- 1 Changes in prevalence but not hosts of antibiotic resistance genes during the COVID-19
- 2 pandemic versus pre-pandemic in wastewater influent
- 3 Deshpande, Aishwarya S.¹, Ehasz, Genevieve², Eramo, Alessia, Fahrenfeld, Nicole.^{2*}
- ⁴ Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
- 5 ²Department of Civil and Environmental Engineering, Rutgers University, Piscataway, NJ 08854
- 6 *Corresponding author, nfahrenf@rutgers.edu, 848-445-8416

Abstract

- 8 The COVID-19 pandemic offered a unique opportunity to study shifts in environmental
- 9 antibiotic resistance that could be associated with the changes in disinfectant and/or antibiotic
- usage patterns, co-infections, or other behaviors. The aim of this study was to document
- temporal changes (pre-, early-, versus later-pandemic) in antibiotic resistance genes (ARGs),
- 12 ARG hosts, biomarkers of potential co-infections, and the total microbiome in municipal
- wastewater influent from one separate sanitary and one combined sewer system. The 16S rRNA
- gene copy normalized concentration of *qac*E was higher in early- than pre-pandemic samples,
- and *sul*1 and *tet*(G) were higher in early- than later-pandemic samples. Metagenomics revealed
- significant changes in the abundance of the macrolide and sulfonamide ARG classes. COVID-19
- cases positively correlated with the disinfectants/antiseptics group of ARGs and negatively
- 18 correlated with the sulfonamide and aminoglycoside resistance classes. Discussion is provided
- 19 regarding the correspondence of these observations with antibiotic prescription pattern changes
- 20 during the study period. Putative waterborne pathogens were identified, which is of potential

- 21 interest for understanding the prevalence of community co-infections. No changes in host-ARG
- 22 associations were observed. Overall, the results of this study may help in understanding the
- 23 impact of the pandemic/lack thereof on another public health crisis: antibiotic resistance.

Keywords

- Nanopore sequencing, ARGs, microbiome, co-infection, waterborne pathogens, wastewater-
- 26 based epidemiology
- 27 Synopsis: Using wastewater-based epidemiology to measure changes in antimicrobial resistance
- during the COVID-19 pandemic can guide how to protect public health.
- 29 1 Introduction
- 30 The recent COVID-19 pandemic may have direct implications for antimicrobial resistance. Many
- 31 of the EPA-recommended disinfectants for SARS-CoV-2 contain quaternary ammonium
- 32 compounds (QACs) as their active ingredient, and the use of these disinfectants increased
- 33 significantly during the pandemic. Apart from QACs, disinfectants can also contain other
- biocides that are antimicrobials.² During the pandemic, a wastewater treatment plant (WWTP) in
- 35 Greece was reported to have received 152% more biocides as compared to pre-pandemic time in
- 36 2019 ³! Likewise, a high concentration of disinfectants and their positive correlation with
- 37 COVID-19 cases was observed in residential dormitory wastewater in Singapore. 4 Studies
- 38 measuring the concentration QAC residues in wastewaters in USA during the pandemic are
- 39 presently not available. Given the concern with increased used of disinfectants during the
- 40 pandemic, several researchers have reviewed the potential implications on wastewater treatment
- and receiving waters.^{5, 6} Of particular concern is whether the increased use of disinfectants

resulted in increases in antimicrobial resistance (AMR). Notably, if the biocide concentrations reach the sub-minimum inhibitory concentration for most of the bacteria found in the system, this increase in selection pressure can promote AMR evolution [as postulated by several

researchers reviewed by McBain et al.⁷].

The consumption of antibiotics surged in hospitalized patients during the initial months of COVID-19 pandemic to treat or prevent other secondary infections. During the early stages of the pandemic, 72% of COVID-19 patients were prescribed and using antimicrobials even though the incidence of bacterial or fungal co-infection in COVID-19 infected patients was around 8%. The lack of decision support and rapid diagnostic tools early in the pandemic also lead to increased and unnecessary use of antimicrobials. Some antibiotics that were prescribed and used commonly during this time were penicillin, meropenem, moxifloxacin, cephalosporins, macrolides, and quinolones. However, for outpatient-health care, the usage of antibiotics dropped in 2020 compared to 2019, which could be attributed to lower incidences of other respiratory diseases. Given that a range of antibiotic concentrations can select for antibiotic resistance, the pandemic offers an opportunity to study the potential effects of changes in antibiotic consumption on antibiotic resistance in the wastewater environment.

Wastewater-based epidemiology (WBE) has extensively been used to study the spread of SARS-CoV-2 during the COVID-19 pandemic. 14-22 WBE is also a useful tool for tracking the spread of antibiotic resistance in communities with sewage collection systems and the environment. 23-27 Pre-pandemic studies from our team showed that the variance in wastewater influent abundance of ARGs such as *sul*1, *tet*(G), *tet*(W), *tet*(O), *van*A and *erm*F was explained by season as well as water quality factors such as pH and heavy metals. 28 In addition to ARG monitoring, WBE also

allows for studying the total microbial community²⁹ and can aid in our understanding the coinfecting pathogens and other changes in the sewage microbiome.³⁰

WBE studies monitoring ARG during the pandemic are emerging in the literature with varying durations, ARG targets, and methods. A wastewater surveillance study from Las Vegas, Nevada demonstrated that the abundance of ARGs belonging to fluoroquinolone and beta-lactam classes increased during a COVID-19 surge in December 2020 compared to November 2020. The study used a combination of qPCR and metagenomic sequencing for analyzing the samples.³¹ Using metagenomics, a positive correlation was also observed between the macrolide, tetracycline, sulfonamide and some beta-lactamase ARG classes and time over three months in hospital wastewater from Saudi Arabia.³² Likewise, a study from India noted significant increases in antidrug resistance of *E.coli* in 2020 compared to 2018 using the culture based Kirby-Bauer disk diffusion method.³³ To our knowledge, there are no reports to-date of the relative abundance of ARGs and their hosts in wastewater influent nor comparisons of pre- and during-pandemic concentrations of ARGs and their hosts in wastewater influent. Understanding not only the abundance and diversity of antibiotic resistance genes, but also their hosts and genetic context is of interest for risk assessment.^{34,35}

The objectives of this study were to (O1) study the abundance of ARGs in wastewater across time at two WWTPs during the COVID-19 pandemic, (O2) determine if there were microbial community changes during the pandemic and (O3) identify the hosts of these ARGs and determine whether a shift in ARG-hosts is observable before/during the pandemic. Wastewater influent samples were analyzed using qPCR for selected ARGs and long read nanopore sequencing to study the wastewater resistome and microbiome, the latter with a focus on

identifying putative pathogens. Overall, the results presented seek to help in understanding the potential impact of the pandemic on another public health crisis: antibiotic resistance.

2 Materials and Methods

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

2.1 Sampling, DNA extraction, and qPCR

Composite Wastewater influent samples were collected from two WWTPs every week from June 2020 to March/May 2021. 36 WWTP-A has a design flow <10 MGD and is connected to a separate sanitary sewer system. WWTP-D has a design flow of 330 MGD and is connected to a combined sewer system (these WWTP names are selected to match those used in Fahrenfeld et al. 36). Samples were collected every week on Tuesdays/Wednesdays. Automatic samplers were used for collecting composite 24-hour samples (1 Liter) from the WWTPs. All samples were transported on ice to the lab. Before filtering the samples, they were pasteurized to inactivate viruses ³⁷. Around 200-300 mL of each composite sample was filter concentrated using 0.22 μm mixed cellulose ester membrane filters (Millipore Sigma, St. Louis, MO, USA), and the filters were stored at -80°C until DNA extraction. One sample per month was chosen for DNA extraction from each WWTP, avoiding the days on which rainfall was recorded. DNA extraction from the selected filters was performed using the FastDNA Spin Kit for Soil (MP Biomedicals, Solon, OH, USA). Archived wastewater influent sample DNA extracts stored at -20°C collected in 2015- 2016 from WWTP-D were retrieved for comparison. Briefly, composite samples were composed of WWTP grab samples (500-mL each) collected at 8 am, 10 am and 12 pm. All samples were collected during baseflow conditions in sterile 500-mL Nalgene bottles, transported to the lab on ice, and

stored at 4°C prior to filter concentration (90-230 mL) using 0.22 µm nitrocellulose filters (Millipore Corporation, Billerica, MA). These DNA extracts were categorized as pre-pandemic samples.

