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Abstract. A multistationarity region is the part of a reaction network’s parameter space that
gives rise to multiple steady states. Mathematically, this region consists of the positive parameters
for which a parametrized family of polynomial equations admits two or more positive roots. Much
recent work has focused on analyzing multistationarity regions of biologically significant reaction
networks and determining whether such regions are connected; indeed, a better understanding of
the topology and geometry of such regions may help elucidate how robust multistationarity is to
perturbations. Here we focus on the multistationarity regions of small networks, those with few
species and few reactions. For two families of such networks – those with one species and up to
three reactions, and those with two species and up to two reactions – we prove that the resulting
multistationarity regions are connected. We also give an example of a network with one species and
six reactions for which the multistationarity region is disconnected. Our proofs rely on the formula
for the discriminant of a trinomial, a classification of small multistationary networks, and a recent
result of Feliu and Telek that partially generalizes Descartes’ rule of signs.
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1. Introduction

This work focuses on the question, Which reaction networks give rise to multistationarity regions
that are connected? Mathematically, this question translates to the following: For certain systems
of polynomials in variables x1, x2, . . . , xn, and involving positive real parameters κ1, κ2, . . . , κr:

fi(κ;x) = 0 for i = 1, 2, . . . , n ,

when is the set of parameter vectors κ for which the system admits more than one positive real
root x ∈ Rn

>0, connected?

1.1. Motivation. Reaction networks arise in many applications – including systems biology, ecol-
ogy, and epidemiology – and one key question is whether the resulting dynamical systems are
multistationary (that is, admit multiple steady states). In applications, multistationarity (or, more
precisely, multistability) is the foundation for cellular switch-like and decision-making behavior [19].
Accordingly, much work has focused on the question of which networks are multistationary [17].

Given a multistationary network, an important follow-up problem is to describe the multista-
tionarity region: the set of all parameters (reaction rate constants and/or conservation-law values)
for which the corresponding dynamical system is multistationary. Understanding this “geography
of parameter space” [20] – for instance, are these regions open (and hence full dimensional) or
connected? – has attracted much attention in recent years and may help us understand how robust
multistationarity and multistability are to perturbations [27].
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1.2. Our contribution. Our main result pertains to small reaction networks, as follows.

Theorem 1.1. If G is a network with (i) exactly one species and up to three reactions or (ii) exactly
two species and up to two reactions, then the multistationarity region of G is connected.

Theorem 1.1 encompasses Theorems 5.3 and 5.8 in the main text. We also give an example of
a multistationarity region that is disconnected, which arises from a network with only one species
and six reactions (Proposition 5.1). To our knowledge, only one other network in the literature has
been shown to exhibit a disconnected multistationarity region [27]. Additionally, for all networks
considered in this work, we completely describe the multistationarity region (some of these regions
are listed in Table 2 in Section 4), a task that is generally infeasible for medium- to large-size
networks (say, 10 or more reactions). Our main results are summarized in Table 1.

Number of species Number of reactions Is multistationarity region connected?
1 at most 3 Yes
1 6 or more Yes or No
2 at most 2 Yes

Table 1. Summary of main results (Proposition 5.1 and Theorems 5.3 and 5.8).

Our proofs rely on a classification of small multistationary networks due to Joshi and Shiu [18]
and on two results pertaining to polynomials: a formula for the discriminant of a trinomial [24]
and a result of Feliu and Telek that partially generalizes Descartes’ rule of signs [11].

1.3. Relation to literature. Other researchers have also analyzed the multistationarity regions
of small reaction networks. For instance, Joshi computed the (unique) inequality defining the
multistationarity regions of fully open, one-species networks with only one non-flow reaction, such
as {0 ⇄ A, 2A → 3A} [15]. Subsequently, Helmer and Feliu used Gale duality to extend Joshi’s
analysis to allow for any number of species (again in networks with only one non-flow reaction) [8];
connectedness of the multistationarity region, however, is not immediate from their results. Related
results were proven by Tang, Lin, and Zhang [25, Theorem 6.1]. Our work significantly extend
Joshi’s result (see Example 5.5), but our results do not touch upon the related works [8, 25].

As mentioned earlier, a complete description of the multistationarity region is generally infea-
sible (or at least unwieldy) for networks of biologically realistic sizes. One approach, therefore, is
to establish open subsets within multistationarity regions. This has been accomplished for certain
biochemically significant networks, by using algebraic techniques that harness the structure and
sparsity appearing in polynomial systems arising in many biochemical networks [2, 5, 12, 26]. An-
other approach, due to Sadeghimanesh and England, is to approximate multistationarity regions by
polynomial super-level sets [22]. A related attempt to gain a detailed understanding of such regions
was pursued by Bradford et al., who used computational (symbolic and numerical) techniques [3].

Finally, as noted before, much recent interest has focused on the question of whether multi-
stationarity regions are connected. Feliu, Kaihnsa, de Wolff, and Yürük showed that this region1

is indeed connected for an important biological signaling network – the dual-site phosphorylation
cycle with sequential and distributive mechanisms [9, §5] – and then subsequently generalized this
result significantly [10]. Their result proves rigorously what was strongly suggested by a recent
numerical (as opposed to symbolic) investigation of the same system by Nam et al. [20]. (The dif-
ference in what was analyzed concerns multiple steady states versus multiple exponentially stable
steady states, but – up to a set of measure zero – these regions are expected to coincide).

Additional results pertaining to connectedness of multistationarity regions are due to Telek and
Feliu [11, 27]. Notably, they give an algorithm that can assert connectedness. However, in some
cases, the algorithm is inconclusive (as is the case for many of the networks analyzed in our work).

