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Abstract 7 

The COVID-19 pandemic offered a unique opportunity to study shifts in environmental 8 

antibiotic resistance that could be associated with the changes in disinfectant and/or antibiotic 9 

usage patterns, co-infections, or other behaviors. The aim of this study was to document 10 

temporal changes (pre-, early-, versus later-pandemic) in antibiotic resistance genes (ARGs), 11 

ARG hosts, biomarkers of potential co-infections, and the total microbiome in municipal 12 

wastewater influent from one separate sanitary and one combined sewer system. The 16S rRNA 13 

gene copy normalized concentration of qacE was higher in early- than pre-pandemic samples, 14 

and sul1 and tet(G) were higher in early- than later-pandemic samples. Metagenomics revealed 15 

significant changes in the abundance of the macrolide and sulfonamide ARG classes. COVID-19 16 

cases positively correlated with the disinfectants/antiseptics group of ARGs and negatively 17 

correlated with the sulfonamide and aminoglycoside resistance classes. Discussion is provided 18 

regarding the correspondence of these observations with antibiotic prescription pattern changes 19 

during the study period.  Putative waterborne pathogens were identified, which is of potential 20 
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interest for understanding the prevalence of community co-infections. No changes in host-ARG 21 

associations were observed. Overall, the results of this study may help in understanding the 22 

impact of the pandemic/lack thereof on another public health crisis: antibiotic resistance. 23 
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Synopsis:  Using wastewater-based epidemiology to measure changes in antimicrobial resistance 27 

during the COVID-19 pandemic can guide how to protect public health. 28 

1 Introduction 29 

The recent COVID-19 pandemic may have direct implications for antimicrobial resistance. Many 30 

of the EPA-recommended disinfectants for SARS-CoV-2 contain quaternary ammonium 31 

compounds (QACs) as their active ingredient, and the use of these disinfectants increased 32 

significantly during the pandemic.1 Apart from QACs, disinfectants can also contain other 33 

biocides that are antimicrobials.2 During the pandemic, a wastewater treatment plant (WWTP) in 34 

Greece was reported to have received 152% more biocides as compared to pre-pandemic time in 35 

2019 3! Likewise, a high concentration of disinfectants and their positive correlation with 36 

COVID-19 cases was observed in residential dormitory wastewater in Singapore.4 Studies 37 

measuring the concentration QAC residues in wastewaters in USA during the pandemic are 38 

presently not available. Given the concern with increased used of disinfectants during the 39 

pandemic, several researchers have reviewed the potential implications on wastewater treatment 40 

and receiving waters.5, 6 Of particular concern is whether the increased use of disinfectants 41 



resulted in increases in antimicrobial resistance (AMR). Notably, if the biocide concentrations 42 

reach the sub-minimum inhibitory concentration for most of the bacteria found in the system, 43 

this increase in selection pressure can promote AMR evolution [as postulated by several 44 

researchers reviewed by McBain et al.7].  45 

The consumption of antibiotics surged in hospitalized patients during the initial months of 46 

COVID-19 pandemic to treat or prevent other secondary infections. During the early stages of 47 

the pandemic, 72% of COVID-19 patients were prescribed and using antimicrobials even though 48 

the incidence of bacterial or fungal co-infection in COVID-19 infected patients was around 8%.8 49 

The lack of decision support and rapid diagnostic tools early in the pandemic also lead to 50 

increased and unnecessary use of antimicrobials.9 Some antibiotics that were prescribed and used 51 

commonly during this time were penicillin, meropenem, moxifloxacin, cephalosporins, 52 

macrolides, and quinolones.10, 11 However, for outpatient-health care, the usage of antibiotics 53 

dropped in 2020 compared to 2019, which could be attributed to lower incidences of other 54 

respiratory diseases.12 Given that a range of antibiotic concentrations can select for antibiotic 55 

resistance,13 the pandemic offers an opportunity to study the potential effects of changes in 56 

antibiotic consumption on antibiotic resistance in the wastewater environment. 57 

Wastewater-based epidemiology (WBE) has extensively been used to study the spread of SARS-58 

CoV-2 during the COVID-19 pandemic.14-22 WBE is also a useful tool for tracking the spread of 59 

antibiotic resistance in communities with sewage collection systems and the environment.23-27  60 

Pre-pandemic studies from our team showed that the variance in wastewater influent abundance 61 

of ARGs such as sul1, tet(G), tet(W), tet(O), vanA and ermF was explained by season as well as 62 

water quality factors such as pH and heavy metals.28 In addition to ARG monitoring, WBE also 63 



allows for studying the total microbial community29 and can aid in our understanding the co-64 

infecting pathogens and other changes in the sewage microbiome.30 65 

WBE studies monitoring ARG during the pandemic are emerging in the literature with varying 66 

durations, ARG targets, and methods. A wastewater surveillance study from Las Vegas, Nevada 67 

demonstrated that the abundance of ARGs belonging to fluoroquinolone and beta-lactam classes 68 

increased during a COVID-19 surge in December 2020 compared to November 2020. The study 69 

used a combination of qPCR and metagenomic sequencing for analyzing the samples.31 Using 70 

metagenomics, a positive correlation was also observed between the macrolide, tetracycline, 71 

sulfonamide and some beta-lactamase ARG classes and time over three months in hospital 72 

wastewater from Saudi Arabia.32 Likewise, a study from India noted significant increases in 73 

antidrug resistance of E.coli in 2020 compared to 2018 using the culture based Kirby-Bauer disk 74 

diffusion method.33 To our knowledge, there are no reports to-date of the relative abundance of 75 

