA gene copy normalized
concentrations for both su/1 and blaTEM and the total number of COVID-19 cases for WWTP-D

samples (Fig. S2, Spearman’s rho=-0.59 and -0.74, respectively and both p < 0.043). Similarly, a
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moderate negative correlation was observed between the 16S rRNA gene normalized
concentrations of su/l, gacE and blaTEM and the total number of COVID-19 cases one week
before the sample collection date for WWTP-A samples (Fig. S2, Spearman’s rtho=-0.66, -0.78, -
0.72, respectively, all p< 0.01). [No correlations were observed for tet(G) with either WWTP
nor gacE and WWTP-D and total COVID-19 cases, Fig. S2.] Including pre-pandemic samples
in addition to early- and later-pandemic samples for WWTP-D resulted in no significant
Spearman’s correlations between normalized ARG concentrations and COVID-19 cases one

week prior to sampling (all p>0.1, Fig. S3).

PERMANOVA analysis performed on all samples (pre-, early-, and later pandemic) indicated
that pandemic phase 16S rRNA gene copy normalized ARG concentrations were associated with
pandemic phase (i.e., pre-, early, or later; p=0.001), but not with COVID-19 cases, WWTP, and
season (all p>0.06). PERMANOVA analysis of samples for which water quality data were
available (i.e., early- and later-pandemic) indicated that pH had a significant effect on ARG
concentrations (PERMANOVA, p=0.039) while other factors (conductivity, COD, TSS) did not

(PERMANOVA, p>0.054).

Given the availability of pre-pandemic and pandemic samples, the results from WWTP-D could
support the predictions that the increased use of cleaning agents>* and increases in antibiotic
prescriptions and residues in wastewater>> may select for increases in antibiotic resistance during
the pandemic.> >°> The subsequent decrease in the concentration of gacE could possibly be due to
changes in behavior as the pandemic progressed due to lesser usage of disinfectants, as was
predicted by >°. Measuring the selecting agents (which was beyond the scope of the present

study) in parallel with ARGs would be needed to demonstrate a direct relationship.
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The variation in the ARG abundances observed in this study could also be potentially attributed
to other factors such as seasonal variations’ and/or changes in the movement of people in/out of
the sewer catchment. We previously observed season was an important factor for explaining the
variation in ARGs measured via qPCR in wastewater influent sampled in 2016-2017 from
WWTPs with >100 MGD design flows.?® Such seasonal variations were speculated to follow

9

changes in antibiotic prescription rates®® and therefore selective pressure in the gut microbiome®

and antibiotic fluxes in wastewater.®

The demographics of the sewage catchment were likely different for the pre- versus the early-
and later-pandemic samples, which may also have impacted our observations given that the
while the sewage microbiome is markedly similar around the globe®! it does reflect population
gut microbiome.%? There was a consistent drop in U.S migration from 2019 to 2021 and the local
mobility (movement within the country) also dropped.®® Drastic changes in movement compared
to baseline were reported in the sewer catchments studied here for residential, workplace, and
transit (Fig. S113%) during the pandemic. Notably, both WWTP studied here have regional rail
lines, airports, and travelers/commuters in the densely populated study region. Human mobility
has been linked to increase in antimicrobial resistant organisms and the antimicrobial resistant
infections.®* In-system sampling to differentiate transient and/or transportation associated
populations (for e.g. %) and larger/longer data sets could aid in disentangling any potential

human movement impacts.

System-to-system differences were demonstrable in the present study through comparison of the
early- and later-pandemic qPCR results between the two WWTPs that showed inconsistent

results for gacE and su/1. The differences could be due to several system-specific factors
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including the differences in design flow, hydraulic residence time, sewer type, and water
quality.?® %67 Since samples from wet weather days were not included in this study, rainfall was
assumed to not have any impact on the observations. WWTP-D has a design flow over one order
of magnitude greater with a travel time travel 1.5-2hrs longer than WWTP-A. There is potential
for but limited evidence to support ARG selection in sewers (as reviewed by?’) but ARG
transcription in sewers has been demonstrated,*® which may imply that travel time could impact
observations of ARGs in wastewater influent. Further research would be useful in confirming the
impact of travel time on ARG concentrations. The sewer type could also impact our observations
given that WWTP-D is a combined sewer system while WWTP-A is separate sanitary system
and we previously reported significant differences in the abundances of some ARGs via qPCR as
a function of sewer type (all with >100 MGD design flow) sampled in 2016-2017.% Not
including samples from wet weather days may have reduced the impact of sewer type. Again, a
larger number of samples from more treatment plants would be useful for disentangling these

potential impacts.

