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A B S T R A C T

The paper considers the DIverse MultiPLEx (DIMPLE) network model, where all layers of the
network have the same collection of nodes and are equipped with the Stochastic Block Models.
In addition, all layers can be partitioned into groups with the same community structures,
although the layers in the same group may have different matrices of block connection
probabilities. To the best of our knowledge, the DIMPLE model, introduced in Pensky and
Wang (2021), presents the most broad SBM-equipped binary multilayer network model on
the same set of nodes and, thus, generalizes a multitude of papers that study more restrictive
settings. Under the DIMPLE model, the main task is to identify the groups of layers with the
same community structures since the matrices of block connection probabilities act as nuisance
parameters under the DIMPLE paradigm. The main contribution of the paper is achieving the
strongly consistent between-layer clustering by using Sparse Subspace Clustering (SSC), the
well-developed technique in computer vision. In addition, SSC allows to handle much larger
networks than spectral clustering, and is perfectly suitable for application of parallel computing.
Moreover, our paper is the first one to obtain precision guarantees for SSC when it is applied
to binary data.

1. Introduction

Network models are an important tool for describing and analyzing complex systems in many areas such as the social, biological,
physical, and engineering sciences. Originally, almost all studies of networks were focused on a single network. Many models have
been introduced to describe communities in networks, with the most popular Stochastic Block Model (SBM) and its extensions (see,
e.g., [1,20,28,43]).

Over the last decade, however, the focus has changed to analysis of a multilayer network [21], in which different individual
networks evolve or interact with each other. In addition to a node set and an edge set, a multilayer network includes a layer set,
whose each layer represents a different type of relation among those nodes. For example, a general multilayer network could be
used to represent an urban transportation network, where nodes might be stations in the city and each layer might represent a mode
of transportation such as buses, metro, rail, etc. While the term ‘‘multilayer network’’ is often used in a more general context, we
focus on the multilayer networks where the same set of nodes appears on every layer, and there are no edges between two different
layers. Following [31], we call this multilayer network a multiplex network. One such example is a collection of brain connectivity
networks of several individuals, where each layer corresponds to a brain connectivity network of an individual.

In this paper, we study a multiplex network where each layer is enabled with a community structure. One of the problems
in multilayer networks is community detection with many important applications. While in such networks different layers have
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different forms of connections, it is often the case that one underlying unobserved community structure is in force. For example,
in the multilayer Twitter networks in [15], ground truth community memberships can be assigned to the users (nodes) based
on some fundamental attributes (e.g., political views, country of origin, football clubs) that are independent of the observed
twitter interactions, whereas the interactions provide multiple sources of information about the same latent community structure.
Combining information from these multiple sources would then lead to enhanced performance in the consensus community
detection [40].

The assumption of one common community structure may not be true in some applications. It is often the case that there are
groups of layers that are similar in some sense, and layers within each group share the same community structure, but each group
has different community structure. One example is the worldwide food trading networks, collected by [9], which has been widely
analyzed in literature (see, e.g., [18,30], among others). The data present an international trading network, in which layers represent
different food products, nodes are countries, and edges at each layer represent trading relationships of a specific food product among
countries. Two types of products, e.g., unprocessed and processed foods, can be considered as two groups of layers where each
group has its own pattern of trading among the countries. While some large countries import/export unprocessed food from and/or
to a great number of other countries worldwide, for processed foods, countries are mainly clustered by the geographical location,
i.e., countries in the same continent have closer trading ties [18].

1.1. The DIMPLE model

In what follows, we consider a multilayer network where each of the layers is equipped with the Stochastic Block Model (SBM).
We also assume that the layers can be partitioned into several types, each of them is equipped with a distinct community structure,
while the matrices of block probabilities can take different values in each of the layers. We call this model, first introduced in [41],
the DIverse MultiPLEx (DIMPLE) network model.

Specifically, we consider an undirected multilayer network with L layers over a common set of n vertices with no self loops,
where each of the layers follows the SBM. Assume that those L layers can be partitioned into M ≪ L groups, ā1,& ,āM , where
each group is equipped with its own community structure. The latter means that there exists a clustering function c ∶ [L] ³ [M]

such that c(ā) = m if the ā * ām, m * [M], where [N] = {1,& , N} for any positive integer N . Nodes in the layer ā * ām follow SBM
with the Km communities Gm,1,& , Gm,Km

, that persist in the layers of type m. Hence, for every m * [M], there exists a clustering

function z(m) ∶ [n] ³ [Km] with the corresponding clustering matrix Z(m) * {0, 1}n×Km , such that Z(m)
i,k

= 1 if and only if z(m)(i) = k.

Nonetheless, the block connectivity matrices B(ā) * [0, 1]Km×Km can vary from layer to layer. Therefore, the probability of connection
between nodes i and j in layer ā is P (ā)

i,j
= B

(ā)

k1 ,k2
where k1 = z(m)(i) and k2 = z(m)(j). In summary, while the membership function

z(m) ∶ [n] ³ [Km] is completely determined by the group m of layers, the block connectivity matrices B(ā) are not, and can be all
different in the group m of layers. In this case, the matrix of connection probabilities in layer ā is of the form

P (ā) = Z(m)B(ā)(Z(m))⊤, m = c(ā), ā * [L]. (1)

Furthermore, we assume that symmetric adjacency matrices A(ā) * {0, 1}n×n, ā * [L], are such that A(ā)
i,j

< Bernoulli(P (ā)
i,j

),

1 d i < j d n, where A
(ā)
i,j

are conditionally independent given P
(ā)
i,j
, A(ā)

i,j
= A

(ā)
j,i

and A
(ā)
i,i

= 0. Denote the three-way tensors with
layers A(ā) and P (ā), ā * [L], by ý,Č * Rn×n×L, respectively.

Note that in the setting (1), the main task is to identify the groups of layers with the common community structures. When this
task is accomplished, one can combine the layers and find community structures with higher precision than if those structures were
elicited from individual layers. On the other hand, the matrices of block connection probabilities act as nuisance parameters in (1)
since they vary from one layer to another. For this reason, in this paper, we consider the problem of clustering of layers into the sets
of layers with the identical community structures (the between-layer clustering) as well as identification of community structures
in the groups of layers (the within-layer clustering). We do not study estimation of block probability matrices, however, the latter
can be done by averaging the adjacency matrices A(ā), ā * [L], over pairs of respective communities.

In this paper, similarly to [41], we assume that the number of communities in each group of layers is the same, i.e. K1 = ď =

KM = K. If one is unsure that each of the layers of the network has the same number of communities, one can use a different
number of communities K (ā) in each layer. After groups of layers are identified, the number of layers in each group should be
re-adjusted, so that K (ā) = Km if m = c(ā). One can, of course, assume that the values of Km, m * [M], are known. However, since
group labels are interchangeable, in the case of non-identical subspace dimensions (numbers of communities), it is hard to choose,
which of the values correspond to which of the groups. This is actually the reason why [13,19], who imposed this assumption,
used it only in theory while their simulations and real data examples are all restricted to the case of equal Km, m * [M]. On the
contrary, knowledge of K (ā) allows one to deal with different ambient dimensions (number of communities) in the groups of layers
in simulations and real data examples.

In addition, for the purpose of methodological developments, we assume that the number of communities K in each layer of the
network is known. Identifying the number of clusters is a common issue in data clustering, and it is a separate problem from the
process of actually solving the clustering problem with a known number of clusters. A common method for finding the number of
clusters is the so called ‘‘elbow’’ method that looks at the fraction of the variance explained as a function of the number of clusters.
The method is based on the idea that one should choose the smallest number of clusters, such that adding another cluster does not
significantly improve fitting of the data by a model. There are many ways to determine the ‘‘elbow’’. For example, one can base its
detection on evaluation of the clustering error in terms of an objective function, as in, e.g., [53]. Another possibility is to monitor
the eigenvalues of the non-backtracking matrix or the Bethe Hessian matrix, as it is done in [22]. One can also employ a simple
technique of checking the eigen-gaps, as it has been discussed in [29], or use a scree plot as it is done in [54].
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Fig. 1. Multiplex networks versions with n = 5, L = 5 and K = 2. and M = 2. First row: ‘‘checker board’’ model (persistent communities, two distinct block
connectivity matrices). Second row: persistent communities, all block connectivity matrices are different. Third row: Mixture MultiLayer Stochastic Block Model
(MMLSBM) with M = 2 (only two distinct layers in the network). Fourth row: DIverse MultiPLEx (DIMPLE) network model with M = 2 (two distinct community
assignments, all block connectivity matrices are different).

1.2. Existing particular cases of the DIMPLE model

To the best of our knowledge, the DIMPLE model, introduced in Pensky and Wang [41], presents the most broad SBM-equipped
binary multilayer network model on the same set of nodes and, thus, it includes as its particular cases, a variety of more restrictive
settings, exhibited in Fig. 1 where different colors are used for different values of connection probabilities.

Specifically, the DIMPLE model generalizes a multitude of papers where communities persist throughout the network [4,24,25,
39,40]. In particular, it includes the simplest case of the multiplex networks where the block probabilities take only finite number
of values, as it happens in ‘‘checker board’’ and tensor block models [8,17,52] presented in the first row of Fig. 1. The second row
of Fig. 1 shows the most popular type of multiplex networks where communities persist through all layers of the network but the
matrices of block probabilities vary from one layer to another (see, e.g., [4,24,25,39,40] and references therein). Another type of
models that is generalized by DIMPLE is the Mixture MultiLayer Stochastic Block Model (MMLSBM), displayed in the third row of
Fig. 1, where all layers can be partitioned into a few different types, with each type of layers equipped with its own community
structure and a matrix of connection probabilities (see [13,19]). Finally, the last row of Fig. 1 exhibits the DIMPLE model where
layers can be partitioned into groups with similar community structures like in the MMLSBM but, unlike the MMLSBM, matrices of
block connection probabilities can vary from one layer to another.

It is easy to see that, forM = 1, the DIMPLE model reduces to the common multilayer network setting (row 2 of Fig. 1) where the
community structures persist throughout the network and, hence, can be viewed as a concatenation of the latter type of networks,
where the layers are scrambled. On the other hand, it becomes the MMLSBM (row 3 of Fig. 1) if the block connectivity matrices
B(ā) are the same for all layers in a group, i.e., B(ā) = B(c(ā)), ā * [L].

1.3. Main contributions of the paper

The only other paper which studied the DIMPLE model was [41] where the between-layer clustering was based on spectral
methods. Specifically, [41] used the SVDs of the layer adjacency matrices A(ā), ā * [L], to estimate the n × n membership matrices
where the elements are equal to the reciprocal of the community size if nodes belong to the same community, and are equal to
zero otherwise. Subsequently, the groups of layers with similar community structures were found by spectral clustering of a matrix
with rows formed as the vectorized versions of the estimated membership matrices. The authors showed that the methodologies
used in the networks with the persistent community structure, as well as the ones designed for the MMLSBM, cannot be applied
to the DIMPLE model. The within-layer clustering procedure was based on averaging the adjacency matrices of the layers with the
identical community structure or their adjusted squares.