ARGs and their hosts in wastewater influent nor comparisons of pre- and during-pandemic 76 

concentrations of ARGs and their hosts in wastewater influent. Understanding not only the 77 

abundance and diversity of antibiotic resistance genes, but also their hosts and genetic context is 78 

of interest for risk assessment.34, 35  79 

The objectives of this study were to (O1) study the abundance of ARGs in wastewater across 80 

time at two WWTPs during the COVID-19 pandemic, (O2) determine if there were microbial 81 

community changes during the pandemic and (O3) identify the hosts of these ARGs and 82 

determine whether a shift in ARG-hosts is observable before/during the pandemic. Wastewater 83 

influent samples were analyzed using qPCR for selected ARGs and long read nanopore 84 

sequencing to study the wastewater resistome and microbiome, the latter with a focus on 85 



identifying putative pathogens. Overall, the results presented seek to help in understanding the 86 

potential impact of the pandemic on another public health crisis: antibiotic resistance.  87 

2 Materials and Methods 88 

2.1 Sampling, DNA extraction, and qPCR 89 

Composite Wastewater influent samples were collected from two WWTPs every week from June 90 

2020 to March/May 2021.36 WWTP-A has a design flow <10 MGD and is connected to a 91 

separate sanitary sewer system.  WWTP-D has a design flow of 330 MGD and is connected to a 92 

combined sewer system  (these WWTP names are selected to match those used in Fahrenfeld et 93 

al.36).  Samples were collected every week on Tuesdays/Wednesdays. Automatic samplers were 94 

used for collecting composite 24-hour samples (1 Liter) from the WWTPs. All samples were 95 

transported on ice to the lab. Before filtering the samples, they were pasteurized to inactivate 96 

viruses 37. Around 200-300 mL of each composite sample was filter concentrated using 0.22 μm 97 

mixed cellulose ester membrane filters (Millipore Sigma, St. Louis, MO, USA), and the filters 98 

were stored at -80C until DNA extraction. One sample per month was chosen for DNA 99 

extraction from each WWTP, avoiding the days on which rainfall was recorded. DNA extraction 100 

from the selected filters was performed using the FastDNA Spin Kit for Soil (MP Biomedicals, 101 

Solon, OH, USA). 102 

Archived wastewater influent sample DNA extracts stored at -20C collected in 2015- 2016 from 103 

WWTP-D were retrieved for comparison.  Briefly, composite samples were composed of WWTP 104 

grab samples (500-mL each) collected at 8 am, 10 am and 12 pm. All samples were collected 105 

during baseflow conditions in sterile 500-mL Nalgene bottles, transported to the lab on ice, and 106 



stored at 4oC prior to filter concentration (90-230 mL) using 0.22 μm nitrocellulose filters 107 

(Millipore Corporation, Billerica, MA). These DNA extracts were categorized as pre-pandemic 108 

samples. 109 

Water quality parameters monitored in the pandemic wastewater samples included pH, total 110 

suspended solids (TSS), and chemical oxygen demand (COD), as previously described.36  qPCR 111 

was performed for 16S rRNA gene38 and for select resistance genes.  ARGs analyzed included 112 

sul1,39 tet(G),40 blaTEM,41 and qacE.42  113 

Details on COVID-19 cases estimation for each sampling event at each WWTP are provided in a 114 

previous study by the lab.36 In brief, publicly available county data (NJ COVID-19 Dashboard) 115 

was used for estimating the COVID-19 cases. The population of towns served by the WWTP 116 

were estimated using US census data. The number of COVID cases was obtained for each 117 

sampling event by multiplying the percentage of the county population residing in the towns 118 

served by the WWTP (Table S2).  119 

qPCR reactions were prepared with 0.4 µM forward and reverse primers, 5 µl SsoFast™ 120 

EvaGreen® Supermix (Bio-Rad, Hercules, CA), and 1 µl sample to make a total of 10 µl 121 

reaction volume per well.  All DNA extracts were diluted by a factor of 1:100 to reduce the 122 

inhibitors present in the samples. No-template controls (NTC) consisting of sterile molecular 123 

biology grade water were included in every run. Pre-quantified standards were diluted 10-fold to 124 

produce a seven-point calibration curve from 108 to 102 gene copies for ARGs or to 103 gene 125 

copies for 16S rRNA. The standards, samples, field blanks and the NTC were run in triplicate 126 

(i.e., technical replicates). Melt curve analysis was performed for each gene to check the 127 



specificity of the reaction. The primers, annealing temperatures, efficiencies, and R2 values are 128 

listed in Table S3. 129 

Samples were assigned to seasons based on the date of sampling: Spring season being from 130 

March 1 to May 31, Summer from June 1 to August 31, Fall from September 1 to November 30 131 

and Winter from December 1 to February 28 (Table S2).   132 

2.2 Nanopore Sequencing & Bioinformatics  133 

Eight samples from WWTP-D along with four archived samples from the same WWTP were 134 

selected for long-read shotgun sequencing using the Minion MK1C platform. Samples were 135 

chosen from the same months as that of pre-pandemic samples when possible or randomly. All 136 

samples were purified using the Genomic DNA Clean & Concentrator Kit (gDCC, Zymo 137 