Differences in water quality as noted above through random forest analysis may also affect the
concentrations of ARGs in WWTPs. We had previously found that variation in ARGs could be
explained by water quality parameters such as conductivity, pH, COD, TSS, and heavy metals %,
Likewise, significant correlations were observed between some ARGs and ammonium,
phosphate, and COD in wastewater influent from eight WWTPs in China.®” Some of these
observations could be due to co- and cross-selection (e.g., heavy metals) whereas others may be

more related to shifts they cause in microbial community composition.

3.2 Metagenomic insights into ARG abundance pre- and during the pandemic
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In total, 625 different ARGs were identified in the samples analyzed from pre-, early-, and later-
pandemic samples from WWTP-D. ARGs were grouped into 20 categories based on drug class
(Fig. 2A). On an average, the ARG types that were most abundant in all samples (abundance
greater than 10% of total average abundance) were beta-lactam, macrolide-streptogramin,
multidrug, aminoglycoside and tetracycline. Details of raw reads obtained after sequencing are

provided in Table S5.

The abundance of macrolide ARGs was significantly greater in early- than pre-pandemic
samples (TukeyHSD, p= 0.004, Fig. 2B). Interestingly, there were no significant differences in
the concentration of macrolide ARGs between the pre- and later-pandemic samples. Further, the
abundance of sulfonamide ARGs was significantly greater in the early- than the later-pandemic
samples (TukeyHSD, p= 0.03, Fig. 2B). No differences were observed in other ARG types

across the pre-, early-, and later-pandemic samples.

While antibiotics were not measured in the wastewater in the present study, information on
antibiotic prescriptions in the US is available. The macrolide azithromycin was the most
commonly prescribed antibiotic in the initial months of the COVID-19 pandemic in USA®- 7
and could be related to the higher abundances of macrolide ARGs observed via metagenomics.
The prescription rate decreased in May 2020 but remained higher than the pre-pandemic time in
2019.'>7% In contrast, the changes in tetracycline and sulfonamide genes do not correspond with
prescription rates for sulfonamide and tetracyclines, which decreased during the study period.”!

This was mainly due to a decrease in outpatient health care for other respiratory illnesses during

the pandemic. CDC report indicates that although the outpatient antibiotic usage resumed to
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normal rate in 2021, it was still lower overall in 2021 compared to 2019.'? Thus, other potential

factors should be explored (See Section 3.1).
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Fig. 2 A) Stacked bar graph representing the cumulative ARG abundance in pre-, early-, and
later-pandemic samples. Colors represent the respective ARG Types as per the legend. B) ARG

class abundance from metagenomes from pre-, early-, and later-pandemic samples.

No differences were observed in the alpha diversity of ARGs between time phases (pre-, early-,
and later-pandemic; Kruskal Wallis test, p>0.2, Fig. SSA). Similarly, no differences were
observed in the profile of ARGs between time phases and seasons (PERMANOVA, p=0.26,
Fig.S5B). A strong positive correlation was observed between the disinfectants-antiseptics class
and COVID-19 cases one week prior to sampling (Spearman’s tho=0.86, p=0.006). The
sulfonamide and aminoglycoside resistance classes showed a moderate negative correlation with
COVID-19 cases (Spearman’s tho=-0.71 and -0.76, respectively, p <0.028; Fig.3). Note that a
significant negative correlation was also observed between the su/l gene, conferring resistance to
sulfonamides, quantified through qPCR and COVID-19 cases (See Section 3.1). Similar results
were observed in a study of hospital wastewater, where a negative correlation was reported
between ARGs belonging to drug classes aminoglycoside, peptides, beta-lactam,
fluoroquinolone, and lincosamide and the number of COVID-19 patients.>? This negative
correlation could be attributed to a variety of reasons, including high rates of antibiotic
prescription in the initial months of the pandemic followed by the decrease in overall antibiotic
usage as the pandemic progressed.'? Interestingly, the correlation was not significant for either
aminoglycoside and sulfonamide when pre-pandemic samples were included (COVID-19 cases
for pre-pandemic samples were considered zero), underscoring the need for inclusion of samples