While [41] developed the within and the between-layer clustering algorithms and studied their precision, their methodology has
a number of shortcomings. To start with, the between layer clustering is not strongly consistent and, consequently, the error of the
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between-layer clustering dominates the within-layer clustering error. In addition, since spectral clustering for grouping the layers is
applied to the vectorized versions of the estimated membership matrices, for an n-node multilayer network, it requires clustering of
vectors in n(n− 1)∕2-dimensional space. While the methodology works well for smaller n, it becomes extremely challenging when n

grows. For this reason, all simulations in [41] are carried out for relatively small values of n.
The present paper uses Subspace Clustering for finding groups of layers with similar community structures. Indeed, in what

follows, we shall show that the vectorized probability matrices of such layers all belong to the same low-dimensional subspace.
The subspace clustering relies on self-representation of the vectors to partition them into clusters. Consequently, one has to solve a
regression problem for each vector separately to find the matrix of weights, which is usually of much smaller size. Subsequently,
some kind of spectral clustering is applied to the weight matrix. Subspace Clustering is a very common technique in the computer
vision field. In particular, we apply Sparse Subspace Clustering (SSC) approach to identify those groups. We provide a review of the
SSC technique in Section 2.

Our paper makes the following key contributions:

1. The clustering algorithms developed in the paper are not iterative and, hence, do not require provable convergence. In
addition, they come with the theoretical precision guarantees.

2. Specifically, application of the SSC to clustering of layers leads to the strongly consistent between-layer clustering and, hence,
to much more accurate community detection in groups of layers than in [41].

3. The SSC methodology relies on clustering the L×Lmatrix of weights rather than n(n−1)∕2×Lmatrix as in [41] and, therefore,
is suitable for much larger networks. The matrix of weights is obtained, column per column, by solving independent systems
of linear equations which can be solved in parallel, thus, considerably speeding up the calculations.

4. Although the SSC approach has been recently used in the some network models (see, e.g., [35,37,38]), to the best of our
knowledge, it has not been applied to multilayer networks. Moreover, this paper is the first one to offer assessment of
clustering precision of an SSC-based algorithm applied to Bernoulli type data. This requires a different set of assumptions
from a traditional application of SSC to Gaussian data, and a novel clustering algorithm.

Remark 1 (Relation to Randomly Generated Networks). While imposing assumptions on the DIMPLE network later in Section 3.1, we
postulate that the groups of layers as well as community assignments in those groups of layers are generated by random sampling,
similarly to how this is done in, e.g., [5,6]. This seemingly connects our paper to a large body of literature on randomly generated
networks (see, e.g., [23] and references therein). In many of such papers, the inference also exploits this randomness by using,
e.g., EM algorithm (see, e.g., [2,33]) or MCMC technique (see, e.g., [10]). Our paper, however, does not impose a fully Bayesian
model. In fact, the block connectivity matrices in the layers are completely arbitrary and, therefore, act as nuisance parameters.
Moreover, the generative mechanism stated in Section 3.1 is not required for the validity of the inference. Instead, one can just place
assumptions on the linear subspaces associated with each group of layers. These assumptions, however, may not feel intuitive to a
reader, in spite of being easily satisfied when communities in the groups of layers are generated at random. For this reason, although
we develop the theory for a multiplex network where communities in the groups of layers are generated at random, Algorithms 1–3
will lead to the same clustering errors under alternative assumptions (see version 1 of [36]).

Consequently, we do not employ the EM or the MCMC as an inference methodology. While those techniques have their merits,
they are iterative, require convergence analysis and, unlike the methodology used in the present paper, they come without precision
guarantees. In addition, the steps of our computational algorithms, such as spectral clustering and solution of the LASSO problem,
are very standard techniques in computer science and, hence, allow to employ well optimized algorithms that work fast for large
networks with many layers, as it is evident from our simulations in Supplementary Section S1.

Remark 2 (Relation to Time-Varying Networks). The DIMPLE model can also be viewed as a generalization of a time-varying network
where the block connectivity matrices have very erratic behavior (change from one time frame to another) but the community
structures are rather stable and change with a jump. However, the inference in the DIMPLE model (and in the multiplex networks
in general) is much more difficult than in the respective dynamic network since, in a dynamic network, the layers are ordered
according to time instances, while in a multiplex network the enumeration of layers is completely arbitrary. The latter makes
techniques designed for dynamic networks unsuitable for the inference in the DIMPLE model setting. For this reason, in this paper,
we do not review approaches designed for dynamic network models.

1.4. Notations and organization of the paper

For any vector Ĕ * Rp, denote its ā2, ā1, ā0, and ā@ norms by ‖Ĕ‖, ‖Ĕ‖1, ‖Ĕ‖0 and ‖Ĕ‖@, respectively. Denote by Ām the
m-dimensional column vector with all components equal to one.

For any matrix A, denote its spectral and Frobenius norms by, respectively, ‖A‖ and ‖A‖F . The column j and the row i of a
matrix A are denoted by A(∶, j) and A(i, ∶), respectively. Let vec(A) be the vector obtained from matrix A by sequentially stacking its
columns. Denote by A⊗B the Kronecker product of matrices A and B. Denote the diagonal of a matrix A by diag(A). Also, denote
the K-dimensional diagonal matrix with a1,& , aK on the diagonal by diag(a1,& , aK ).

For any matrix A * Rn×m, denote its projection on the nearest rank K matrix or its rank K approximation by �K (A), that is, if
�k are the singular values, and ēk and Ĕk are the left and the right singular vectors of A, k * [r], then

A =

r1
k=1

�kēkĔ
⊤
k

ó �K (A) =

min(r,K)1
k=1

�kēkĔ
⊤
k
.
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Denote

ýn,K =
{
A * R

n×K ∶ A⊤A = IK
}
, ýn = ýn,n.

A matrix X * {0, 1}n1×n2 is a clustering matrix if it is binary and has exactly one 1 per row. Also, we denote an absolute constant
independent of n,K,L and M , which can take different values at different instances, by C.

The rest of the paper is organized as follows. Section 2 introduces the between-layer and the within-layer clustering procedures.
Specifically, Section 2.1 reviews the Sparse Subspace Clustering (SSC) methodology and explains why it is a good candidate for the
job. Sections 2.2 and 2.3 present a solution to the central inference task in the DIMPLE model setting: the between-layer clustering.
The between-layer clustering is carried out by Algorithms 1 and 2 which, as it is shown later, ensure strongly consistent between layer
clustering. Section 2.4 studies our within-layer clustering technique. Section 3.1 provides theoretical guarantees for the accuracy of
the clustering algorithms in Section 2. After introducing some necessary assumptions in Section 3.1, Section 3.2 proves the strong
consistency of the between-layer clustering technique employed in the paper, while Section 3.3 shows that the latter leads to very low
clustering errors. Section 4 provides concluding remarks. All the proofs are given in Appendix A. Supplementary Section S1 contains a
limited simulation study and numerical comparisons with the spectral clustering approach developed in [41]. Supplementary Section
S2 illustrates the methodology of the paper with a real data example.

2. The between-layer and the within-layer clustering procedures

Since the between-layer clustering is the major part of the inference in the DIMPLE model, we start with this task. As it has
been mentioned earlier, this task is accomplished by the Sparse Subspace Clustering (SSC) and requires a combination of two parts,
Algorithms 1 and 2.

2.1. Review of sparse subspace clustering techniques

Subspace clustering has been widely used in computer vision and, for this reason, it is a very well studied and developed
methodology. Subspace clustering is designed for separation of points that lie in the union of subspaces. Let Ė(ā) * RD, ā * [L]

be a given set of points drawn from an unknown union of M e 1 linear or affine subspaces āi, i * [M], of unknown dimensions
di = dim(āi), 0 < di < D, i * [M]. In the case of linear subspaces, the subspaces can be described as āi =

{
Ė * RD ∶ Ė = ă (i)Ą

}
, i *

[M], where ă (i) * RD×di is a basis for subspace āi and Ą * Rdi is a low-dimensional representation for point Ė. The goal of subspace
clustering is to find the number of subspacesM , their dimensions di, i * [M], the subspace bases ă (i), i * [M], and the segmentation
of the points according to the subspaces.

Several methods have been developed to implement subspace clustering such as algebraic methods [49], iterative methods [47]
and spectral clustering based methods [12,45,48]. In this paper, we shall use the latter group of techniques. Spectral clustering
algorithms rely on construction of an affinity matrix whose entries are based on some distance measures between the points. For
example, in the case of the SBM, adjacency matrix itself serves as the affinity matrix, while for the Degree Corrected Block Model
(DCBM) [20], the affinity matrix is obtained by normalizing rows/columns of the adjacency matrix. In the case of the subspace
clustering problem, one cannot use the typical distance-based affinity measures because two points could be very close to each
other, but lie in different subspaces, while they could be far from each other, but lie in the same subspace. One of the solutions is to
construct the affinity matrix using self-representation of the points, with the expectation that a point is more likely to be presented
as a linear combination of points in its own subspace rather than from a different one. A number of approaches such as Low Rank
Representation [27] and Sparse Subspace Clustering (SSC) [11,12] have been proposed for the solution of this problem.

In this paper we use the self-representation version of the SSC developed in [12]. The technique is based on representation of
each of the vectors as a sparse linear combination of all other vectors. The weights obtained by this procedure are used to form the
affinity matrix which, in turn, is partitioned using the spectral clustering methods. If vectors Ė(ā), ā * [L], were known, the weight
matrix W would be based on writing every vector as a sparse linear combination of all other vectors by minimizing the number of
nonzero coefficients

min
ĕ(ā)

‖‖‖ĕ
(ā)‖‖‖0 s.t. Ė(ā) =

1
k�ā

Wk,āĖ
(k), ĕ(ā) = W (∶,ā). (2)

The affinity matrix of the SSC is the symmetrized version of the weight matrix W . Since the problem (2) is NP-hard, one usually
solves its convex relaxation, with ‖ĕ(ā)‖0 in (2) replaced by ‖ĕ(ā)‖1. If the vectors Ė(ā) in (2) are unknown, one uses sample-based
estimated values.

2.2. Finding the matrix of weights

In this section, we show that vectorized versions of the connection probability matrices P (ā), corresponding to different groups
of layers, lie in distinct subspaces and, hence, can be used for the between layer clustering.

In order to partition the layers of the network into groups with the distinct community structures, note that

vec(P (ā)) = (Z(m) ⊗Z(m))Ā(ā), Ā(ā) = vec(B(ā)), m = c(ā), ā * [L]. (3)
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Algorithm 1 Finding the matrix of weights

Input: Tensor ý; the number of communities K in each layer; parameter �.

Output: matrix ̂̃
W of weights.

Steps:

1: For ā * [L], find pre-conditioned rank (K − 1) approximations ̂̃
P
(ā)

of A(ā) = ý(∶, ∶,ā), using formula (8).
2: Construct matrix Y * Rn2×L with columns ė(ā), ā * [L], defined in (9).
3: Find a matrix of weights, Ŵ * RL×L with columns ĕ̂(ā) = Ŵ (∶,ā) and diag(Ŵ ) = 0, by solving the LASSO problem (10) for
ā * [L].