Research, Tustin, CA) and quantified using Qubit (Invitrogen) before library prep. The native 138 

barcoding kit 24 (SQK-NBD112.24) was used for library prep and three samples were barcoded 139 

per run. At least 1000 ng DNA was used per sample, with the exception of two samples with low 140 

DNA concentrations as measured via Qubit (Table S4). Library prep was performed following 141 

the manufacturer’s protocol with the following minor modifications to reduce DNA losses and 142 

avoid size selection. In the DNA repair and end prep stage, AMPure beads (1.8X concentration) 143 

were added and after resuspending the pellet in nuclease free water, the incubation time was 144 

increased to 10 minutes at 37C. AMPure beads (0.8X concentration) were used in the Native 145 

barcode ligation and for the final Adapter ligation and clean up stage. During all stages of the 146 

AMPure bead clean-up, when the pellet was resuspended in nuclease-free water to elute the 147 

DNA, gentle pipette mixing was done before incubation to encourage the elution of DNA. At the 148 

end of each step, Qubit analysis was performed to quantify the DNA remaining at each stage.  149 



Loading beads were used for loading samples on the flow cell. Barcoded samples were loaded 150 

onto a flow cell (FLO-MIN106-D) following the manufacturer’s instructions and run for 72 151 

hours, until the flow cells were used up. A total of four runs were performed with three barcodes 152 

per run, resulting in a total of 12 samples. The flow cell pore count was checked before starting 153 

each run. 154 

DNA extracts were prepared, cleaned, barcoded, and sequenced (details in Supplemental 155 

Information). Sequences were deposited in the National Centre for Biotechnology Information 156 

Sequence Read Archive (NCBI-SRA-PRJNA977080).   157 

Raw reads were generated in fast5 format and all details of quality and depth are provided in 158 

Table S5. The average sequencing data generated was 1.46 Gb per sample. Recent literature 159 

reporting the resistome and microbiome of wastewater influent samples through nanopore 160 

sequencing reported 1.25-6.07 Gb per sample.43-45 Notably, Dai et al. (2022)’s results  suggested 161 

that rate of ARG detection did not change with the sequencing depth.43  162 

Reads were basecalled using Guppy basecalling software (v6.4.6, GPU version) to return fastQ 163 

reads. Barcoding, demultiplexing, and barcode trimming were done using the Guppy barcoding 164 

software (v6.4.6). N50 and quality of the fastQ reads was checked using stats.sh command from 165 

BBMap.46 Samples were then analyzed using the FastQ Antimicrobial Resistance pipeline 166 

(v2022.08.16-15679) in EPI2ME software. The FastQ Antimicrobial resistance pipeline has been 167 

designed for reads generated through the Oxford Nanopore platform. The pipeline uses the 168 

Centrifuge database for taxonomic classification and the comprehensive antimicrobial resistance 169 

database (CARD) for antimicrobial resistance genes identification 47 and has been used in 170 

previous studies to identify ARGs and their hosts.43, 45. However, the classification of reads 171 



provides the likely host-ARG association and there is an uncertainty in these analyses,48 which is 172 

greater for ARGs associated with mobile genetic elements 49. Hence, the term “putative host-173 

ARG association” has been used in this study.  174 

Lineage was derived from the taxids provided in the output file using the NCBITax2Lin code 175 

(https://github.com/zyxue/ncbitax2lin). Custom python scripts were used for data filtering and 176 

sorting for ARGs and hosts. Only the hits obtained from the Kingdom Bacteria were retained for 177 

further analysis. The percent abundance of different genera was found by dividing the number of 178 

reads classified by the total number of reads for the sample after QC filtering.  179 

Only the ARG hits identified through the protein homolog model were considered for further 180 

analysis.43 ARGs were then grouped into categories based on The CARD database 181 

(https://card.mcmaster.ca/, downloaded on 3/25/2350). The abundance of ARGs was found using 182 

the following formula.43 183 

𝐴𝑅𝐺 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 (𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝐺𝑏)⁄ =  

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑒𝑛𝑑 − 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑡𝑎𝑟𝑡

𝐿𝑒𝑛𝑔𝑡ℎ𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

∑ 𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑒𝑎𝑑(𝐺𝑏)𝑛
1

 184 

Here, Alignmentend and Alignmentstart are the positions in the read where alignment started and 185 

ended, Lengthreference (bp) is the length of the respective ARG and n represents the total number 186 

of reads present in the sample after QC. All the parameters for calculating ARG abundance were 187 

obtained from the output file from the EPI2ME pipeline.  188 

The abundance of each ARG type associated with a particular host was calculated by summing 189 

up the abundances of each ARG (of that ARG type) that was assigned to the particular host. For 190 

example, for sulfonamide ARG type linked to the putative host Vibrio, the abundances of all 191 
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ARGs belonging to the sulfonamide category (such as sul1, sul2 etc.) and classified as Vibrio 192 

were summed.  193 

 194 

2.3 Data Analysis 195 

All statistical tests were performed in RStudio version 4.1.3 (www.r-project.org). Normality of 196 

data was checked using a Shapiro-Wilk test. Homogeneity of variances was confirmed using a 197 