from a longer time period to understand any pandemic-related changes.
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Other ARG classes that did not have significant correlations include macrolide and MLS, that
may be worth exploring with larger pandemic data sets (Spearman, both p>0.057, Fig. S6).
Correlations were also tested including pre-, early-, and later-pandemic data for ARG
abundances and COVID-19 cases. (Note, COVID-19 cases for pre-pandemic samples were
considered to be zero). Including pre-pandemic samples, disinfectants-antiseptics and mupirocin
categories of ARGs showed a moderate positive correlation with COVID-19 cases (Spearman
rho=0.62, 0.63, respectively, both p=0.03 which are inexact due to the data having ties; Fig. 3).
Note, however, that for the mupirocin correlations, that the ARG abundance range was quite
small. Mupirocin is used to treat hospital acquired infections such as MRSA. Strikingly, the
incidence of MRSA infections increased by 13% from 2019 to 2020 in USA.!? Similarly,
significant increases in MRSA infections were reported in Turkey during 2020 as compared to
2019 from nasal swabs of around 2700 participating patients.”> Compiled data from various
reports around the world suggests that MRSA was one of the most frequent pulmonary infection
causative agent in patients with COVID-19.”> More localized prescription rates and
measurement of the antibiotic residues in the wastewater could help substantiate any
relationships and other drivers for these observations such as ARG-host selection and/or co- and
cross-selection. Other ARG classes did not show significant correlation with the COVID-19

cases (Fig. S7).
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Fig. 3 ARG abundance in metagenomes versus COVID-19 cases one week prior to the day of
sampling. Each plot header lists data from the time periods included in the plot (i.e., pre-, early-,
and later-pandemic or early- and later-pandemic only). Note that X-axis range is different for
each ARG Type. Significant positive and negative correlations are shown in teal and coral color
respectively, and grey shading represents the 95% confidence interval. (Results for insignificant

correlations are shown in Fig. S7.)

3.3 Microbiome observations pre-, early-, and later pandemic

The most abundant genera present in the total microbial community across all samples were
Aliarcobacter, Aeromonas, Acinetobacter, Arcobacter, Cloacibacterium and Pseudomonas (Fig.
4). The profile of total community is shown in nMDS plot in Fig. S8B. No differences were
observed in the microbial community structure between time phases and seasons
(PERMANOVA, all p>0.08). There were no differences in the alpha diversity of the total

microbial community at the genus level between the different pandemic phases (PERMANOVA,
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p=1, Fig. S8A). Studying the wastewater influent microbiome can (1) help in determining the
rate of co-infections in the community and (2) be used to evaluate the relation between

microbiome shifts and COVID-19 prevalence in the community.*

The LEfSe analysis indicated specific biomarkers (LDA score >3) in all the pandemic phases
(Fig. S9). Specifically, eight genera were differentially abundant in pre-pandemic samples. Three
genera were biomarkers for the early- and seven genera were biomarkers for later-pandemic
samples. Among the genera that contain waterborne and opportunistic pathogens, Salmonella
was biomarker in pre-pandemic samples. Other reports of Salmonella associated with co-
infection were not identified in the literature. Interestingly, there were 22% less Salmonella
infections in 2020 compared to pre-pandemic in the US, probably due to pandemic-related
behavioral changes such as fewer restaurant meals.!*The genus Enterobacter was a biomarker in
early-pandemic samples. Rapid diagnostic tests from a study from Italy identified Enterobacter
cloacae as a co-infecting organism during the COVID-19 outbreak.”* Another study from
Maryland, USA identified a significant positive correlation between Enterobacter cloacae and

SARS-CoV-2 in wastewater during the pandemic in 2021 through next generation sequencing.