1More precisely, this region is what we call the “multistationarity-allowing region” (Definition 4.2).
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Remark 1.2. All occurrences of “connected” in our work can be replaced by “path-connected”. In-
deed, the two concepts are equivalent for open subsets of Euclidean space, and all multistationarity
regions considered in our examples and results are open (in fact, defined by strict inequalities).

1.4. Organization of article. This article has two background sections: one on polynomials
(Section 2) and one on reaction networks (Section 3). In Section 4, we define multistationarity
regions, and then our main results appear in Section 5. We end with a discussion in Section 6.

2. Background on polynomials

This section recalls results on polynomials in one variable (Section 2.1) and several variables
(Section 2.2).

2.1. Univariate polynomials. The following formula for the discriminant of a univariate trino-
mial (that is, a one-variable polynomial with only three monomials) is due to Swan [14, 24].

Lemma 2.1 (Discriminant of trinomial). The trinomial g(x) = xn + axk + b, where 0 < k < n,
has discriminant

(−1)n(n−1)/2bk−1
[
nNbN−K − (−1)N (n− k)N−KkKaN

]d
,

where d = gcd(n, k), N = n/d, and K = k/d.

Example 2.2. For a quadratic x2 + bx + c, the formula for the discriminant given in Lemma 2.1
yields the standard discriminant: b2 − 4c.

Next, we use Lemma 2.1 to characterize the number of positive roots of a trinomial in which the
coefficients alternate in sign. We use this result in later sections.

Proposition 2.3. Consider a trinomial g(x) = xn − cxk + b with 0 < k < n, where b > 0 and
c > 0. Let N(g) denote the number (counted without multiplicity) of positive roots of g, and let:

D(g) := nNbN−K − (n− k)N−KkKcN ,

where d = gcd(n, k), N = n/d, and K = k/d. Then:

N(g) =


2 if D(g) < 0

1 if D(g) = 0

0 if D(g) > 0 .

Proof. Let g be as in the statement of the proposition. By applying Lemma 2.1 and using the fact
that b > 0, we see that the discriminant of g is 0 if and only if D(g) = nNbN−K − (n−k)N−KkKcN

is also 0.
Our proof proceeds by analyzing what happens to g(x) as b varies (we view c as fixed). First

consider the case of b = 0. In this case, D(g) < 0 and (by a calculus exercise) the graph of
g(x) = xn− cxk = xk(xn−k− c), restricted to x ≥ 0, satisfies the following: (1) there are two roots,
at 0 and at n−k

√
c, and (2) the graph is decreasing on an interval [0, α] (with α < n−k

√
c) and is

increasing on the subsequent interval [α,∞). In other words, the graph of g (for x ≥ 0) has the
form:
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As b increases, the above graph shifts up (by b). At first, there are two positive roots, and then
they become a double root, at which point the discriminant of g and hence also D(g) is 0. This
happens exactly when b takes the following value:

b∗ =
N−K

√
(n− k)N−KkK(c∗)N

nN
.

For larger b (that is, b > b∗), we have D(g) > 0 and there are no positive roots. Now our desired
result follows directly. □

2.2. Multivariate polynomials. Following [11], a polynomial function denotes a function g :
Rn
>0 → R obtained by restricting a multivariate polynomial to the positive orthant:

g(x) = c1x
µ11
1 xµ12

2 . . . xµ1n
n + c2x

µ21
1 xµ22

2 . . . xµ2n
n + . . . + cℓx

µℓ1
1 xµℓ2

2 . . . xµℓn
n ,

where ci ∈ R and µij ∈ Z≥0 for all i ∈ {1, 2, . . . , ℓ} and j ∈ {1, 2, . . . , n}. The following result
pertaining to polynomial functions is due to Feliu and Telek [11, Theorem 3.4]:

Lemma 2.4. Let g : Rn
>0 → R be a polynomial function. If at most one coefficient of g is negative,

then g−1(R<0) is connected.

3. Background on reaction networks

This section recalls reaction networks and mass-action systems (Section 3.1) and their capacity
for multiple steady states (Section 3.2).

3.1. Mass-action systems. As a preview to formal definitions, we begin with an example, which
serves as a running example in this work. The following reaction network consists of two reactions
involving the species A and B:

{2A+B → 3A, A→ B} .(1)

In examples, as above, we write species as A,B,C, . . . . However, for precise definitions, it is more
convenient to write X1, X2, X3, . . . , as follows.

A reaction network G consists of a finite set of reactions, as follows:

G =
{
(yi1X1 + yi2X2 + · · ·+ yinXn)→ (y′i1X1 + y′i2X2 + · · ·+ y′inXn) | i = 1, 2, . . . , r

}
,

where all yij and y′ij are nonnegative integers, and X1, X2, . . . , Xn are species. For a complex

yi1X1 + yi2X2 + · · · + yinXn, we use the shorthand yi = (yi1, yi2, . . . , yin). For a reaction yi → y′i,
the complex yi is the reactant and y′i is the product.

Next, we describe how a reaction network G defines, via mass-action kinetics, a system of ordinary
differential equations (ODEs). Let r denote the number of reactions of G, and let yi → y′i denote
the i-th reaction. Let κ = (κ1, κ2, . . . , κr) ∈ Rr

>0 denote a vector of positive rate constants (one
rate constant per reaction). The mass-action system arising from G and κ, which we denote by
(G, κ), is the dynamical system defined by the following ODEs:

dx

dt
=

r∑
i=1

κix
yi(y′i − yi) =: fκ(x) ,(2)

where xi(t) denotes the concentration of the species Xi at time t, and xyi :=
∏n

j=1 x
yij
j .