4: Construct matrix ̂̃
W = |Ŵ | + |Ŵ ⊤| of weights.

Hence, for m = c(ā), vectors vec(P (ā)) belong to distinct subspaces ām = span(Z(m) ⊗Z(m)). Denote

D(m) = (Z(m))⊤(Z(m)) = diag(n(m)
1

,& , n
(m)
K

), U (m) = Z(m)(D(m))−1∕2, m * [M],

and observe that U (m) * ýn,K . Therefore, (3) can be rewritten as

vec(P (ā)) = (U (m) ⊗U (m))
(√

D(m) ⊗
√
D(m)

)
Ā(ā), m = c(ā), ā * [L], (4)

so that ām = span(U (m)⊗U (m)). Eqs. (3) and (4) confirm that vectors vec(P (ā)) lie in distinct subspaces ām with m = c(ā) and, hence,
possibly can be partitioned into groups using subspace clustering.

Yet, there is one potential complication in applying subspace clustering to the problem above. Indeed, the subspace clustering
works well when the subspaces do not intersect or have insignificant intersection. However, each of the subspaces ām includes
n−1 Ān2 as its main basis vector. The latter is likely to compromise the precision of subspace clustering techniques. However, luckily,
it is relatively easy to remove this vector from all subspaces. Consider a projection matrix

ÿ = n−1 ĀnĀ
⊤
n , ÿ2 = ÿ. (5)

Then, for

P̃ (ā) = (I −ÿ)P (ā)(I −ÿ) = (I −ÿ)Z(m)B(ā)(Z(m))⊤(I −ÿ), (6)

Ũ (m) = (I −ÿ)U (m) = (I −ÿ)Z(m)(D(m))−1∕2, m * [M],

and Ā(ā) defined in (3), one has, for m = c(ā)

ď(ā) = vec(P̃ (ā)) = (Ũ (m) ⊗ Ũ (m))Ā̃(ā), Ā̃(ā) =
(√

D(m) ⊗
√
D(m)

)
Ā(ā). (7)

Consider subspaces ām = span(Ũ (m) ⊗ Ũ (m)) with dimension (K − 1)2 = rank(Ũ (m) ⊗ Ũ (m)). In many scenarios, the new subspaces ām

have very little or no intersection and, hence, can be well separated using the subspace clustering technique.
In the case of the DIMPLE model, vectors ď(ā), ā * [L], are unavailable. Instead, we use their proxies based on the adjacency

matrices. Specifically, we consider matrices

̂̃
P
(ā)

= �K−1(Ã
(ā)), Ã(ā) = (I −ÿ)A(ā)(I −ÿ), ÿ = n−1 ĀnĀ

⊤
n . (8)

Here ̂̃
P
(ā)

is the rank (K − 1) approximation of Ã(ā). Construct matrices Y , Q̂ * Rn2×L with columns ė(ā) and ď̂(ā), respectively, given
by

ė(ā) = Y (∶,ā) = ď̂(ā)∕‖ ď̂(ā)‖, ď̂(ā) = vec

(
̂̃
P
(ā)

)
, ā * [L]. (9)

In the case of data contaminated by noise, the SSC algorithm does not attempt to write each ė(ā) as an exact linear combination of
other points. Instead, the SSC is built upon solutions of the LASSO problems

ĕ̂(ā) * argmin
ĕ*RL ,ĕā=0

{‖‖‖ė
(ā) − Yĕ

‖‖‖
2
+ 2� ‖ĕ‖1

}
, ā * [L], (10)

where � > 0 is the tuning parameter of LASSO. There are many ways of identifying the LASSO parameter, see, e.g., [3,7,14] among
others. We elaborate on the choice of the Lasso parameter in Supplementary Section S1 We solve (10) using a fast version of the
LARS algorithm implemented in SPAMS Matlab toolbox [32].

Given Ŵ , the clustering function ĉ ∶ [L] ³ [M] is obtained by applying spectral clustering to the affinity matrix |Ŵ | + |Ŵ ⊤|,
where, for any matrix B, matrix |B| has absolute values of elements of B as its entries. Algorithm 1 summarizes the methodology
described above.
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Algorithm 2 The between-layer clustering

Input: Matrix ̂̃
W * RL×L of weights; matrix Y with columns ė(ā) = Y (∶,ā) defined in (9); the number of groups of layers M ,

threshold T .
Output: The clustering function ĉ ∶ [L] ³ [M] and the corresponding clustering matrix Ĉ.
Steps:

1: Find ̂̃c ∶ [L] ³ [M] by applying spectral clustering to ̂̃
W . Find the corresponding clustering matrix ̂̃

C.

2: Find ò̂ = diag(̂̃W Ā) and the Laplacian ú = ò̂ −
̂̃
W . Find M̃ , the number of disconnected components of ú and the clustering

function � ∶ [L] ³ [M̃].

3: If M̃ d M , then ĉ = ̂̃c and Ĉ =
̂̃
C.

4: If M̃ > M , then construct matrix �̂ * RL×L with elements �̂l1 ,l2
= |(ė(l1))⊤ė(l2)|, where l1, l2 * [L], and ė(ā) = Y (∶,ā) are defined

in (9).
5: Let � * {0, 1}L×M̃ be the clustering matrix corresponding to the clustering function �. Let D� = �⊤�. Construct matrix
̂̃
� = (D�)

−1∕2 �⊤ �̂ � (D�)
−1∕2 * RM̃×M̃ and its thresholded version Ĝ * {0, 1}M̃×M̃ with elements Ĝm̃1 ,m̃2

= I(
̂̃
� m̃1 ,m̃2

> T ),

m̃1, m̃2 * [M̃].
6: Find the SVD Ĝ = U

Ĝ
�
Ĝ
(U

Ĝ
)⊤ of Ĝ, and cluster rows of U

Ĝ
(∶, 1 ∶ M) into M clusters. Obtain clustering function

� ∶ [M̃] ³ [M] and the corresponding clustering matrix �.
7: Set Ĉ = �� and ĉ(ā) = �(�(ā)), ā * [L], superposition of � and �.

2.3. Identifying clusters of layers

As a result of Algorithms 1, one obtains a matrix ̂̃
W = |Ŵ | + |Ŵ ⊤| of weights. Then, one can apply spectral clustering to ̂̃

W ,
partitioning L layers into M clusters.

The success of clustering relies on the fact that the weight matrix Ŵ is such that Ŵk,ā � 0 only if points k and ā lie in the same
subspace, which guarantees that vectors ė(ā) are represented by vectors in their own cluster only. This notion is formalized as the
Self-Expressiveness Property. Specifically, we say that the weight matrix W * RL×L satisfies the Self-Expressiveness Property (SEP)
if |W (i, j)| > 0 implies c(i) = c(j), where c ∶ [L] ³ [M] is the true clustering function. Hence, for the success of clustering, we would
like to ensure that matrix Ŵ with columns ĕ̂(ā), ā * [L], defined in (10), satisfies the SEP with high probability. Indeed, if SEP

holds, then no two layer networks from different groups of layers can have a nonzero weight in the matrix ̂̃
W .

However, it is known that SEP alone does not guarantee perfect clustering since the similarity graph obtained on the basis of
̂̃
W can be poorly connected (see, e.g., [34]). Indeed, if the similarity graph has M̃ > M disconnected components, then one would
obtain spurious clustering errors due to the incorrect grouping of those components. It is possible to have M̃ > M since, within
one subspace, one can have a group of vectors that can be expressed as weighted sums of each other. The connectivity issue has
been addressed in, e.g., [50], where the authors proved that the SSC achieves correct clustering with high probability under the
restricted eigenvalue assumption. They propose an innovative algorithm for merging subspaces by using single linkage clustering of
the disconnected components. Since we cannot guarantee that the restricted eigenvalue assumption holds in our case, we suggest a
different novel methodology for clustering the disconnected components into M clusters. The method is summarized in Algorithm
2. Algorithm 2 requires milder conditions and is easier to implement than the respective technique in [50].

2.4. The within-layer clustering procedure

After the groups of layers are identified by Algorithm 2, one can find the communities by some kind of averaging. Specifically,
following [25,41], we average the estimated de-biased versions of the squares of the probability matrices P (ā). Specifically, we
introduced matrix 	̂

	̂ = Ĉ(D̂ĉ )
−1∕2 * ýL,M , with D̂ĉ = Ĉ ⊤Ĉ, (11)

and subsequently construct a tensor ă̂ * Rn×n×L with layers Ĝ(ā) = ă̂(∶, ∶,ā) of the form

Ĝ(ā) =
(
A(ā)

)2
− diag(Ă̂(ā)), ā * [L],

where Ă̂(ā) is the vector of estimated nodes’ degrees. After that, we average layers of the same types, obtaining tensor

Ą̂ = ă̂ ×3 	̂
⊤ * R

n×n×M ,

where 	̂ is defined in (11). The communities in each group m * [M], of layers are obtained by application of the spectral clustering
to layers of tensor Ą̂. The procedure is summarized in Algorithm 3.
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Algorithm 3 The within-layer clustering

Input: Adjacency tensor ý * {0, 1}n×n×L, number of groups of layers M , number of communities K, estimated layer clustering
matrix Ĉ * ûL,M .

Output: Estimated community assignments Ẑ(m) * ûn,K , m * [M].
Steps:

1: Construct tensor ă̂ with layers Ĝ(ā) =
(
A(ā)

)2
− diag(A(ā) Ān), ā * [L].

2: Construct tensor Ą̂ using formula Ą̂ = ă̂ ×3 	̂
⊤.

3: Construct the SVDs of layers Ĥ (m) = Ũ
Ĥ

(m)�̂
Ĥ

(m)(Ũ
Ĥ

(m))⊤, m * [M].

4: Find Û
Ĥ

(m) = Ũ
Ĥ

(m)(∶, 1 ∶ K) = �K (ŨĤ
(m)), m * [M].

5: Cluster rows of Û
Ĥ

(m) into K clusters using (1 + �)-approximate K-means clustering. Obtain clustering matrices Ẑ(m), m * [M].

3. Theoretical guarantees

3.1. Assumptions

In this paper, we assume that a DIMPLE network is generated by randomly sampling the nodes similarly to how this is done
in [5,6].

There exists a large body of literature on randomly generated networks (see, e.g., [23] and references therein). In many of
the papers, the inference is also carried out by some randomized procedures such as EM algorithm (see, e.g., [2,33]) or MCMC
technique (see, e.g., [10]). While these techniques have their merits, the advantage of the clustering algorithms developed in this
paper is that they are not iterative and, hence, do not require provable convergence. In addition, they come with the theoretical
precision guarantees. Hence, the generative mechanism for the network is not required for the validity of the inference. Instead,
one can just place assumptions on the linear subspaces associated with each group of layers. These assumptions, however, may not
feel intuitive to a reader, in spite of being easily satisfied when communities in the groups of layers in the network are generated
at random. For this reason, although we develop the theory for a multiplex network where communities in the groups of layers are
generated at random, Algorithms 1–3 will lead to the same clustering errors under alternative assumptions (see version 1 of [36]).