Water quality parameters monitored in the pandemic wastewater samples included pH, total suspended solids (TSS), and chemical oxygen demand (COD), as previously described.³⁶ qPCR was performed for 16S rRNA gene³⁸ and for select resistance genes. ARGs analyzed included sul1,³⁹ tet(G),⁴⁰ blaTEM,⁴¹ and gacE.⁴²

Details on COVID-19 cases estimation for each sampling event at each WWTP are provided in a previous study by the lab.³⁶ In brief, publicly available county data (NJ COVID-19 Dashboard) was used for estimating the COVID-19 cases. The population of towns served by the WWTP were estimated using US census data. The number of COVID cases was obtained for each sampling event by multiplying the percentage of the county population residing in the towns served by the WWTP (Table S2).

qPCR reactions were prepared with 0.4 μM forward and reverse primers, 5 μl SsoFastTM EvaGreen® Supermix (Bio-Rad, Hercules, CA), and 1 μl sample to make a total of 10 μl reaction volume per well. All DNA extracts were diluted by a factor of 1:100 to reduce the inhibitors present in the samples. No-template controls (NTC) consisting of sterile molecular biology grade water were included in every run. Pre-quantified standards were diluted 10-fold to produce a seven-point calibration curve from 10⁸ to 10² gene copies for ARGs or to 10³ gene copies for 16S rRNA. The standards, samples, field blanks and the NTC were run in triplicate (i.e., technical replicates). Melt curve analysis was performed for each gene to check the

specificity of the reaction. The primers, annealing temperatures, efficiencies, and R² values are listed in Table S3.

Samples were assigned to seasons based on the date of sampling: Spring season being from March 1 to May 31, Summer from June 1 to August 31, Fall from September 1 to November 30 and Winter from December 1 to February 28 (Table S2).

2.2 Nanopore Sequencing & Bioinformatics

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Eight samples from WWTP-D along with four archived samples from the same WWTP were selected for long-read shotgun sequencing using the Minion MK1C platform. Samples were chosen from the same months as that of pre-pandemic samples when possible or randomly. All samples were purified using the Genomic DNA Clean & Concentrator Kit (gDCC, Zymo Research, Tustin, CA) and quantified using Qubit (Invitrogen) before library prep. The native barcoding kit 24 (SQK-NBD112.24) was used for library prep and three samples were barcoded per run. At least 1000 ng DNA was used per sample, with the exception of two samples with low DNA concentrations as measured via Qubit (Table S4). Library prep was performed following the manufacturer's protocol with the following minor modifications to reduce DNA losses and avoid size selection. In the DNA repair and end prep stage, AMPure beads (1.8X concentration) were added and after resuspending the pellet in nuclease free water, the incubation time was increased to 10 minutes at 37°C. AMPure beads (0.8X concentration) were used in the Native barcode ligation and for the final Adapter ligation and clean up stage. During all stages of the AMPure bead clean-up, when the pellet was resuspended in nuclease-free water to elute the DNA, gentle pipette mixing was done before incubation to encourage the elution of DNA. At the end of each step, Qubit analysis was performed to quantify the DNA remaining at each stage.

Loading beads were used for loading samples on the flow cell. Barcoded samples were loaded onto a flow cell (FLO-MIN106-D) following the manufacturer's instructions and run for 72 hours, until the flow cells were used up. A total of four runs were performed with three barcodes per run, resulting in a total of 12 samples. The flow cell pore count was checked before starting each run. DNA extracts were prepared, cleaned, barcoded, and sequenced (details in Supplemental Information). Sequences were deposited in the National Centre for Biotechnology Information Sequence Read Archive (NCBI-SRA-PRJNA977080). Raw reads were generated in fast5 format and all details of quality and depth are provided in Table S5. The average sequencing data generated was 1.46 Gb per sample. Recent literature reporting the resistome and microbiome of wastewater influent samples through nanopore sequencing reported 1.25-6.07 Gb per sample. 43-45 Notably, Dai et al. (2022)'s results suggested that rate of ARG detection did not change with the sequencing depth.⁴³ Reads were basecalled using Guppy basecalling software (v6.4.6, GPU version) to return fastQ reads. Barcoding, demultiplexing, and barcode trimming were done using the Guppy barcoding software (v6.4.6). N50 and quality of the fastQ reads was checked using stats.sh command from BBMap. 46 Samples were then analyzed using the FastQ Antimicrobial Resistance pipeline (v2022.08.16-15679) in EPI2ME software. The FastQ Antimicrobial resistance pipeline has been designed for reads generated through the Oxford Nanopore platform. The pipeline uses the Centrifuge database for taxonomic classification and the comprehensive antimicrobial resistance database (CARD) for antimicrobial resistance genes identification ⁴⁷ and has been used in

previous studies to identify ARGs and their hosts. 43, 45. However, the classification of reads

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

provides the likely host-ARG association and there is an uncertainty in these analyses,⁴⁸ which is greater for ARGs associated with mobile genetic elements ⁴⁹. Hence, the term "putative host-ARG association" has been used in this study.

Lineage was derived from the taxids provided in the output file using the NCBITax2Lin code (https://github.com/zyxue/ncbitax2lin). Custom python scripts were used for data filtering and sorting for ARGs and hosts. Only the hits obtained from the Kingdom Bacteria were retained for further analysis. The percent abundance of different genera was found by dividing the number of reads classified by the total number of reads for the sample after QC filtering.

Only the ARG hits identified through the protein homolog model were considered for further analysis. ARGs were then grouped into categories based on The CARD database (https://card.mcmaster.ca/, downloaded on 3/25/2350). The abundance of ARGs was found using the following formula. 43

184
$$ARG Abundance (gene copies/Gb) = \frac{\frac{Alignment_{end} - Alignment_{start}}{Length_{reference}}}{\sum_{1}^{n} length_{read}(Gb)}$$

Here, Alignment_{end} and Alignment_{start} are the positions in the read where alignment started and ended, Length_{reference} (bp) is the length of the respective ARG and n represents the total number of reads present in the sample after QC. All the parameters for calculating ARG abundance were obtained from the output file from the EPI2ME pipeline.

The abundance of each ARG type associated with a particular host was calculated by summing up the abundances of each ARG (of that ARG type) that was assigned to the particular host. For example, for sulfonamide ARG type linked to the putative host *Vibrio*, the abundances of all

ARGs belonging to the sulfonamide category (such as *sul*1, *sul*2 etc.) and classified as *Vibrio* were summed.

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

192

193

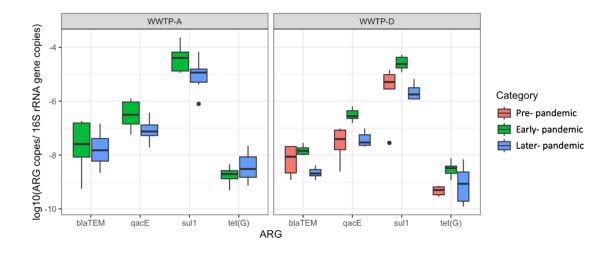
2.3 Data Analysis

All statistical tests were performed in RStudio version 4.1.3 (www.r-project.org). Normality of data was checked using a Shapiro-Wilk test. Homogeneity of variances was confirmed using a Bartlett test. Two-way ANOVA with a posthoc TukeyHSD was performed on parametric qPCR data (i.e., qacE, tet(G), bla(TEM)). For non-parametric qPCR data (i.e., 16S rRNA, sul1), the Kruskal-Wallis test followed by the post-hoc Dunn test was with Bonferroni correction performed. Oneway.test was used with a posthoc pairwise t-test (pairwise.t.tet) with Bonferroni correction for qPCR data that were normal but did not have equal variance (i.e., tet(G)). Spearman's correlations were tested between the qPCR measured concentration of ARGs and the number of COVID-19 cases reported in the sewer catchment one week prior to the date of sampling (previously shown to have moderate correlation with the SARS-CoV-2 N1 gene copies per capita per day³⁶). PERMANOVA (adonis) analysis was performed to understand the relative importance of factors (pH, conductivity, COD, TSS, COVID cases, season, time phase) impacting qPCR measured ARG concentrations.⁵¹ For the NGS data, a one-way ANOVA was performed on all ARG types (i.e., ARG classes such as macrolide, sulfonamide, etc.) against different pandemic phases (i.e., pre-, early-, and laterpandemic), followed by TukeyHSD posthoc test if the p-value was significant (<0.05). Samples collected during the pandemic from June 2020 to March/May 2021 were divided into two time

phases: early second wave designated as early-pandemic (June 2020-December 2020) and later

second-wave designated as later-pandemic (January 2021- March/May 2021). A one-way ANOVA was also performed on the total abundance of all ARGs to test for differences in the sampling periods. Shannon, Simpson and InverseSimpson diversity indices were calculated for ARGs and the total microbial community. A Kruskal-Wallis rank sum test was performed on ARG diversity indices. Linear discriminant analysis effect size (LEfSe) test was performed on ARG hosts and total microbial community to identify the biomarkers⁵² in the pre-, early-, and later-pandemic samples. Spearman's correlations were performed between ARG abundances and the number of COVID-19 cases reported in the sewer catchment one week prior to the date of sampling (non-parametric correlation test). Bray-Curtis dissimilarity matrices were calculated for (1) the total microbial community at genus level and (2) ARG abundances. Then, non-metric multidimensional scaling (nMDS) and otherer plots were made using ggplot2 package.⁵³

3 Results and discussion


3.1 Differences in normalized ARG concentration observed in qPCR analysis

Differences were seen for selected ARGs normalized to 16S rRNA gene copies when comparing pre- early-, and later-pandemic samples (Fig. 1, Fig S1). For WWTP-D, *qac*E was significantly higher in early-pandemic samples than pre- and later-pandemic samples from WWTP-D (TukeyHSD, both p<0.04) and *tet*(G) was significantly higher in early pandemic samples compared to pre-pandemic samples (post hoc pairwise t-test, p=0.002). The 16S rRNA gene copy normalized concentration of *sul*1 gene was higher in early- than later-pandemic samples (Dunn test, p=0.003). No differences were observed between *bla*TEM gene normalized concentrations comparing pre- and early- and later-pandemic samples (2-way ANOVA, all p>0.7). For WWTP-A, where only early- and later-pandemic samples were available, no

differences were observed for normalized *qac*E, *tet*(G), *sul*1 and *bla*TEM gene copies between early- and later- pandemic samples (TukeyHSD, all p> 0.059) (Fig. 1).