Next, the right-hand sides of the ODEs (2) always lie in the linear subspace of Rn spanned by
all reaction vectors y′i − yi (for i = 1, 2, . . . , r). This subspace is the stoichiometric subspace of G,
and we denote it by S. A network is full dimensional if S = Rn.
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Another property of the ODEs (2) is that forward-time solutions {x(t) | t ≥ 0} that begin in
the nonnegative orthant Rn

≥0, remain in Rn
≥0. Hence, a solution {x(t) | t ≥ 0} of (2), with initial

condition x(0) ∈ Rn
>0, stays in the following stoichiometric compatibility class:

P = (x(0) + S) ∩ Rn
≥0 .(3)

Example 3.1. The network (1) generates the following mass-action ODEs (2):

dx1
dt

= κ1x
2
1x2 − κ2x1(4)

dx2
dt

= −κ1x21x2 + κ2x1 .

The stoichiometric subspace is one-dimensional, spanned by the vector (1,−1)⊤. The stoichiometric
compatibility class (3) defined by the initial condition x(0) = (1, 1.5) is as follows:

P = {(x1, x2) ∈ R2
≥0 | x1 + x2 = 2.5} .(5)

The equation x1+x2 = 2.5, in (5), can be viewed as a conservation law. Accordingly, we reframe
stoichiometry-related concepts in terms of conservation laws, as follows. A conservation-law matrix
of G, denoted by W , refers to a (d×n)-matrix whose rows are a basis of the orthogonal complement
of S (here, d = n− dim(S)). Now the stoichiometric compatibility class (3) can be rewritten:

Pc = {x ∈ Rn
≥0 |Wx = c} ,(6)

where c := Wx(0) ∈ Rd is called a total-constant vector (or total-concentration vector).

Example 3.2 (Example 3.1, continued). Returning to the network {2A + B
κ1→ 3A, A

κ2→ B}, a
conservation-law matrix is the (1× 2)-matrix W = [1 1]. For x(0) = (1, 1.5), we have c = Wx(0) =
2.5, so the stoichiometric compatibility class found earlier (5) matches the description of Pc in (6).

3.2. Multistationarity. A steady state of a mass-action system (G, κ) is some x∗ ∈ Rn
≥0 at which

the right-hand side of the ODEs (2) vanishes: fκ(x
∗) = 0. Of particular importance are positive

steady states x∗ ∈ Rn
>0. Finally, a steady state x∗ ∈ Rn

≥0 is nondegenerate if Im(dfκ(x
∗)|S) = S,

where S is the stoichiometric subspace and dfκ(x
∗) is the Jacobian matrix of fκ evaluated at x∗.

Definition 3.3 (Multistationary).

(1) A mass-action system (G, κ) is multistationary (respectively, nondegenerately multistation-
ary) if there exists a stoichiometric compatibility class (3) that contains two or more positive
steady states (respectively, nondegenerate positive steady states).

(2) A reaction network G is multistationary (respectively, nondegenerately multistationary) if
there exists a vector of positive rate constants κ such that (G, κ) is multistationary (respec-
tively, nondegenerately multistationary).

Example 3.4 (Example 3.2, continued). We return to the network {2A + B
κ1→ 3A, A

κ2→ B}.
This network is known to be multistationary [18] (see also [7, Example 1]). Indeed, when κ1 = κ2,
it is straightforward to check that, from the ODEs (4), the stoichiometric compatibility class (5)
contains two positive steady states: (0.5, 2) and (2, 0.5).

The remainder of this section is devoted to recalling results pertaining to multistationary net-
works with only one or two species [18].

Lemma 3.5 (Multistationarity in 1-species networks with few reactions). Assume r ∈ {1, 2, 3}.
Let G be a network with only 1 species and exactly r reactions, which we write as {m1A →
p1A, . . . , mrA→ prA}, where m1 ≤ · · · ≤ mr.

(1) If r = 1 or r = 2, then G is not multistationary.
(2) If r = 3, then G is multistationary if and only if m1 < m2 < m3 and additionally one of

the following holds:
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(a) m1 < p1, m2 > p2, and m3 < p3; or
(b) m1 > p1, m2 < p2, and m3 > p3.

The proof of Lemma 3.5, in [18], relies on the classical Descartes’ rule of signs, which we recall
states that the number of positive roots of a univariate polynomial f , counted with multiplicity, is
at most the number of sign changes in the list of coefficients (with zeroes removed) of f .

Example 3.6. By Lemma 3.5, the network {A κ1→ 0, 2A
κ2→ 3A, 4A

κ3→ 3A} = {0 κ1← A, 2A
κ2→

3A
κ3← 4A} is multistationary (we have r = 3, (m1,m2,m3) = (1, 2, 4), and (p1, p2, p3) = (0, 3, 3)).

To state the next result, which pertains to networks with two species and two reactions, we must
first recall the concepts of reactant polytopes (Newton polytopes) [13] and box diagrams [18].

Definition 3.7. Let G be a reaction network with n species.

(1) The reactant polytope of G is the convex hull of (i.e., the smallest convex set containing)
the reactants of G (in Rn).

(2) Assume G has exactly two species (n = 2) and two reactions, y → y′ and ỹ → ỹ′, such that
the reactant vectors differ in both coordinates (i.e., writing y = (y1, y2) and ỹ = (ỹ1, ỹ2),
then both y1 ̸= ỹ1 and y2 ̸= ỹ2). The box diagram of G is the rectangle in R2 for which:
(a) the edges are parallel to the axes of R2, and
(b) the reactants y and ỹ are two opposite corners of the rectangle.

Example 3.8 (Example 3.4, continued). The box diagram of our running example (1) is shown
below, together with its reactant polytope (the marked diagonal of the rectangle):

A

B 2A+B

3A

The following result is due to Joshi and Shiu [18, Theorem 4.5].

