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Abstract. For reaction networks arising in systems biology, the capacity for two or more steady

states, that is, multistationarity, is an important property that underlies biochemical switches.

Another property receiving much attention recently is absolute concentration robustness (ACR),

which means that some species concentration is the same at all positive steady states. In this work,

we investigate the prevalence of each property while paying close attention to when the properties

occur together. Specifically, we consider a stochastic block framework for generating random net-

works, and prove edge-probability thresholds at which – with high probability – multistationarity

appears and ACR becomes rare. We also show that the small window in which both properties

occur only appears in networks with many species. Taken together, our results confirm that, in

random reversible networks, ACR and multistationarity together, or even ACR on its own, is highly

atypical. Our proofs rely on two prior results, one pertaining to the prevalence of networks with

deficiency zero, and the other “lifting” multistationarity from small networks to larger ones.

Keywords: Multistationarity, absolute concentration robustness, random graph, stochastic block

model, threshold function, reaction network.

1. Introduction

In biochemical reaction networks, multistationarity is often a desirable phenomenon, as it is
associated with biochemical switches, cellular signaling, and decision-making [32]. A network is
multistationary when there are two or more compatible positive steady states; “compatible” means
that the steady states have the same conserved quantities such as total mass. Which reaction net-
works are multistationary? This question has a long history, and many results have been established
(see the survey [25]).

Another significant property exhibited by some biochemical reaction networks is absolute concen-
tration robustness (ACR), which refers to when a steady-state species concentration is maintained
even when initial conditions are changed. The concept of ACR was first popularized by Shinar and
Feinberg in 2010 [29] and has since attracted much interest both from the mathematical standpoint
[2, 23, 28, 22] and in applications [13, 27].

While each of these two properties has been studied in isolation, their relationship is not well
understood. Nonetheless, multistationarity and ACR can be viewed as opposite behaviors, as
multiple steady states cannot be in general position if ACR is present. Indeed, known examples of
networks having ACR (for instance, those in [29]) typically are non-multistationary.

Accordingly, the driving motivation of this article is to explore the relationship between multi-
stationarity and ACR and to investigate the prevalence of networks with either property. However,
it is generally challenging to assess multistationarity and ACR [25, 28]. Therefore, following the
approach of Anderson and Nguyen [6, 7], we instead investigate the prevalence of these properties in

(Badal Joshi) California State University, San Marcos

(Nidhi Kaihnsa) University of Copenhagen

(Tung D. Nguyen and Anne Shiu) Texas A&M University

E-mail addresses: bjoshi@csusm.edu,nidhi@math.ku.dk,daotung.nguyen@tamu.edu,annejls@math.tamu.edu.

Date: September 15, 2023.

2020 Mathematics Subject Classification. 60F99, 60C05, 92E20, 5C80, 37N25.

1



2 PREVALENCE OF MULTISTATIONARITY AND ABSOLUTE CONCENTRATION ROBUSTNESS

randomly generated reaction networks. Specifically, we prove asymptotic results on the probability
that such a network has either property, as the number of species goes to infinity.

A summary of our results appears in Table 1, which pertains to when reaction networks are
randomly generated by a certain stochastic block model in which the expected numbers of reac-
tions of each “type” are roughly of the same magnitude. Here, the type refers to which forms of
complexes – 0, Xi, 2Xi, Xi + Xj – appear in the reaction (notice that we restrict our attention to
at-most-bimolecular networks, which encompass most reaction networks arising in biochemistry).
We prove edge-probability thresholds for the resulting reaction networks to be nondegenerately
multistationary or to preclude ACR (Theorem 4.9), and a restatement of this result in terms of the
expected number of edges (that is, reactions) is in Table 1.

Expected number of reactions Multistationary? ACR?

Asymptotically greater than 1, but less than n2/3 No Yes
Asymptotically greater than n, but less than 2

17n(log(n)− c(n)), Yes Yes
for some c(n)→∞

Greater than n(log(n) + c(n)), for some c(n)→∞ Yes No

Table 1. For random reaction networks, with n species, generated by a certain
stochastic block model, this table lists ranges for the expected number of reactions,
and whether – with high probability – such a network is multistationary or has ACR.
For further details, see Theorem 4.9 and Remark 4.12.

We see from Table 1 that the window for having both multistationarity and ACR is relatively
small: when the expected number of edges is asymptotically between n and 2

17n log(n). In fact,
in this window, which only appears when there are thousands of species (Remark 4.15), the ACR
species either appears by itself without interacting with other species (in essence, the network
decouples) or it appears as a catalyst (Remark 4.23). We therefore expect that reaction networks
with both multistationarity and ACR, in which the ACR species interacts nontrivially with other
species, are rare and may require special structures or constructions.

Our proofs rely crucially on two prior results. The first, due to Anderson and Nguyen, pertains to
the prevalence of certain networks that are known to preclude multistationarity, namely, networks
with deficiency zero (specifically, the result asserts that “sparse” reaction networks are likely to have
deficiency zero) [6, 7]. The second result concerns “lifting” multistationarity from small networks
to larger ones [8, 10, 24], which we use to show the high probability of multistationarity and the
absence of ACR in “dense” reaction networks.

This article is structured as follows: Section 2 introduces reaction networks, multistationarity,
and ACR. Section 3 contains our results on the prevalence of multistationarity and ACR in random
reaction networks via edge-probability thresholds. In Section 4, we introduce the type-homogeneous
stochastic block model, which we use to generate random reaction networks, and compute explicitly
the thresholds for multistationarity and ACR. We end with a discussion in Section 5.

2. Background

Here, we recall the basic setup and definitions involving reaction networks (Section 2.1), the
dynamical systems they generate (Section 2.2), and absolute concentration robustness (Section 2.3).
(A more detailed exposition can be found in [18].) We also discuss how multistationarity and ACR
are affected when adding new reactions to an existing network (Section 2.4).

2.1. Reaction networks. A reaction network G is a directed graph in which the vertices are non-
negative linear combinations of species X1, X2, . . . , Xn. As is standard in reaction network theory,
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we refer to each vertex as a complex, and we denote the i-th complex by yi = yi1X1 + yi2X2 + · · ·+
yinXn or by yi = (yi1, yi2, . . . , yin) (where yij ∈ Z≥0).

Edges of G represent the possible changes in the abundances of the species, and are referred
to as reactions. It is standard to represent a reaction (yi, y

′
i) by the notation yi → y′i. In such a

reaction, yi is the reactant complex, and y′i is the product complex. A species Xk is a catalyst-only
species of a reaction (yi, y

′
i) if the stoichiometric coefficient of Xk is the same in the product and

reactant (that is, yik = y′ik). Finally, a reaction network G′ is a subnetwork of a network G if the
sets of species, complexes, and reactions of G′ are subsets of the respective sets of G.

In examples, it is often convenient to write species as A,B,C, . . . rather than X1, X2, X3, . . . .
Additionally, we typically depict a reaction network by its set of reactions, in which case the sets
of species and complexes are implied.

Example 2.1. The reaction network {A + B → 2B, B → A} has 2 species (namely, A and B),
4 complexes (A+B, 2B, B, A), and 2 reactions. 4

A reaction network is reversible if every edge in the graph is bidirected.

Example 2.2. The reaction network {A� B + C, 0 � A, 0 � B, C � 2C} is reversible. 4
This article focuses on at-most-bimolecular reaction networks (or, for short, bimolecular), which

means that every complex yi of the network satisfies yi1 +yi2 + · · ·+yin ≤ 2 (where n is the number
of species). Equivalently, each complex has the form 0, Xi, Xi +Xj , or 2Xi (where Xi and Xj are
species). The reaction networks in Examples 2.1–2.2 are bimolecular.

2.2. Dynamical system arising from a network. Under the assumption of mass-action ki-
netics, each reaction network G defines a parametrized family of systems of ordinary differential
equations (ODEs), as follows. Let r denote the number of reactions of G. We write the i-th reaction
as yi → y′i and assign a positive rate constant κi ∈ R>0 to the corresponding reaction.

The mass-action system, denoted by (G, κ), where κ = (κ1, κ2, . . . , κr), is the dynamical system
arising from the following ODEs:

(1)
dx

dt
=

r∑
i=1

κix
yi(y′i − yi) =: fκ(x) ,

where xi(t) denotes the concentration of the i-th species at time t and xyi :=
∏n
j=1 x

yij
j . The right-

hand side of the ODEs (1) consists of polynomials fκ,i, for i = 1, 2, . . . , n (where n is the number
of species). For simplicity, we often write fi instead of fκ,i.