The absolute concentration of 16S rRNA gene copies/mL was higher in Pre-pandemic than early- and later pandemic samples (Dunn Test, both p< 0.02), while there were no differences in WWTP-A (Kruskal-Wallis test, p= 0.3).

Fig. 1 Normalized ARG abundances (ARG gene copies/ 16S rRNA gene copies) for blaTEM, qacE, sul1, and tet(G) in wastewater observed in pre-, early-, and later-pandemic samples. Pre-pandemic samples were collected in 2015-16 while early- and later-pandemic samples were collected during the early second wave and the later second wave during the pandemic in 2020-21. Boxplots represent N=5 samples for each time phase and gene combination.

A moderate negative correlation was observed between the 16S rRNA gene copy normalized concentrations for both sul1 and blaTEM and the total number of COVID-19 cases for WWTP-D samples (Fig. S2, Spearman's rho=-0.59 and -0.74, respectively and both p < 0.043). Similarly, a

moderate negative correlation was observed between the 16S rRNA gene normalized concentrations of sul1, qacE and blaTEM and the total number of COVID-19 cases one week before the sample collection date for WWTP-A samples (Fig. S2, Spearman's rho=-0.66, -0.78, -0.72, respectively, all p< 0.01). [No correlations were observed for tet(G) with either WWTP nor *qac*E and WWTP-D and total COVID-19 cases, Fig. S2.] Including pre-pandemic samples in addition to early- and later-pandemic samples for WWTP-D resulted in no significant Spearman's correlations between normalized ARG concentrations and COVID-19 cases one week prior to sampling (all p>0.1, Fig. S3). PERMANOVA analysis performed on all samples (pre-, early-, and later pandemic) indicated that pandemic phase 16S rRNA gene copy normalized ARG concentrations were associated with pandemic phase (i.e., pre-, early, or later; p=0.001), but not with COVID-19 cases, WWTP, and season (all p>0.06). PERMANOVA analysis of samples for which water quality data were available (i.e., early- and later-pandemic) indicated that pH had a significant effect on ARG concentrations (PERMANOVA, p=0.039) while other factors (conductivity, COD, TSS) did not (PERMANOVA, p>0.054). Given the availability of pre-pandemic and pandemic samples, the results from WWTP-D could support the predictions that the increased use of cleaning agents⁵⁴ and increases in antibiotic prescriptions and residues in wastewater⁵⁵ may select for increases in antibiotic resistance during the pandemic.^{5, 55} The subsequent decrease in the concentration of *qac*E could possibly be due to

changes in behavior as the pandemic progressed due to lesser usage of disinfectants, as was

predicted by ⁵⁶. Measuring the selecting agents (which was beyond the scope of the present

study) in parallel with ARGs would be needed to demonstrate a direct relationship.

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

The variation in the ARG abundances observed in this study could also be potentially attributed to other factors such as seasonal variations⁵⁷ and/or changes in the movement of people in/out of the sewer catchment. We previously observed season was an important factor for explaining the variation in ARGs measured via qPCR in wastewater influent sampled in 2016-2017 from WWTPs with >100 MGD design flows.²⁸ Such seasonal variations were speculated to follow changes in antibiotic prescription rates⁵⁸ and therefore selective pressure in the gut microbiome⁵⁹ and antibiotic fluxes in wastewater.⁶⁰

The demographics of the sewage catchment were likely different for the pre- versus the earlyand later-pandemic samples, which may also have impacted our observations given that the
while the sewage microbiome is markedly similar around the globe⁶¹ it does reflect population
gut microbiome.⁶² There was a consistent drop in U.S migration from 2019 to 2021 and the local
mobility (movement within the country) also dropped.⁶³ Drastic changes in movement compared
to baseline were reported in the sewer catchments studied here for residential, workplace, and
transit (Fig. S11³⁶) during the pandemic. Notably, both WWTP studied here have regional rail
lines, airports, and travelers/commuters in the densely populated study region. Human mobility
has been linked to increase in antimicrobial resistant organisms and the antimicrobial resistant
infections.⁶⁴ In-system sampling to differentiate transient and/or transportation associated
populations (for e.g. ⁶⁵) and larger/longer data sets could aid in disentangling any potential
human movement impacts.

System-to-system differences were demonstrable in the present study through comparison of the early- and later-pandemic qPCR results between the two WWTPs that showed inconsistent results for *qac*E and *sul*1. The differences could be due to several system-specific factors

including the differences in design flow, hydraulic residence time, sewer type, and water quality. 28, 66, 67 Since samples from wet weather days were not included in this study, rainfall was assumed to not have any impact on the observations. WWTP-D has a design flow over one order of magnitude greater with a travel time travel 1.5-2hrs longer than WWTP-A. There is potential for but limited evidence to support ARG selection in sewers (as reviewed by²⁷) but ARG transcription in sewers has been demonstrated, ⁶⁸ which may imply that travel time could impact observations of ARGs in wastewater influent. Further research would be useful in confirming the impact of travel time on ARG concentrations. The sewer type could also impact our observations given that WWTP-D is a combined sewer system while WWTP-A is separate sanitary system and we previously reported significant differences in the abundances of some ARGs via qPCR as a function of sewer type (all with >100 MGD design flow) sampled in 2016-2017.²⁸ Not including samples from wet weather days may have reduced the impact of sewer type. Again, a larger number of samples from more treatment plants would be useful for disentangling these potential impacts.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

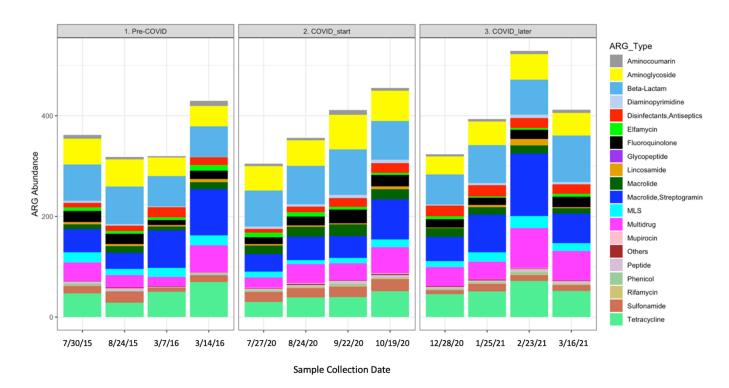
316

Differences in water quality as noted above through random forest analysis may also affect the concentrations of ARGs in WWTPs. We had previously found that variation in ARGs could be explained by water quality parameters such as conductivity, pH, COD, TSS, and heavy metals ²⁸. Likewise, significant correlations were observed between some ARGs and ammonium, phosphate, and COD in wastewater influent from eight WWTPs in China. ⁶⁷ Some of these observations could be due to co- and cross-selection (e.g., heavy metals) whereas others may be more related to shifts they cause in microbial community composition.

3.2 Metagenomic insights into ARG abundance pre- and during the pandemic

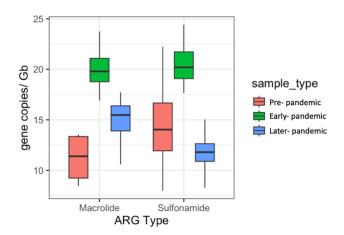
In total, 625 different ARGs were identified in the samples analyzed from pre-, early-, and later-pandemic samples from WWTP-D. ARGs were grouped into 20 categories based on drug class (Fig. 2A). On an average, the ARG types that were most abundant in all samples (abundance greater than 10% of total average abundance) were beta-lactam, macrolide-streptogramin, multidrug, aminoglycoside and tetracycline. Details of raw reads obtained after sequencing are provided in Table S5.

The abundance of macrolide ARGs was significantly greater in early- than pre-pandemic samples (TukeyHSD, p= 0.004, Fig. 2B). Interestingly, there were no significant differences in the concentration of macrolide ARGs between the pre- and later-pandemic samples. Further, the abundance of sulfonamide ARGs was significantly greater in the early- than the later-pandemic samples (TukeyHSD, p= 0.03, Fig. 2B). No differences were observed in other ARG types across the pre-, early-, and later-pandemic samples.


While antibiotics were not measured in the wastewater in the present study, information on antibiotic prescriptions in the US is available. The macrolide azithromycin was the most commonly prescribed antibiotic in the initial months of the COVID-19 pandemic in USA^{69, 70} and could be related to the higher abundances of macrolide ARGs observed via metagenomics. The prescription rate decreased in May 2020 but remained higher than the pre-pandemic time in 2019. ^{12, 70} In contrast, the changes in tetracycline and sulfonamide genes do not correspond with prescription rates for sulfonamide and tetracyclines, which decreased during the study period. ⁷¹ This was mainly due to a decrease in outpatient health care for other respiratory illnesses during the pandemic. CDC report indicates that although the outpatient antibiotic usage resumed to

normal rate in 2021, it was still lower overall in 2021 compared to 2019.¹² Thus, other potential factors should be explored (See Section 3.1).

