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Abstract

1. Low-coverage whole-genome sequencing (WGS) is increasingly used for the study
of evolution and ecology in both model and non-model organisms; however, ef-
fective application of low-coverage WGS data requires the implementation of
probabilistic frameworks to account for the uncertainties in genotype likelihoods.

2. Here, we present a probabilistic framework for using genotype likelihoods for
standard population assignment applications. Additionally, we derive the Fisher
information for allele frequency from genotype likelihoods and use that to de-
scribe a novel metric, the effective sample size, which figures heavily in assign-
ment accuracy. We make these developments available for application through
WGSassign, an open-source software package that is computationally efficient
for working with whole-genome data.

3. Using simulated and empirical data sets, we demonstrate the behaviour of our as-
signment method across a range of population structures, sample sizes and read
depths. Through these results, we show that WGSassign can provide highly ac-
curate assignment, even for samples with low average read depths (<0.01X) and
among weakly differentiated populations.

4. Our simulation results highlight the importance of equalizing the effective sample
sizes among source populations in order to achieve accurate population assign-
ment with low-coverage WGS data. We further provide study design recom-
mendations for population assignment studies and discuss the broad utility of

effective sample size for studies using low-coverage WGS data.
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1 | INTRODUCTION

In just a few years, next-generation sequencing (NGS) technolo-
gies have revolutionized the study of evolution and ecology in both
model and non-model organisms, and have become established as
standard tools in molecular ecology. In particular, whole-genome
sequencing (WGS) can provide sequence data from a large propor-
tion of the genome and is increasing in use. While large-scale WGS
projects can be prohibitively expensive at the necessary read depths
for accurately calling individual genotypes, low-coverage WGS of-
fers a cost-effective approach aimed at reducing the read depth
per individual while retaining sufficient information for genomic
analyses. However, since low-coverage WGS precludes the ability
to call individual genotypes, probabilistic frameworks are used to
account for the uncertainty in an individual's genotype (Buerkle &
Gompert, 2013; Nielsen et al., 2011). Extending common analyses
in the field of molecular ecology to accommodate genotype uncer-
tainty through the direct use of genotype likelihoods is a necessary
advance for broadening the utility of low-coverage WGS.

The creation of probabilistic frameworks for allele frequency es-
timation, genotype calling and single nucleotide polymorphism (SNP)
calling have made low-coverage WGS practical for many applications
(Kim et al., 2011; Nielsen et al., 2011, 2012). By first estimating the
joint site frequency spectrum for individuals without calling individ-
ual genotypes, priors on allele frequency can improve the calling of
individuals' genotypes and SNPs. Population genetic analyses have
been further advanced through the development of methods that
quantify genetic differentiation and investigate population structure
with principal components analysis, while accounting for uncertain
genotypes (Fumagalli et al., 2013). Similarly, accurate estimates of
individual admixture proportions (Skotte et al., 2013) and pairwise
relatedness (Korneliussen & Moltke, 2015) can be obtained using
genotype likelihoods. The widespread use of these methods is fa-
cilitated by software that is both user-friendly and computationally
efficient (e.g. ANGSD (Korneliussen et al., 2014), ngsTools (Fumagalli
et al., 2014), PCangsd (Meisner & Albrechtsen, 2018)). However, a
fundamental analysis for molecular ecology yet to be developed for
low-coverage WGS data is population assignment.

Population assignment methods are used to determine an indi-
vidual's population of origin and have provided insight into ecological
and evolutionary processes, such as dispersal, hybridization and mi-
gration, as well as informed conservation and management decisions
(Manel et al., 2005). The traditional assignment test uses an individ-
ual's multilocus genotype and the source populations' allele frequen-
cies to calculate the likelihood of the genotype originating from each
of the populations (Paetkau et al., 1995; Rannala & Mountain, 1997).
Using this framework, the recent increase in available markers (e.g.
from RADseq approaches) has made possible highly accurate as-
signment of individuals among weakly differentiated populations
by using subsets of informative loci for population structure (e.g.
Benestan et al., 2015; DeSaix et al., 2019; Ruegg et al., 2014). The
traditional assignment test is readily extended to analyses such as
genetic stock identification (GSI), to determine the proportion of

source populations in a mixture of individuals Smouse et al., 1990. To
date, methods for performing assignment tests require known gen-
otypes and have not been implemented to use genotype likelihoods.