Bartlett test. Two-way ANOVA with a posthoc TukeyHSD was performed on parametric qPCR 198 

data (i.e., qacE, tet(G), bla(TEM)). For non-parametric qPCR data (i.e.,16S rRNA, sul1), the 199 

Kruskal-Wallis test followed by the post-hoc Dunn test was with Bonferroni correction 200 

performed. Oneway.test was used with a posthoc pairwise t-test (pairwise.t.tet) with Bonferroni 201 

correction for qPCR data that were normal but did not have equal variance (i.e., tet(G)). 202 

Spearman’s correlations were tested between the qPCR measured concentration of ARGs and the 203 

number of COVID-19 cases reported in the sewer catchment one week prior to the date of 204 

sampling (previously shown to have moderate correlation with the SARS-CoV-2 N1 gene copies 205 

per capita per day36). PERMANOVA (adonis) analysis was performed to understand the relative 206 

importance of factors (pH, conductivity, COD, TSS, COVID cases, season, time phase) 207 

impacting qPCR measured ARG concentrations.51  208 

For the NGS data, a one-way ANOVA was performed on all ARG types (i.e., ARG classes such 209 

as macrolide, sulfonamide, etc.)  against different pandemic phases (i.e., pre-, early-, and later-210 

pandemic), followed by TukeyHSD posthoc test if the p-value was significant (<0.05). Samples 211 

collected during the pandemic from June 2020 to March/May 2021 were divided into two time 212 

phases: early second wave designated as early-pandemic (June 2020-December 2020) and later 213 
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second-wave designated as later-pandemic (January 2021- March/May 2021). A one-way 214 

ANOVA was also performed on the total abundance of all ARGs to test for differences in the 215 

sampling periods. Shannon, Simpson and InverseSimpson diversity indices were calculated for 216 

ARGs and the total microbial community. A Kruskal-Wallis rank sum test was performed on 217 

ARG diversity indices. Linear discriminant analysis effect size (LEfSe) test was performed on 218 

ARG hosts and total microbial community to identify the biomarkers52 in the pre-, early-, and 219 

later-pandemic samples. Spearman’s correlations were performed between ARG abundances and 220 

the number of COVID-19 cases reported in the sewer catchment one week prior to the date of 221 

sampling (non-parametric correlation test). Bray-Curtis dissimilarity matrices were calculated for 222 

(1) the total microbial community at genus level and (2) ARG abundances. Then, non-metric 223 

multidimensional scaling (nMDS) and otherer plots were made using ggplot2 package.53  224 

3 Results and discussion 225 

3.1 Differences in normalized ARG concentration observed in qPCR analysis 226 

Differences were seen for selected ARGs normalized to 16S rRNA gene copies when comparing 227 

pre- early-, and later-pandemic samples (Fig. 1, Fig S1). For WWTP-D, qacE was significantly 228 

higher in early-pandemic samples than pre- and later-pandemic samples from WWTP-D 229 

(TukeyHSD, both p<0.04) and tet(G) was significantly higher in early pandemic samples 230 

compared to pre-pandemic samples (post hoc pairwise t-test, p=0.002). The 16S rRNA gene 231 

copy normalized concentration of sul1 gene was higher in early- than later-pandemic samples 232 

(Dunn test, p= 0.003). No differences were observed between blaTEM gene normalized 233 

concentrations comparing pre- and early- and later- pandemic samples (2-way ANOVA, all p> 234 

0.7). For WWTP-A, where only early- and later-pandemic samples were available, no 235 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/discriminant-analysis


differences were observed for normalized qacE, tet(G), sul1 and blaTEM gene copies between 236 

early- and later- pandemic samples (TukeyHSD, all p> 0.059) (Fig. 1).  237 

The absolute concentration of 16S rRNA gene copies/mL was higher in Pre-pandemic than 238 

early- and later pandemic samples (Dunn Test, both p< 0.02), while there were no differences in 239 

WWTP-A (Kruskal-Wallis test, p= 0.3). 240 

 241 

 242 

Fig. 1 Normalized ARG abundances (ARG gene copies/ 16S rRNA gene copies) for blaTEM, 243 

qacE, sul1, and tet(G) in wastewater observed in pre-, early-, and later-pandemic samples. Pre-244 

pandemic samples were collected in 2015-16 while early- and later-pandemic samples were 245 

collected during the early second wave and the later second wave during the pandemic in 2020-246 

21. Boxplots represent N=5 samples for each time phase and gene combination. 247 

A moderate negative correlation was observed between the 16S rRNA gene copy normalized 248 

concentrations for both sul1 and blaTEM and the total number of COVID-19 cases for WWTP-D 249 

samples (Fig. S2, Spearman’s rho=-0.59 and -0.74, respectively and both p < 0.043). Similarly, a 250 



moderate negative correlation was observed between the 16S rRNA gene normalized 251 

concentrations of sul1, qacE and blaTEM and the total number of COVID-19 cases one week 252 

before the sample collection date for WWTP-A samples (Fig. S2, Spearman’s rho=-0.66, -0.78, -253 

0.72, respectively, all p< 0.01).  [No correlations were observed for tet(G) with either WWTP 254 

nor qacE and WWTP-D and total COVID-19 cases, Fig. S2.]  Including pre-pandemic samples 255 

in addition to early- and later-pandemic samples for WWTP-D resulted in no significant 256 