340 A)


338

339

341

342 B)

345 later-pandemic samples. Colors represent the respective ARG Types as per the legend. B) ARG 346 class abundance from metagenomes from pre-, early-, and later-pandemic samples. 347 No differences were observed in the alpha diversity of ARGs between time phases (pre-, early-, and later-pandemic; Kruskal Wallis test, p>0.2, Fig. S5A). Similarly, no differences were 348 349 observed in the profile of ARGs between time phases and seasons (PERMANOVA, p=0.26, 350 Fig.S5B). A strong positive correlation was observed between the disinfectants-antiseptics class 351 and COVID-19 cases one week prior to sampling (Spearman's rho=0.86, p=0.006). The 352 sulfonamide and aminoglycoside resistance classes showed a moderate negative correlation with 353 COVID-19 cases (Spearman's rho= -0.71 and -0.76, respectively, p <0.028; Fig.3). Note that a 354 significant negative correlation was also observed between the sull gene, conferring resistance to 355 sulfonamides, quantified through qPCR and COVID-19 cases (See Section 3.1). Similar results 356 were observed in a study of hospital wastewater, where a negative correlation was reported between ARGs belonging to drug classes aminoglycoside, peptides, beta-lactam. 357 fluoroquinolone, and lincosamide and the number of COVID-19 patients.³² This negative 358 359 correlation could be attributed to a variety of reasons, including high rates of antibiotic prescription in the initial months of the pandemic followed by the decrease in overall antibiotic 360 usage as the pandemic progressed. 12 Interestingly, the correlation was not significant for either 361 aminoglycoside and sulfonamide when pre-pandemic samples were included (COVID-19 cases 362 for pre-pandemic samples were considered zero), underscoring the need for inclusion of samples 363 364 from a longer time period to understand any pandemic-related changes.

Fig. 2 A) Stacked bar graph representing the cumulative ARG abundance in pre-, early-, and

Other ARG classes that did not have significant correlations include macrolide and MLS, that may be worth exploring with larger pandemic data sets (Spearman, both p>0.057, Fig. S6). Correlations were also tested including pre-, early-, and later-pandemic data for ARG abundances and COVID-19 cases. (Note, COVID-19 cases for pre-pandemic samples were considered to be zero). Including pre-pandemic samples, disinfectants-antiseptics and mupirocin categories of ARGs showed a moderate positive correlation with COVID-19 cases (Spearman rho= 0.62, 0.63, respectively, both p=0.03 which are inexact due to the data having ties; Fig. 3). Note, however, that for the mupirocin correlations, that the ARG abundance range was quite small. Mupirocin is used to treat hospital acquired infections such as MRSA. Strikingly, the incidence of MRSA infections increased by 13% from 2019 to 2020 in USA. 12 Similarly, significant increases in MRSA infections were reported in Turkey during 2020 as compared to 2019 from nasal swabs of around 2700 participating patients. ⁷² Compiled data from various reports around the world suggests that MRSA was one of the most frequent pulmonary infection causative agent in patients with COVID-19.73 More localized prescription rates and measurement of the antibiotic residues in the wastewater could help substantiate any relationships and other drivers for these observations such as ARG-host selection and/or co- and cross-selection. Other ARG classes did not show significant correlation with the COVID-19 cases (Fig. S7).

365

366

367

368

369

370

371

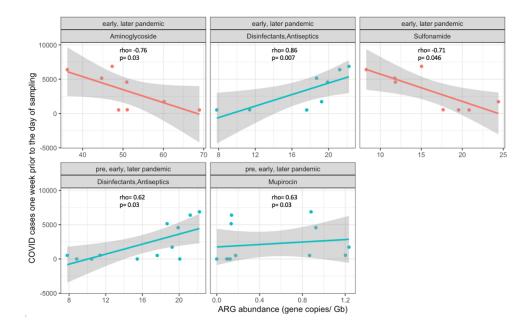
372

373

374

375

376


377

378

379

380

381

Fig. 3 ARG abundance in metagenomes versus COVID-19 cases one week prior to the day of sampling. Each plot header lists data from the time periods included in the plot (i.e., pre-, early-, and later-pandemic or early- and later-pandemic only). Note that X-axis range is different for each ARG Type. Significant positive and negative correlations are shown in teal and coral color respectively, and grey shading represents the 95% confidence interval. (Results for insignificant

3.3 Microbiome observations pre-, early-, and later pandemic

correlations are shown in Fig. S7.)

The most abundant genera present in the total microbial community across all samples were *Aliarcobacter, Aeromonas, Acinetobacter, Arcobacter, Cloacibacterium* and *Pseudomonas* (Fig. 4). The profile of total community is shown in nMDS plot in Fig. S8B. No differences were observed in the microbial community structure between time phases and seasons (PERMANOVA, all p>0.08). There were no differences in the alpha diversity of the total microbial community at the genus level between the different pandemic phases (PERMANOVA,

p=1, Fig. S8A). Studying the wastewater influent microbiome can (1) help in determining the rate of co-infections in the community and (2) be used to evaluate the relation between microbiome shifts and COVID-19 prevalence in the community.³⁰

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

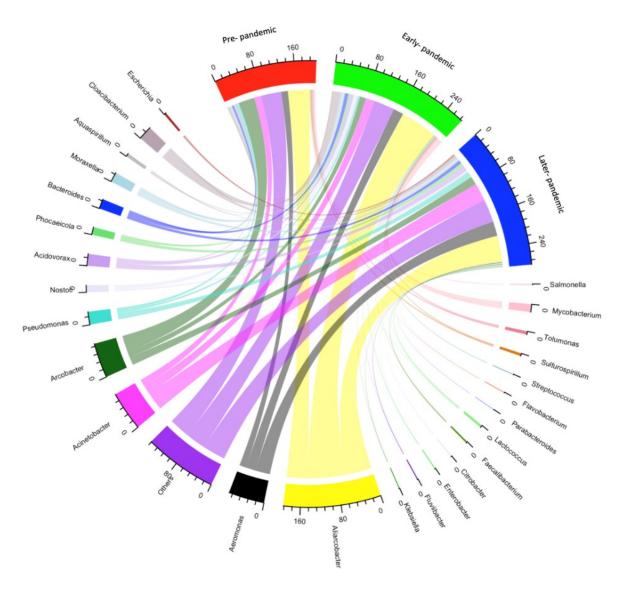
413

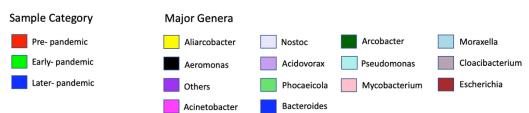
414

415

416

417


418


The LEfSe analysis indicated specific biomarkers (LDA score >3) in all the pandemic phases (Fig. S9). Specifically, eight genera were differentially abundant in pre-pandemic samples. Three genera were biomarkers for the early- and seven genera were biomarkers for later-pandemic samples. Among the genera that contain waterborne and opportunistic pathogens, Salmonella was biomarker in pre-pandemic samples. Other reports of Salmonella associated with coinfection were not identified in the literature. Interestingly, there were 22% less Salmonella infections in 2020 compared to pre-pandemic in the US, probably due to pandemic-related behavioral changes such as fewer restaurant meals. 12 The genus Enterobacter was a biomarker in early-pandemic samples. Rapid diagnostic tests from a study from Italy identified Enterobacter cloacae as a co-infecting organism during the COVID-19 outbreak.⁷⁴ Another study from Maryland, USA identified a significant positive correlation between *Enterobacter cloacae* and SARS-CoV-2 in wastewater during the pandemic in 2021 through next generation sequencing.³⁰ The genus Escherichia, which contains waterborne pathogens, was a biomarker in our laterpandemic samples. There is the possibility that these are markers of the co-infections or even hospital-acquired superinfections during COVID-19 caused by Escherichia coli⁷⁵⁻⁷⁷ as there were health care facilities in the sewer catchments for the present study. Whether healthcare wastewater impacts the municipal WWTP microbiome depends on several factors including the dilution⁷⁸ and both WWTPs in the present study had healthcare facilities in the catchments. Specifically, E.coli was a common pathogen causing secondary bloodstream infections in

COVID-19 patients at three medical centers in the study region from March- May 2020.⁷⁹ The most abundant genus *Aliarcobacter*, includes the emerging foodborne and zoonotic pathogen *Aliarcobacter butzleri*.⁸⁰

It is also possible that the biomarker observations could indicate other pandemic-related health changes: a study conducted from May to July 2020 in wastewater influent from Chile observed through metagenomics that the wastewater microbiome associated with gastrointestinal disorders preceded the SARS-CoV-2 detection in untreated wastewater, suggesting that wastewater microbiome could be an indicator for COVID-19 surveillance.⁸¹

Apart from the biomarkers discussed above, there were no differences in the alpha diversity nor the structure of the microbiome, indicating that the pandemic phases studied here were not associated with a shift in the microbial community. This was contrasting to the results observed in a recent study where temporal shifts in wastewater microbiome were observed through metagenomics during an increase in COVID-19 cases in Maryland.³⁰ Studies comparing the wastewater influent microbiome between the pandemic and pre-pandemic time are not available in literature.