In what follows, we consider vectors $ = ($1,& , $M ) * [0, 1]M and �
(m)

= (�
(m)

1
,& , �

(m)
K

) * [0, 1]K , m * [M], such that

M1
m=1

$m = 1,

K1
k=1

�
(m)
k

= 1, m * [M].

For each layer ā * [L], we generate its group membership c(ā) < Multinomial($). For each node j * [n] in a layer of type m * [M],
the membership function z(m) is generated as z(m)(j) < Multinomial(�

(m)
). Hence, $m is the probability of a layer of type m, and �

(m)
k
,

k * [K], is the probability of the kth community in a layer of type m.

While, in general, the values of �(m)
k

can be different for different m, in this paper, we assume that �(m)
k

= �k, m * [M], k * [K].
The latter means that for a node j in a group of layers m, its community membership can be generated as

�
(m)
j

< Multinomial(�̄, K) with �̄ = (�1,& , �K ), j * [n],

Z
(m)
j,k

= I(�
(m)
j

= k), Pr(Z
(m)
j,k

= 1) = �k, k * [K], j * [n], m * [M]. (12)

After layers’ memberships and nodes’ memberships in groups of layers are generated, the set of matrices B(ā) is chosen independently
from the groups of layers and community assignments.

In order to derive theoretical guarantees for the SEP, one needs to impose conditions that ensure that the layer networks maintain
some regularity and are not too sparse. We also need to ensure that the subspaces, that represent the layer networks, are sufficiently
separated, and are also well represented by the sets of vectors ď(ā) with c(ā) = m, where ď(ā) are defined in (7). For this purpose,
we introduce matrices Q,X * Rn2×L with columns ď(ā) and Ė(ā), respectively, where

Ė(ā) = X(∶,ā) = ď(ā)∕‖ď(ā)‖, ď(ā) = vec(P̃ (ā)), ā * [L]. (13)

Matrix X can be viewed as the ‘‘true’’ version of matrix Y in (9). We impose the following assumptions:

A1. For some positive constants C and C̄, 0 < C d C̄ < @, one has

B(ā) = �nB
(ā)

0
with C d ‖B(ā)

0
‖ d C̄. (14)

A2. For some positive constant C�,0, one has

min
ā*[L]

�min(B
(ā)

0
)∕�max(B

(ā)

0
) e C�,0.
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A3. For some positive constant C�, one has

�n e C�n
−1 ln n.

A4. For some positive constants c
$
, c̄$ , c� and c̄� , one has

c
$
∕M d $m d c̄$∕M ; c

�
∕K d �k d c̄�∕K; k * [K], m * [M]. (15)

A5. Matrices B(ā) are such that, for any ā * [L] with c(ā) = m, there exists representation Ė = X̃∗ĕ∗ of Ė � Ė(ā) via other columns
of X in ām, such that ‖ĕ∗‖1 d ℵw,K where ℵw,K can only depend on K.

Assumptions A1–A4 are common regularity assumptions for network papers. Since majority of networks are sparse, Assumption
A1 introduces a sparsity factor �n and confirms that all matrices B

(ā) maintain approximately the same level of sparsity. Assumption
A2 requires that all matrices B(ā)

0
, ā * [L], are well conditioned. Assumption A3 guarantees that the eigenvectors of the subspaces

constructed on the basis of the adjacency matrices are close to those that are defined by the matrices of probabilities of connections.
Assumption A4 ensures that groups of layers in the network, as well as communities in each of the groups, are balanced, i.e., the
number of members have the same order of magnitude when n and L grow. Denote

L̂m =

M1
ā=1

I(c(ā) = m), n̂
(m)
k

=

n1
j=1

I(�
(m)
j

= k), k * [K], m * [M]. (16)

Then, it turns out that, under Assumption A4, there is a set 
t such that, for ! * 
t

min
m

L̂m e C0 L∕M, C̃0 n∕K d n̂
(m)
k

d
̃̃
C0 n∕K, m * [M], k * [K]. (17)

It follows from Lemma 2 in Appendix A that, if L and n are sufficiently large, (17) holds with

C0 = c
$
∕2, C̃0 = c

�
∕2,

̃̃
C0 = 3c̄�∕2

on a set 
t with Pr(
t) e 1 − 2L−t − 2K n−t. It turns out that Assumption A4 also ensures that groups of layers of the network are
well separated.

Assumption A5 replaces much more stringent conditions, which are present in majority of papers that provide theoretical
guarantees for the sparse subspace clustering, specifically, the assumption of sufficient sampling density and spherical symmetry of
the residuals. While neither of these above conditions holds in our setting, Assumption A5 is much easier to satisfy. It actually
requires that the low-dimensional vectors Ā(l0) are easily represented by other vectors Ā(ā), where c(ā) = c(l0) and ā � l0.
Assumption A5 is valid under a variety of sufficient conditions. Some examples of those conditions are presented in the following
lemma.

Lemma 1. (a) Consider vectors Ā(ā)
0

= vec(B(ā)

0
) where matrices B(ā)

0
are defined in (14). Let, for any m * [M] and any l0 with c(l0) = m,

there exist a set of indices ú0 such that l0 + ú0, c(ā) = m for ā * ú0, and matrix ð0 with columns Ā
(ā)

0
, ā * ú0, is a full-rank matrix with

the lowest singular value �min(ð0) e �0,K , where �0,K can only depend on K. Then, Assumption A5 holds with

ℵw,K =
(C̄)2

̃̃
C0

C C�,0 C̃0

K
√
K

�0,K
.

(b) If, for m * [M], matrices B(ā) with c(ā) = m take only Mm distinct values, with at least two matrices B
(ā) taking identical values, then

Assumption A5 holds with ℵw,K = 1.

Note that part (a) of Lemma 1 just prevents the situation where all but one of the vectors Ā(ā) are positioned in close proximity
of one another. Part (b) of Lemma 1 includes the MMLSBM as its particular case, which means that our theoretical results also hold
for the MMLSBM.

3.2. Between-layer clustering precision guarantees

The success of clustering relies on the fact that the weight matrix Ŵ with columns ĕ̂(ā), ā * [L], defined in (10), satisfies the
SEP with high probability. It turns out that Assumption A3 ensures that subspaces ām, m * [M], corresponding to different types
of layers, do not have large intersections and allow sparse representation of vectors within each subspace. The following statement
guarantees that this is true for the weight matrix Ŵ in Algorithm 1.

Theorem 1. Let Assumptions A1–A5 hold and t > 0. Define

�n,K,t = Ct,� K (n�n)
−1∕2, (18)

where Ct,� is a constant that depends only on t and constants in Assumptions A1–A4. Let Ŵ be a solution of problem (10) with � = �n,K
such that

�n,K d (4ℵw,K )
−1, lim

n³@

�n,K,t ℵw,K

�n,K
= 0, (19)
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where ℵw,K is defined in Assumption A5. If n is large enough and t > 0 satisfies

t < min
(
c2
$
L (2M2 lnL)−1, c2

�
n (2K2 ln n)−1

)
, (20)

then matrix Ŵ (and, consequently, ̂̃W ) satisfies the SEP with high probability:

Pr(Ŵ satisf ies SEP) e 1 − 2L−t − Ln−t − 2KM(M + 2)n−t.

We would like to point out the fact that although the statement in Theorem 1 is relatively standard, its proof follows completely
different path than proofs of SEP known to us. Indeed, those proofs (see, e.g., [44,45,51]) are tailored to the case of Gaussian
errors and are based on the idea that the errors are rotationally invariant. In addition, those proofs require that the sampled vectors
uniformly cover each of the subspaces. It is easy to observe that rotational invariance fails in the case of the Bernoulli random vectors,
so our proof is totally original. Moreover, we do not require the sampling condition as in, e.g., [45,51]. Observe that condition A5
does not require uniform sampling or sufficient sampling density. Instead, condition A5 guarantees that each vector has a sparse
representation via the vectors in the same subspace.

The following theorem states that, if the threshold T = Tn,K in Algorithm 2 satisfies certain conditions, n is large enough and
the SEP holds, then Algorithm 2 leads to perfect recovery of clusters with high probability. The latter implies that our clustering
procedure is strongly consistent.

Theorem 2. Let Assumptions A1–A5 hold and the clustering function ĉ ∶ [L] ³ [M] be obtained by Algorithm 2. Let T � Tn,K be such
that

lim
n³@

Tn,K = 0; lim
n³@

(
K2 ln n

Tn,K n
+

K

Tn,K
√
n �n

)
= 0. (21)

If n is large enough and t > 0 satisfies (20), then, the clustering procedure is strongly consistent with high probability, i.e., up to permutation
of M cluster labels, one has

Pr(ĉ = c) e 1 − 2L−t − Ln−t − 2KM(M + 2)n−t.

Note that Algorithm 2 is very different from Algorithm 2 of [50] which relies on subspaces recovery and merging. Also, Theorem 2
above holds under milder and more intuitive assumptions than Theorem 3.2 of [50]. In conclusion, Theorem 2 establishes strong
consistency of SSC for data that is not rotationally invariant.

3.3. Within-layer clustering precision guarantees

After the between-layer clustering has been accomplished, the within layer clustering can be carried out by Algorithm 3.
Since the clustering is unique only up to a permutation of clusters, denote the set of K-dimensional permutation functions of

[K] by ℵ(K) and the set of K ×K permutation matrices by F(K). The local community detection error in the layer of type m is then
given by

RWL(m) = (2n)−1 min
ÿm*F(K)

‖Ẑ(m) −Z(m) ÿm‖2F , m * [M],

where Z(m) is defined in (1). Note that, since the numbering of layers is defined also up to a permutation, the errors RWL(1), . . . ,
RWL(M) should be minimized over the set of permutations ℵ(M). The average error rate of the within-layer clustering is then given
by

RWL =
1

M
min
ℵ(M)

M1
m=1

RWL(m) =
1

2M n
min
ℵ(M)

M1
m=1

(
min

ÿm*F(K)
‖Ẑ(m) −Z(m) ÿm‖2F

)
.

With these definitions, one obtains the following statement.

Theorem 3. Let Assumptions A1–A5 hold and the between-layer clustering function ĉ ∶ [L] ³ [M] be obtained by using Algorithm 2. Let
T � Tn,K satisfy condition (21) and t > 0 obey (20). Then, for n large enough and an absolute positive constant Ct, the average within-layer
clustering error RWL satisfies

Pr

{
RWL d Ct

(
MK4 ln(L + n)

Ln�n
+

K4

n2

)}
e 1 − 2L−t − Ct(KM2 + L + n2) n1−t. (22)

4. Discussion

The present paper considers the DIverse MultiPLEx (DIMPLE) network model, introduced in [41]. To the best of our knowledge,
the latter is the only paper which considers such a general multiplex setting. However, while [41] applied spectral clustering to the
proxy of the adjacency tensor, this paper uses the SSC for identifying groups of layers with identical community structures. The latter,
unlike the technique of [41] leads to the strongly consistent between-layer clustering which, in turn, results in much more precise
community detection in groups of layers. Indeed, under very similar assumptions, with high probability, the spectral clustering
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Algorithm S1 of [41] leads to the between layer clustering error of O(K2 (n�n)
−1) while Algorithms 1 and 2 in this paper yield precise

clustering. Hence, due to lack of accuracy in identification the groups of layers, the within-layer clustering error R(PW )

WL
in [41] is

also much higher than the within-layer clustering error RWL in the present paper. Specifically, for some constants C1 and C2, with
high probability,

R
(PW )

WL
d C1

(
MK4 ln(L + n)

n �n L
+

MK6

n �n

)
, RWL d C2

(
MK4 ln(L + n)

n �n L
+

K4

n2

)
, (23)

where the second expression in (23) is a repetition of formula (22). While the first terms in the expressions of R(PW )

WL
and RWL

coincide, the second term in R
(PW )

WL
, which comes from the between layer clustering error of O(K2 (n�n)

−1), is significantly larger
than the one in RWL.