The genus Escherichia, which contains waterborne pathogens, was a biomarker in our later-
pandemic samples. There is the possibility that these are markers of the co-infections or even

7377 a5 there were

hospital-acquired superinfections during COVID-19 caused by Escherichia coli
health care facilities in the sewer catchments for the present study. Whether healthcare
wastewater impacts the municipal WWTP microbiome depends on several factors including the

dilution”® and both WWTPs in the present study had healthcare facilities in the catchments.

Specifically, E.coli was a common pathogen causing secondary bloodstream infections in
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COVID-19 patients at three medical centers in the study region from March- May 2020.”° The
most abundant genus Aliarcobacter, includes the emerging foodborne and zoonotic pathogen

Aliarcobacter butzleri.®°

It is also possible that the biomarker observations could indicate other pandemic-related health
changes: a study conducted from May to July 2020 in wastewater influent from Chile observed
through metagenomics that the wastewater microbiome associated with gastrointestinal disorders
preceded the SARS-CoV-2 detection in untreated wastewater, suggesting that wastewater

microbiome could be an indicator for COVID-19 surveillance.?!

Apart from the biomarkers discussed above, there were no differences in the alpha diversity nor
the structure of the microbiome, indicating that the pandemic phases studied here were not
associated with a shift in the microbial community. This was contrasting to the results observed
in a recent study where temporal shifts in wastewater microbiome were observed through
metagenomics during an increase in COVID-19 cases in Maryland.?° Studies comparing the
wastewater influent microbiome between the pandemic and pre-pandemic time are not available

in literature.
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Fig. 4 Major genera (>0.5% abundance in all samples) observed in the total microbial

community from the pre-, early-, and later- pandemic samples. Genera with abundances <0.5%

have been grouped into “other” category.
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3.4 ARG-host association in pre-, early-, and later- pandemic samples

In total, 58 different genera were identified as the hosts of ARGs. Ubiquitous waterborne
putative pathogenic hosts [as defined by®?] identified in the samples included the genera
Campylobacter, Mycobacterium, Burkholderia, Aeromonas, Vibrio, Escherichia and Salmonella.
The most frequent hosts of ARGs belonging to the category of disinfectants/antiseptics were
Pseudomonas and Vibro (Fig. 5). Specifically, the hosts were Pseudomonas aeruginosa and
Vibrio cholerae. Vibro was also observed to be the host of most of the sulfonamide resistance

genes (~99%).

Previous studies from around the world including clinical reports and data from broiler farms
have shown that generally the common hosts of gacE / gacEdeltal gene were Klebsiella,

Pseudomonas and E.coli®> %

while gacA/B genes were associated with S. aureus and E. faecalis
(reviewed by **). All gac genes belong to the disinfectants-antiseptics class and confer resistance
to quaternary ammonium compounds.® The genus Vibro has been found to contain multidrug
and toxic compound extrusion (MATE) pumps, conferring resistance to biocides such as
chlorhexidine, benzalkonium chloride, and triclosan.®® A review on environmental Vibrio species
spanning two decades (2000- 2019) found that the most of the ARGs carried by this genus
belonged to tetracycline (21%) and beta-lactam and sulfonamide (20%) drug classes.®” This

observation partly aligns with the result of this study that Vibrio genus was the host of

sulfonamide resistance genes.