Fig. 4 Major genera (>0.5% abundance in all samples) observed in the total microbial community from the pre-, early-, and later- pandemic samples. Genera with abundances <0.5% have been grouped into "other" category.

3.4 ARG-host association in pre-, early-, and later- pandemic samples

440

441 In total, 58 different genera were identified as the hosts of ARGs. Ubiquitous waterborne putative pathogenic hosts [as defined by⁸²] identified in the samples included the genera 442 443 Campylobacter, Mycobacterium, Burkholderia, Aeromonas, Vibrio, Escherichia and Salmonella. 444 The most frequent hosts of ARGs belonging to the category of disinfectants/antiseptics were 445 Pseudomonas and Vibro (Fig. 5). Specifically, the hosts were Pseudomonas aeruginosa and 446 Vibrio cholerae. Vibro was also observed to be the host of most of the sulfonamide resistance genes (~99%). 447 Previous studies from around the world including clinical reports and data from broiler farms 448 449 have shown that generally the common hosts of qacE / qacEdelta1 gene were Klebsiella, Pseudomonas and E.coli^{83, 84} while qacA/B genes were associated with S. aureus and E. faecalis 450 (reviewed by 84). All gac genes belong to the disinfectants-antiseptics class and confer resistance 451 to quaternary ammonium compounds.85 The genus Vibro has been found to contain multidrug 452 453 and toxic compound extrusion (MATE) pumps, conferring resistance to biocides such as chlorhexidine, benzalkonium chloride, and triclosan. 86 A review on environmental Vibrio species 454 455 spanning two decades (2000-2019) found that the most of the ARGs carried by this genus belonged to tetracycline (21%) and beta-lactam and sulfonamide (20%) drug classes.⁸⁷ This 456 457 observation partly aligns with the result of this study that Vibrio genus was the host of 458 sulfonamide resistance genes. 459 ARGs belonging to aminocoumarin drug class were exclusively linked to Escherichia and 460 Streptomyces genera. In contrast, the ARG classes tetracycline, beta-lactam, multidrug, and aminoglycoside each had more than ten hosts. Among the waterborne putative pathogenic hosts, 461

Mycobacterium was exclusively linked to multidrug resistant genes, Campylobacter was linked to aminoglycoside, diaminopyrimidine and tetracycline ARG classes, and Burkholderia was linked to multidrug and beta-lactam ARG classes. The rest of the putative pathogenic genera hosts were linked to more than three ARG classes. LEfSe analysis on ARG-hosts at the genus level as a function of ARG abundances did not show any differentially abundant features between pre-, early-, and later-pandemic samples (Fig. 5). This indicates that no changes in the putative host-ARG linkages were identified during the different time phases. Thus, while there were changes in the antibiotic resistance concentrations for select ARG classes, there is no evidence for significant ARG transfer to new hosts despite the potential for selective pressure (Section 1). The lack of differences in the ARG-hosts also indicates that the host diversity did not change when comparing samples from 2015-26 and 2020-21, despite the changes in the movement of people noted above. It would be interesting to see how conserved these results are across sewer sheds and geographies, for healthcare associated wastewater (rather than the municipal WW sampled here), and for longer or different phases of the pandemic (notably this study did not capture the first wave). Studies using high throughput methods in wastewater to identify ARG hosts during the pandemic are not available in literature for comparison. Several studies have reported an increase in antimicrobial resistance and multidrug resistance organisms (MRDOs) during the pandemic (reviewed in ⁸⁸ based on clinical data). While several multidrug resistant organisms were identified in this study, evidence for significant increases during the pandemic was not observed.

462

463

464

465

466

467

468

469

470

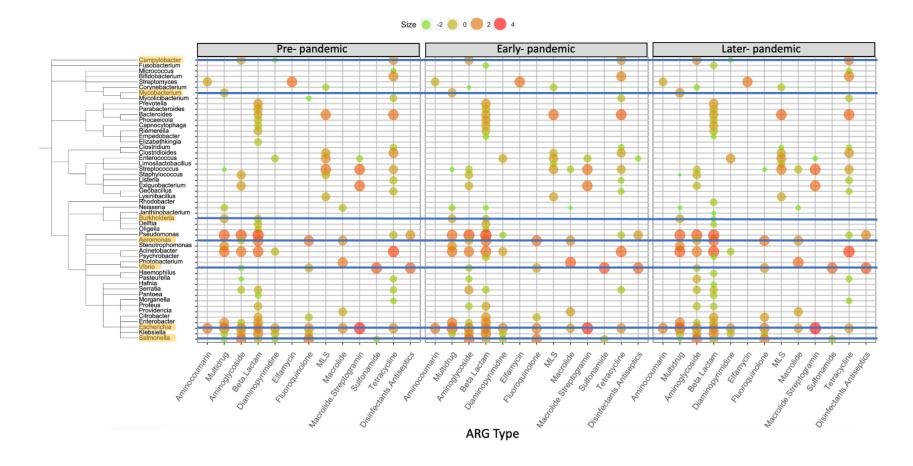
471

472

473

474

475


476

477

478

479

480

Fig. 5 Bubble plot showing hosts linked to ARG classes as a function of ARG abundances. Size and color of bubble indicate the log abundance of ARGs (gene copies/Gb) associated with the particular host. Genera highlighted in yellow represent the ubiquitous waterborne pathogens [as defined by ⁸²]. Note that ARG types having average abundance lesser than <5 gene copies/Gb have been omitted from the figure. (Fig. S10 includes all ARG types.)

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

Overall, the results of this study indicate that the pandemic was associated with some changes in antibiotic resistance and microbial community in wastewater influent samples. The normalized concentration of qacE gene, which confers resistance to quaternary ammonium compounds was higher in WWTP-D in early pandemic samples, compared to pre- and later-pandemic samples. Further, a positive correlation was observed between disinfectants/antiseptics class of ARGs and COVID-19 cases, providing evidence to support the hypothesis that increased use of disinfectants resulted in higher residues in the WWTPs. Studies measuring the concentration of antibiotics and biocides will be useful in future for finding the direct relationships of biocide concentration with abundance of other ARGs. The abundance of macrolide class of ARGs was higher in early-pandemic than pre- and later-pandemic samples, potentially due to the increased prescription of azithromycin antibiotic in the initial months of the pandemic. Similar observations were noted for the tet(G) and sul1 genes through qPCR, potentially attributed to other factors such as seasonal variation and changes in human movement during the pandemic given that prescriptions of the associated antibiotic decreased during the pandemic. A negative correlation was observed between sulfonamide and aminoglycoside ARG types and the number of COVID-19 cases. Several correlations between ARGs and COVID-19 cases in the present study had p-values between 0.05- 0.06 and would be worth exploring in the future with a larger sample size. Analysis of the total microbial community revealed that the pathogenic genera Enterobacter and Escherichia were the biomarkers in early and later pandemic samples respectively, shedding some light on the co-infecting organisms during the pandemic. Among the hosts of ARGs, *Pseudomonas* and *Vibrio* were the most common hosts of the disinfectants/antiseptics class of ARGs, of particular interest given the increased use of biocides

during the pandemic and the potential resulting selective pressure ^{7,89,90}. Overall, while differences were observed in the resistome, the pandemic was not associated with shifts in the microbiome nor hosts of ARGs. The results of this study help in understanding the impact of the pandemic on antibiotic resistance, ARG-hosts, and co-occurring putative pathogens in wastewater.

Supporting Information: Figures with additional qPCR and metagenomic ARG data, correlations between ARGs and COVID-19 cases, and biomarker analysis results. Tables with additional details/data for sampling, water quality analyses, qPCR primers and QA/QC, and metagenomic sequencing.

6 Acknowledgements

Funding for this project was provided by New Jersey Water Resources Research Institute (NJWRRI) Graduate Student Grants-in aid program, National Science Foundation (1846815), and NJ Health Foundation. The authors thank Dr. Lee Kerkhof for help with nanopore sequencing and Dr. Donna Fennell for suggestions on the manuscript. The authors also thank Dr. William Morales Medina and Stephanie D'Elia for help with pandemic sampling and sample processing and to Michelle Yam, and Hannah Delos Reyes for the pre-pandemic sampling and sample processing. Thanks to the utility partners who provided the WWTP samples studied, who wish to remain anonymous.