Spearman’s correlations between normalized ARG concentrations and COVID-19 cases one 257 

week prior to sampling (all p>0.1, Fig. S3). 258 

PERMANOVA analysis performed on all samples (pre-, early-, and later pandemic) indicated 259 

that pandemic phase 16S rRNA gene copy normalized ARG concentrations were associated with 260 

pandemic phase (i.e., pre-, early, or later; p=0.001), but not with COVID-19 cases, WWTP, and 261 

season (all p>0.06). PERMANOVA analysis of samples for which water quality data were 262 

available (i.e., early- and later-pandemic) indicated that pH had a significant effect on ARG 263 

concentrations (PERMANOVA, p=0.039) while other factors (conductivity, COD, TSS) did not 264 

(PERMANOVA, p>0.054).  265 

Given the availability of pre-pandemic and pandemic samples, the results from WWTP-D could 266 

support the predictions that the increased use of cleaning agents54 and increases in antibiotic 267 

prescriptions and residues in wastewater55 may select for increases in antibiotic resistance during 268 

the pandemic.5, 55 The subsequent decrease in the concentration of qacE could possibly be due to 269 

changes in behavior as the pandemic progressed due to lesser usage of disinfectants, as was 270 

predicted by 56. Measuring the selecting agents (which was beyond the scope of the present 271 

study) in parallel with ARGs would be needed to demonstrate a direct relationship. 272 



The variation in the ARG abundances observed in this study could also be potentially attributed 273 

to other factors such as seasonal variations57 and/or changes in the movement of people in/out of 274 

the sewer catchment. We previously observed season was an important factor for explaining the 275 

variation in ARGs measured via qPCR in wastewater influent sampled in 2016-2017 from 276 

WWTPs with >100 MGD design flows.28 Such seasonal variations were speculated to follow 277 

changes in antibiotic prescription rates58 and therefore selective pressure in the gut microbiome59 278 

and antibiotic fluxes in wastewater.60  279 

The demographics of the sewage catchment were likely different for the pre- versus the early- 280 

and later-pandemic samples, which may also have impacted our observations given that the 281 

while the sewage microbiome is markedly similar around the globe61 it does reflect population 282 

gut microbiome.62 There was a consistent drop in U.S migration from 2019 to 2021 and the local 283 

mobility (movement within the country) also dropped.63 Drastic changes in movement compared 284 

to baseline were reported in the sewer catchments studied here for residential, workplace, and 285 

transit (Fig. S1136) during the pandemic.  Notably, both WWTP studied here have regional rail 286 

lines, airports, and travelers/commuters in the densely populated study region. Human mobility 287 

has been linked to increase in antimicrobial resistant organisms and the antimicrobial resistant 288 

infections.64  In-system sampling to differentiate transient and/or transportation associated 289 

populations (for e.g. 65) and larger/longer data sets could aid in disentangling any potential 290 

human movement impacts.   291 

System-to-system differences were demonstrable in the present study through comparison of the 292 

early- and later-pandemic qPCR results between the two WWTPs that showed inconsistent 293 

results for qacE and sul1. The differences could be due to several system-specific factors 294 



including the differences in design flow, hydraulic residence time, sewer type, and water 295 

quality.28, 66, 67 Since samples from wet weather days were not included in this study, rainfall was 296 

assumed to not have any impact on the observations. WWTP-D has a design flow over one order 297 

of magnitude greater with a travel time travel 1.5-2hrs longer than WWTP-A. There is potential 298 

for but limited evidence to support ARG selection in sewers (as reviewed by27) but ARG 299 

transcription in sewers has been demonstrated,68 which may imply that travel time could impact 300 

observations of ARGs in wastewater influent. Further research would be useful in confirming the 301 

impact of travel time on ARG concentrations. The sewer type could also impact our observations 302 

given that WWTP-D is a combined sewer system while WWTP-A is separate sanitary system 303 

and we previously reported significant differences in the abundances of some ARGs via qPCR as 304 

a function of sewer type (all with >100 MGD design flow) sampled in 2016-2017.28 Not 305 

including samples from wet weather days may have reduced the impact of sewer type. Again, a 306 

larger number of samples from more treatment plants would be useful for disentangling these 307 

potential impacts. 308 

Differences in water quality as noted above through random forest analysis may also affect the 309 

concentrations of ARGs in WWTPs. We had previously found that variation in ARGs could be 310 

explained by water quality parameters such as conductivity, pH, COD, TSS, and heavy metals 28. 311 

Likewise, significant correlations were observed between some ARGs and ammonium, 312 

phosphate, and COD in wastewater influent from eight WWTPs in China.67  Some of these 313 

observations could be due to co- and cross-selection (e.g., heavy metals) whereas others may be 314 

more related to shifts they cause in microbial community composition.   315 

3.2 Metagenomic insights into ARG abundance pre- and during the pandemic  316 



In total, 625 different ARGs were identified in the samples analyzed from pre-, early-, and later-317 

pandemic samples from WWTP-D. ARGs were grouped into 20 categories based on drug class 318 