ARGs belonging to aminocoumarin drug class were exclusively linked to Escherichia and
Streptomyces genera. In contrast, the ARG classes tetracycline, beta-lactam, multidrug, and

aminoglycoside each had more than ten hosts. Among the waterborne putative pathogenic hosts,
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Mycobacterium was exclusively linked to multidrug resistant genes, Campylobacter was linked
to aminoglycoside, diaminopyrimidine and tetracycline ARG classes, and Burkholderia was
linked to multidrug and beta-lactam ARG classes. The rest of the putative pathogenic genera
hosts were linked to more than three ARG classes. LEfSe analysis on ARG-hosts at the genus
level as a function of ARG abundances did not show any differentially abundant features
between pre-, early-, and later-pandemic samples (Fig. 5). This indicates that no changes in the
putative host-ARG linkages were identified during the different time phases. Thus, while there
were changes in the antibiotic resistance concentrations for select ARG classes, there is no
evidence for significant ARG transfer to new hosts despite the potential for selective pressure
(Section 1). The lack of differences in the ARG-hosts also indicates that the host diversity did
not change when comparing samples from 2015-26 and 2020-21, despite the changes in the
movement of people noted above. It would be interesting to see how conserved these results are
across sewer sheds and geographies, for healthcare associated wastewater (rather than the
municipal WW sampled here), and for longer or different phases of the pandemic (notably this
study did not capture the first wave). Studies using high throughput methods in wastewater to
identify ARG hosts during the pandemic are not available in literature for comparison. Several
studies have reported an increase in antimicrobial resistance and multidrug resistance organisms
(MRDOs) during the pandemic (reviewed in *® based on clinical data). While several multidrug
resistant organisms were identified in this study, evidence for significant increases during the

pandemic was not observed.
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Fig. 5 Bubble plot showing hosts linked to ARG classes as a function of ARG abundances. Size and color of bubble indicate the log
abundance of ARGs (gene copies/ Gb) associated with the particular host. Genera highlighted in yellow represent the ubiquitous
waterborne pathogens [as defined by *°]. Note that ARG types having average abundance lesser than <5 gene copies/Gb have been

omitted from the figure. (Fig. S10 includes all ARG types.)
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5 Conclusion

Overall, the results of this study indicate that the pandemic was associated with some changes in
antibiotic resistance and microbial community in wastewater influent samples. The normalized
concentration of gacE gene, which confers resistance to quaternary ammonium compounds was
higher in WWTP-D in early pandemic samples, compared to pre- and later-pandemic samples.
Further, a positive correlation was observed between disinfectants/antiseptics class of ARGs and
COVID-19 cases, providing evidence to support the hypothesis that increased use of
disinfectants resulted in higher residues in the WWTPs. Studies measuring the concentration of
antibiotics and biocides will be useful in future for finding the direct relationships of biocide
concentration with abundance of other ARGs. The abundance of macrolide class of ARGs was
higher in early-pandemic than pre- and later-pandemic samples, potentially due to the increased
prescription of azithromycin antibiotic in the initial months of the pandemic. Similar
observations were noted for the ze#(G) and su/l genes through qPCR, potentially attributed to
other factors such as seasonal variation and changes in human movement during the pandemic
given that prescriptions of the associated antibiotic decreased during the pandemic. A negative
correlation was observed between sulfonamide and aminoglycoside ARG types and the number
of COVID-19 cases. Several correlations between ARGs and COVID-19 cases in the present
study had p-values between 0.05- 0.06 and would be worth exploring in the future with a larger
sample size. Analysis of the total microbial community revealed that the pathogenic genera
Enterobacter and Escherichia were the biomarkers in early and later pandemic samples
respectively, shedding some light on the co-infecting organisms during the pandemic. Among the
hosts of ARGs, Pseudomonas and Vibrio were the most common hosts of the

disinfectants/antiseptics class of ARGs, of particular interest given the increased use of biocides
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during the pandemic and the potential resulting selective pressure "> %%, Overall, while
differences were observed in the resistome, the pandemic was not associated with shifts in the
microbiome nor hosts of ARGs. The results of this study help in understanding the impact of the
pandemic on antibiotic resistance, ARG-hosts, and co-occurring putative pathogens in

wastewater.

Supporting Information: Figures with additional gPCR and metagenomic ARG data,
correlations between ARGs and COVID-19 cases, and biomarker analysis results. Tables with
additional details/data for sampling, water quality analyses, qPCR primers and QA/QC, and

metagenomic sequencing.
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