References

- 524 (1) Mohapatra, S.; Yutao, L.; Goh, S. G.; Ng, C.; Luhua, Y.; Tran, N. H.; Gin, K. Y.-H.
- Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate,
- toxicity and antimicrobial resistance. *Journal of Hazardous Materials* **2023**, *445*, 130393.
- 527 (2) Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of
- resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical
- review. International Journal of Antimicrobial Agents 2012, 39 (5), 381-389.
- 530 (3) Alygizakis, N.; Galani, A.; Rousis, N. I.; Aalizadeh, R.; Dimopoulos, M.-A.; Thomaidis, N.
- 531 S. Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19
- pandemic. Science of The Total Environment 2021, 799, 149230.
- 533 (4) Mohapatra, S.; Bhatia, S.; Senaratna, K. Y. K.; Jong, M.-C.; Lim, C. M. B.; Gangesh, G. R.;
- Lee, J. X.; Giek, G. S.; Cheung, C.; Yutao, L. Wastewater surveillance of SARS-CoV-2 and
- 535 chemical markers in campus dormitories in an evolving COVID- 19 pandemic. *Journal of*
- 536 *Hazardous Materials* **2023**, *446*, 130690.
- 537 (5) Hora, P. I.; Pati, S. G.; McNamara, P. J.; Arnold, W. A. Increased use of quaternary
- ammonium compounds during the SARS-CoV-2 pandemic and beyond: consideration of
- environmental implications. Environmental Science & Technology Letters 2020, 7 (9), 622-631.
- 540 (6) Marteinson, S. C.; Lawrence, M. J.; Taranu, Z. E.; Kosziwka, K.; Taylor, J. J.; Green, A.;
- Winegardner, A. K.; Rytwinski, T.; Reid, J. L.; Dubetz, C. Increased use of sanitizers and
- disinfectants during the COVID-19 pandemic: identification of antimicrobial chemicals and
- considerations for aquatic environmental contamination. *Environmental Reviews* **2023**, 31 (1),
- 544 76-94.

- 545 (7) McBain, A.; Rickard, A.; Gilbert, P. Possible implications of biocide accumulation in the
- environment on the prevalence of bacterial antibiotic resistance. Journal of Industrial
- 547 *Microbiology and Biotechnology* **2002**, *29*, 326-330.
- 548 (8) Rawson, T. M.; Moore, L. S.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.;
- Satta, G.; Cooke, G.; Holmes, A. Bacterial and fungal coinfection in individuals with
- coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. *Clinical Infectious*
- 551 *Diseases* **2020**, 71 (9), 2459-2468.
- 552 (9) Rawson, T. M.; Ming, D.; Ahmad, R.; Moore, L. S.; Holmes, A. H. Antimicrobial use, drug-
- resistant infections and COVID-19. *Nature Reviews Microbiology* **2020**, *18* (8), 409-410.
- 554 (10) Liu, C.; Wen, Y.; Wan, W.; Lei, J.; Jiang, X. Clinical characteristics and antibiotics
- treatment in suspected bacterial infection patients with COVID-19. *International*
- 556 *Immunopharmacology* **2021**, *90*, 107157.
- 557 (11) Yu, N.; Li, W.; Kang, Q.; Xiong, Z.; Wang, S.; Lin, X.; Liu, Y.; Xiao, J.; Liu, H.; Deng, D.
- 558 Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in
- Wuhan, China: a retrospective, single-centre, descriptive study. The Lancet Infectious Diseases
- **2020**, *20* (5), 559-564.
- 561 (12) US Centers for Disease Control & Prevention. COVID-19: U.S. Impact on Antimicrobial
- Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services,
- 563 CDC; 2022. Accessed: 6/1/2023. Available: https://www.cdc.gov/drugresistance/covid19.html

- 564 (13) Murray, A. K.; Zhang, L.; Yin, X.; Zhang, T.; Buckling, A.; Snape, J.; Gaze, W. H. Novel
- insights into selection for antibiotic resistance in complex microbial communities. MBio 2018, 9
- 566 (4), e00969-00918.
- 567 (14) Mahmoudi, T.; Naghdi, T.; Morales-Narváez, E.; Golmohammadi, H. Toward smart
- diagnosis of pandemic infectious diseases using wastewater-based epidemiology. TrAC Trends
- 569 in Analytical Chemistry **2022**, 116635.
- 570 (15) Abdeldayem, O. M.; Dabbish, A. M.; Habashy, M. M.; Mostafa, M. K.; Elhefnawy, M.;
- Amin, L.; Al-Sakkari, E. G.; Ragab, A.; Rene, E. R. Viral outbreaks detection and surveillance
- using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A
- 573 comprehensive review and outlook. Science of The Total Environment 2022, 803, 149834.
- 574 (16) Gonçalves, J.; Torres-Franco, A.; Rodriguéz, E.; Diaz, I.; Koritnik, T.; da Silva, P. G.;
- 575 Mesquita, J. R.; Trkov, M.; Paragi, M.; Muñoz, R. Centralized and decentralized wastewater-
- based epidemiology to infer COVID-19 transmission—A brief review. *One Health* **2022**, 100405.
- 577 (17) Jiang, G.; Liu, Y.; Tang, S.; Kitajima, M.; Haramoto, E.; Arora, S.; Choi, P.; Jackson, G.;
- 578 D'Aoust, P. M.; Delatolla, R. Moving forward with COVID-19: Future research prospects of
- 579 wastewater-based epidemiology methodologies and applications. Current Opinion in
- 580 Environmental Science & Health 2023, 100458.
- 581 (18) Daughton, C. G. Wastewater surveillance for population-wide Covid-19: The present and
- 582 future. *Science of the Total Environment* **2020**, *736*, 139631.

- 583 (19) Hillary, L. S.; Malham, S. K.; McDonald, J. E.; Jones, D. L. Wastewater and public health:
- the potential of wastewater surveillance for monitoring COVID-19. Current Opinion in
- 585 *Environmental Science & Health* **2020**, *17*, 14-20.
- 586 (20) Mandal, P.; Gupta, A. K.; Dubey, B. K. A review on presence, survival,
- disinfection/removal methods of coronavirus in wastewater and progress of wastewater-based
- 588 epidemiology. *Journal of Environmental Chemical Engineering* **2020**, 8 (5), 104317.
- 589 (21) Mao, K.; Zhang, K.; Du, W.; Ali, W.; Feng, X.; Zhang, H. The potential of wastewater-
- based epidemiology as surveillance and early warning of infectious disease outbreaks. *Current*
- 591 Opinion in Environmental Science & Health 2020, 17, 1-7.
- 592 (22) Aguiar-Oliveira, M. d. L.; Campos, A.; R. Matos, A.; Rigotto, C.; Sotero-Martins, A.;
- Teixeira, P. F.; Siqueira, M. M. Wastewater-based epidemiology (WBE) and viral detection in
- 594 polluted surface water: a valuable tool for COVID-19 surveillance—a brief review. *International*
- Journal of Environmental Research and Public Health 2020, 17 (24), 9251.
- 596 (23) Prieto Riquelme, M. V.; Garner, E.; Gupta, S.; Metch, J.; Zhu, N.; Blair, M. F.; Arango-
- Argoty, G.; Maile-Moskowitz, A.; Li, A.-d.; Flach, C.-F. Demonstrating a Comprehensive
- 598 Wastewater-Based Surveillance Approach That Differentiates Globally Sourced Resistomes.
- 599 Environmental Science & Technology **2022**, 56 (21), 14982-14993.
- 600 (24) Hendriksen, R. S.; Munk, P.; Njage, P.; Van Bunnik, B.; McNally, L.; Lukjancenko, O.;
- Röder, T.; Nieuwenhuijse, D.; Pedersen, S. K.; Kjeldgaard, J. Global monitoring of antimicrobial
- resistance based on metagenomics analyses of urban sewage. *Nature Communications* **2019**, *10*
- 603 (1), 1124.

- 604 (25) Rodríguez, E. A.; Ramirez, D.; Balcázar, J. L.; Jiménez, J. N. Metagenomic analysis of
- urban wastewater resistome and mobilome: a support for antimicrobial resistance surveillance in
- an endemic country. *Environmental Pollution* **2021**, *276*, 116736.
- 607 (26) Pärnänen, K. M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T. U.; Cacace, D.; Do, T. T.;
- 608 Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T. Antibiotic resistance in European
- wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence.
- 610 *Science Advances* **2019**, *5* (3), eaau9124.
- 611 (27) Fahrenfeld, N.; Bisceglia, K. J. Emerging investigators series: sewer surveillance for
- 612 monitoring antibiotic use and prevalence of antibiotic resistance: urban sewer epidemiology.
- 613 Environmental Science: Water Research & Technology 2016, 2 (5), 788-799.
- 614 (28) Eramo, A.; Medina, W. R. M.; Fahrenfeld, N. Factors associated with elevated levels of
- antibiotic resistance genes in sewer sediments and wastewater. Environmental Science: Water
- 616 Research & Technology **2020**, 6 (6), 1697-1710.
- 617 (29) Choi, P. M.; Tscharke, B. J.; Donner, E.; O'Brien, J. W.; Grant, S. C.; Kaserzon, S. L.;
- Mackie, R.; O'Malley, E.; Crosbie, N. D.; Thomas, K. V. Wastewater-based epidemiology
- 619 biomarkers: past, present and future. TrAC Trends in Analytical Chemistry 2018, 105, 453-469.
- 620 (30) Brumfield, K. D.; Leddy, M.; Usmani, M.; Cotruvo, J. A.; Tien, C.-T.; Dorsey, S.; Graubics,
- 621 K.; Fanelli, B.; Zhou, I.; Registe, N. Microbiome analysis for wastewater surveillance during
- 622 COVID-19. *Mbio* **2022**, *13* (4), e00591-00522.