Clustering methodology in this paper has a number of advantages. Not only it is strongly consistent with high probability when
the number of nodes is large, but also competitive with (and often more precise than) the spectral clustering in [41]. In addition,
the algorithm of [41] requires SVD of n(n−1)∕2×L matrix, which is challenging for large n, while in our case the SVD is applied to
L × L matrix. Hence, the SSC-based technique allows to handle much larger networks. Moreover, the most time consuming part of
the algorithm, finding the weight matrix, is perfectly suitable for application of parallel computing which can significantly reduce
the computational time.

Another side benefit of the present paper is the novel theoretical development in the area of assessment of the precision of
the sparse subspace clustering when it is applied to non-Gaussian data. In particular, all papers known to us, provide theoretical
guarantees for the sparse subspace clustering under the assumptions of the spherical symmetry of the residuals and sufficient
sampling density (see, e.g., [44,45,51]). It is easy to observe that rotational invariance fails in the case of the Bernoulli random
vectors. In addition, the assumption that the sampled vectors uniformly cover each of the subspaces may not be true either (for
example, it does not hold for the MMLSBM). For this reason, our paper offers a completely original proof of the clustering precision
of the SSC-based technique.

In addition, although the SSC has been applied to clustering single layer networks in [35,37,38], to the best of our knowledge,
our paper offers the first application of the SSC to the binary multiplex network. While the weights in Algorithm 1 are obtained
in a relatively conventional manner, our between-layer clustering Algorithm 2 is entirely original and very different from the one
in [50].
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Appendix A. Proofs

Proof of Self-Expressiveness property under the separation condition

Proof of Theorem 1 relies on the fact that the subspaces ām, m * [M], corresponding to different types of layers do not have
large intersections. Specifically, we prove the following statement from which the validity of Theorem 1 will readily follow.

Proposition 1. Let Assumptions A1, A2, A3, and A5 hold. Let Lm and nk
(m) be, respectively, the number of layers of type m and the

number of nodes in the kth community in the group of layers of type m, where Lm and nk
(m) satisfy condition (17). Assume, in addition,

that there exists � � �n,K * (0, 1) such that for any arbitrary vectors Ė * ām and Ė2 * ām2 , where m � m2, one has |Ė⊤Ė2| d � ‖Ė‖ ‖Ė2‖. Let
t > 0 and � = �n,K,t be defined in (18) where Ct,� is a constant that depends only on t and constants in Assumptions A1, A2, A3, and A5,
and condition (17).

Let Ŵ be a solution of problem (10) with � = �n,K such that

�n,K d (4ℵw,K )
−1, lim

n³@

(�n,K,t + �n,K )(1 + ℵw,K )

�n,K
= 0, (A.1)

where ℵw,K is defined in Assumption A5. If max
1dādL

‖ė(ā) − Ė(ā)‖ d � and n is large enough, then, matrix Ŵ (and, consequently, ̂̃W ) satisfies

the SEP.
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Proof of Proposition 1. Let matrices Q,X * Rn2×L and Q̂, Y * Rn2×L be defined in (9) and (13), respectively. Choose an arbitrary

l0 * [L] and, without loss of generality, assume that c(l0) = 1, i.e., Ė(l0) * ā1. Denote Ė = Ė(l0), ė = ė(l0), ā̃ = ā1 and
̃̃
ā = ā2 LďLāM ,

and present the remainder of matrix X (i.e., X with X(∶, l0) removed) as [X̃ | ̃̃X]. Here, X̃ and ̃̃
X are portions of X with X(∶, l0)

removed, that correspond to ā̃ and ̃̃
ā, respectively. With some abuse of notations, we denote X with X(∶, l0) removed by X again,

i.e., X = [X̃ | ̃̃X].
Denote Z = Y −X, Ę(ā) = Z(∶,ā) and Ę = Ę(l0) = ė − Ė, so that

Ỹ = X̃ + Z̃,
̃̃
Y =

̃̃
X +

̃̃
Z, ė = Ė + Ę.

Let ĕ = [ĕ̃ | ̃̃ĕ] be the solution of problem (10) for ā = l0. Then, (10) implies that

‖ė − Ỹ ĕ̃ −
̃̃
Y ̃̃ĕ‖2 + 2�‖ĕ̃‖1 + 2�‖̃̃ĕ‖1 d ‖ė − Ỹ ĕ̃‖2 + 2�‖ĕ̃‖1.

By simplifying the inequality, obtain

�
def
= ‖ ̃̃Y ̃̃ĕ‖2 − 2ïė − Ỹ ĕ̃,

̃̃
Y ̃̃ĕð + �‖̃̃ĕ‖1 d 0. (A.2)

Note that the Cauchy–Schwarz inequality and Assumption A5 yield

ïė − Ỹ ĕ̃,
̃̃
Y ̃̃ĕð d �‖Ė − X̃ĕ̃‖‖ ̃̃X ̃̃ĕ‖ + ‖Ę − Z̃ĕ̃‖‖ ̃̃X ̃̃ĕ‖ + ‖Ė − X̃ĕ̃‖‖ ̃̃Z ̃̃ĕ‖ + ‖Ę − Z̃ĕ̃‖‖ ̃̃Z ̃̃ĕ‖.

Moreover,

‖Ę − Z̃ĕ̃‖ d [‖ĕ̃‖1 + 1]�; ‖ ̃̃Z ̃̃ĕ‖ d ‖̃̃ĕ‖1�; ‖Ė − X̃ĕ̃‖ d ‖ĕ̃‖1 + 1.

Since ‖ ̃̃Y ̃̃ĕ‖2 e 0.5 ‖ ̃̃X ̃̃ĕ‖2 − ‖ ̃̃Z ̃̃ĕ‖2, obtain
� e

{
0.5 ‖ ̃̃X ̃̃ĕ‖2 − 2(� + �)(‖ĕ̃‖1 + 1)‖ ̃̃X ̃̃ĕ‖

}
+ ‖̃̃ĕ‖1

{
� − � − 2(‖ĕ̃‖1 + 1)�(1 + �)

}
. (A.3)

To find an upper bound for (‖ĕ̃‖1 + 1), consider ĕ̃∗, the solution of exact problem, that is Ė = X̃ĕ̃∗. By Assumption A6, there exists
a sub-matrix X̃∗ * Rn2×(K−1)2 of X̃, such that Ė = X̃∗ĕ∗ and ‖ĕ∗‖1 d ℵw,K . Let Ỹ∗ be the portion of Ỹ corresponding to X̃∗ and
Z̃∗ = Ỹ∗ − X̃∗. Since ‖ė − Ỹĕ∗‖2 = ‖Ę − Z̃ĕ∗‖2, derive

‖ė − Ỹĕ∗‖2 + 2�‖ĕ∗‖1 d �2
[‖ĕ∗‖1 + 1

]2
+ 2�‖ĕ∗‖1. (A.4)

Note that, since ĕ∗ is not an optimal solution, one has

‖ė − Ỹĕ∗‖2 + 2�‖ĕ∗‖1 e ‖ė − Ỹ ĕ̃ −
̃̃
Y ̃̃ĕ‖2 + 2�‖ĕ̃‖1 + 2�‖̃̃ĕ‖1 e 2�‖ĕ̃‖1.

Thus, ‖ĕ̃‖1 + 1 d (‖ĕ∗‖1 + 1) + ‖ė − Ỹĕ∗‖2∕(2�), so that
‖ĕ̃‖1 + 1 d (1 + ℵw,K ) + 0.5 �2 (1 + ℵw,K )

2∕�. (A.5)

Then, using (A.3) and (A.5), due to ‖ ̃̃X ̃̃ĕ‖ d ‖̃̃ĕ‖1, obtain
� e

1

2
‖ ̃̃X ̃̃ĕ‖2 + ‖̃̃ĕ‖1

{
� − � − 2 (1 + ℵw,K )

(
1 +

1

2
�2(1 + ℵw,K )∕�

)
(2� + 2� + �2)

}
.

Now, observe that, due to condition (A.1), � < 1 and �2(1 + ℵw,K )∕� tends to zero. Hence, for n large enough, arrive at

� e
1

2
‖ ̃̃X ̃̃ĕ‖2 + �‖̃̃ĕ‖1

{
1 −

�

�
−

12 (� + �)(1 + ℵw,K )

�

}
> 0

unless ̃̃ĕ = 0. Since, by (A.2), � d 0, one has ̃̃ĕ = 0 and the SEP holds.
In order to complete the proof, we need to show that there exists � which is not too large, so the optimization problem (10) for

ā = l0 has a non-zero solution. If we show that, for some ĕ � 0, the objective function is smaller than that for ĕ � 0, then (10) for
ā = l0 yields a non-zero solution. To this end, we find a sufficient condition such that ‖ė − Ỹĕ∗‖2 + 2�‖ĕ∗‖1 d ‖ė‖2 = 1 holds. It
follows from (A.4) and Assumption A6 that

‖ė − Ỹĕ∗‖2 + 2�‖ĕ∗‖1 d �2(1 + ℵw,K )
2 + 2�ℵw,K .

Hence,

�2 (1 + ℵw,K )
2 + 2�ℵw,K d 1

is sufficient for ĕ � 0. By condition (A.1), one has � (1+ℵw,K ) ³ 0 as n ³ @, so that for n large enough, � (1+ℵw,K ) d 1∕2. Therefore,
2�ℵw,K d 1∕2 is sufficient for ĕ � 0, which is equivalent to the first inequality in (A.1). The latter completes the proof. ¦

Proof of Theorem 1. In order to prove that Theorem 1 holds, we show that, under assumptions of Theorem 1, (17) is true and
that �n,K d CK2 n−1 ln n in Proposition 1. Let L̂m and n̂k

(m) be defined in (16). Then, the following statements are valid.
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Lemma 2. Let Assumption A4 hold. Let t > 0 satisfy condition (20). Then, there exists a set 
̄t1 with

Pr(
t1) e 1 − 2L−t − 2KM n−t

such that, for ! * 
t1, one has simultaneously

c
$
L

2M
d L̂m d

3 c̄$ L

2M
, and

Mä
m=1

Kä
k=1

(
! ∶

c
�
n

2K
d n̂k

(m) d
3 c̄� n

2K

)
. (A.6)

Apply the following lemma, proved later in Appendix A, which ensures the upper bound max
ā

‖ė(ā)−Ė(ā)‖ d �n,K,t in Proposition 1.