The stoichiometric subspace of G, which we denote by S, is the linear subspace of Rn spanned by
all reaction vectors y′i−yi (for i = 1, 2, . . . , r). When dim(S) = n, we say that G is full dimensional.
Observe that the vector field of the mass-action ODEs (1) lies in S (more precisely, the vector of
ODE right-hand sides is always in S). Hence, a forward-time solution {x(t) | t ≥ 0} of (1), with
initial condition x(0) ∈ Rn>0, remains in the following stoichiometric compatibility class [18]:

Px(0) := (x(0) + S) ∩ Rn≥0 .

Example 2.1 (continued). The network {A + B
κ1→ 2B, B

κ2→ A} generates the following mass-
action ODEs (1):

dx1
dt

= −κ1x1x2 + κ2x2

dx2
dt

= κ1x1x2 − κ2x2.
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Moreover, it has a one-dimensional stoichiometric subspace (spanned by the vector (1,−1)>). 4

A steady state of a mass-action system is a nonnegative concentration vector x∗ ∈ Rn≥0 at which

the right-hand side of the ODEs (1) vanishes: fκ(x∗) = 0. Our primary interest in this work is
in positive steady states x∗ ∈ Rn>0. Also, a steady state x∗ is nondegenerate if Im(dfκ(x∗)|S) = S,
where dfκ(x∗) is the Jacobian matrix of fκ evaluated at x∗, and S is the stoichiometric subspace.

We consider multistationarity at two levels: systems and networks. A mass-action system (G, κ)
is multistationary (respectively, nondegenerately multistationary) if there exists some stoichiometric
compatibility class having more than one positive steady state (respectively, nondegenerate positive
steady state). A reaction network G is multistationary if there exist positive rate constants κ such
that (G, κ) is multistationary. Similarly, a network G can be nondegenerately multistationary.

Example 2.3 (Multistationary system). Consider the mass-action system generated by:{
A

1
�
1
B + C, 0

1
�
6
A, 0

1
�
27
B, C

1
�
8

2C

}
.(2)

It is straightforward to check (or compute) that there are exactly three positive steady states,
namely, (13, 20, 1), (18, 15, 2), (21, 12, 3), and all three are nondegenerate. 4

2.3. Deficiency and absolute concentration robustness. The deficiency of a reaction network
G is δ = v − `− dim(S), where v is the number of vertices (or complexes) of G, ` is the number of
connected components of G, and S is the stoichiometric subspace. This invariant is central to many
classical results pertaining to mass-action systems (1) [3, 4, 5, 17, 20, 21], including a structural
criterion for absolute concentration robustness (ACR) [29], the topic we turn to next.

ACR, like multistationarity, is analyzed at the level of systems and also networks.

Definition 2.4 (ACR). Let Xi be a species of a reaction network G with r reactions.

(1) For a fixed vector of positive rate constants κ ∈ Rr>0, the mass-action system (G, κ) has
absolute concentration robustness (ACR) in Xi if (G, κ) has a positive steady state and in
every positive steady state x ∈ Rn>0 of the system, the value of xi (the concentration of Xi)
is the same. This value of xi is the ACR-value of Xi.

(2) The reaction network G has unconditional ACR in species Xi if the mass-action system
(G, κ) has ACR in Xi for all κ ∈ Rr>0.

When G has unconditional ACR in Xi, the property of ACR in Xi holds across all rate constants,
but the ACR-value can (and typically does) change with rate constants, as in the next example.

Example 2.1 (continued). We return to the following network: {A+B
κ1−→ 2B, B

κ2−→ A}. This
network is a classical example of a network with ACR [29]. Indeed, at all positive steady states,
the concentration of species A is κ2/κ1, and hence the network has unconditional ACR in A.

4

Remark 2.5 (ACR and reversible networks). In Definition 2.4, ACR requires the existence of a
positive steady state. This requirement is not included in some definitions of ACR in the literature.
However, in this work, we focus on the reversible networks, which guarantees the existence of
positive steady states (this result is due to Deng et al. [14] and Boros [12]). Hence, our results are
valid with or without the requirement of positive steady states.

In the literature, reaction networks with ACR are typically not multistationary. Nonetheless, a
network can both have ACR (in some species) and be multistationary. A simple example can be
constructed by joining two networks, with disjoint species sets, where one network has ACR and
the other is multistationary. A less trivial example can be generated by having the ACR species
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participate as an enzyme – more precisely, as a catalyst-only species – in the multistationary
network. We illustrate this in the following example.

Example 2.6 (A network with multistationarity and ACR). Consider the following network, in
which A is a catalyst-only species in the first two reactions:{

A
κ2
�
κ1
A+B, 2B

κ4
�
κ3

3B, A
κ6
�
κ5

2A

}
.

This network, which we call G, generates the following mass-action ODEs (1):

dx1
dt

= κ5x1 − κ6x21
dx2
dt

= κ1x1 − κ2x1x2 + κ3x
2
2 − κ4x32.

One can check directly that G has unconditional ACR in species A with ACR-value κ5/κ6. More-
over, for reaction rates (κ1, κ2, . . . , κ6) = ( 1

512 ,
1
16 , 1, 1, 2, 1), we obtain exactly 3 positive steady

states, with the following approximate values: (2, 0.050987), (2, 0.0890928), and (2, 0.85992). 4

It is not straightforward to find non-trivial examples of reaction networks with multistationarity
and unconditional ACR where the network cannot be decomposed into individual pieces, each with
only one of the two properties. Nonetheless, such networks do exist and deserve an independent
in-depth study. We will report on several families of such networks and their operating principles
in future work.

In this work, we are interested in asymptotic results (as the size of the network grows) on the
prevalence of multistationarity and ACR. An important tool we use for proving thresholds for these
properties (or the lack thereof) is the network in the following example.

Example 2.3 (continued). Consider again the following mass-action system:{
A

1
�
1
B + C, 0

1
�
6
A, 0

1
�
27
B, C

1
�
8

2C

}
,

which we saw has three positive steady states: (13, 20, 1), (18, 15, 2), (21, 12, 3). By inspection, this
system has no ACR (in any species) and hence the network does not have unconditional ACR. 4

We end this subsection by recalling what is known about multistationarity and ACR for networks
with deficiency 0. In the following result, part (1) follows from the deficiency-zero theorem [20] and
part (2) is immediate from a recent result of Joshi and Craciun [23, Theorem 6.1].

Lemma 2.7. If G is a reaction network that has deficiency 0, then:

(1) G is not multistationary, and
(2) if G contains an inflow or outflow reaction (that is, a reaction of the form 0 → Xi or

0← Xi, for some species Xi), then G has unconditional ACR (in some species).

2.4. Monotonicity of multistationarity and non-ACR with respect to adding reactions.
This subsection pertains to how multistationarity and ACR are affected as we add new reactions
to a reaction network. The following proposition essentially follows from recent results on “lifting”
multistationarity from smaller networks to larger ones [8, 10, 24].

Lemma 2.8 (Lifting multistationarity or non-ACR). Let G be a full-dimensional network, and let
G′ be a network obtained by adding to G a reaction that involves no new species (new complexes
are allowed).

(i) If G is nondegenerately multistationary, then so is G′.
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(ii) If there exists a vector of positive rate constants κ∗ such that (G, κ∗) is nondegenerately
multistationary and also does not have ACR (in any species), then the network G′ does not
have unconditional ACR in any species.

Proof. Part (i) follows directly from [24, Theorem 3.1].
For part (ii), suppose that there exists κ∗ such that (G, κ∗) does not have ACR (in any species)

and also has nondegenerate, positive steady states q1, q2, . . . , qm, where m ≥ 2. We denote each
steady state by qi = (qi,1, . . . , qi,n) ∈ Rn≥0 (for i = 1, . . . ,m), where n is the number of species of G.

Let ε denote the rate constant of the reaction added to G to obtain G′. From the proof of [24,
Theorem 3.1], there exists ε0 > 0 such that if 0 < ε < ε0, then (G′, (κ; ε)) has nondegenerate,
positive steady states q1(ε), q2(ε), . . . , qm(ε) such that limε→0+ qi(ε) = qi (for all i).