Assignment tests are well suited for application with low-
coverage WGS data, because they rely heavily on allele frequency
estimates, for which a number of approaches are already developed.
However, a challenge with using low-coverage WGS data for assign-
ment tests is that the allele frequency estimates may be uncertain,
which could lead to inaccurate assignment results. While this chal-
lenge is not unique to low-coverage WGS data, as low sample size
also increases uncertainty regardless of sequencing coverage, the
challenge of accurate allele frequency estimation is compounded
for low-coverage WGS by low read depth. For accurate allele fre-
quency estimation from low-coverage WGS data, specific recom-
mendations include aiming for individual sequencing depths of 1x
(Buerkle & Gompert, 2013) or having at least 10 individuals se-
quenced with a total per-population sequencing depth of at least
10x (Lou et al., 2021). The goal of these strategies is to maximize
information for estimating allele frequencies given finite resources
for sequencing depth and number of samples. Lower sequencing
depth decreases the amount of information about population allele
frequency, while using larger sample sizes increases the amount of
information. However, information is not directly quantified in these
studies; rather comparison of known versus simulated allele fre-
quencies was used to arrive at these general rules of thumb (Buerkle
& Gompert, 2013; Lou et al., 2021). The development of an infor-
mation metric that accounts for read depth variation across geno-
types would provide a valuable method to quantify the thresholds
of information needed for parameter estimation with low-coverage
WGS data. For population assignment tests, an information metric
of this sort would allow researchers to more directly identify the
necessary sample size and sequencing depth needed to perform ac-
curate assignment given the genetic differentiation of their samples.
Furthermore, given that unequal sample size among reference pop-
ulations is a source of bias in assignment tests with called genotypes
(Wang, 2017), an information metric would allow the identification
and mitigation of biased assignment due to the combined influence
of unequal sample sizes and sequencing depths among populations.

Here, we present WGSassign, an open-source software package
of population assignment tools for genotype likelihood data from
low coverage WGS. The objectives of WGSassign are (1) to provide
common assignment methods that use genotype likelihoods, instead
of called genotypes; (2) to evaluate the information available in low-
read depth sequencing data for allele frequency estimation; and (3)
to achieve computational efficiency for processing large numbers of
samples with genome-wide data. WGSassign provides methods for
individual assignment and leave-one-out cross-validation of samples
of known origin. Additionally, it calculates a z-score metric that can
indicate when samples originate from an unsampled source pop-
ulation. For the second objective, we calculate Fisher information
(Casella & Berger, 2021) and determine the effective sample size—the
number of samples with completely observed genotypes that would
yield the same amount of statistical information for estimating allele
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frequency as the observed genotype likelihoods in a data set. This
calculation of effective sample size has broad utility for population
genomics studies using low-coverage WGS.

We validate WGSassign and investigate its behaviour with an
extensive set of simulations and demonstrate its use on two empir-
ical data sets. In the first, we apply WGSassign to weakly differenti-
ated groups of yellow warblers (Setophaga petechia). In the second,
we apply WGSassign to two well-differentiated Chinook salmon
(Oncorhynchus tshawytscha) populations to demonstrate that when
sufficient effective sample sizes of the source population are avail-
able, unknown individuals can be assigned accurately, even at ex-
tremely low read depths.

2 | METHODS

WGSassign is written in Python 3 (https://www.python.org/) and
requires the following modules: numpy (https://numpy.org/), cython
(https://cython.org/) and scipy (https://scipy.org/). Detailed instruc-
tions for using WGSassign are available at https://github.com/mgdes
aix/WGSassign (DeSaix, 2023).

2.1 | Population assignment

We assume that there are K sampled source populations to which
an individual can be assigned using data from L biallelic loci in the
genome. Let a diploid individual's genotype at locus # (1 <7 <L)
be represented by G, € {0,1,2}, which counts the number of alleles
matching the reference genome carried by the individual at locus
¢. Denote by 6,, the true—but typically unknown—frequency of
the alternate allele at locus # within source population k. Under the
assumption of Hardy-Weinberg equilibrium, the probability of G,,
when the individual is from population k is:

(1-6,,)° if G,=0
P(G/10ks) =1 2(6,)(1-06y,) if G =1 )
(0r0)° if G, =2.