Lemma 3. Let Assumptions of Theorem 1 hold and t > 0 satisfies condition (20). Let ď(ā) and ď̂(ā) be defined in (7) and (9), respectively.
Let matrices Q, Q̂ * Rn2×L be defined in (13) and (9), respectively. Then,

min
ā

‖ď(ā)‖ e C̃0C�,0 C K−1∕2 n �n, max
ā

‖ď(ā)‖ d
̃̃
C0 C̄ K−1∕2 n �n. (A.7)

Moreover, there exists a set 
t2 such that Pr(
t2) e 1 − Ln−t, and for ! * 
t2, one has

max
ā

‖ď̂(ā) − ď(ā)‖∕‖ď(ā)‖ d Ct,�,� K∕
√
n�n, (A.8)

where Ct,�,� depends only on t and constants in Assumptions A1–A5.

In addition, the following lemma provides an upper bound on �n,K in Proposition 1.

Lemma 4. Let Assumption A4 hold, and Z
(m)
j,k
, k * [K], j * [n], m * [M], be generated according to (12). Let t > 0 satisfy condition (20).

Then, there exists a set 
t3 with

Pr(
t3) e 1 − 2L−t − 2KM(M + 1) n−t

such that, for ! * 
t3, and for any arbitrary vectors Ė * ām and Ė2 * ām2 , where m � m2, one has |Ė⊤Ė2| d � ‖Ė‖ ‖Ė2‖ with
� � �n,K d 2 (

√
2 + 3∕c

�
)2 t K2 n−1 ln n. (A.9)

It is easy to show that, for any ā * [L], one has ‖Ę(ā)‖ = ‖ė(ā) − Ė(ā)‖ d 2‖ď̂(ā) − ď(ā)‖∕‖ď(ā)‖. Hence, Lemma 3 implies that, for
� � �n,K,t defined in (18), one has

Pr

(
max
1dādL

‖Ę(ā)‖ d �

)
e 1 − Ln−t. (A.10)

Now, in order to apply Proposition 1, it remains to show that condition (19) implies (A.1). For this purpose, note that, since columns
of matrix X have unit norms, one has ℵw,K e 1 in A5 and, hence, (A.1) implies that �n,K,t∕�n,K ³ 0 as n ³ @. The latter furthermore
yields that n−1 K2 ln n ³ 0, so that �n,K = o(�n,K,t) as n ³ @, where �n,K and �n,K,t are defined in (A.9) and (18), respectively. This
completes the proof. ¦

Proof of Theorem 2. Let Ŵ be the matrix of weights and 
t be the set in Theorem 1, so that 
t is exactly the set where SEP
holds. Note that Algorithm 2 allows the situation where M̃ < M . However, if the SEP holds, then no two network layers in different
clusters can be a part of the same connected component, and hence, M̃ e M .

Consider a clustering function � ∶ [L] ³ [M̃] and the corresponding clustering matrix � * {0, 1}L×M̃ , which partitions L layers
into M̃ e M , disconnected components. Due to SEP, some of the vectors that belong to different clusters, according to �, belong
to the same cluster, according to c. On the other hand, if two vectors belong to different clusters according to c, they belong to
different clusters according to �. That is, for l1, l2 * [L], l1 � l2, one has

�(l1) = �(l2) ý c(l1) = c(l2), c(l1) � c(l2) ý �(l1) � �(l2). (A.11)

Hence, if M̃ = M , then � = c.
Let M̃ > M . Then, due to (A.11), one can partition M̃ clusters into M groups. Let � ∶ [M̃] ³ [M] be such clustering function,

and � be the corresponding clustering matrix. Then, for ! * 
t, SEP holds and C = ��. Observe that �(m̃1) = �(m̃2) if c(li) = c(lj ) for
all li, lj with �(li) = m̃1 and �(lj ) = m̃2, where li, lj * [L], and m̃1, m̃2 * [M̃]. To prove the theorem, we use the following statement.

Lemma 5. Let Assumptions A1–A5 hold and K2∕(n�n) ³ 0 as n ³ @. Then, if ! * 
t, for some positive constant Č, one has

|(Ė(l1))⊤Ė(l2)| e Č if c(l1) = c(l2); |(Ė(l1))⊤Ė(l2)| d �n,K if c(l1) � c(l2). (A.12)

Moreover, for ! * 
t and n large enough

min
l1 ,l2

c(l1)=c(l2)

|(ė(l1))⊤ė(l2)| e Č∕2, max
l1 ,l2

c(l1)�c(l2)

|(ė(l1))⊤ė(l2)| d �n,K + 2�n,K,t. (A.13)
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Consider matrices � , �̂ * RL×L with elements

�l1 ,l2
= |(Ė(l1))⊤Ė(l2)|, �̂l1 ,l2

= |(ė(l1))⊤ė(l2)|, l1, l2 * [L].

Denote D� = (�)⊤� and define matrices �̃ ,
̂̃
� * RM̃×M̃

�̃ = (D�)
−1∕2�⊤��(D�)

−1∕2,
̂̃
� = (D�)

−1∕2�⊤�̂�(D�)
−1∕2.

Then, due to (21), by Lemma 5, for m̃1, m̃2 * [M̃], �̃m̃1 ,m̃2
e Č if �(m̃1) = �(m̃2), and �̃m̃1 ,m̃2

d �n,K if �(m̃1) � �(m̃2). Also, for ! * 
t,

one has ̂̃
� m̃1 ,m̃2

e Č∕2 if �(m̃1) = �(m̃2), and
̂̃
� m̃1 ,m̃2

d �n,K + 2�n,K,t if �(m̃1) � �(m̃2).

Now, consider matrices G, Ĝ * {0, 1}M̃×M̃ with

Gm̃1 ,m̃2
= I

{
�(m̃1) = �(m̃2)

}
, Ĝm̃1 ,m̃2

= I

(
| ̂̃� m̃1 ,m̃2

| e T

)
, m̃1, m̃2 * [M̃].

Then, G = ��⊤. Moreover, if n is large enough, then �n,K + 2�n,K,t < T < Č∕2, whenever T satisfies conditions (21). Consequently,
Ĝ = G for ! * 
t and hence, spectral clustering of Ĝ correctly recovers M clusters given by �. ¦

Proof of Theorem 3. The proof of this theorem is very similar to the proof of Theorem 3 in [41]. In this proof, same as
before, we denote by C an absolute constant which can be different at different instances. Consider tensors ă * Rn×n×L and
Ą = ă ×3 (CD

−1∕2
c )⊤ * Rn×n×M with layers, respectively, G(ā) = ă(∶, ∶,ā) and H (m) = Ą(∶, ∶, m) of the forms

G(ā) = (P (ā))2, H (m) = L
−1∕2
m

1
c(ā)=m

G(ā), ā * [L], m * [M].

In order to assess RWL, one needs to examine the spectral structure of matrices H
(m) and their deviation from the sample-based

versions Ĥ (m) = Ą̂(∶, ∶, m). We start with the first task.
It follows from (S1) and (S2) that

H (m) = Uz
(m) Q̄D

(m) (Uz
(m))⊤ with Q̄D

(m) = L
−1∕2
m

1
c(ā)=m

(
B
(ā)

D

)2

.

Since all eigenvalues of (B(ā)

D
)2 are positive, applying the Theorem in Complement 10.1.2 on page 327 of [42] and Assumptions A1–

A5, obtain that

�min(H
(m)) = �K

(
Q̄D

(m)
)
e L

−1∕2
m

1
c(ā)=m

�K

{
(B

(ā)

D
)2
}
e L

−1∕2
m

{
min
k
(n̂k

(m))
}2

�2n

1
c(ā)=m

�K

{
(B

(ā)

0
)2
}

e C n2 �2n K
−2

√
LM−1. (A.14)

Note that the Euclidean separation 
m of rows of UH
(m) is the same as the Euclidean separation of rows of Uz

(m), and 
2m e

2{min
k
(n̂k

(m))}−1 e CK∕n for ! * 
t.

Therefore, by Lemma 9 of [25], derive that the total number of clustering errors � within all layers is bounded as

� d C
n

K

M1
m=1

‖‖‖‖sin�
(
Û
Ĥ

(m), UH
(m)

)‖‖‖‖
2

F
.

Using Davis–Kahan theorem and formula (A.14), obtain

‖‖‖‖sin�
(
Û
Ĥ

(m), UH
(m)

)‖‖‖‖
2

F
d

4K‖Ĥ (m) −H (m)‖2
�2
min

(H (m))
d C

K5M ‖Ĥ (m) −H (m)‖2
n4�4nL

,

where we use C for different constants that depend on the constants in Assumptions A1–A5. Combination of the last two inequalities
yields that the total number of clustering errors within all layers is bounded by

� d C
K4M

n3�4nL

M1
m=1

‖Ĥ (m) −H (m)‖2. (A.15)

Recall that H (m) = [ă ×3 	
⊤](∶, ∶, m) and Ĥ (m) = [ă̂ ×3 	̂

⊤](∶, ∶, m). Since, by Theorem 2, for ! * 
t one has 	̂ = 	 , obtain that

‖Ĥ (m) −H (m)‖2 d L−1
m

‖‖‖
̄̂
G(m) − Ḡ(m)‖‖‖

2
,

where

Ḡ(m) =
1

c(ā)=m

G(ā) =
√
Lm H (m),

̄̂
G(m) =

√
Lm [ă̂ ×3 	

⊤](∶, ∶, m) =
1

c(ā)=m

Ĝ(ā)

use the following lemma that modifies upper bounds in [25] in the absence of the sparsity assumption �nn d C:
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Lemma 6. Let Assumptions A1–A5 hold, G(ā) = (P (ā))2 and Ĝ(ā) = (A(ā))2 − diag(A(ā)Ā), where c(ā) = m, ā * [L̃]. Let

G =

L̃1
ā=1

G(ā), Ĝ =

L̃1
ā=1

Ĝ(ā).

Then, for any t > 0, there exists a constant C̃ that depends only on t and constants in Assumptions A1–A5, and C̃t,� which depends only on
t and � in Algorithm 3, such that one has

Pr
[
‖Ĝ − G‖2 d C̃

{
�3nn

3L̃ ln(L̃ + n) + �4nn
2L̃2

}]
e 1 − C̃t,�(L̃ + n)1−t.