Next, for arbitrary ` ∈ {1, 2, . . . , n}, consider the species X`. As (G, κ∗) does not have ACR in
X`, there exist steady states qi and qj at which the corresponding concentrations of X` differ (that
is, qi,` 6= qj,`). So, as limε→0+ qi(ε) = qi and limε→0+ qj(ε) = qj , there exists ε` > 0 (with ε` < ε0)
such that if 0 < ε < ε`, then |qi,`(ε)− qj,`(ε)| > 0 and hence (G′, (κ∗; ε)) does not have ACR in X`.

Finally, we pick ε such that 0 < ε < min` ε`. By construction, the system (G′, (κ∗; ε)) does not
have ACR in any species. Hence, G′ does not have unconditional ACR. �

Remark 2.9. Lemma 2.8 implies that, given full dimensionality, nondegenerate multistationarity
is a monotone increasing property (with respect to adding new edges/reactions).

3. Multistationarity and ACR in random reaction networks

In this section, we follow the approach in [6, 7] in which reaction networks are generated using a
random-graph framework (Section 3.1). In Section 3.2, we prove the existence of thresholds for the
presence or absence of nondegenerate multistationarity and unconditional ACR. These thresholds
are with respect to increasing graph density, that is, the fraction of reactions present – among all
possible reactions.

In this section, we use the following standard notation. For sequences of positive numbers {an}
and {bn}, we write an � bn (or bn � an) if

lim
n→∞

an
bn

= 0 ;

and we write an ∼ bn if

lim
n→∞

an
bn

= c ,

for some positive constant c. Also, a sequence of events {An} occurs with high probability (w.h.p.)
if limn→∞ P(An) = 1.

3.1. Random reaction networks. Consider the class of bimolecular reaction networks on n
species X1, X2, . . . , Xn. The set of all possible complexes is then

Vn = {0} ∪ {Xi | 1 ≤ i ≤ n} ∪ {2Xi | 1 ≤ i ≤ n} ∪ {Xi +Xj | 1 ≤ i < j ≤ n}.(3)

The cardinality of Vn is therefore given by

|Vn| = 1 + n+ n+

(
n

2

)
=

n2 + 3n+ 2

2
.

Definition 3.1 (Edge probabilities). Let n be a positive integer.

(1) Consider two distinct vertices u, v ∈ Vn. An edge probability function for the unordered pair
e = (u, v) is a non-decreasing function, φe(pn), in a single parameter pn ∈ [0, 1].

(2) A choice of edge probabilities is a collection of edge probability functions, φe(pn), one for
each unordered pair e = (u, v) of vertices in Vn.
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Definition 3.2 (Random graph G(Vn, pn)). Fix a positive integer n, some pn ∈ [0, 1], and a choice
of edge probabilities {φe(pn)}. We generate random (undirected) graphs, which we denote by
G(Vn, pn), as follows:

• the vertex set is Vn, and
• the probability that there is an edge between two vertices u, v ∈ Vn is given by the corre-

sponding edge probability function (where e = (u, v)):

P(e is an edge of G(Vn, pn)) = φe(pn).

Definition 3.3 (Random network Gn). Each random graph G(Vn, pn) (generated by some choice
of edge probabilities) defines a random reaction network, which we denote by Gn, consisting of
reversible reactions, as follows:

• The set of species of Gn is {X1, X2, . . . , Xn}.
• The (reversible) reactions of Gn correspond to the edges of G(Vn, pn).

Recall from Section 2.2 that Gn is full-dimensional if its dimension is n.

Remark 3.4. It is possible that some species of Gn appears in no complexes, especially when
G(Vn, pn) is sparse (e.g., the network shown later in Figure 1). Such Gn are not full-dimensional.

3.2. Thresholds for multistationarity and ACR. In this subsection, we show that for the
random reaction networks defined in the prior subsection, there exist thresholds for the presence or
absence of nondegenerate multistationarity and unconditional ACR (Theorem 3.7). Subsequently,
we discuss the challenges of computing such thresholds, and then describe a strategy for proving
upper bounds on the thresholds (see Corollary 3.14).

The following definition is useful in the proof of Theorem 3.7 and also later in Proposition 3.13.

Definition 3.5 (S∗n). For n ∈ Z≥1, let S∗n denote the set of all full-dimensional bimolecular networks
G with exactly n species for which there exists a vector of rate constants κ such that (G, κ) is
nondegenerately multistationary and also does not have ACR in any species.

Remark 3.6 (S∗n is nonempty for n ≥ 2). The set S∗1 is empty [26], but for all n ≥ 2, S∗n is
nonempty. This is shown for n ≥ 3 in Proposition 3.13, and S∗2 contains the following network:{

A+B
1/32

�
1/4

2A, 2B
1
�
1/4

A, 0
1
�
1
B

}
.

Indeed, the indicated rate constants generate a system with 3 nondegenerate positive steady states
– with approximate values (0.419694, 1.11107), (2.65005, 2.3128), and (216.681, 27.5757) – and so
this system is nondegenerately multistationarity and also does not have ACR.

Theorem 3.7 (Thresholds for full-dimensionality, multistationarity, and non-ACR). Consider the
setup for generating random reaction networks Gn, described in Section 3.1, for some choice of edge
probabilities. Then there exist threshold functions (“thresholds”, for short) 0 < r0(n) ≤ r1(n) ≤
r2(n)� 1, such that for any {pn}n≥1:

(0) If pn � r0(n), then Gn is full-dimensional w.h.p.
(1) If pn � r1(n), then Gn is full-dimensional and nondegenerately multistationary w.h.p.
(2) If pn � r2(n), then Gn is full-dimensional, is nondegenerately multistationary, and does

not have unconditional ACR (in any species) w.h.p.

Proof. Being a full-dimensional network is a monotone increasing property with respect to adding
reactions (with no new species). This fact, combined with a well-known result from the theory of
threshold functions [11], proves part (0).



8 PREVALENCE OF MULTISTATIONARITY AND ABSOLUTE CONCENTRATION ROBUSTNESS

From Remark 2.9, the property (for full-dimensional networks) of being nondegenerately mul-
tistationary is monotonically increasing with respect to adding reactions (with no new species).
Exploiting again the theory of threshold functions [11], we obtain part (1).

Finally, Lemma 2.8(ii) and the theory of threshold functions together imply that there exists a
threshold function r2(n) for Gn to contain a subnetwork H ∈ S∗n. This implies part (2). �

Theorem 3.7 implies that when a random network is sufficiently dense, it is multistationary w.h.p.
(after a threshold r1(n)) and also lacks unconditional ACR (after a threshold r2(n)). However,
computing these thresholds is generally difficult, because it is challenging to determine whether a
large reaction network is multistationary and whether it precludes ACR. In fact, while there are
sufficient conditions for ACR, such as the Shinar-Feinberg criterion [29], there are no easy-to-check
necessary conditions for ACR (for general networks) [28, Section 2].

Nevertheless, there is a fruitful strategy for establishing upper bounds on the thresholds r1(n)
and r2(n), which we describe in detail in the remainder of this subsection. The underlying idea
comes from the fact (stated earlier in Lemma 2.8) that multistationarity can sometimes be lifted
from a small subnetwork to the whole network. Therefore, in lieu of determining when multista-
tionarity of the entire network emerges (as edge probabilities increase), we instead investigate when
a small multistationary subnetwork emerges. The choice of edge probabilities dictates which such
subnetworks emerge first. For the edge probabilities we consider in the next section, we focus on a
particular multistationary subnetwork, as follows.

Definition 3.8 (Sets SM,n of multistationary motifs). For n ∈ Z≥1, let SM,n denote the set of all
networks of the following form:

{Xi � Xj +Xk, 0 � Xi, 0 � Xj , Xk � 2Xk} ,(4)

where i, j, k are distinct indices with 1 ≤ i, j, k ≤ n. Each network (4) is a multistationary motif.

Remark 3.9. Recall from Example 2.3 and Example 2.3 (continued) that each multistationary
motif (4) is full-dimensional (3-dimensional) and nondegenerately multistationary, and does not
have unconditional ACR (in any species).

Our next aim is to show (in Proposition 3.13 below) how to join a multistationary motif to
another network (which we call a “lifting component”) so that the resulting network again is full-
dimensional and nondegenerately multistationary, and lacks unconditional ACR.

Definition 3.10 (Sets SL,k of lifting components). For k ∈ Z≥1, let SL,k be the set of all reversible
reaction networks for which the associated graph is a tree on k vertices (that is, complexes), where
each of the vertices has the form Xi (for i ∈ Z≥1). Every network in SL,k is a lifting component.