With low-coverage sequencing data, G, is not observed with cer-
tainty. Rather, evidence about the unknown genotype is obtained
from sequencing reads covering the locus. Let R, denotes the se-
quencing read data from an individual at locus #. The evidence for
the state of G, from the read data is summarized as the likelihood
of the genotype given the read data, which is simply the probability
of the read data given the genotype, considered as a function of the
genotype:

8s0 for G,=0
P(RH Gf) =9 81 forG,=1
8,2 for G,=2.
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Without loss of generality, we consider these likelihoods to be scaled
so that they sum to one: g, + 8,1 + 8, = 1. Such likelihoods are typ-
ically a function of the number of reads of each allele observed and
the corresponding base quality scores, and they are computed during
genotype calling by a variety of programmes such as bcftools (Li, 2011;
Li et al., 2009), GATK (McKenna et al., 2010) and ANGSD (Korneliussen
et al., 2014). An accessible review of the different models providing
genotype likelihoods is found in Lou et al. (2021).

Performing population assignment using read data from an indi-
vidual (rather than from directly observed genotypes) requires, for
each locus, Z, the likelihood that the individual came from a source
population k, say, given the individual's read data. This is simply the
probability of the read data from the individual given that the individ-
ual came from source population k, with allele frequencies 6, ,. Thus,
we require P(R,| 6, ), which can be calculated from Equations (1)

and (2) using the law of total probability:

2

Y P(R/G,)P(G,16y,)

é,=o @)
=g,0(1- ‘9k,f)2 +9,12(0,) (1-6k ) +3, (Gk,f>2'

P(Rf|9k,f)=

If the L loci in the genome are not in linkage disequilibrium (LD)
and are hence independent of one another, within source popula-
tions, then the likelihood of source population k given R, the read
sequencing data across the entire genome, is simply the product

over loci.

L
P(RI6) = [TP(R:0k,), (4)
=1

where 6, denotes the set of all L allele frequencies in population
k. Of course, with WGS, some variants may be near one another
and will then likely be in LD. In such a case, Equation (4) is not cor-
rect, but, rather, is a composite-likelihood approximation to the
true likelihood (which is largely intractable). Composite likelihood
estimators often produce unbiased results, but, because they do
not take account of the dependence of different variables in the
likelihood, they typically underestimate the uncertainty in the es-
timates (Larribe & Fearnhead, 2011). Given the unbiased nature of
composite likelihood estimators, LD pruning of the WGS data is not
necessary. For each individual of unknown origin, this likelihood
can be computed for each source population, k, and the relative
values of those likelihoods give the evidence that the individual
came from each of the source populations. If the prior probabil-
ity =, that an individual came from source population k is available
forke {1, ...
posterior probability that the individual came from each of the

,K1, then the likelihoods can be used to compute the

source populations:

=,P(R| 6
P(Z=KIR Oy ... Ok, 71, ., 7g) = M 5)
E, 1”kP(R|9k)

where Z is a random variable indicating the origin of the individual.
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In practice, the allele frequencies in each source population are
not known with certainty. Accordingly, these frequencies must be
estimated from sequencing read data from individuals known to be
from the source populations (these are often referred to as ‘refer-
ence samples’). We estimate these by maximum likelihood. The
probability of the read data, R;’;), from the ith reference sample, given
that it came from source population k, is, following Equation (3),

P(RV10,, ) = 805(1=01,)" +8012(01r) (1= 6,) + 80, (Bie) 0

where the genotype likelihoods are now adorned with a superscript
(i) to denote they are for the ith reference sample. Assuming the sam-
ples from source population k are not related, the log-likelihood for 6, ,

given the read data from all n reference samples from population k is:

L(0,,) = Y log P(R? 10y, )- (7)
i=1

In our implementation, we first use the expectation-max-
imization algorithm (Dempster et al., 1977) from ANGSD (Kim
et al., 2011) and the code as implemented in PCangsd (Meisner &
Albrechtsen, 2018), to obtain the maximum likelihood estimates
(MLEs) of the population allele frequencies, @kyf, from the reference
samples. Then, when calculating P(R| 6, ), we substitute 8, , for 6, ,,
calculated as follows:

v if0<, <1,
1 o
. - itd, , =0,
Or =9 2(n+1) ke (8)
1 on
1-—= iff,, =1,
2(m+1) ¢

where, again, ny is the number of reference samples from source pop-
ulation k. This provides a correction for cases in which the allele exists
in a source population, but was not detected in the reference samples
from that population—effectively, it adds one more individual to the
sample that carries one copy of the allele not previously seen in that ref-
erence population. Without this correction, the P(R;f)| 0,(,,;> =0inthe
absence of an allele and the L (6, ) cannot be calculated. This approach
is identical to the ‘Frequency Criterion’ used in GENECLASS 2.0 with
the ‘adjustable default value’ set to 1 / (2n + 1). Another approach, due
to Rannala and Mountain (1997), that places beta priors, independently
for each population and locus, on the allele frequencies, has also been
widely used in population assignment methods. Implementing that ap-
proach with genotype likelihoods is more computationally challenging
than with observed genotypes, and since extensive simulations (not
shown) revealed no substantial differences between the two methods,

we adopted the ‘Frequency Criterion’ approach.
2.2 | Fisher information and effective sample size
As should be clear from the preceding development, the accuracy of

population assignment depends, at least in part, on the accuracy of
the estimates of the allele frequencies from each source population.

In this section, we develop the theory (which is then implemented
in WGSassign) that provides the user with a measure of allele fre-
quency estimate accuracy, calculated from the genotype likelihoods
in the reference samples, that takes account of both sample size and
read depth. We define this metric as the effective sample size: The
number of diploid individuals with called genotypes that provide the
same amount of information for allele frequency as the observed
information from the low-coverage WGS samples. Fewer individuals
sampled and lower sequencing depth will result in less information
in the data regarding allele frequency.

As noted above, estimates of the allele frequencies are made
by maximum likelihood using the sequencing data on the reference
samples from each source population. Fisher information is a statis-
tical metric that quantifies the amount of information in a sample
for estimating an unknown, continuous parameter (Fisher, 1922).
It measures the curvature of the log-likelihood function and is in-
versely related to the variance. In visual terms, a sharply peaked
log-likelihood curve (i.e. one with greater curvature) for a parame-
ter indicates greater certainty in the estimated parameter (and, also
higher Fisher information) than a flatter log-likelihood function.
Formally, the curvature is measured by the negative second deriv-
ative of the log-likelihood function. The observed Fisher information
for allele frequency is that negative second derivative evaluated at
the MLE:

©)

Ok =0k,

Appendix A shows how Ig)(ekf), the observed Fisher information for
6y, in the reads from a single individual, i, is found to be:

2(32,)0 +gg?2 - 235,)1)

19(64,) =

A

. ~ 2 N A2
32,)0 ( 1-6, ) +3g,)120kf (1 - gk,f) +3g,)2 ek,t’
20, (32)0 +8),~ S)1> +2 (3;’[,)1 _3%)

. ~ 2 N ~ )
8%(1—9k,f) +3;)129k,f<1—9k,f) +3,<(,'2)9kf

(10)

+

The observed Fisher information from all n, reference samples is then
Simply, I, (61,) = X%, 19 (6,)

To derive A, our effective sample size metric for locus £, we com-
pare this observed Fisher information to the expected Fisher infor-
mation that would be obtained from 2/, gene copies with allelic type
directly observed (Appendix A) from a population in which the true

allele frequency is 6y ,:

2%
o (00) = —————. 11
br (1B ) )

Equating |, (6, ) tol,(6y ) and solving for i, yields:

o1 5 5
e = Slo(0hr) ¥ Bue (1= 0ir ) (12)
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This is the number of diploid individuals with perfectly observed gen-
otypes that provides the same information (and hence accuracy) for
estimating 6, , as is available from the sequencing read data from the
n, reference samples from source population k. We term f,, calculated
as above, the effective sample size of the read data from the reference
samples of source population k at locus 7. In practice, to avoid issues
of non-differentiability on the boundaries of the space (i.e. at& = 0 or
0 = 1), we calculate i, using ékf. The effective sample size for a popula-
tion is then derived by taking the mean of fi;across all loci, /i = % Z,Lﬂ n,.
In practice, the estimates of information are highly variable for rare al-
leles; therefore, we recommend this calculation be done for loci with a
minor allele frequency > 0.05.