Lemma 3.9 (Nondegenerate multistationarity in networks with 2 species and 2 reactions). Con-
sider a network G with exactly two species and two reactions, denoted by y → y′ and ỹ → ỹ′. Then
G is nondegenerately multistationary if and only if the following hold:

(1) the reaction vectors are negative scalar multiples of each other, that is, y′− y = −λ(ỹ′− ỹ)
for some λ ∈ R>0,

(2) the reactants y and ỹ differ in both coordinates (so the box diagram of G is defined),
(3) the slope of the reactant polytope is not −1, and
(4) the box diagram of G has one of the following “zigzag” forms:

(7)

Example 3.10 (Example 3.8, continued). The box diagram of the network {2A+B→3A, A→B}
was shown in Example 3.8, and it matches the third of the four forms depicted in (7). Hence,
Lemma 3.9 implies that G is multistationary.

Lemma 3.9 pertains to nondegenerate multistationarity, and the next result considers the re-
maining (degenerate) cases of multistationarity (for networks with two species and two reactions).
The following lemma is immediate from [18, Theorem 4.5] and its proof.

Lemma 3.11 (Degenerate multistationarity in networks with 2 species and 2 reactions). Consider
a network G with exactly two species and two reactions, denoted by y → y′ and ỹ → ỹ′. Then G
is multistationary but not nondegenerately multistationary if and only if the two reaction vectors
are negative scalar multiples of each other (y′− y = −λ(ỹ′− ỹ) for some λ ∈ R>0) and additionally
one of the following hold:
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(1) G satisfies the four conditions listed in Lemma 3.9, except that the slope of the reactant
polytope equals −1,

(2) the reactant complexes are equal (y = ỹ),
(3) y′1 − y1 = ỹ2 − y2 = 0, or
(4) ỹ1 − y1 = y′2 − y2 = 0.

4. Multistationarity regions

A “multistationarity region” refers to the part of a reaction network’s parameter space where
multiple steady states arise. However, there are several choices for what constitutes the parameters:

(a) vectors of positive rate constants κ (such “multistationarity region” were studied in [4, 6, 10]),
(b) total-constant vectors c (as in [5]), and
(c) pairs (κ; c) (as in [2, 3, 20, 22]).

We focus on options (a) and (c). Both options have been called “multistationarity regions” in the
literature, but here we distinguish between the two situations (see Definition 4.2 below).

Remark 4.1. For networks that are full dimensional – such as networks with only one species (and
at least one reaction) – option (b) above is vacuous, so options (a) and (c) coincide. For certain
full-dimensional networks, their multistationarity regions were studied in [8, 15].

Definition 4.2. Let G be a reaction network with conservation-law matrix W .

(1) The multistationarity-allowing region of G is the set of vectors of positive rate constants κ
for which (G, κ) is multistationary.

(2) The multistationarity-enabling region of G with respect to W is the set of pairs (κ; c) of
vectors of positive rate constants κ and total-constant vectors c for which (G, κ) admits
two or more positive steady states in the stoichiometric compatibility class defined by c, as
in (6).

Informally, we refer to both types of regions in Definition 4.2 as “multistationarity regions”. We
also use this term when there is no ambiguity, i.e., for full-dimensional networks (recall Remark 4.1).

Remark 4.3. A network is multistationary if and only if its multistationarity-enabling region is
nonempty. We also note that, in [27], a pair (κ; c) in the multistationarity-enabling region is said
to “enable multistationarity”, which is what inspired our terminology.

Examples of networks and their multistationarity regions are shown in Table 2. These regions
are computed in Sections 4.2 and 5. Before turning our attention to such computations, we first
elucidate some properties of multistationarity regions (Section 4.1).

Network Multistationarity region Reference

{2A+B
κ1−→ 3A, A

κ2−→ B} c2κ1 > 4κ2 Proposition 4.8

{A
κ2

⇆
κ1

A+B, 2B
κ3−→ 3B, A

κ6

⇆
κ5

2A} κ22κ5 > 4κ1κ3κ6 Proposition 4.10{
0

κ2

⇆
κ1

A, nA
κ3−→ (n+ ℓ)A

}
(n− 1)n−1κn2 > nnκn−1

1 κ3ℓ Proposition 4.11{
0

κ1←− A, 2A
κ2−→ 3A

κ3← 4A
}

4κ32 > 27κ21κ3 Example 5.4

{0 κ1L←− A
κ1R−→2A

κ2R

⇄
κ3L

3A} κ1L > κ1R, κ22R > 4(κ1L − κ1R)κ3 Example 5.6

Table 2. Several networks and the inequalities that define the corresponding mul-
tistationarity regions. The third network requires n ≥ 2 and ℓ ≥ 1.
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4.1. Basic properties of multistationarity regions. It is well known (and follows easily from
the relevant definitions) that the multistationarity-allowing region is simply a projection of the
multistationarity-enabling region, as follows.

Proposition 4.4 (Projection of multistationarity regions). Let G be a reaction network with r

reactions and conservation-law matrix W . Let Σ and Σ̃ be, respectively, the multistationarity-
allowing and multistationarity-enabling regions of G (with respect to W ). Then Σ is the image of

the projection map from Σ̃ to Rr given by (κ; c) 7→ κ.

Corollary 4.5. Let G be a reaction network. Let Σ and Σ̃ be, respectively, the multistationarity-
allowing and multistationarity-enabling regions of G (with respect to some conservation-law ma-

trix W ). If Σ̃ is connected, then so is Σ.

Remark 4.6 (Converse of Corollary 4.5). Feliu and Telek conjectured that the following converse

of Corollary 4.5 is true [27, §3]: If Σ is connected, then so is Σ̃. All results in this work are
consistent with this conjecture.

Next, we show that the choice of conservation-law matrix W does not affect the topology of
the resulting multistationarity region. This allows us to say that a multistationary region of some
network is, for instance, connected, without specifying a choice of W .