(Fig. 2A). On an average, the ARG types that were most abundant in all samples (abundance 319 

greater than 10% of total average abundance) were beta-lactam, macrolide-streptogramin, 320 

multidrug, aminoglycoside and tetracycline. Details of raw reads obtained after sequencing are 321 

provided in Table S5. 322 

The abundance of macrolide ARGs was significantly greater in early- than pre-pandemic 323 

samples (TukeyHSD, p= 0.004, Fig. 2B). Interestingly, there were no significant differences in 324 

the concentration of macrolide ARGs between the pre- and later-pandemic samples. Further, the 325 

abundance of sulfonamide ARGs was significantly greater in the early- than the later-pandemic 326 

samples (TukeyHSD, p= 0.03, Fig. 2B). No differences were observed in other ARG types 327 

across the pre-, early-, and later-pandemic samples.  328 

While antibiotics were not measured in the wastewater in the present study, information on 329 

antibiotic prescriptions in the US is available. The macrolide azithromycin was the most 330 

commonly prescribed antibiotic in the initial months of the COVID-19 pandemic in USA69, 70 331 

and could be related to the higher abundances of macrolide ARGs observed via metagenomics.  332 

The prescription rate decreased in May 2020 but remained higher than the pre-pandemic time in 333 

2019.12, 70  In contrast, the changes in tetracycline and sulfonamide genes do not correspond with 334 

prescription rates for sulfonamide and tetracyclines, which decreased during the study period.71  335 

This was mainly due to a decrease in outpatient health care for other respiratory illnesses during 336 

the pandemic. CDC report indicates that although the outpatient antibiotic usage resumed to 337 



normal rate in 2021, it was still lower overall in 2021 compared to 2019.12  Thus, other potential 338 

factors should be explored (See Section 3.1). 339 

A) 340 

 341 

B)         342 

 343 



Fig. 2 A) Stacked bar graph representing the cumulative ARG abundance in pre-, early-, and 344 

later-pandemic samples. Colors represent the respective ARG Types as per the legend. B) ARG 345 

class abundance from metagenomes from pre-, early-, and later-pandemic samples.   346 

No differences were observed in the alpha diversity of ARGs between time phases (pre-, early-, 347 

and later-pandemic; Kruskal Wallis test, p>0.2, Fig. S5A). Similarly, no differences were 348 

observed in the profile of ARGs between time phases and seasons (PERMANOVA, p=0.26, 349 

Fig.S5B). A strong positive correlation was observed between the disinfectants-antiseptics class 350 

and COVID-19 cases one week prior to sampling (Spearman’s rho=0.86, p=0.006).  The 351 

sulfonamide and aminoglycoside resistance classes showed a moderate negative correlation with 352 

COVID-19 cases (Spearman’s rho= -0.71 and -0.76, respectively, p <0.028; Fig.3). Note that a 353 

significant negative correlation was also observed between the sul1 gene, conferring resistance to 354 

sulfonamides, quantified through qPCR and COVID-19 cases (See Section 3.1). Similar results 355 

were observed in a study of hospital wastewater, where a negative correlation was reported 356 

between ARGs belonging to drug classes aminoglycoside, peptides, beta-lactam, 357 

fluoroquinolone, and lincosamide and the number of COVID-19 patients.32 This negative 358 

correlation could be attributed to a variety of reasons, including high rates of antibiotic 359 

prescription in the initial months of the pandemic followed by the decrease in overall antibiotic 360 

usage as the pandemic progressed.12 Interestingly, the correlation was not significant for either 361 

aminoglycoside and sulfonamide when pre-pandemic samples were included (COVID-19 cases 362 

for pre-pandemic samples were considered zero), underscoring the need for inclusion of samples 363 

from a longer time period to understand any pandemic-related changes.  364 



Other ARG classes that did not have significant correlations include macrolide and MLS, that 365 

may be worth exploring with larger pandemic data sets (Spearman, both p>0.057, Fig. S6). 366 

Correlations were also tested including pre-, early-, and later-pandemic data for ARG 367 

abundances and COVID-19 cases. (Note, COVID-19 cases for pre-pandemic samples were 368 

considered to be zero). Including pre-pandemic samples, disinfectants-antiseptics and mupirocin 369 

categories of ARGs showed a moderate positive correlation with COVID-19 cases (Spearman 370 

rho= 0.62, 0.63, respectively, both p=0.03 which are inexact due to the data having ties; Fig. 3). 371 

Note, however, that for the mupirocin correlations, that the ARG abundance range was quite 372 

small.  Mupirocin is used to treat hospital acquired infections such as MRSA. Strikingly, the 373 

incidence of MRSA infections increased by 13% from 2019 to 2020 in USA.12 Similarly, 374 

significant increases in MRSA infections were reported in Turkey during 2020 as compared to 375 

2019 from nasal swabs of around 2700 participating patients.72 Compiled data from various 376 

reports around the world suggests that MRSA was one of the most frequent pulmonary infection 377 

causative agent in patients with COVID-19.73  More localized prescription rates and 378 

measurement of the antibiotic residues in the wastewater could help substantiate any 379 

relationships and other drivers for these observations such as ARG-host selection and/or co- and 380 

cross-selection. Other ARG classes did not show significant correlation with the COVID-19 381 

cases (Fig. S7). 382 



 383 

Fig. 3 ARG abundance in metagenomes versus COVID-19 cases one week prior to the day of 384 

sampling. Each plot header lists data from the time periods included in the plot (i.e., pre-, early-, 385 

and later-pandemic or early- and later-pandemic only).  Note that X-axis range is different for 386 

each ARG Type. Significant positive and negative correlations are shown in teal and coral color 387 

respectively, and grey shading represents the 95% confidence interval. (Results for insignificant 388 

correlations are shown in Fig. S7.) 389 

3.3 Microbiome observations pre-, early-, and later pandemic  390 

The most abundant genera present in the total microbial community across all samples were 391 