Example 3.11. An example of a network (lifting component) in SL,3 is {X2 � X3 � X4}. 4

Next, we describe a set of networks obtained by joining a multistationary motif (4), which has
dimension 3, to a lifting component of dimension n− 3, so that the result is full-dimensional.

Definition 3.12 (Sets SJ,n of joined multistationary motifs and lifting components). For n ≥ 3,
let SJ,n be the set of all reaction networks whose reactions can be written as the union of a network
GM ∈ SM,n and a network GL ∈ SL,n−2, such that GM and GL have exactly one species in common.

An example of such a joined network is shown later (see Figure 3 and Example 4.14).

Proposition 3.13 (Properties of SJ,n). For n ≥ 3, the following hold:

(1) SJ,n ⊆ S∗n. Consequently, every network H ∈ SJ,n is full-dimensional and nondegenerately
multistationary, and does not have unconditional ACR (in any species).
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(2) If some H ∈ SJ,n is a subnetwork of a network G with n species, then G is full-dimensional
and nondegenerately multistationary, and does not have unconditional ACR (in any species).

Proof. We first prove part (1). Let H ∈ SJ,n. By definition, there exist GM ∈ SM,n and GL ∈
SL,n−2, with exactly one species in common, such that the reactions of H are a union of those in
GM and GL. Relabel the species of H, if needed, so that GM is the following network:

{X1 � X2 +X3, 0 � X1, 0 � X2, X3 � 2X3} ,

and also that the species of GL are X`, X4, X5, . . . , Xn, for some ` ∈ {1, 2, 3}.
It is straightforward to check that H is full-dimensional (that is, has dimension n). Thus, to

show that H ∈ S∗n, it suffices to show that there exists a vector of rate constants κ such that (H,κ)
is nondegenerately multistationary and does not have ACR in any species. Accordingly, we define
κ as follows. First, we choose the rate constants for reactions in GM as in (2) in Example 2.3, so
that GM has three nondegenerate, positive steady states: (13, 20, 1), (18, 15, 2), (21, 12, 3). Next, fix
all rate constants for reactions in GL to be 1. Using the fact that GL is a spanning tree, a simple
computation shows that the positive steady states are (x`, x4, x5, . . . , xn) = (c, c, c, . . . , c), where c
is any positive real number, and these steady states are all nondegenerate.

We consider first the case when the common species is X` = X3. We claim that, in this case,
the following are nondegenerate steady states of (H,κ):

(13, 20, 1, 1, . . . , 1), (18, 15, 2, 2, . . . , 2), (21, 12, 3, 3, . . . , 3) .(5)

To see this, let ẋi = fi for i = 1, 2, 3, and ẋi = gi for i = 3, 4, . . . , n, denote the ODEs for GM
and GL, respectively, with rate constants as defined above. Hence, (13, 20, 1), (18, 15, 2), (21, 12, 3)
satisfy f1 = f2 = f3 = 0, and (1, 1 . . . , 1), (2, 2, . . . , 2), (3, 3, . . . , 3) satisfy g3 = g4 = · · · = gn = 0.
Next, the ODEs of (H,κ) are as follows:

ẋi = fi for i = 1, 2

ẋ3 = f3 + g3

ẋj = gj for j = 4, . . . , n.

Hence, the vectors in (5) indeed are steady states of (H,κ).
To show that the steady states (5) are nondegenerate, we must show that the Jacobian matrix

of (H,κ), when evaluated at each of these steady states, is nonsingular (recall that H is full-
dimensional). Since GL has mass conservation among the species X3, X4, . . . , Xn, we have g3 +
g4 + · · · + gn = 0. Adding rows 4, 5, . . . , n to row 3 of the Jacobian matrix yields a triangular

block matrix

[
A 0
B C

]
, where A is the Jacobian matrix of GM and C is obtained from the Jacobian

matrix of GL by setting x3 to 0. As both A and C are nonsingular, when evaluated at any of the
positive steady states of its corresponding system, we conclude that the Jacobian matrix of (H,κ),
when evaluated at any of the steady states (5), is nonsingular, as desired.

By inspection of the steady states (5), we see that there is no ACR in any species. As for the
remaining cases, when X` (the common species of GM and GL) is X1 or X2, the argument is very
similar to what is shown above and so the result holds in those cases, too.

Finally, part (2) follows directly from part (1) and Lemma 2.8. �

Corollary 3.14 (Bound on threshold r2). Consider the setup for generating random reaction
networks Gn, described in Section 3.1, for some choice of edge probabilities. Let r2(n) be a threshold
as defined in Theorem 3.7; and let r′2(n) be a threshold for Gn to contain, as a subnetwork, some H ∈
SJ,n (more precisely, r′2(n) is a function such that when pn � r′2(n), w.h.p. Gn has a subnetwork H
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such that H ∈ SJ,n). If pn � r′2(n), then Gn is full-dimensional, is nondegenerately multistationary,

and does not have unconditional ACR (in any species) w.h.p. Consequently, lim sup r2(n)
r′2(n)

<∞.

Proof. This result follows directly from Proposition 3.13 and Theorem 3.7. �

Remark 3.15. In the next section, we show that for a certain choice of edge probabilities, the
thresholds for full-dimensionality, multistationarity, and containing (as a subnetwork) a multista-
tionary motif in SM,n coincide. That is, in this scenario, r0(n) = r1(n) = r′1(n), where r′1 denotes
the threshold for Gn to contain a multistationary motif. (In fact, in this setting, once we pass
the threshold for full-dimensionality, a multistationary motif emerges and furthermore its multi-
stationarity can be lifted; see Theorem 4.9.) Intuitively, the reason a motif in SM,n is among the
first small multistationary subnetworks to emerge is that it is fairly “generic”: it contains only a
pair of reversible reactions and some flow reactions involving those species. Meanwhile, other small
multistationary networks, such as the following (from [24]):

{A� A+B � 2A, 0 � A, 0 � B} ,

may contain specific pathways such as A � A + B � 2A, where a species (here, A) must appear
in all three complexes, and therefore such networks are expected to emerge at higher thresholds.

4. Multistationarity and ACR in type-homogeneous stochastic block model

The prior section considered general random graph models without specifying the edge probabil-
ities. In this subsection, we introduce a specific choice of edge probabilities (Section 4.1) and then
compute the resulting thresholds from Theorem 3.7 (see Theorem 4.9 in Section 4.2).

4.1. A stochastic block model. One possible choice of edge probabilities comes from the Erdős-
Rényi random graph model; here, the edge probabilities are uniform (that is, every edge is equally
likely). In this framework, reactions of the form Xi +Xj � Xh +Xk are overwhelmingly the most
prominent [7]. However, this situation is unlikely to occur in biochemistry. Indeed, in applications,
one expects to see various types of complexes and reactions, such as inflow and outflow reactions
0 � Xi or association and disassociation reactions Xi +Xj � Xk.

Therefore, we instead consider a model in which reaction types are equally represented. This
model is a specific case of the stochastic block models [19] introduced in [6]. To define this model,
we need the following partitions of sets of vertices and edges:

Definition 4.1 (Ci and Ei,j). Let n ≥ 1. Consider the following partition of the set of vertices Vn,
as in (3), into 3 subsets:

(1) C0 = {0},
(2) C1 = {aXi | 1 ≤ i ≤ n and a ∈ {1, 2}},
(3) C2 = {Xi +Xj | 1 ≤ i, j ≤ n and i 6= j}.

Let Ei,j denote the set of (undirected) edges (u, v) with u ∈ Ci and v ∈ Cj ; in particular:

(1) E0,1 = {0 � aXi | 1 ≤ i ≤ n and a ∈ {1, 2}},
(2) E0,2 = {0 � Xi +Xj | 1 ≤ i, j ≤ n and i 6= j},
(3) E1,1 = {aXi � bXj | 1 ≤ i, j ≤ n, a, b ∈ {1, 2}, and (a, i) 6= (b, j)},
(4) E1,2 = {aXi � Xj +Xk | 1 ≤ i, j, k ≤ n, a ∈ {1, 2}, and j 6= k},
(5) E2,2 = {Xi+Xj � Xk+Xh | 1 ≤ i, j, k, h ≤ n and i 6= j, k 6= h, and (i, j) 6= (k, h) 6= (j, i)}.

Two reactions in the same set Ei,j have the same type.

Remark 4.2. The sets E0,1, E0,2, E1,1, E1,2, E2,2 partition the set of all possible edges of a graph
with vertex set Vn. Also, |C0| = 1, |C1| ∼ n, and |C2| ∼ n2. So, |Ei,j | ∼ ni+j for 0 ≤ i ≤ j ≤ 2.
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In what follows, we denote the minimum of two numbers a and b as follows:

a ∧ b := min(a, b) .