Proposition 4.7 (Choice of conservation-law matrix W ). Let G be a reaction network. Let W and
W ′ both be conservation-law matrices for G. Let Σ and Σ′ denote the multistationarity-enabling
regions of G with respect to W and W ′, respectively. Then Σ′ is the image of Σ under a linear
isomorphism of Euclidean space. Consequently, Σ and Σ′ are homeomorphic.

Proof. Let W and W ′ be conservation-law matrices of a network G. The rows of both matrices
form bases of S⊥ (where S is the stoichiometric subspace of G). Hence, there exists an invertible
d× d matrix M such that W ′ = MW . (Here, d = n− dim(S), where n is the number of species.)
Now it is straightforward to check from the relevant definitions that the mapping (κ; c) 7→ (κ;Mc)
defines a bijection from Σ to Σ′. □

4.2. Examples. In this section, we compute several multistationarity regions. Our proofs use
results on polynomials from Section 2, and they illustrate key ideas that we use in the next section
to prove our main results. We begin with our running example.

Proposition 4.8 (Multistationarity regions of the running example). The multistationarity-enabling

region of the network {2A + B
κ1→ 3A, A

κ2→ B} with respect to the conservation-law matrix
W = [1 1], is the following connected set:{

(κ1, κ2, c) ∈ R3
>0 | c2κ1 > 4κ2

}
,(8)

and hence the multistationarity-allowing region equals R2
>0.

Proof. From this network’s ODEs (4) and the conservation law from W , the positive steady states
in Pc are the positive intersection points (x1, x2) ∈ R2

>0 of a hyperbola and a line, defined by:

κ1x1x2 − κ2 = 0(9)

x1 + x2 = c .

We substitute x2 = c − x1, from the second equation in (9), into the first equation to obtain
h(x1) := −x21 + cx1 − κ1/κ2 = 0.

Consider the discriminant of h, which is ∆(h) = c2− 4κ2/κ1. When ∆(h) ≤ 0 (i.e., c2κ1 ≤ 4κ2),
h has at most one real root (counted without multiplicity) and hence the system (9) does not admit
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multiple positive roots. On the other hand, when ∆(h) > 0 (i.e., c2κ1 > 4κ2), it is straightforward
to check that the following are positive steady states in Pc:(

c+
√
∆(h)

2
,
c−

√
∆(h)

2

)
and

(
c−

√
∆(h)

2
,
c+

√
∆(h)

2

)
.

Next, connectedness of (8) follows from Lemma 2.4 (applied to g(κ1, κ2, c) := 4κ2−c2κ1). Finally,
we apply Proposition 4.4 to (8) to see that the multistationarity-allowing region is R2

>0. □

Remark 4.9. The following network is obtained from the running example by making one reaction
reversible: H = {2A+ B→3A, A⇄B}. The multistationarity-enabling region of H was shown to
be connected in [27] (and so Corollary 4.5 implies that the multistationarity-allowing region is too).

Next, we analyze the following (full-dimensional) network:{
A

κ2

⇆
κ1

A+B, 2B
κ3→ 3B, A

κ6

⇆
κ5

2A

}
.(10)

This network (10) is obtained by removing the reaction labeled by κ4 from a network in recent
work of Joshi, Kaihnsa, Nguyen, and Shiu [16, Example 2.6].

Proposition 4.10. The multistationarity region of network (10) is the following connected set:{
(κ1, κ2, κ3, κ5, κ6) ∈ R5

>0 | κ22κ5 > 4κ1κ3κ6
}

.(11)

Proof. The network (10) generates the following mass-action ODEs (2):

dx1
dt

= κ5x1 − κ6x
2
1

dx2
dt

= κ1x1 − κ2x1x2 + κ3x
2
2 .

The first equation readily yields that x∗1 = κ5/κ6 for all positive steady states (x∗1, x
∗
2) (this property

is called “absolute concentration robustness” [23]). Hence, the positive steady states of the mass-
action system correspond to positive roots x∗2 of the following quadratic in x2:

κ3x
2
2 − κ2 (κ5/κ6)x2 + κ1 (κ5/κ6) .(12)

Proposition 2.3 implies that the polynomial (12) has multiple positive roots if and only if the inequal-

ity 4
(
κ1κ5
κ3κ6

)
−
(
κ2κ5
κ3κ6

)2
< 0 holds, which is equivalent to the inequality in (11). Finally, connected-

ness of the region (11) comes from applying Lemma 2.4 to g(κ1, κ2, κ3, κ5, κ6) := 4κ1κ3κ6−κ22κ5. □

We end this section by recalling the multistationarity region for a family of multistationary
networks with only one species. This region was computed by Joshi, as follows [15, Lemma 4.3]
(and connectedness is immediate from Lemma 2.4).

Proposition 4.11 (One-species networks with one non-flow reaction). For the following network:{
0

κ2

⇆
κ1

A, nA
κ3→ (n+ ℓ)A

}
, where n ≥ 2 and ℓ ≥ 1 ,

the multistationarity region is the following connected set:{
(κ1, κ2, κ3) ∈ R3

>0 | (n− 1)n−1κn2 > nnκn−1
1 κ3ℓ

}
.

In the next section, we generalize Proposition 4.11 to any one-species network with up to three
reactions (see Theorem 5.3).
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5. Main results

In this section, we give an example of a multistationarity region that is disconnected (Proposi-
tion 5.1). The corresponding network has six reactions and only one species. In contrast, we show
that the multistationarity region is connected for all networks with one species and up to three
reactions (Theorem 5.3) and all networks with two species and up to two reactions (Theorem 5.8).

5.1. Networks with one species. This subsection considers networks with only one species. Such
networks (with at least one reaction ) are full dimensional.

Proposition 5.1. The multistationarity region of the following network is disconnected:

{0 κ1L←− A
κ1R

⇄
κ2L

2A
κ2R

⇄
κ3L

3A
κ3R−→ 4A} .