Applying Lemma 6 with L̃ = Lm, obtain that there exists a set 
t4, with

Pr(
t4) e 1 − C̃t,�n
1−t,

and for ! * 
t4, one has

‖Ĥ (m) −H (m)‖2 d C
{
�3nn

3 ln(L + n) + �4n n
2L∕M

}
. (A.16)

To complete the proof, combine formulas (A.15) and (A.16), set 
̃t = 
t K
t4 and recall that RWL = �∕(Mn) and n�n e C� ln n. ¦

Proofs of supplementary statements

Proof of Lemma 1. First, we prove part (a). Recall that, for ā with c(ā) = m, by formula (7), one has

ď(ā) = �n

(
Ũ (m) ⊗ Ũ (m)

)(√
D(m) ⊗

√
D(m)

)
Ā
(ā)

0
. (A.17)

Since ð0 is a full rank matrix, one can present Ā
(l0)

0
as Ā(l0)

0
= ð0ĕ for some vector ĕ. Note that, although vectors Ā(ā)

0
* RK2

, due to

symmetry of matrices B(ā)

0
, the ambient dimension of those vectors is K(K + 1)∕2 = |ú0|. Then, by Assumption A1, obtain

‖ĕ‖1 d K‖ĕ‖2 d K
{
�min(ð0)

}−1 ‖Ā(l0)
0

‖ d K (�0,K )
−1 ‖B(l0)

0
‖F d C̄ (�0,K )

−1 K
√
K.

Now, (A.17) and Ā
(l0)

0
= ð0ĕ imply that

ď(l0) =
1
ā*ú0

ď(ā) ĕā .

Therefore,

Ė(l0) =
1
ā*ú0

Ė(ā) (ĕ∗)ā ,

where |(ĕ∗)ā| = |ĕā|‖ď(ā)‖∕‖ď(l0)‖. By Lemma 3, one has ‖ď(ā)‖∕‖ď(l0)‖ d (C̃0 C�,0 C)−1
̃̃
C0 C̄, and, hence,

‖ĕ∗‖1 d
(C̄)2

̃̃
C0

C C̃0 C�,0

K
√
K

�0,K
,

which proves part (a).
Validity of part (b) follows from the fact that there are at least two copies of any vector Ė(ā) for any ā and any group of layers. ¦

Proof of Lemma 2. For a fixed k, note that n̂k
(m) < Binomial(�k, n). By Hoeffding inequality, for any x > 0

Pr
(|||n̂k

(m)∕n − �k
||| e x

)
d 2 exp{−2nx2}.

Then, using (15), obtain

Pr
(
c
�
n∕K − nx d n̂k

(m) d c̄� n∕K + nx
)
e 1 − 2 exp{−2nx2}.

Now, set x =
√
t ln n∕(2n) and let n be large enough, so that K

√
t ln n∕(2n) < 1∕2, which is equivalent to t < n∕(2K2 ln n). Then,

combination of the union bound over k and m and

Pr

⎧
⎪⎨⎪⎩

c
�
n

K

⎛⎜⎜⎝
1 −

K
√
t ln n

c
�

√
2 n

⎞⎟⎟⎠
d n̂k

(m) d
c̄� n

K

(
1 +

K
√
t ln n

c̄�

√
2 n

)⎫
⎪⎬⎪⎭
e 1 − 2n−t

implies the second inequality in (A.6). The first inequality in (A.6) can be proved in a similar manner. ¦

Proof of Lemma 3. Denote D = diag(n1,& , nK ), D̂
(m) =

(
Z(m)

)⊤ (
Z(m)

)
= diag(n̂(m)

1
,& , n̂

(m)
K

), where nk = n�k and n̂
(m)
k

are defined in
(16). Consider matrices

U (m) = Z(m)
(
D̂(m)

)−1∕2

* ýn,K , Ũ (m) = (I −ÿ)U (m), m * [M],
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where ÿ is defined in (5), and note that ām = span
(
Ũ (m) ⊗ Ũ (m)

)
. For m * [M], denote

Ē = n−1∕2
(√

n1,& ,
√
nK

)⊤
, Ē̂(m) = n−1∕2

(√
n̂
(m)

1
,& ,

√
n̂
(m)
K

)⊤

, �Ē̂(m) = Ē̂(m)(Ē̂(m))⊤, (A.18)

where �Ē̂(m) are the projection matrices and �é

Ē̂(m)
= IK −�Ē̂(m) . Then, for m * [M], due to Ān = Z(m)ĀK , one has

Ũ (m) = U (m)

{
IK −

(
D̂(m)

)1∕2 ĀKĀ
⊤
n

n
Z(m)

(
D̂(m)

)−1∕2
}

.

Now, since
(
D̂(m)

)1∕2

ĀK =
√
n Ē̂(m) and Ā⊤nZ

(m)
(
D̂(m)

)−1∕2

=
√
n (Ē̂(m))⊤, one obtains

Ũ (m) = (I −ÿ)U (m) = U (m)
{
IK − Ē̂(m)(Ē̂(m))⊤

}
= U (m)�é

Ē̂(m)
. (A.19)

Note that, �é

Ē̂(m)
= V̂ (m)(V̂ (m))⊤, for some matrix V̂ (m) * ýK,K−1. Denote

W̃ (m) = U (m)V̂ (m) * ýn,K−1, m * [M]. (A.20)

Hence,

Ũ (m) = W̃ (m)(V̂ (m))⊤ and ām = span

{(
W̃ (m) ⊗ W̃ (m)

)(
V̂ (m) ⊗ V̂ (m)

)⊤
}

.

Consider ď(li) with c(li) = mi, i = 1, 2. Due to (3), (6)–(7) and (A.19), obtain

ď(li) =
(
U (mi) ⊗U (mi)

) (
�é

Ē(mi )
⊗�é

Ē(mi )

)
Ā̃(li), i * {1, 2}.

If m1 = m2 = m, then, due to (U (m))⊤U (m) = IK and using Theorem 1.2.22 in [16], obtain

(ď(l1))⊤ď(l2) = (̃Ā(l1))⊤
(
�é

Ē(m)
⊗�é

Ē(m)

)
Ā̃(l2) =

{
vec(B̃(l1))

}⊤
vec

(
�é

Ē(m)
B̃(l2)�é

Ē(m)

)
= Tr

(
B̃(l1)�é

Ē(m)
B̃(l2)�é

Ē(m)

)

=
{
vec(�é

Ē(m)
)
}⊤ (

B̃(l1) ⊗ B̃(l2)
)
vec

(
�é

Ē(m)

)
,

so that

|(ď(l1))⊤ď(l2)| e �min(B̃
(l1))�min(B̃

(l2))
‖‖‖vec(�

é

Ē(m)
)
‖‖‖
2
.

Since B̃(li) =
√
D(m)B(li)

√
D(m), by Assumptions A1–A3, one has

�min(B̃
(li)) e �min(D

(m)) �min(B
(li)

0
) �n e C̃0C�,0 �max(B

(li)

0
)n �n∕K

and ‖‖‖vec(�é

Ē(m)
)
‖‖‖
2
=
‖‖‖�é

Ē(m)

‖‖‖
2

F
= K − 1. Hence, for K e 2 and c(l1) = c(l2), one has

|(ď(l1))⊤ď(l2)| e (C̃0 C�,0)
2 �max(B

(l1)

0
) �max(B

(l2)

0
)n2�2n∕(2K). (A.21)

Using (A.21) with l1 = l2 = ā and taking into account that �max(B
(ā)

0
) e C by Assumption A1, obtain that, for K e 2,

‖ď(ā)‖ e 0.5 C̃0 C C�,0 K
−1∕2 n�n

which implies the first inequality in (A.7). On the other hand, if l1 = l2 = ā, then

‖ď(ā)‖ d �max(D
(m)) �n �max(B

(ā)

0
) ‖vec(�é

Ē(m)
)‖ d

̃̃
C0 �max(B

(ā)

0
) n �n K

−1∕2,

which yields the second inequality in (A.7).
In order to prove (A.8), note that, due to ‖�(K−1)(Ã

(ā)) − Ã(ā)‖2 d ‖P̃ (ā) − Ã(ā)‖2 and ‖P̃ (ā) − Ã(ā)‖ d ‖P (ā) − A(ā)‖, one derives

‖ ̂̃P
(ā)

− P̃ (ā)‖2
F
d 2K‖�(K−1)(Ã

(ā)) − P̃ (ā)‖2 d 2K
{
2‖�(K−1)(Ã

(ā)) − Ã(ā)‖2 + 2‖Ã(ā) − P̃ (ā)‖2
}
d 8K ‖P (ā) − A(ā)‖2.

Using Theorem 5.2 of [26], for any t > 0, with probability at least 1 − n−t, obtain ‖P (ā) − A(ā)‖ d Ct,�

√
n�n, where Ct,� depends on

C�, C̄ and t only. Hence, with probability at least 1 − n−t, one has

‖ď̂(ā) − ď(ā)‖ = ‖ ̂̃P
(ā)

− P̃ (ā)‖F d 2
√
2Ct,�

√
K n�n .

Application of the union bound and (A.7) yields that, with probability at least 1 − Ln−t,

max
ā

‖ď̂(ā) − ď(ā)‖
‖ď(ā)‖ d

2
√
2Ct,�

√
�nKn

√
K

C̃0 C C�,0�nn
,

which completes the proof. ¦
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Proof of Lemma 4. Consider Ė * ām and Ė2 * ām2 , where m � m2. Then Ė =
(
W̃ (m) ⊗ W̃ (m)

)
Ĕ, where Ĕ * R(K−1)2 and W̃ (m) is

defined in (A.20), and

‖Ė‖2 = Ĕ⊤
{(

W̃ (m)
)⊤

W̃ (m) ⊗
(
W̃ (m)

)⊤
W̃ (m)

}
Ĕ = ‖Ĕ‖2.

Similarly, Ė2 =
(
W̃ (m2) ⊗ W̃ (m2)

)
Ĕ2, where Ĕ2 * R(K−1)2 and ‖Ė2‖ = ‖Ĕ2‖. Then, using the Cauchy–Schwarz inequality, obtain

|Ė⊤Ė2| d ‖Ė‖ ‖‖‖‖
(
W̃ (m)

)⊤
W̃ (m2) ⊗

(
W̃ (m)

)⊤
W̃ (m2)

‖‖‖‖ ‖Ė
2‖.

Since W̃ (m) = Ũ (m)V̂ (m) and V̂ (m) * ýK,K−1, m * [M], it is easy to see that

‖‖‖‖
(
W̃ (m)

)⊤
W̃ (m2) ⊗

(
W̃ (m)

)⊤
W̃ (m2)

‖‖‖‖ =
‖‖‖‖
(
W̃ (m)

)⊤
W̃ (m2)

‖‖‖‖
2

d
‖‖‖‖
(
Ũ (m)

)⊤
Ũ (m2)

‖‖‖‖
2

.

Therefore, if Ė * ām, Ė
2 * ām2 , and ‖Ė‖ = ‖Ė2‖ = 1, m � m2, then

|Ė⊤Ė2| d ‖‖‖‖
(
Ũ (m)

)⊤
Ũ (m2)

‖‖‖‖
2

. (A.22)

In order to derive an upper bound for (A.22) when m � m2, note that matrix Ũ (m), defined in (A.19), has elements

Ũ
(m)
j,k

= (n̂
(m)
k

)−1∕2

{
I(�

(m)
j

= k) − n−1
n1
i=1

I(�
(m)
i

= k)

}
,

n1
j=1

Ũ
(m)
j,k

= 0.