Definition 4.3. The type-homogeneous stochastic block model generates random graphs G(Vn, pn)
with vertex set Vn (as described in Definition 3.2) via the following choice of edge probabilities:

(6) if e ∈ Ei,j , then P(e is an edge of G(Vn, pn)) = n4−i−jpn ∧ 1 ,

for all 0 ≤ i ≤ j ≤ 2.

Remark 4.4. In Definition 4.3, for vertices u ∈ Ci and v ∈ Cj , the edge probability function (as
in Definition 3.1) for the edge e = (u, v) is given by φe(pn) = n4−i−jpn ∧ 1. This edge probability
function is readily seen to be non-decreasing in pn.

Remark 4.5 (Motivation for type-homogeneous models). Recall from Definition 3.3 that each
random graph G(Vn, pn) generates a random reaction network Gn. We choose the edge probabili-
ties (6) to ensure that, in Gn, the expected numbers of edges of each type are of the same magnitude
(namely, ∼ n4pn), whenever possible.

Example 4.6. When pn = 1
n3.5 , the expected number of reactions of each type in Gn is ∼

√
n. 4

Example 4.7. When pn = 1
n2.9 , Gn contains all reactions in E0,1 (since n4−0−1pn ∧ 1 = 1), and

the expected number of reactions for each of the remaining types is ∼ n1.1. 4

Remark 4.8. When pn � 1
n3 (for instance, pn = 1

n2.9 in Example 4.7), Gn contains all reactions
in E0,1, including all inflows/outflows 0 � Xi, and so Gn is full-dimensional.

In the next subsection, we see that the choice of pn in Example 4.6 generates networks Gn that
are not multistationary w.h.p., while the choice of pn in Example 4.7 generates networks that are
multistationary and lack ACR w.h.p. (see Theorem 4.9).

4.2. Thresholds for multistationarity and ACR. For the type-homogeneous stochastic block
model, the thresholds for nondegenerate multistationarity and (no) ACR are stated in the following
theorem (which is proven later in Section 4.3).

Theorem 4.9 (Type-homogeneous stochastic block model). Consider the setup for generating
random reaction networks Gn, described in Section 3.1, for the edge probabilities given by (6).
Then, for any {pn}n≥1:

(i) (Sparse regime) If
1

n4
� pn �

1

n10/3
, then w.h.p. Gn has deficiency zero, is not multistation-

ary, and has unconditional ACR (in some species).
(ii) (Dense regime, window of co-existence) If there exists a function c(n) such that c(n) → ∞

and
1

n3
� pn ≤

2
17 log(n)− c(n)

n3
, then w.h.p. Gn is nondegenerately multistationary and has

unconditional ACR in some species.

(iii) (Dense regime) If there exists a function c(n) such that c(n)→∞ and pn ≥
log(n− 2) + c(n)

n2(n− 2)
,

then w.h.p. Gn is nondegenerately multistationary and does not have unconditional ACR (in
any species).

Remark 4.10. When pn � 1
n4 , the expected number of reactions in Gn is � 1. Accordingly, we

do not consider this interval in Theorem 4.9.
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Remark 4.11. Theorem 4.9 immediately yields the following thresholds r0(n), r1(n), r2(n) (as
defined in Theorem 3.7) for networks generated by the type-homogeneous stochastic block model:

r0(n) = r1(n) =
1

n3
and r2(n) =

log(n)

n3
.

Remark 4.12 (Thresholds via number of reactions). Theorem 4.9 can be rephrased in terms of
the expected number of edges (reactions) instead of edge-probability thresholds, as follows. For
random reaction networks Gn (with n species) generated by the type-homogeneous stochastic block
model, the following are implied directly by Theorem 4.9:

(i) If the expected number of reactions of each type is � 1 and � n2/3, then Gn has deficiency
zero and thus is not multistationary w.h.p.

(ii) If the expected number of reactions of each type is � n but less than 2
17n(log(n)− c(n)) for

some c(n)→∞, then Gn is nondegenerately multistationariy and has unconditional ACR in
some species w.h.p.

(iii) If the expected number of reactions of each type is greater than n(log(n) + c(n)) for some
c(n)→∞, then Gn is nondegenerately multistationary and does not have unconditional ACR
(in any species) w.h.p.

Figure 1. A realization of a random reaction network generated by the type-
homogeneous stochastic block model in the sparse regime (n = 8 species and pn =
0.5
n3.5 ). Edges represent reversible reactions.

Example 4.13 (Sparse regime). Figure 1 shows a realization of a random reaction network Gn
generated by the type-homogeneous stochastic block model with n = 8 and pn = 0.5

n3.5 (which is
in the sparse regime). The following properties of Gn are as expected from Theorem 4.9: The
deficiency is δ = 10 − 3 − 7 = 0 and so Gn is not multistationary, and it is easy to check that Gn
has unconditional ACR in all species except X3 (which does not appear in any complex). 4

Example 4.14 (Dense regime). Figure 2 shows a realization of a random reaction network Gn
generated by the type-homogeneous stochastic block model with n = 8 and pn = 2.5

n3 (which is
in the dense regime). Figure 3 depicts a subnetwork of Gn that is a union of a multistationary
motif and a lifting component with one species in common. We can now use Proposition 3.13 and
Lemma 2.8 to assert that this subnetwork is multistationary and lacks ACR, and then “lift” these
properties to Gn. Indeed, this approach underlies our proof of Theorem 4.9 in the dense regime. 4

Remark 4.15 (Window of co-existence). If the number of species satisfies n < e17/2 ≈ 4914.8,

then the small window between 1
n3 and

2
17

log(n)−c(n)
n3 , in Theorem 4.9(ii), does not exist. Therefore,

in the type-homogeneous stochastic block model, it is unlikely to observe a random network with
both multistationarity and ACR, unless it has many species.
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Figure 2. A realization of a random reaction network generated by the type-
homogeneous stochastic block model in the dense regime (n = 8 and pn = 2.5

n3 ).

Figure 3. A subnetwork of the network in Figure 2, which is a union of a multi-
stationary motif M (red edges) and a lifting component L (blue edges). Notice that
M and L share exactly one species, namely, X1.

4.3. Proof of Theorem 4.9. Theorem 4.9 follows directly from Propositions 4.17 and 4.20–4.22
below. This subsection is devoted to proving these propositions, which requires the following lemma.

Lemma 4.16. For all n ≥ 1 and 0 ≤ x ≤ 1, the following inequality holds:

(1− x)n ≤ e−nx .

Proof. If x = 1, the inequality holds. For 0 ≤ x < 1, the result follows directly from the inequality
log(1− x) ≤ −x (which is easy to check) and the fact that the log function is increasing. �

4.3.1. Sparse regime. Our result for the sparse regime is Proposition 4.17 below. Its proof uses
Lemma 2.7 and recent results on the prevalence of deficiency-zero networks [6] .

Proposition 4.17 (Sparse regime). Consider random reaction networks Gn generated by edge
probabilities given by (6). If 1

n4 � pn � 1
n10/3 , then, w.h.p. Gn has deficiency zero, is not multi-

stationary, and has unconditional ACR (in some species).



14 PREVALENCE OF MULTISTATIONARITY AND ABSOLUTE CONCENTRATION ROBUSTNESS

Proof. Assume that 1
n4 � pn � 1

n10/3 . It follows from [6, Theorem 5.1 and Example 10] that,

w.h.p., the deficiency of Gn is 0. Thus, w.h.p., the deficiency-zero theorem (Lemma 2.7(1)) applies
and so Gn is not multistationary. Additionally, by Lemma 2.7(2), to show that w.h.p. Gn has
unconditional ACR in some species, it suffices to show that w.h.p. Gn contains an edge in E0,1.
The probability that any given edge in E0,1 appears in Gn is n4−0−1pn = n3pn, and there are
|E0,1| = 2n such edges, so:

P(Gn contains an edge in E0,1) = 1−
(
1− n3pn)2n ≥ 1− e−2n4pn .(7)

(The inequality in (7) is due to Lemma 4.16.) Finally, using (7) and the assumption pn � 1
n4 , we

obtain that limn→∞ P(Gn contains an edge in E0,1) = 1. This concludes the proof. �

4.3.2. Dense regime. The proofs in this subsection make frequent use of the well-known second
moment method (for example, see [1]). We summarize this approach in the following lemma.