Proof. The mass-action ODE of this network (where we write x for x1) is:

dx

dt
= (κ1R − κ1L)x+ (κ2R − κ2L)x

2 + (κ3R − κ3L)x
3 .(13)

By a straightforward application of Descartes’ rule of signs, the multistationarity region is a subset
of the following disjoint union of two (nonempty) open sets U and V :{
κ ∈ R6

>0 | κ1R > κ1L, κ2R < κ2L, κ3R > κ3L
}︸ ︷︷ ︸

U

⋃̇{
κ ∈ R6

>0 | κ1R < κ1L, κ2R > κ2L, κ3R < κ3L
}︸ ︷︷ ︸

V

,

where κ := (κ1L, κ1R, κ2L, κ2R, κ3L, κ3R). It now suffices to show that the multistationary region
contains a point in U and also contains a point in V . Accordingly, we choose the following:

κ(U) := (1, 3, 4, 1, 1, 2) and κ(V ) := (3, 1, 1, 4, 2, 1) .

For these vectors of rate constants, the right-hand side of the ODE (13) is, respectively, (x−1)(x−2)
or −(x− 1)(x− 2), each of which has 2 positive roots. Hence, κ(U) ∈ U and κ(V ) ∈ V are both in
the multistationarity region, which completes the proof. □

Remark 5.2. As mentioned in the Introduction, only one other network is known to have discon-
nected multistationarity region: a network modeling “allosteric reciprocal enzyme regulation” [27,
Figure 2c]. This regulation model has 10 species and 10 reactions, and the proof of Telek and Feliu
showing the region is disconnected is somewhat involved. In contrast, our network is simpler (only
1 species and 6 reactions), and the proof of Proposition 5.1 is short.

Theorem 5.3 (One species and up to three reactions). For every reaction network with only one
species and up to three reactions, the multistationarity region is connected.

Proof. Let G be a 1-species network with up to 3 reactions. If the multistationarity region of G is
empty, then this region is vacuously connected. We therefore assume that G is multistationary. By
Lemma 3.5, G must have one of the following forms (which correspond to sign sequences (+,−,+)
and (−,+,−), respectively):

G =
{
m1A

κ1→ (m1 + ℓ1)A, (m1 + k)A
κ2→ (m1 + k − ℓ2)A, (m1 + n)A

κ3→ (m1 + n+ ℓ3)A
}

or

G =
{
m1A

κ1→ (m1 − ℓ1)A, (m1 + k)A
κ2→ (m1 + k + ℓ2)A, (m1 + n)A

κ3→ (m1 + n− ℓ3)A
}

,

where 0 < k < n and ℓ1, ℓ2, ℓ3 ≥ 1.
In the first case, the mass-action ODE is as follows (where we let x := x1 to avoid extra indices):

dx

dt
= κ1ℓ1x

m1 − κ2ℓ2x
m1+k + κ3ℓ3x

m1+n .
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In the second case, the ODE is the same, except that the right-hand side is negated. It is now
straightforward to see that (in both cases) multistationarity occurs precisely when the following
trinomial has more than one positive root:

xn −
(
κ2ℓ2
κ3ℓ3

)
xk +

(
κ1ℓ1
κ3ℓ3

)
.

So, by Proposition 2.3 and straightforward algebraic manipulations, we conclude that the multi-
stationarity region of G is the following set:{

(κ1, κ2, κ3) ∈ R3
>0 | nN (κ1ℓ1)

N−K(κ3ℓ3)
K − (n− k)N−KkK(κ2ℓ2)

N < 0
}

,(14)

where d = gcd(n, k), N = n/d, and K = k/d. Finally, observe that the region (14) is the
set g−1(R<0), where g : R3

>0 → R is given by g(κ1, κ2, κ3) := nN (κ1ℓ1)
N−K(κ3ℓ3)

K − (n −
k)N−KkK(κ2ℓ2)

N , which has exactly one negative term. Hence, Lemma 2.4 implies that the mul-
tistionarity region (14) is connected. □

Example 5.4 (Example 3.6, continued). For the network {0 κ1← A, 2A
κ2→ 3A

κ3← 4A}, the multi-
stationarity region is as follows, which can be read from (14) in the proof of Theorem 5.3:{

(κ1, κ2, κ3) ∈ R3
>0 | 4κ32 > 27κ21κ3

}
.

Example 5.5. For a network of the form {0⇆A, nA→(n+ ℓ)A}, where n ≥ 2 and ℓ ≥ 1, the
multistationarity region from (14) exactly matches the one (due to Joshi) shown in Proposition 4.11.

All multistationarity regions that we fully computed thus far are either empty, the full positive
orthant, or defined by a single discriminantal inequality. In contrast, the multistationarity region
in the next example is defined by two inequalities.

Example 5.6. Consider the following subnetwork of the network in Proposition 5.1:{
0

κ1L←− A
κ1R−→2A

κ2R

⇄
κ3L

3A

}
.

We claim that the multistationarity region is as follows:{
(κ1L, κ1R, κ2R, κ3L) ∈ R4

>0 | κ1L > κ1R, κ22R > 4(κ1L − κ1R)κ3L
}

.(15)

Indeed, this region is readily computed via Proposition 2.3 and Descartes’ rule of signs. Next,
we claim that the region (15) is connected. An outline for the proof is as follows. First, for

ease of notation, we rewrite the region as
{
(b, c, d, e) ∈ R4

>0 | 0 < (b− c) < d2

4e

}
. Given a point

P = (b, c, d, e) in the region, the line segment from P to (̃b, 1, d, e) := (b−c+1, 1, d, e) remains in the

region. Next, the path from (b̃, 1, d, e) to (̃b, 1, d̃, 1) := (̃b, 1, d/
√
e, 1), given by the map [0, 1]→ R4

defined by t 7→
(
b̃, 1, d

√
e(1−t)+t

e , e(1− t) + t

)
, also remains in the region. We have reduced our

problem to checking that the following set is connected:
{
(̃b, d̃) ∈ R2

>0 | 0 < (̃b− 1) < d̃2

4

}
. This

final set is readily seen to be connected, which completes the proof.