- 623 (31) Harrington, A.; Vo, V.; Papp, K.; Tillett, R. L.; Chang, C.-L.; Baker, H.; Shen, S.; Amei, A.;
- 624 Lockett, C.; Gerrity, D. Urban monitoring of antimicrobial resistance during a COVID-19 surge
- 625 through wastewater surveillance. *Science of The Total Environment* **2022**, *853*, 158577.
- 626 (32) Wang, C.; Mantilla-Calderon, D.; Xiong, Y.; Alkahtani, M.; Bashawri, Y. M.; Al Qarni, H.;
- Hong, P.-Y. Investigation of antibiotic resistome in hospital wastewater during the COVID-19
- 628 Pandemic: Is the initial phase of the pandemic contributing to antimicrobial resistance?
- 629 Environmental Science & Technology **2022**, 56 (21), 15007-15018.
- 630 (33) Kumar, M.; Dhangar, K.; Thakur, A. K.; Ram, B.; Chaminda, T.; Sharma, P.; Kumar, A.;
- Raval, N.; Srivastava, V.; Rinklebe, J. Antidrug resistance in the Indian ambient waters of
- 632 Ahmedabad during the COVID-19 pandemic. *Journal of Hazardous Materials* **2021**, *416*,
- 633 126125.
- 634 (34) Martínez, J. L.; Coque, T. M.; Baquero, F. What is a resistance gene? Ranking risk in
- resistomes. *Nature Reviews Microbiology* **2015**, *13* (2), 116-123.
- 636 (35) Bengtsson-Palme, J.; Larsson, D. Antibiotic resistance genes in the environment:
- prioritizing risks. *Nature Reviews Microbiology* **2015**, *13* (6), 396-396.
- 638 (36) Fahrenfeld, N. L.; Morales Medina, W. R.; D'Elia, S.; Deshpande, A. S.; Ehasz, G. Year-
- long wastewater monitoring for SARS-CoV-2 signals in combined and separate sanitary sewers.
- 640 *Water Environment Research* **2022**, *94* (8), e10768.
- 641 (37) Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W. L.; Armas, F.; Kauffman, K.; Hanage, W.;
- Matus, M.; Ghaeli, N. SARS-CoV-2 titers in wastewater are higher than expected from clinically
- 643 confirmed cases. *Msystems* **2020**, *5* (4), 10.1128/msystems. 00614-00620.

- 644 (38) Muyzer, G.; de Waal, E. C.; Uitterlinden, A. G. Profiling of complex microbial populations
- by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes
- 646 coding for 16S rRNA. Applied & Environmental Microbiology 1993, 59 (3), 695-700. DOI:
- 647 10.1128/aem.59.3.695-700.1993.
- 648 (39) Pei, R.; Kim, S. C.; Carlson, K. H.; Pruden, A. Effect of river landscape on the sediment
- 649 concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water
- 650 Research **2006**, 40 (12), 2427-2435. DOI: 10.1016/j.watres.2006.04.017.
- 651 (40) Aminov, R. I.; Chee-Sanford, J. C.; Garrigues, N.; Teferedegne, B.; Krapac, I. J.; White, B.
- A.; Mackie, R. I. Development, validation, and application of PCR primers for detection of
- 653 tetracycline efflux genes of gram-negative bacteria. Applied & Environmental Microbiology
- **2002**, *68* (4), 1786-1793. DOI: 10.1128/AEM.68.4.1786-1793.2002.
- 655 (41) Narciso-da-Rocha, C.; Varela, A. R.; Schwartz, T.; Nunes, O. C.; Manaia, C. M. blaTEM
- and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban
- 657 wastewater treatment plant system. Journal of Global Antimicrobial Resistance 2014, 2 (4), 309-
- 658 315.
- 659 (42) Chacón, L.; Arias-Andres, M.; Mena, F.; Rivera, L.; Hernández, L.; Achi, R.; Garcia, F.;
- Rojas-Jimenez, K. Short-term exposure to benzalkonium chloride in bacteria from activated
- sludge alters the community diversity and the antibiotic resistance profile. *Journal of Water and*
- 662 *Health* **2021**, *19* (6), 895-906.
- 663 (43) Dai, D.; Brown, C.; Bürgmann, H.; Larsson, D.; Nambi, I.; Zhang, T.; Flach, C.-F.; Pruden,
- A.; Vikesland, P. J. Long-read metagenomic sequencing reveals shifts in associations of

- antibiotic resistance genes with mobile genetic elements from sewage to activated sludge.
- 666 *Microbiome* **2022**, *10* (1), 1-16.
- 667 (44) Che, Y.; Xia, Y.; Liu, L.; Li, A.-D.; Yang, Y.; Zhang, T. Mobile antibiotic resistome in
- wastewater treatment plants revealed by Nanopore metagenomic sequencing. *Microbiome* **2019**,
- 669 7 (1), 1-13.
- 670 (45) Martin, C.; Stebbins, B.; Ajmani, A.; Comendul, A.; Hamner, S.; Hasan, N. A.; Colwell, R.;
- Ford, T. Nanopore-based metagenomics analysis reveals prevalence of mobile antibiotic and
- heavy metal resistome in wastewater. *Ecotoxicology* **2021**, 1-14.
- 673 (46) Bushnell, B. BBMap: a fast, accurate, splice-aware aligner; Lawrence Berkeley National
- 674 Lab.(LBNL), Berkeley, CA (United States), 2014.
- 675 (47) McArthur, A. G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M. A.; Baylay, A. J.; Bhullar,
- 676 K.; Canova, M. J.; De Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance
- Database. Antimicrob. Agents Chemother. **2013**, *57* (7), 3348-3357. DOI: 10.1128/aac.00419-13.
- 678 (48) Simon, H. Y.; Siddle, K. J.; Park, D. J.; Sabeti, P. C. Benchmarking metagenomics tools for
- 679 taxonomic classification. *Cell* **2019**, *178* (4), 779-794.
- 680 (49) Krawczyk, P. S.; Lipinski, L.; Dziembowski, A. PlasFlow: predicting plasmid sequences in
- metagenomic data using genome signatures. *Nucleic Acids Research* **2018**, 46 (6), e35-e35.
- 682 (50) Alcock, B. P.; Huynh, W.; Chalil, R.; Smith, K. W.; Raphenya, A. R.; Wlodarski, M. A.;
- Edalatmand, A.; Petkau, A.; Syed, S. A.; Tsang, K. K. CARD 2023: expanded curation, support

- for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance
- 685 Database. *Nucleic Acids Research* **2023**, *51* (D1), D690-D699.
- 686 (51) Liaw, A.; Wiener, M. Classification and regression by randomForest. *R news* **2002**, *2* (3),
- 687 18-22.
- 688 (52) Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W. S.; Huttenhower,
- 689 C. Metagenomic biomarker discovery and explanation. *Genome biology* **2011**, *12*, 1-18.
- 690 (53) Wickham, H. ggplot2: elegant graphics for data analysis New York. NY: Springer 2009.
- 691 (54) Meade, E.; Slattery, M. A.; Garvey, M. Biocidal resistance in clinically relevant microbial
- species: a major public health risk. *Pathogens* **2021**, *10* (5), 598.
- 693 (55) Rizvi, S. G.; Ahammad, S. Z. COVID-19 and antimicrobial resistance: A cross-study.
- 694 *Science of the Total Environment* **2022**, *807*, 150873.
- 695 (56) Kim, J. K.; Crimmins, E. M. How does age affect personal and social reactions to COVID-
- 19: Results from the national Understanding America Study. *PLoS One* **2020**, *15* (11), e0241950.
- 697 (57) Yang, Y.; Li, B.; Ju, F.; Zhang, T. Exploring variation of antibiotic resistance genes in
- activated sludge over a four-year period through a metagenomic approach. *Environmental*
- 699 Science & Technology **2013**, 47 (18), 10197-10205.
- 700 (58) Göbel, A.; Thomsen, A.; McArdell, C. S.; Joss, A.; Giger, W. Occurrence and sorption
- behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment.
- 702 Environmental Science & Technology **2005**, *39* (11), 3981-3989.