Lemma 4.18. Let {Tn} be a sequence of non-negative random variables. If Var(Tn) � (ETn)2,
then lim

n→∞
P(Tn > 0) = 1.

Proof. From the second moment method, we have

P(Tn > 0) ≥ 1− Var(Tn)

(ETn)2
.

Taking the limit (as n→∞) completes the proof. �

Next, we show that networks generated in the dense regime contain multistationary motifs (4)
w.h.p. (see Figures 2 and 3 for an example).

Lemma 4.19. Consider random reaction networks Gn generated by edge probabilities given by (6).
If pn � 1

n3 , then w.h.p. some multistationary motif in the set SM,n is a subnetwork of Gn.

Proof. Assume pn � 1
n3 . Then Gn contains all inflows/outflows 0 � Xi (recall Remark 4.8), so

it suffices to show that w.h.p. Gn contains a subnetwork of the following form, for some choice of
distinct indices i, j, k:

{Xk � 2Xk, Xi � Xj +Xk} .(8)

Consider the reactions in (8). First, Xk � 2Xk is in E1,1, so its edge probability is n2pn ∧ 1.
Next, for a fixed k, with 1 ≤ k ≤ n, there are (n− 1)(n− 2) reactions of the form Xi � Xj +Xk

with i, j, k distinct. Each such reaction belongs to E1,2 and so its edge probability is npn ∧ 1.
We can reduce to considering only three cases: (1) when pn >

1
n for all n, (2) when 1

n2 ≤ pn ≤ 1
n

for all n, and (3) when pn <
1
n2 for all n.

Case 1: pn >
1
n for all n. In this case, n2pn ∧ 1 = 1 = npn ∧ 1. So, for all n ≥ 3, Gn contains a

subnetwork of the form (8) (in fact, Gn contains all possible such subnetworks).
Case 2: 1

n2 ≤ pn ≤ 1
n for all n. In this case, n2pn ∧ 1 = 1, so Gn contains all reactions of the form

Xk � 2Xk. Hence, we need only show that w.h.p. Gn contains at least one reaction of the form
Xi � Xj +Xk with i, j, k distinct. The probability of this event, which we call En, is as follows:

P(En) = 1− (1− npn)n(n−1)(n−2) ≥ 1− e−n2(n−1)(n−2)pn → 1 (as n→∞),

where the inequality is due to Lemma 4.16, and the limit comes from the fact that pn ≥ 1
n2 .

Case 3: pn < 1
n2 for all n. In this case, the edge probability for each reaction Xk � 2Xk

(respectively, Xi � Xj +Xk) is n2pn (respectively, npn).
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For 1 ≤ k ≤ n, let Ak denote the event that Gn contains a subnetwork of the form (8), where
i 6= j and i, j 6= k. (The notation Ak,n would be better for Ak, but we prefer to avoid excessive
subscripts.) It follows that the probability of Ak is:

P(Ak) = n2pn

(
1− (1− npn)(n−1)(n−2)

)
.(9)

Define the random variable Tn :=
∑n

k=1 1Ak
. We wish to show that limn→∞ P(Tn > 0) = 1. By

Lemma 4.18, it is enough to prove Var(Tn)� (ETn)2. To this end, we first compute ETn, using (9):

ETn =

n∑
k=1

P(Ak) = n3pn

(
1− (1− npn)(n−1)(n−2)

)
.(10)

Next, Lemma 4.16 yields the first inequality here:

(1− npn)(n−1)(n−2) ≤ e−n(n−1)(n−2)pn � 1 ,(11)

and the second inequality (limit) comes from the assumption that pn � 1
n3 . Hence, using (10), we

obtain ETn ∼ n3pn.
To compute Var(Tn), we consider the event Ah ∩Ak, where h 6= k. It is straightforward to check

that Ah ∩ Ak occurs if and only if Gn contains the reactions Xh � 2Xh and Xk � 2Xk and also
one of the following:

(1) a reaction of the form Xi � Xh +Xk (for some i 6= h, k), or
(2) a reaction of the form Xi � Xj +Xk (for some j 6= k, h and i 6= j, k) and a reaction of the

form Xl � Xm +Xh (for some m 6= h, k and l 6= m,h).

A direct computation now yields the following probability:

P(Ah ∩Ak) = (n2pn)2(1− (1− npn)n−2 + (1− npn)n−2(1− (1− npn)(n−2)
2
)2)

= n4p2n(1− 2(1− npn)(n−1)(n−2) + (1− npn)(n−2)(2n−3)) .(12)

Now we use equations (9), (10), and (12) to compute Var(Tn), as follows:

Var(Tn) = E(T 2
n)− (ETn)2

=

n∑
k=1

P(Ak) +
∑
h 6=k

P(Ah ∩Ak)− (ETn)2

= n3pn

(
1− (1− npn)(n−1)(n−2)

)
+ (n− 1)n5p2n

(
1− 2(1− npn)(n−1)(n−2) + (1− npn)(n−2)(2n−3)

)

− n6p2n
(

1− (1− npn)(n−1)(n−2)
)2

.

(13)

We claim that Var(Tn)� n6p2n. Indeed, this follows in a straightforward way from (11) and (13),

the limit (1− npn)(n−2)(2n−3) � 1 (which is closely related to (11)), and the assumption pn � 1
n3 .

Finally, having shown Var(Tn)� n6p2n and ETn ∼ n3pn, we get, as desired, Var(Tn)� (ETn)2.
�

Lemma 4.19 allows us to establish the threshold for nondegenerate multistationarity, as follows:

Proposition 4.20 (Multistationarity in dense regime). Consider random reaction networks Gn
generated by edge probabilities in (6). If pn � 1

n3 , then Gn is nondegenerately multistationary w.h.p.
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Proof. Assume pn � 1
n3 . By Lemma 4.19, w.h.p., Gn contains (as a subnetwork) a multistation-

ary motif M ∈ SM,n (which is 3-dimensional and nondegenerately multistationary, as noted in
Remark 3.9). Relabeling species, if needed, we may assume that the species of M are X1, X2, X3.

Next, pn � 1
n3 implies that, w.h.p., Gn contains all inflow/outflow reactions 0 � Xi (Re-

mark 4.8), and in particular contains the (n − 3)-dimensional subnetwork consisting of reactions
0 � Xi, for all i = 4, 5, . . . , n, which we denote by G′. As M and G′ have no species in common, the
subnetwork of G formed by the union of their reactions, which we denote by N , is full-dimensional
(n-dimensional). It is straightforward to check that N “inherits” nondegenerate multistationar-
ity from M . (The proof is similar to that of Proposition 3.13(1).) Thus, by Lemma 2.8, Gn is
nondegenerately multistationary w.h.p. �

Proposition 4.21 (ACR in dense regime). Consider random reaction networks Gn generated by
edge probabilities given by (6). If the following inequality holds:

pn ≥
log(n− 2) + c(n)

n2(n− 2)
, for some c(n)→∞ ,(14)

then w.h.p. Gn does not have unconditional ACR (in any species).

Proof. Assume that inequality (14) holds. By Proposition 3.13(2), it suffices to show that, w.h.p.,
there exists H ∈ SJ,n (as in Definition 3.12) such that H is a subnetwork of Gn.

First, consider the case when pn ≥ 1
n2 for all n. Then, pn � 1

n3 , so by Lemma 4.19, Gn contains,
as a subnetwork, some multistationary motif M ∈ SM,n. Next, we show that Gn also contains all
lifting components involving species {X1, X2, . . . , Xn}. Indeed, reactions of the form X` � Xm are
in E1,1 and hence have edge-probability n4−1−1pn ∧ 1 = 1 (since pn ≥ 1

n2 ), and so Gn contains all
such reactions. Thus, as desired, w.h.p., Gn contains some H ∈ SJ,n as a subnetwork.

To complete the proof, we need only consider the following case:

log(n− 2) + c(n)

n2(n− 2)
≤ pn <

1

n2
, for some c(n)→∞ .(15)

Recall from Remark 4.8 that, in this case, Gn contains all reactions of the form 0 � X`.