Remark 5.7. In Example 5.6, the multistationarity region (15) is cut out by two inequalities (as a
subset of the positive orthant), and the argument that we gave to show that the region is connected
is somewhat ad-hoc. In the future, we desire results, analogous to Lemma 2.4, that handle such
situations (for instance, regions cut out by two polynomials of some special form).
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5.2. Networks with two species. The following is the main result of this subsection.

Theorem 5.8 (Two species and up to two reactions). If G is a network with exactly two species
and one or two reactions, then the multistationarity-allowing and multistationarity-enabling regions
of G are connected.

Theorem 5.8 follows directly from Propositions 5.9 and 5.11 (below) and the fact that networks
with only one reaction are not multistationary (so their multistationarity regions are empty and
hence connected). We begin with Proposition 5.9, which can be viewed as generalizing what we
proved earlier about the running example, {2A+B → 3A, A→ B} (Proposition 4.8).

Proposition 5.9 (Two species and two reactions). Let G be a network with exactly two species
and two reactions. If G is nondegenerately multistationary, then the following hold:

(1) the multistationarity-allowing region is all of the positive orthant (namely, R2
>0), and

(2) the multistationarity-enabling region is connected.

Proof. Assume that G is nondegenerately multistationary and has exactly two species and two

reactions, which we denote by y
κ→ y′ and ỹ

κ̃→ ỹ′ (to avoid excessive indices). By Lemma 3.9(1),
the two reaction vectors are related by y′ − y = −λ(ỹ′ − ỹ) for some λ ∈ R>0.

Next, we use the following notation from the proof of [18, Theorem 4.8]. Let γ denote the slope
of the reaction vector y → y′, and let α be the slope of the reactant polytope of the network G:

γ :=
y′2 − y2
y′1 − y1

and α :=
ỹ2 − y2
ỹ1 − y1

.(16)

By Lemma 3.9(2–3), the denominator of α does not vanish, and, additionally, α /∈ {0,−1}. Also,
the “zigzag” pattern guaranteed by Lemma 3.9(4) ensures that γ and α have opposite (nonzero)
signs.

Next, following the proof of [18, Theorem 4.8] (or by straightforward algebraic manipulation),
the equation defining each stoichiometric compatibility class is as follows:

x2 = g(x1) := γx1 + c/(y′1 − y1) for some c ∈ R ,(17)

and the steady-state equation is:

x2 = h(x1) := Kx
−1/α
1 ,(18)

where K := (λκ̃/κ)1/(y2−ỹ2). In other words, the positive steady states of G correspond to positive
roots x1 ∈ R of the equation h(x1) = g(x1).

We consider three cases, based on the value of α, which we depict qualitatively in Figure 1.

We see in Figure 1 that, in all three cases, there is a unique compatibility class that is tangent
to the steady-state curve. This compatibility class arises from a unique value of c (when κ and κ̃
are fixed), which we call c∗, which is as follows (obtained from a straightforward calculus exercise):

c∗ = (y′1 − y1)(−γα/K)
1

1+α
(
K − γ(−γα/K)−α

)(19)

= (y′1 − y1)(−γα(κ/λκ̃)1/(y2−ỹ2))
1

1+α

(
(λκ̃/κ)1/(y2−ỹ2) − γ(−γα(κ/λκ̃)1/(y2−ỹ2))−α

)
=: h(κ, κ̃) .

This c∗, which we view as a function h(κ, κ̃), serves as a “cutoff” for the range of compatibility
classes (equivalently, values of c) for which there is more than one (in fact, two) positive steady
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Figure 1. Three cases of compatibility classes (17) depicted by (blue) dashed lines
and the set of steady states (18) depicted by (red) solid curves. The three cases
correspond to 0 < α (Case 1), −1 < α < 0 (Case 2), and α < −1 (Case 3). In
all three graphs, the x-axis and y-axis correspond to the first and second species,
respectively.

states. Indeed, by examining Figure 1, we obtain the multistationarity-enabling region (with respect

to the (1× 2) conservation-law matrix W = [−(y′2 − y2) (y′1 − y1)]), which we denote by Σ̃:

Σ̃ =


{(κ, κ̃, c) ∈ R3

>0 | c > h(κ, κ̃)} if 0 < α (Case 1)

{(κ, κ̃, c) ∈ R2
>0 × R | 0 < c < h(κ, κ̃)} if − 1 < α < 0 (Case 2)

{(κ, κ̃, c) ∈ R2
>0 × R | h(κ, κ̃) < c < 0} if α < −1 (Case 3)

(20)

In all three cases, it is straightforward to see that Σ̃ is connected. Indeed, Σ̃ is the region above the
graph of the positive function h(κ, κ̃) (in Case 1) or the region between two graphs, one of which
lies above the other (Cases 2 and 3). Finally, the fact that the multistationarity-allowing region
equals R2

>0 is verified easily using (20) and Proposition 4.4. □

Example 5.10 (Example 3.10, continued). The network G = {2A+ B
κ1→ 3A, A

κ2→ B} falls into
Case 1 in the proof of Proposition 5.9 (y = (2, 1), y′ = (3, 0), ỹ = (1, 0), ỹ′ = (0, 1), so α = 1,
γ = −1, λ = 1). It is straightforward to compute the “cutoff function” (19):

h(κ1, κ2) = 2(κ2/κ1)
1/2 .