- 703 (59) Jernberg, C.; Lofmark, S.; Edlund, C.; Jansson, J. K. Long-term impacts of antibiotic
- exposure on the human intestinal microbiota. *Microbiology* **2010**, *156* (11), 3216-3223.
- 705 (60) Coutu, S.; Rossi, L.; Barry, D. A.; Rudaz, S.; Vernaz, N. Temporal variability of antibiotics
- fluxes in wastewater and contribution from hospitals. *PLoS One* **2013**, 8 (1), e53592.
- 707 (61) McLellan, S.; Huse, S. M.; Mueller-Spitz, S.; Andreishcheva, E.; Sogin, M. Diversity and
- 708 population structure of sewage-derived microorganisms in wastewater treatment plant influent.
- 709 Environmental Microbiology **2010**, 12 (2), 378-392.
- 710 (62) Newton, R. J.; McLellan, S. L.; Dila, D. K.; Vineis, J. H.; Morrison, H. G.; Eren, A. M.;
- 711 Sogin, M. L. Sewage reflects the microbiomes of human populations. *MBio* **2015**, *6* (2), e02574-
- 712 02514.
- 713 (63) Frey, W. H. Despite the pandemic narrative, Americans are moving at historically low rates.
- 714 2021. Brookings. Accessed: 5/10/2023. Available: https://www.brookings.edu/articles/despite-
- 715 the-pandemic-narrative-americans-are-moving-at-historically-low-rates/
- 716 (64) MacPherson, D. W.; Gushulak, B. D.; Baine, W. B.; Bala, S.; Gubbins, P. O.; Holtom, P.;
- 717 Segarra-Newnham, M. Population mobility, globalization, and antimicrobial drug resistance.
- 718 *Emerging Infectious Diseases* **2009**, *15* (11), 1727.
- 719 (65) Morfino, R. C.; Bart, S. M.; Franklin, A.; Rome, B. H.; Rothstein, A. P.; Aichele, T. W.; Li,
- 720 S. L.; Bivins, A.; Ernst, E. T.; Friedman, C. R. Notes from the Field: Aircraft Wastewater
- 721 Surveillance for Early Detection of SARS-CoV-2 Variants—John F. Kennedy International
- Airport, New York City, August–September 2022. Morbidity and Mortality Weekly Report 2023,
- 723 *72* (8), 210.

- 724 (66) Novo, A.; Manaia, C. M. Factors influencing antibiotic resistance burden in municipal
- wastewater treatment plants. *Applied Microbiology and Biotechnology* **2010**, 87, 1157-1166.
- 726 (67) Ping, Q.; Zhang, Z.; Ma, L.; Yan, T.; Wang, L.; Li, Y. The prevalence and removal of
- antibiotic resistance genes in full-scale wastewater treatment plants: Bacterial host, influencing
- factors and correlation with nitrogen metabolic pathway. Science of The Total Environment
- **2022**, *827*, 154154.
- 730 (68) Morales Medina, W. R.; Eramo, A.; Fahrenfeld, N. Metabolically Active Prokaryotes and
- 731 Actively Transcribed Antibiotic Resistance Genes in Sewer Systems: Implications for Public
- Health and Microbially Induced Corrosion. *Microbial ecology* **2022**, *83* (3), 583-595.
- 733 (69) Desai, K.; Arora, P.; Ghanekar, S.; Johnson, K.; Harris, I. Antibiotic prescribing trends in
- 734 the US during the first 11 months of the COVID-19 pandemic. Research in Social and
- 735 *Administrative Pharmacy* **2022**. *18* (10), 3855-3859.
- 736 (70) Gouin, K. A.; Creasy, S.; Beckerson, M.; Wdowicki, M.; Hicks, L. A.; Lind, J. N.; Geller,
- 737 A. I.; Budnitz, D. S.; Kabbani, S. Trends in prescribing of antibiotics and drugs investigated for
- coronavirus disease 2019 (COVID-19) treatment in US nursing home residents during the
- 739 COVID-19 pandemic. Clinical Infectious Diseases 2022, 74 (1), 74-82.
- 740 (71) King, L. M.; Lovegrove, M. C.; Shehab, N.; Tsay, S.; Budnitz, D. S.; Geller, A. I.; Lind, J.
- N.; Roberts, R. M.; Hicks, L. A.; Kabbani, S. Trends in US outpatient antibiotic prescriptions
- during the coronavirus disease 2019 pandemic. Clinical Infectious Diseases 2021, 73 (3), e652-
- 743 e660.

- 744 (72) Altıntaş, M.; Kar, M.; Tığlı, G. A.; Çekin, Y. Methicillin resistance and *Staphylococcus*
- 745 aureus in nasal cultures before and during the COVID-19 Pandemic: A Comparison of the
- 746 Results. *Allergy* **2022**, *5* (1), 20-23.
- 747 (73) Bassetti, M.; Magnasco, L.; Vena, A.; Portunato, F.; Giacobbe, D. R. Methicillin-resistant
- 748 Staphylococcus aureus lung infection in coronavirus disease 2019: how common? Current
- 749 *Opinion in Infectious Diseases* **2022**, *35* (2), 149.
- 750 (74) Fontana, C.; Favaro, M.; Minelli, S.; Bossa, M. C.; Altieri, A. Co-infections observed in
- 751 SARS-CoV-2 positive patients using a rapid diagnostic test. Scientific Reports 2021, 11 (1),
- 752 16355.
- 753 (75) Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.;
- 754 Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M. Incidence of co-infections
- and superinfections in hospitalized patients with COVID-19: a retrospective cohort study.
- 756 *Clinical Microbiology and Infection* **2021**, *27* (1), 83-88.
- 757 (76) Bazaid, A. S.; Barnawi, H.; Qanash, H.; Alsaif, G.; Aldarhami, A.; Gattan, H.; Alharbi, B.;
- 758 Alrashidi, A.; Al-Soud, W. A.; Moussa, S. Bacterial coinfection and antibiotic resistance profiles
- among hospitalised COVID-19 patients. *Microorganisms* **2022**, *10* (3), 495.
- 760 (77) Russell, C. D.; Fairfield, C. J.; Drake, T. M.; Turtle, L.; Seaton, R. A.; Wootton, D. G.;
- 761 Sigfrid, L.; Harrison, E. M.; Docherty, A. B.; de Silva, T. I. Co-infections, secondary infections,
- and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave
- 763 from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study. *The Lancet*
- 764 *Microbe* **2021**, *2* (8), e354-e365.

- 765 (78) Varela, A. R.; André, S.; Nunes, O. C.; Manaia, C. M. Insights into the relationship between
- antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant
- 767 system. *Water Research* **2014**, *54*, 327-336.
- 768 (79) Bhatt, P. J.; Shiau, S.; Brunetti, L.; Xie, Y.; Solanki, K.; Khalid, S.; Mohayya, S.; Au, P. H.;
- Pham, C.; Uprety, P. Risk factors and outcomes of hospitalized patients with severe coronavirus
- disease 2019 (COVID-19) and secondary bloodstream infections: a multicenter case-control
- 771 study. *Clinical Infectious Diseases* **2021**, *72* (12), e995-e1003.
- 772 (80) Müller, E.; Abdel-Glil, M. Y.; Hotzel, H.; Hänel, I.; Tomaso, H. Aliarcobacter butzleri from
- water poultry: insights into antimicrobial resistance, virulence and heavy metal resistance. *Genes*
- **2020**, *11* (9), 1104.
- 775 (81) Gallardo-Escárate, C.; Valenzuela-Muñoz, V.; Núñez-Acuña, G.; Valenzuela-Miranda, D.;
- Price Price
- 777 wastewater microbiome: a novel insight for COVID-19 surveillance. Science of The Total
- 778 Environment **2021**, 764, 142867.
- 779 (82) Magana-Arachchi, D.; Wanigatunge, R. Ubiquitous waterborne pathogens. In *Waterborne*
- 780 *pathogens*, Elsevier, 2020; pp 15-42.
- 781 (83) Roedel, A.; Vincze, S.; Projahn, M.; Roesler, U.; Robé, C.; Hammerl, J. A.; Noll, M.; Al
- Dahouk, S.; Dieckmann, R. Genetic but no phenotypic associations between biocide tolerance
- and antibiotic resistance in Escherichia coli from German broiler fattening farms.
- 784 *Microorganisms* **2021**, *9* (3), 651.

- 785 (84) Vijayakumar, R.; Sandle, T. A review on biocide reduced susceptibility due to plasmid-
- borne antiseptic-resistant genes—special notes on pharmaceutical environmental isolates.
- 787 *Journal of Applied Microbiology* **2019**, *126* (4), 1011-1022.
- 788 (85) Jaglic, Z.; Cervinkova, D. Genetic basis of resistance to quaternary ammonium compounds-
- -the qac genes and their role: a review. *Veterinarni Medicina* **2012**, *57* (6).
- 790 (86) Wand, M. E. Bacterial resistance to hospital disinfection. *Modeling the Transmission and*
- 791 Prevention of Infectious Disease 2017, 19-54.
- 792 (87) Onohuean, H.; Agwu, E.; Nwodo, U. Systematic review and meta-analysis of environmental
- 793 Vibrio species–antibiotic resistance. *Heliyon* **2022**, e08845.
- 794 (88) Lai, C.-C.; Chen, S.-Y.; Ko, W.-C.; Hsueh, P.-R. Increased antimicrobial resistance during
- 795 the COVID-19 pandemic. *International Journal of Antimicrobial Agents* **2021**, *57* (4), 106324.
- 796 (89) Gilbert, P.; McBain, A. J. Potential impact of increased use of biocides in consumer
- 797 products on prevalence of antibiotic resistance. Clinical Microbiology Reviews 2003, 16 (2),
- 798 189-208.
- 799 (90) Han, Y.; Zhou, Z.-C.; Zhu, L.; Wei, Y.-Y.; Feng, W.-Q.; Xu, L.; Liu, Y.; Lin, Z.-J.; Shuai,
- 800 X.-Y.; Zhang, Z.-J. The impact and mechanism of quaternary ammonium compounds on the
- transmission of antibiotic resistance genes. *Environmental Science and Pollution Research* **2019**,
- 802 *26*, 28352-28360.