Aliarcobacter, Aeromonas, Acinetobacter, Arcobacter, Cloacibacterium and Pseudomonas (Fig. 392 

4). The profile of total community is shown in nMDS plot in Fig. S8B. No differences were 393 

observed in the microbial community structure between time phases and seasons 394 

(PERMANOVA, all p>0.08). There were no differences in the alpha diversity of the total 395 

microbial community at the genus level between the different pandemic phases (PERMANOVA, 396 



p=1, Fig. S8A). Studying the wastewater influent microbiome can (1) help in determining the 397 

rate of co-infections in the community and (2) be used to evaluate the relation between 398 

microbiome shifts and COVID-19 prevalence in the community.30 399 

The LEfSe analysis indicated specific biomarkers (LDA score >3) in all the pandemic phases 400 

(Fig. S9). Specifically, eight genera were differentially abundant in pre-pandemic samples. Three 401 

genera were biomarkers for the early- and seven genera were biomarkers for later-pandemic 402 

samples. Among the genera that contain waterborne and opportunistic pathogens, Salmonella 403 

was biomarker in pre-pandemic samples. Other reports of Salmonella associated with co-404 

infection were not identified in the literature.  Interestingly, there were 22% less Salmonella 405 

infections in 2020 compared to pre-pandemic in the US, probably due to pandemic-related 406 

behavioral changes such as fewer restaurant meals.12The genus Enterobacter was a biomarker in 407 

early-pandemic samples. Rapid diagnostic tests from a study from Italy identified Enterobacter 408 

cloacae as a co-infecting organism during the COVID-19 outbreak.74 Another study from 409 

Maryland, USA identified a significant positive correlation between Enterobacter cloacae and 410 

SARS-CoV-2 in wastewater during the pandemic in 2021 through next generation sequencing.30  411 

The genus Escherichia, which contains waterborne pathogens, was a biomarker in our later-412 

pandemic samples. There is the possibility that these are markers of the co-infections or even 413 

hospital-acquired superinfections during COVID-19 caused by Escherichia coli75-77 as there were 414 

health care facilities in the sewer catchments for the present study.  Whether healthcare 415 

wastewater impacts the municipal WWTP microbiome depends on several factors including the 416 

dilution78 and both WWTPs in the present study had healthcare facilities in the catchments.  417 

Specifically, E.coli was a common pathogen causing secondary bloodstream infections in 418 



COVID-19 patients at three medical centers in the study region from March- May 2020.79 The 419 

most abundant genus Aliarcobacter, includes the emerging foodborne and zoonotic pathogen 420 

Aliarcobacter butzleri.80 421 

It is also possible that the biomarker observations could indicate other pandemic-related health 422 

changes: a study conducted from May to July 2020 in wastewater influent from Chile observed 423 

through metagenomics that the wastewater microbiome associated with gastrointestinal disorders 424 

preceded the SARS-CoV-2 detection in untreated wastewater, suggesting that wastewater 425 

microbiome could be an indicator for COVID-19 surveillance.81  426 

Apart from the biomarkers discussed above, there were no differences in the alpha diversity nor 427 

the structure of the microbiome, indicating that the pandemic phases studied here were not 428 

associated with a shift in the microbial community. This was contrasting to the results observed 429 

in a recent study where temporal shifts in wastewater microbiome were observed through 430 

metagenomics during an increase in COVID-19 cases in Maryland.30 Studies comparing the 431 

wastewater influent microbiome between the pandemic and pre-pandemic time are not available 432 

in literature. 433 

 434 



 435 

 436 

Fig. 4 Major genera (>0.5% abundance in all samples) observed in the total microbial 437 

community from the pre-, early-, and later- pandemic samples. Genera with abundances <0.5% 438 

have been grouped into “other” category.  439 



3.4 ARG-host association in pre-, early-, and later- pandemic samples  440 

In total, 58 different genera were identified as the hosts of ARGs. Ubiquitous waterborne 441 

putative pathogenic hosts [as defined by82] identified in the samples included the genera 442 

Campylobacter, Mycobacterium, Burkholderia, Aeromonas, Vibrio, Escherichia and Salmonella. 443 

The most frequent hosts of ARGs belonging to the category of disinfectants/antiseptics were 444 

Pseudomonas and Vibro (Fig. 5). Specifically, the hosts were Pseudomonas aeruginosa and 445 

Vibrio cholerae. Vibro was also observed to be the host of most of the sulfonamide resistance 446 

genes (~99%). 447 

Previous studies from around the world including clinical reports and data from broiler farms 448 

have shown that generally the common hosts of qacE / qacEdelta1 gene were Klebsiella, 449 

Pseudomonas and E.coli83, 84 while qacA/B genes were associated with S. aureus and E. faecalis 450 