Thus, all vertices of the form X` appear in Gn. For positive integers i 6= j, let Gi,jn denote
the subgraph of (the underlying graph of) Gn, induced by the following set of vertices of Gn:
{X` | ` ∈ {1, 2, . . . , n} \ {i, j}}. Next, for distinct i, j, k ∈ {1, 2, . . . , n}, let Ak,i,j denotes the event

that (i) Gi,jn is connected and (ii) Gn contains the reactions Xk � 2Xk and Xi � Xj +Xk.
We claim that, for n sufficiently large, the event Ak,i,j implies that Gn contains some H ∈ SJ,n

as a subnetwork. To see this, first note that the inequality (15) implies that pn � 1
n3 and so, for n

large enough, Gn contains all flow reactions 0 � X` (Remark 4.8). So, condition (ii) guarantees a
multistationary motif M , for n sufficiently large. Next, condition (i) and the fact that connected
graphs have spanning trees yield a “complementary” lifting component L. By joining M and L,
we obtain some H ∈ SJ,n as a subnetwork of Gn, as claimed.

Let Tn =
∑

k,i,j 1Ak,i,j
(where the sum is over distinct i, j, k ∈ {1, 2, . . . , n}). To finish the proof, it

suffices to show that limn→∞ P(Tn > 0) = 1. By Lemma 4.18, we need only show Var(Tn)� (ETn)2.

Again, we start by computing ETn. Each edge of Gi,jn belongs to E1,1, and so its edge proba-

bility (6) is (n2pn ∧ 1) = n2pn ≥ log(n−2)+c(n)
n−2 (here we use (15)). It is well known that logn

n is
the edge-probability threshold for connectivity of random graphs with n vertices and uniform edge
probabilities [16]. So, for any i 6= j (with 1 ≤ i, j ≤ n), we have:

lim
n→∞

P(Gi,jn is connected) = 1 .(16)



PREVALENCE OF MULTISTATIONARITY AND ABSOLUTE CONCENTRATION ROBUSTNESS 17

We emphasize that the above probability does not depend on the choice of i, j. So, for convenience,

we denote dn := P(Gi,jn is connected). Next, we compute the following probability using (6):

P(Ak,i,j) = (n2pn)(npn)dn = n3p2ndn ,

which implies the following:

ETn =
∑
k,i,j

P(Ak,i,j) = n(n− 1)(n− 2)n3p2ndn = n4(n− 1)(n− 2)p2ndn .(17)

Recall that dn ∼ 1 (from (16)), so we have ETn ∼ n6p2n.
Next, we analyze Var(Tn) by first computing P(Ak1,i1,j1 ∩Ak2,i2,j2) where (k1, i1, j1) 6= (k2, i2, j2).

We have the following cases.
Case 1: k1 = k2. In this case, we have (i1, j1) 6= (i2, j2), and the number of such pairs of events is
≤ n5. Each pair of events occurs precisely when Gn contains the (distinct) reactions Xk1 � 2Xk1 ,

Xi1 � Xj1 +Xk1 , Xi2 � Xj2 +Xk1 , and both Gi1,j1n and Gi2,j2n are connected. Thus, for this case,
we use (6) to compute:

P(Ak1,i1,j1 ∩Ak2,i2,j2) ≤ n2pn(npn)2dn = n4p3ndn.

Case 2: k1 6= k2, i1 = i2, j1 = k2, j2 = k1. The number of such pairs of events is n(n − 1)(n − 2).
Each pair of events occurs when Gn contains the (distinct) reactions Xk1 � 2Xk1 , Xk2 � 2Xk2 ,

Xi1 � Xj1 +Xk1 , and both Gi1,j1n and Gi2,j2n are connected. Thus for this case

P(Ak1,i1,j1 ∩Ak2,i2,j2) ≤ (n2pn)2(npn)dn = n5p3ndn.

Case 3: k1 6= k2 and either i1 = i2, (j1, j2) 6= (k2, k1) or i1 6= i2. We claim that the number of such
pairs of events is n(n− 1)(n− 2)

(
(n− 1)2(n− 2)− 1

)
. Indeed, this number is obtained by taking

the total number of pairs in Cases 2 and 3 (i.e., all pairs where k1 6= k2) – which is readily seen to
be n(n−1)3(n−2)2 – and then subtracting the number in Case 2 (and simplifying). Next, each pair
of events in Case 3 occurs when Gn contains the (distinct) reactions Xk1 � 2Xk1 , Xk2 � 2Xk2 ,

Xi1 � Xj1 +Xk1 , Xi2 � Xj2 +Xk2 , and both Gi1,j1n and Gi2,j2n are connected. Thus for this case

P(Ak1,i1,j1 ∩Ak2,i2,j2) ≤ (n2pn)2(npn)2dn = n6p4ndn.

Next, we use equation (17) and the analysis in Cases 1–3 to bound Var(Tn):

Var(Tn) = E(T 2
n)− (ETn)2

=
∑
k,i,j

P(Ak,i,j) +
∑

(k1,i1,j1)6=(k2,i2,j2)

P(Ak1,i1,j1 ∩Ak2,i2,j2) − (ETn)2

≤ (n3)n3p2ndn + (n5)n4p3ndn + (n3)n5p3ndn

+ n(n− 1)(n− 2)
(
(n− 1)2(n− 2)− 1

)
n6p4ndn − n8(n− 1)2(n− 2)2p4nd

2
n

≤ n6p2ndn + n9p3ndn + n8p3ndn + n8(n− 1)2(n− 2)2p4ndn − n8(n− 1)2(n− 2)2p4nd
2
n

≤ (n3pn)2dn + (n3pn)3dn + n8p3ndn + (n3pn)4dn(1− dn) .(18)

As noted earlier, inequality (15) implies that pn � 1
n3 . Hence, certain terms appearing in (18)

have the following asymptotic properties: (n3pn)2 � (n3pn)4 and n8p3n � (n3pn)3 � (n3pn)4.
Recall also that dn ∼ 1. Thus, from (18), we have Var(Tn)� (n3pn)4 = n12p4n. Finally, we showed
earlier that ETn ∼ n6p2n, so we have Var(Tn)� (ETn)2, which concludes the proof. �

Finally, we address the small “window” between the thresholds in Propositions 4.20–4.21. We
showed that a random network in this window is nondegenerately multistationary w.h.p., and next
we show that it also has ACR w.h.p.
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Proposition 4.22 (ACR in window of dense regime). Consider random reaction networks Gn
generated by edge probabilities given by (6). If {pn}n≥1 satisfies the following:

1

n3
� pn ≤

2
17 log(n)− c(n)

n3
for some c(n)→∞ ,(19)

then w.h.p. Gn has unconditional ACR in some species.

Proof. Assume (19). As 1
n3 � pn, the random network Gn contains all reactions in E0,1, namely,

0 � Xk and 0 � 2Xk, for all 1 ≤ k ≤ n (Remark 4.8). For 1 ≤ k ≤ n, let Bk = Bk,n denote
the event that, in all other reactions of Gn, the species Xk appears as a catalyst-only species. We
claim that the event Bk implies that Gn has unconditional ACR in Xk. Indeed, in this event, the
mass-action ODE for species Xk (for any choice of positive rate constants) has the following form:

dxk
dt

= c2x
2
k + c1xk + c0 ,

where c0 > 0 and c2 < 0 (and c1 ∈ R). This quadratic polynomial has a unique positive root (by
Descartes’ rule). Additionally, Gn necessarily admits a positive steady state (Remark 2.5). We
conclude that Gn has unconditional ACR in Xk when Bk occurs.

It therefore suffices to show that, for the random variables Tn :=
∑n

k=1 1Bk
, the following limit

holds: limn→∞ P(Tn > 0) = 1. Hence, by Lemma 4.18, it is enough to prove Var(Tn)� (ETn)2.
We begin with computing ETn. For fixed k, let B0,2, B1,1, B1,2, B2,2 be the sets of edges (re-

actions) in E0,2, E1,1, E1,2, E2,2, respectively, in which species Xk appears as a non-catalyst-only

species. So, by construction, Bk occurs if and only if Gn contains no reaction from the sets Bi,j :

B0,2 = {0 � Xk +Xj | j 6= k, 1 ≤ j ≤ n}
B1,1 = {aXk � bXj | a, b = 1, 2, j 6= k, 1 ≤ j ≤ n} ∪ {Xk � 2Xk}
B1,2 = {Xk � Xj +X` | j 6= `, j, ` 6= k, 1 ≤ j, ` ≤ n} ∪ {2Xk � Xj +X` | j 6= `, 1 ≤ j, ` ≤ n}

∪ {aXj � XK +X` | j, ` 6= k, 1 ≤ j, ` ≤ n}
B2,2 = {Xk +Xi � Xj +X` | i, j, ` 6= k, j 6= `, 1 ≤ i, j, ` ≤ n} .