Hence, from (20), the multistationarity region of G is defined by c > 2(κ2/κ1)
1/2, which is equivalent

to the inequality (8) that was computed earlier in Proposition 4.8.

We end by considering the case of degenerate multistationarity.

Proposition 5.11 (Two species and two reactions – degenerate case). Let G be a network with
exactly two species and two reactions. If G is multistationary but not nondegenerately multista-
tionary, then the following hold:

(1) the multistationarity-allowing region is connected, and
(2) the multistationarity-enabling region is measure-zero and connected.

Proof. Assume that G is as in the statement of the proposition, and let Σ and Σ̃ denote the
multistationary-allowing and multistationarity-enabling regions, respectively. Denote the two re-

actions of G by y
κ→ y′ and ỹ

κ̃→ ỹ′. By Lemma 3.11, we know that y′ − y = −λ(ỹ′ − ỹ) for some
λ ∈ R>0, and there are four cases to consider: (Case 1) G satisfies the four conditions of Lemma 3.9,
except the slope of the reactant polytope equals −1; (Case 2) y = ỹ; (Case 3) y′1−y1 = ỹ2−y2 = 0;
and (Case 4) ỹ1 − y1 = y′2 − y2 = 0.
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We begin with Case 1. We follow the notation (16) from a prior proof, where in our case α = −1.
Next, the equations (17)–(18) yield the following:

• the stoichiometric compatibility classes are defined by lines with positive slope, g(x1) =
γx1 + c/(y′1 − y1), for c ∈ R, and
• the steady-state equation is a line through the origin with slope K, that is, h(x1) = Kx1.

It follows that multistationarity occurs precisely when c = 0 and the slopes coincide: γ = K

(equivalently, λκ2 = κ1

(
y′2−y2
y′1−y1

)y2−ỹ2
). This yields multistationarity regions that are measure-zero

and connected (where Σ̃ is with respect to the (1 × 2) conservation-law matrix W = [−(y′2 −
y2) (y′1 − y1)]):

Σ̃ =

{
(κ, κ̃, c) ∈ R2

>0 × R | c = 0, λκ2 = κ1

(
y′2 − y2
y′1 − y1

)y2−ỹ2
}

and

Σ =

{
(κ, κ̃) ∈ R2

>0 | λκ2 = κ1

(
y′2 − y2
y′1 − y1

)y2−ỹ2
}

.

Next, we consider Cases 2–4 (which are, respectively, subcases (i)–(iii) in the proof of [18, The-
orem 4.8]). We analyze Case 2. From the proof of [18, Theorem 4.8] (or direct computation),
multistationarity occurs in every compatibility class exactly when κ1 = λκ̃2, and there are no pos-

itive steady states (in any compatibility class) when κ1 ̸= λκ̃2. So, both Σ and Σ̃ are defined by
the single equation κ1 = λκ̃2, and hence are measure-zero and connected.

We turn to Case 3. We may assume that ỹ1−y1 ̸= 0 (otherwise, we return to Case 2). Following
the proof of [18, Theorem 4.8] (or direct computation), the steady-state equation is a vertical

line: x1 =
(

κ
λκ̃

)1/(y1−ỹ1). The stoichiometric compatibility classes also are defined by vertical lines
x1 = c. Multistationarity occurs exactly when these two lines coincide, which yields the following

multistationarity regions (where Σ̃ is with respect to the conservation-law matrix W = [1 0]):

Σ̃ =

{
(κ, κ̃, c) ∈ R3

>0 | c =
( κ

λκ̃

)1/(y1−ỹ1)
}

and Σ = R2
>0 .

Notice that Σ is connected, and Σ̃ is measure-zero and connected.
Finally, Case 4 is symmetric to Case 3. □

6. Discussion

In this work, we proved that one-species networks with six reactions can have multistationarity
regions that are disconnected (Proposition 5.1), but this is not the case for one-species networks
with up to three reactions (Theorem 5.3). The remaining in-between cases are not well understood.
Indeed, it is an open question whether, for one-species networks with four or five reactions (e.g.,
{0 ⇆ A, 2A ⇆ 3A}), the multistationarity regions are always connected. (An answer to this
question may involve discriminants of quadrinomials [21].)

We also showed that all two-species networks with up to two reactions have connected multista-
tionarity regions (Theorem 5.8). A future direction is to allow for networks with two reactions, but
any number of species (such networks that are multistationary have been classified [18]). Other
networks for future consideration are the eleven “continuous-flow stirred-tank reactor (CFSTR)
atoms of multistationarity” listed in [17, Theorem 5.3].

Next, one of our contributions was simply to give names to two types of multistationarity regions
appearing in the literature: the “multistationarity-allowing” and “multistationarity-enabling” re-

gions, denoted by Σ and Σ̃. There is a projection Σ̃ → Σ that preserves connectivity; and Telek

and Feliu conjectured the converse, namely, if Σ is connected, then so is Σ̃ (Remark 4.6).
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Proving this conjecture would make it easier to check whether Σ̃ is connected. Indeed, there is
a family of biochemical networks (namely, the m-site phosphorylation cycles with sequential and
distributive mechanisms) for which Σ is known to be connected [10], but it is unknown whether

Σ̃ is connected [27, §3]. Our results verify that the conjecture of Telek and Feliu holds for small
networks, and future research in this direction may provide more evidence for – and possibly ideas
toward proving – their conjecture.

Finally, our work motivates the question of whether (or when) connectivity of multistationarity
regions can be “inherited” from small reaction networks to larger ones. Indeed, such inheritance
is known to be possible for certain dynamical properties, including the capacity for nondegenerate
multistationarity and/or periodic orbits (see, for instance, [1]). Proving analogous results for the
connectivity of multistationarity regions would add significance to our results on small networks.
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