(reviewed by 84). All qac genes belong to the disinfectants-antiseptics class and confer resistance 451 

to quaternary ammonium compounds.85 The genus Vibro has been found to contain multidrug 452 

and toxic compound extrusion (MATE) pumps, conferring resistance to biocides such as 453 

chlorhexidine, benzalkonium chloride, and triclosan.86 A review on environmental Vibrio species 454 

spanning two decades (2000- 2019) found that the most of the ARGs carried by this genus 455 

belonged to tetracycline (21%) and beta-lactam and sulfonamide (20%) drug classes.87 This 456 

observation partly aligns with the result of this study that Vibrio genus was the host of 457 

sulfonamide resistance genes.  458 

ARGs belonging to aminocoumarin drug class were exclusively linked to Escherichia and 459 

Streptomyces genera.  In contrast, the ARG classes tetracycline, beta-lactam, multidrug, and 460 

aminoglycoside each had more than ten hosts. Among the waterborne putative pathogenic hosts, 461 



Mycobacterium was exclusively linked to multidrug resistant genes, Campylobacter was linked 462 

to aminoglycoside, diaminopyrimidine and tetracycline ARG classes, and Burkholderia was 463 

linked to multidrug and beta-lactam ARG classes. The rest of the putative pathogenic genera 464 

hosts were linked to more than three ARG classes. LEfSe analysis on ARG-hosts at the genus 465 

level as a function of ARG abundances did not show any differentially abundant features 466 

between pre-, early-, and later-pandemic samples (Fig. 5). This indicates that no changes in the 467 

putative host-ARG linkages were identified during the different time phases. Thus, while there 468 

were changes in the antibiotic resistance concentrations for select ARG classes, there is no 469 

evidence for significant ARG transfer to new hosts despite the potential for selective pressure 470 

(Section 1).  The lack of differences in the ARG-hosts also indicates that the host diversity did 471 

not change when comparing samples from 2015-26 and 2020-21, despite the changes in the 472 

movement of people noted above. It would be interesting to see how conserved these results are 473 

across sewer sheds and geographies, for healthcare associated wastewater (rather than the 474 

municipal WW sampled here), and for longer or different phases of the pandemic (notably this 475 

study did not capture the first wave). Studies using high throughput methods in wastewater to 476 

identify ARG hosts during the pandemic are not available in literature for comparison.  Several 477 

studies have reported an increase in antimicrobial resistance and multidrug resistance organisms 478 

(MRDOs) during the pandemic (reviewed in  88 based on clinical data).While several multidrug 479 

resistant organisms were identified in this study, evidence for significant increases during the 480 

pandemic was not observed.  481 



 

Fig. 5 Bubble plot showing hosts linked to ARG classes as a function of ARG abundances. Size and color of bubble indicate the log 

abundance of ARGs (gene copies/ Gb) associated with the particular host. Genera highlighted in yellow represent the ubiquitous 

waterborne pathogens [as defined by 82]. Note that ARG types having average abundance lesser than <5 gene copies/Gb have been 

omitted from the figure. (Fig. S10 includes all ARG types.)



5 Conclusion 482 

Overall, the results of this study indicate that the pandemic was associated with some changes in 483 

antibiotic resistance and microbial community in wastewater influent samples. The normalized 484 

concentration of qacE gene, which confers resistance to quaternary ammonium compounds was 485 

higher in WWTP-D in early pandemic samples, compared to pre- and later-pandemic samples. 486 

Further, a positive correlation was observed between disinfectants/antiseptics class of ARGs and 487 

COVID-19 cases, providing evidence to support the hypothesis that increased use of 488 

disinfectants resulted in higher residues in the WWTPs. Studies measuring the concentration of 489 

antibiotics and biocides will be useful in future for finding the direct relationships of biocide 490 

concentration with abundance of other ARGs. The abundance of macrolide class of ARGs was 491 

higher in early-pandemic than pre- and later-pandemic samples, potentially due to the increased 492 

prescription of azithromycin antibiotic in the initial months of the pandemic. Similar 493 

observations were noted for the tet(G) and sul1 genes through qPCR, potentially attributed to 494 

other factors such as seasonal variation and changes in human movement during the pandemic 495 

given that prescriptions of the associated antibiotic decreased during the pandemic. A negative 496 

correlation was observed between sulfonamide and aminoglycoside ARG types and the number 497 

of COVID-19 cases. Several correlations between ARGs and COVID-19 cases in the present 498 

study had p-values between 0.05- 0.06 and would be worth exploring in the future with a larger 499 

sample size.  Analysis of the total microbial community revealed that the pathogenic genera 500 

Enterobacter and Escherichia were the biomarkers in early and later pandemic samples 501 

respectively, shedding some light on the co-infecting organisms during the pandemic. Among the 502 

hosts of ARGs, Pseudomonas and Vibrio were the most common hosts of the 503 

disinfectants/antiseptics class of ARGs, of particular interest given the increased use of biocides 504 



during the pandemic and the potential resulting selective pressure 7, 89, 90. Overall, while 505 

differences were observed in the resistome, the pandemic was not associated with shifts in the 506 

microbiome nor hosts of ARGs. The results of this study help in understanding the impact of the 507 

pandemic on antibiotic resistance, ARG-hosts, and co-occurring putative pathogens in 508 

wastewater.  509 

Supporting Information:  Figures with additional qPCR and metagenomic ARG data, 510 

correlations between ARGs and COVID-19 cases, and biomarker analysis results.  Tables with 511 

additional details/data for sampling, water quality analyses, qPCR primers and QA/QC, and 512 

metagenomic sequencing. 513 
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