It is then straightforward to compute the cardinalities of the sets Bi,j :

|B0,2| = n− 1, |B1,1| = 4n− 3, |B1,2| = (n− 1)(3n− 3), |B2,2| =
(n− 1)2(n− 2)

2
.

Thus, using the edge probabilities (6) and the hypothesis pn <
1
n2 , we get P(Bk) and hence ETn,

as follows:

P(Bk) = (1− n2pn)n−1+4n−3(1− npn)(n−1)(3n−3)(1− pn)(n−1)
2(n−2)/2(20)

= (1− n2pn)5n−4(1− npn)(n−1)(3n−3)(1− pn)(n−1)
2(n−2)/2,

ETn =

n∑
k=1

P(Bk) = nP(Bk) = n(1− n2pn)5n−4(1− npn)(n−1)(3n−3)(1− pn)(n−1)
2(n−2)/2.(21)

We recall the following, which is well known:

Fact: For a sequence λ(n) and q ≥ 1, if λ(n)� n, then (1− λ(n)
nq )n

q ∼ e−λ(n).
To apply this fact, we use (19) to obtain n3pn ≤ (log(n)− c(n)) � n. We can now apply the

fact (with q = 1, 2, 3) to the following three factors in (21): (1 − n2pn)5n−4, (1 − npn)(n−1)(3n−3),
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and (1− pn)(n−1)
2(n−2)/2. One of these analyses is shown below (and the other two are similar):

(1− npn)(n−1)(3n−3) =

((
1− n3pn

n2

)n2) (n−1)(3n−3)

n2

∼
(
e−n

3pn

) (n−1)(3n−3)

n2

= e−pnn(n−1)(3n−3) .

The resulting three limits combine to yield the first limit here:

ETn ∼ ne−pn(n
2(5n−4)+n(n−1)(3n−3)+(n−1)2(n−2)/2) ≥ ne−

17
2
n3pn ≥ ne− log(n)+ 17

2
c(n) = e

17
2
c(n) � 1 ,

and the remaining inequalities are direct computations or come from (19).
Next, we compute P(Bk ∩ Bh). To that end, for fixed k, h (with 1 ≤ k, h ≤ n and k 6= h), let

A0,2, A1,1, A1,2, A2,2 denote the sets of edges in E0,2, E1,1, E1,2, E2,2, respectively, in which species
Xk or Xh (or both) appear as a non-catalyst-only species. By construction, Bk ∩Bh occurs if and
only if Gn contains no reaction from the sets Ai,j . Also, Ai,j is the union of two sets of the form

Bi,j , one for k and one for h. Thus, the cardinalities of Ai,j are computed (in a straightforward
way) using the inclusion-exclusion principle:

|A0,2| = 2|B0,2| − 1 , |A1,1| = 2|B1,1| − 4 ,

|A1,2| = 2|B1,2| − 4(n− 2) , |A2,2| = 2|B2,2| − (n− 2)(3n− 7)/2 .

The “exclusion” terms above yield:

P(Bk ∩Bh) = P(Bk)
2(1− n2pn)−5(1− npn)−4(n−2)(1− pn)−(n−2)(3n−7)/2.(22)

Using (22) and other expressions found above, we compute Var(Tn):

Var(Tn) = E(T 2
n)− (ETn)2

=
n∑

k=1

P(Bk) +
∑
h 6=k

P(Bk ∩Bh)− (ETn)2

= nP(Bk) + n(n− 1)P(Bk)2(1− n2pn)−5(1− npn)−4(n−2)(1− pn)−(n−2)(3n−7)/2 − n2P(Bk)2

= nP(Bk)− nP(Bk)2g(n) + n2P(Bk)2(g(n)− 1) ,

where g(n) := (1−n2pn)−5(1−npn)−4(n−2)(1−pn)−(n−2)(3n−7)/2. We claim that limn→∞ g(n) = 1.
In fact, since n2pn � 1, we have (for n sufficiently large) the inequalities 1 ≤ (1 − n2pn)−5 and

log(1 − n2pn) ≥ −2n2pn, the second of which further implies (1 − n2pn)−5 ≤ e10n
2pn . Applying

similar inequalities for the remaining two factors of g(x), we obtain:

1 ≤ g(n) ≤ epn(10n2+8(n−2)n+(n−2)(3n−7)) for n sufficently large.(23)

By (19), the exponent appearing in (23) limits to 0, as n→∞, so indeed g(n)→ 1. Hence,

Var(Tn)

(ETn)2
=

1

nP(Bk)
− g(n)

n
+ g(n)− 1 =

1

ETn
− g(n)

n
+ g(n)− 1 → 0 + 0 + 1− 1 = 0 ,

as n→∞, where we also use ETn � 1. Thus, Var(Tn)� (ETn)2, which completes the proof. �

Remark 4.23 (Decoupling in window of dense regime). The proof of Proposition 4.22 shows that,

if 1
n3 � pn ≤

2
17

log(n)−c(n)
n3 , then w.h.p. a random network Gn contains a subnetwork of the form

{0 � Xk, 0 � 2Xk} for some species Xk that is a catalyst-only species in all other reactions. This
highlights the fact that unconditional ACR arises because Gn is a union of two “almost decoupled”
subnetworks, one with ACR and the other with multistationarity (by Proposition 4.20) w.h.p.
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5. Discussion

We have shown that it is highly atypical for multistationarity and ACR to coexist in certain
random reaction networks. In particular, for the type-homogeneous stochastic block model, the
window for co-existence is relatively small: It corresponds to when the expected number of edges is
approximately between n and 2

17n log(n), where n is the number of species. This window does not
even exist unless n is quite large (Remark 4.15). Moreover, when this window exists, the resulting
random networks exhibit multistationarity and ACR simply as a result of nearly decoupling into
two subnetworks, one with ACR and the other with multistationarity (Remark 4.23).

These results suggest that reaction networks that combine multistationarity and ACR in a non-
trivial way require specialized architecture, and the properties do not occur together coincidentally.
Of course, real biochemical networks are far from random and exist only when they offer a selective
advantage to the organism in its environment. It is a reasonable speculation that combining the two
seemingly opposite properties may be favorable. A biochemical network may require robustness in
its internal operation while maintaining flexibility as a signal-response mechanism. Said differently,
such a network may operate through an essential combination of ACR with multistability.

These ideas raise a natural question: Which special structures, even if statistically rare, can
produce ACR and multistability in networks of biochemically reasonable size and complexity? In
future work, we will report on such mechanisms and their underlying principles. Interestingly,
we find families of biochemical networks with ACR and multistationarity that employ ubiquitous
designs such as enzyme-catalyzed reactions, lock-and-key mechanisms for enzyme binding, and
redundancy through parallel pathways.

Returning to the current work, we gave asymptotic results on multistationarity when n (the
number of species) is large. We are also interested in multistationarity when n is of medium
size (say, n = 10 to 30). We would like to investigate, by generating random such networks (at
various edge-probabilities), what fraction are multistationary. Although checking multistationarity
is generally difficult, an approach used here – namely, finding a small multistationary motif (ours
had only 3 species) and then lifting it – can be applied. For performing this task, note that certain
classes of small multistationary networks have been established [24, 26, 31], as have various criteria
for lifting multistationarity (surveyed in [8]).

Going forward, it would be interesting to discover more small multistationary motifs. Are there
more multistationary networks with only 3 species that are well suited for lifting to larger networks?
Establishing such networks might aid in analyzing the prevalence of multistationarity – with or
without ACR – in random reaction networks generated by stochastic block models besides the
type-homogeneous one we focused on here.

Another important direction is to consider more biologically realistic models. For instance, we
could require our networks to satisfy mass conservation. As another example, we could relax the
assumption of reversibility. While the existence of a positive steady state is not guaranteed in
this setting (recall Remark 2.5), we nevertheless could exploit new archetypes of reaction networks
having both multistationarity and ACR. One such network is the union of the well-known ACR
network {A + B → 2B, B → A} (Example 2.1) with a multistationary network in which A is a
catalyst-only species. It would be interesting to compute concrete thresholds based on such motifs,
and then to compare them to the thresholds found in the current work.

A final promising direction is to study the prevalence and thresholds of additional reaction-
network properties. In particular, properties that can be lifted from small networks to larger ones
– such as periodic orbits [8, 9, 15, 30] – can also be analyzed in our random-network framework.
Do periodic orbits co-exist with ACR in random networks? If so, then, as is the case for multista-
tionarity and ACR, the window of co-existence is likely very small.
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