Rows of matrix Ũ (m) are identically distributed but not independent, which makes the analysis difficult. For this reason, we consider

proxies ̃̃
U

(m)

for Ũ (m) with elements

̃̃
U

(m)

j,k =
1√
nk

I(�
(m)
j

= k) −

√
nk

n
�

1√
n�k

{
I(�

(m)
j

= k) − �k

}
, j * [n], k * [K]

so that E ̃̃
U

(m)

j,k = 0. Rows of ̃̃U
(m)

are i.i.d. and also ̃̃
U

(m)

and ̃̃
U

(m2)

are independent when m � m2. Hence, matrices ̃̃
U

(m)

are i.i.d. with

E
̃̃
U

(m)

= 0. We shall use the following statements, proved later in Appendix A.

Lemma 7. Let ÿ̄ = (�1,& , �K ) be such that �k e c
�
∕K for k * [K]. Then, there exists a set 
̃t with Pr(
̃t) e 1 − 2KM2n−t such that,

for any ! * 
̃t,

max
1dm1 ,m2dM

m1�m2

‖‖‖‖‖

(
̃̃
U

(m1)
)⊤

̃̃
U

(m2)‖‖‖‖‖
d

2K
√
t ln n√
n

.

In order to obtain an upper bound for (A.22) when m � m2, use the fact that proxies ̃̃
U

(m)

are close to Ũ (m). Indeed, the following
statement is valid.

Lemma 8. Let ÿ̄ = (�1,& , �K ) be such that �k e c
�
∕K, k * [K]. Then, there exists a set ̃̃
t with Pr(

̃̃

t) e 1 − 2KMn−t such that, for

any ! *
̃̃

t, one has

� � max
1dmdM

‖‖‖‖‖
̃̃
U

(m)

− Ũ (m)
‖‖‖‖‖
d

K
√
2t ln n

c
�

√
n

.

Then, due to

‖‖‖Ũ
(m)‖‖‖ =

‖‖‖(I −ÿ)U (m)‖‖‖ d 1,
‖‖‖‖‖
̃̃
U

(m)‖‖‖‖‖
d
‖‖‖Ũ

(m)‖‖‖ +
‖‖‖‖‖
̃̃
U

(m)

− Ũ (m)
‖‖‖‖‖
,

derive for any m1, m2

‖‖‖‖
(
Ũ (m1)

)⊤
Ũ (m2)

‖‖‖‖ d

‖‖‖‖‖

(
̃̃
U

(m1)
)⊤

̃̃
U

(m2)‖‖‖‖‖
+
‖‖‖‖‖

(
̃̃
U

(m1)

− Ũ (m1)

)⊤
̃̃
U

(m2)‖‖‖‖‖
+
‖‖‖‖‖
(
Ũ (m1)

)⊤
(
̃̃
U

(m2)

− Ũ (m2)

)‖‖‖‖‖
d

‖‖‖‖‖

(
̃̃
U

(m1)
)⊤

̃̃
U

(m2)‖‖‖‖‖
+ �(1 + �) + �.

Now, let 
̌t = 
̃t K
̃̃

t. Note that � < 1 for n large enough. Then, Pr(
̌t) e 1 − 2KM(M + 1)n−t and, for ! * 
̌t, one has

max
m�m2

‖‖‖‖
(
Ũ (m)

)⊤
Ũ (m2)

‖‖‖‖ d
K
√
2t ln n√
n

(√
2 +

3

c
�

)

which completes the proof. ¦
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Proof of Lemma 5. In addition, the last inequality and (A.21) imply that

|(Ė(l1))⊤Ė(l2)| = |(ď(l1))⊤ď(l2)|
‖ď(l1)‖‖ď(l2)‖ e

(C̃0 C�,0)
2

2(
̃̃
C0)

2

,

which completes the proof of the first inequality in (A.12). The second inequality in (A.12) is true by A5.
To prove (A.13), note that, for any l1 and l2, by the Cauchy–Schwarz inequality and (A.10), one has

|(ė(l1))⊤ė(l2) − (Ė(l1))⊤Ė(l2)| d |(ė(l1))⊤ (
ė(l2) − Ė(l2)

) | + | (ė(l1) − Ė(l1)
)⊤

Ė(l2)| d 2 max
1dādL

‖ė(ā) − Ė(ā)‖ d 2�n,K,t

for ! * 
t, where 
t and �n,K,t are defined, respectively, in Theorem 1 and (18). Then, using (A.12), for c(l1) = c(l2) = m and ! * 
t,
obtain

min
l1 ,l2

|(ė(l1))⊤ė(l2)| e |(Ė(l1))⊤Ė(l2)| − 2�n,K,t e Č∕2

if n is large enough, due to �n,K,t ³ 0 as n ³ @. If c(l1) � c(l2), then, again by (A.12), for ! * 
t, derive

max
l1 ,l2

|(ė(l1))⊤ė(l2)| d �n,K + 2�n,K,t

which completes the proof. ¦

Proof of Lemma 7. Note that ̃̃U
(m)

are i.i.d. for m * [M], so, for simplicity, we can consider m * {1, 2}. Let S =

(
̃̃
U

(1)
)⊤

̃̃
U

(2)

* RK×K .

Since ̃̃
U

(1)

and ̃̃
U

(2)

are independent and E

(
̃̃
U

(m)
)

= 0, obtain ES = 0. Now let ē(m)
j

=
̃̃
U

(m)

(j, ∶) be the jth row of ̃̃
U

(m)

, j * [n].

Then,

S =

n1
j=1

S(j), S(j) =
(
ē
(1)
j

)⊤
ē
(2)
j

* R
K×K , j * [n].

Note that S(j) are independent, ES(j) = 0, and rank(S(j)) = 1. Hence, ‖S(j)‖ = ‖S(j)‖F = ‖ē(1)
j
‖‖ē(2)

j
‖. Also, note that, due to1K

k=1 I(�
(m)
j

= k) = 1 and 1∕�k d K∕c
�
, one has

‖ē(m)
j

‖2 =
K1
k=1

(
̃̃
U

(m)

j,k

)2

=

K1
k=1

1

nk

{
I(�

(m)
j

= k) − �k

}2

d
K

c
�
n
.

Hence, ‖S(j)‖ d K∕(c
�
n).

Now, we are going to apply matrix Bernstein inequality to matrix S. Observe that

E(S⊤S) = E(SS⊤) =

n1
j=1

E
{
S(j)(S(j))⊤

}
,

where E
{
S(j)(S(j))⊤

}
= E

{
(ē

(1)
j
)⊤ē

(1)
j

}
E
‖‖‖ē

(2)
j
‖‖‖
2
. Therefore,

‖‖‖E
{
S(j)(S(j))⊤

}‖‖‖ = E
‖‖‖ē

(2)
j
‖‖‖
2 ‖‖‖‖E

{
(ē

(1)
j
)⊤ē

(1)
j

}‖‖‖‖ .

Since the operator norm is a convex function, by Jensen inequality and due to rank
{
(ē

(1)
j
)⊤ē

(1)
j

}
= 1, obtain

‖‖‖‖E
{
(ē

(1)
j
)⊤ē

(1)
j

}‖‖‖‖ d E
‖‖‖(ē

(1)
j
)⊤ē

(1)
j
‖‖‖ = E

‖‖‖ē
(1)
j
‖‖‖
2
.

On the other hand, it is easy to show that, for any m, one has E
‖‖‖ē

(m)
j

‖‖‖
2
d K∕n. Therefore, ‖‖‖E

{
S(j)(S(j))⊤

}‖‖‖ d n−2 K2, so that

‖E(SS⊤)‖ d n−1 K2. Now applying Theorem 1.6.2 (matrix Bernstein inequality) in [46], derive that, for any x > 0, one has

Pr (‖S‖ > x) d 2K exp

{
−

x2∕2

n−1 K2 + n−1 Kx∕(3 c
�
)

}
. (A.23)

For any t > 0, setting x = 2K n−1∕2
√
t ln n ensures that, for n large enough, the denominator of the exponent in (A.23) is bounded

above by 2K2 n−1. Then, for any m1, m2 * [M], obtain

Pr
(
‖S‖ e 2K n−1∕2

√
t ln n

)
= Pr

{‖‖‖‖‖

(
̃̃
U

(m1)
)⊤

̃̃
U

(m2)‖‖‖‖‖
e 2K n−1∕2

√
t ln n

}
d 2Kn−t. (A.24)

To complete the proof, apply the union bound to (A.24) and let 
̃t be the set where this union bound holds. ¦
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Proof of Lemma 8. Since Ũ (m) and ̃̃
U

(m)

are i.i.d. for every m, for simplicity, we drop the index m. By definition, for k * [K], one
has

Ũ (∶, k) = U (∶, k) − n−1∕2 Ān ç Ē̂k,
̃̃
U (∶, k) = U (∶, k)

√
n̂k∕

√
nk − n−1∕2 Ān ç Ēk.

Hence,

Ũ = U − n−1∕2 Ān Ē̂
⊤,

̃̃
U = U� − n−1∕2 ĀnĒ

⊤, with � = diag

(√
n̂1√
n1

,& ,

√
n̂K√
nK

)
,

where Ē̂ and Ē are defined in (A.18). Then,

‖‖‖‖
̃̃
U − Ũ

‖‖‖‖ d ‖U (� − I)‖ + n−1∕2
‖‖‖Ān(Ē̂ − Ē)⊤

‖‖‖ d ‖I − �‖ + ‖‖‖Ē̂ − Ē
‖‖‖ = max

1dkdK

||||||
1 −

√
n̂k√
nk

||||||
+

{
K1
k=1

(
√
n̂k −

√
nk)

2

n

}1∕2

. (A.25)

Since, for a, b > 0, one has |√a −
√
b| d |a − b|∕√b, and nk = n�k e c

�
n∕K, one can easily show that

||||||
1 −

√
n̂k√
nk

||||||
d

K

c
�
n
|n̂k − nk|,

K1
k=1

(
√
n̂k −

√
nk)

2

n
d

K

c
�
n2

K1
k=1

(n̂k − nk)
2.

Now, recall that n̂k =
1n

j=1 I(�j = k) and E(n̂k) = nk, and, using Hoeffding inequality, for any x > 0, obtain

Pr
(||n̂k − nk

|| e n x
)
d 2 exp {−2nx2}.

For any t > 0, setting x =
√
t ln n∕(2n) and taking the union bound, derive

Pr

⎛
⎜⎜⎝
max
1dmdM
1dkdK

||||||
n̂
(m)
k

− n
(m)
k

n

||||||
d

√
t ln n

2n

⎞
⎟⎟⎠
e 1 − 2KMn−t. (A.26)

Now let ̃̃

t be the set where (A.26) holds. Then for ! *

̃̃

t, one has

‖I − �‖ d
K

c
�

√
t ln n

2n
, ‖Ē̂ − Ē‖ d

√
K2

c
�

√
t ln n

2n
. (A.27)

Finally, combining (A.25) and (A.27), for ! *
̃̃

t, we arrive at

max
1dmdM

‖‖‖‖‖
̃̃
U

(m)

− Ũ (m)
‖‖‖‖‖
d n−1∕2 K

√
2t ln n∕c

�

which completes the proof. ¦

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2024.105333.
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