Fisher information and effective sample size calculated in this
way are useful summaries for understanding the trade-offs between
sequencing more individuals at lower depth versus fewer individuals
at higher depth, at least as it pertains to accurately estimating allele
frequencies. In the context of population assignment, the effective
sample size, in particular, provides an accessible metric for how good
(or bad) the source-population allele frequencies can be expected to
be. As we will see later, Fisher information also provides a valuable
way to standardize the effective sample size of the reference sam-
ples from each population—an important consideration when using
WGSassign. A useful statistic for accomplishing this is the individual-
specific average effective size for individual i:

L
O = % 3 %lg?(okf) xB, (1-0,0 ), (13)

where Ig)(ek,,;) is the contribution to the observed Fisher information
of the reads from individual i:

a*log P(R?16,,
L 1%
: 2602,

Ok =i

A ranges between 0 and 1.

We also implement a z-score calculation for determining whether
an individual's genotype is unlikely to have come from one of the K
source populations, but rather, from an unsampled population. The
full derivation of the method is shown in Appendix B. In short, we
determine the expected distribution of log probabilities of an indi-
vidual's genotype likelihoods arising from a population (given the
individual's allele counts across loci and the population's allele fre-
quencies), using a central limit theorem approximation. The z-score
is then calculated by subtracting the mean expected likelihood from
the observed likelihood and dividing the difference by the standard
deviation of the expected likelihoods. Given that the actual distribu-
tion of the z-score is likely to deviate from a standard normal distri-
bution, we further standardize the observed z-score by the z-scores
of the reference individuals from the source populations. Individuals
truly from an assigned population are expected to have z-scores
within several (e.g. three) standard deviations of the normal distri-
bution, while individuals from an unsampled but differentiated pop-
ulation are expected to have z-scores that fall below the expected
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range of a standard unit normal random variate. The determination
of the specific standard deviation cut-off for the z-score must be

determined from the specific empirical data.

2.3 | Simulations to illustrate the effective
sample size

We used the R programming language to run simulations that illus-
trate how Fisher information and effective sample size vary across
a range of simulated read depths and true allele frequencies. Our
simulations assumed a sample size of 100 diploid individuals and a
single biallelic locus, with allelic types within individuals being inde-
pendent of each other.

For each individual, we simulated read depth from a Poisson dis-
tribution with mean D, and allelic types upon each read by sampling
from the two gene copies within the individual with equal probabil-
ity and switching the allelic type with probability 0.01 for each read
to simulate sequencing errors. Genotype likelihoods from the reads
were calculated according to the simulation model. We calculated
the maximum likelihood estimate (MLE) for 8 from the genotype data
as the observed proportion of alleles, and for the sequencing read
data, we used the EM algorithm to compute the MLE. Using these
estimates, we then computed the observed information from the
genotypes and from the genotype likelihoods.

To determine the effective sample size, we calculated the ex-
pected information for observed genotypes, assuming the true
value of # was the MLE from the genotype likelihoods and then used
Equation (12).

We ran these simulations across values of D, . € {0.1,0.5,1,2,3,4,5,
7,10,15,20,30,50} and values of 6 € {0.01,0.05,0.10, ... ,0.90,0.95,0.99},

simulating 50 replicate samples for each combination.

2.4 | Genetic simulations

To demonstrate the efficacy of WGSassign in performing population
assignment for a range of samples, read depths and genetic differ-
entiation among populations we simulated a series of genetic data
sets using the coalescent simulation program, msprime (Kelleher
et al., 2016). The first simulation included two populations, each
with an effective sizes of 1000, exchanging migrants. We simulated
ancestry for a genomic sequence of 10°® bases with a recombination
rate of 1078 and a mutation rate of 1077, per site and per generation.
To vary the genetic differentiation between populations, we varied
the lineage migration rate parameter between 0.0005 and 0.05 in 10
equal increments. From both populations, we sampled 10, 50, 100 or
500 individuals. Pairwise Fg; was calculated between the two popu-
lations using the sampled individuals and the genetic variants were
output in variant call format (VCF).

With the VCF file output from msprime, we used bcftools
(Li, 2011; Li et al., 2009) to remove any SNPs with a minor allele
frequency (MAF) less than 0.05 and randomly selected 100,000
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of the remaining SNPs. Genotype likelihoods were produced with
vcfgl (https://github.com/isinaltinkaya/vcfgl) based on mean read
depths of 0.1X, 0.5X, 1X, 5X, 10X or 50X. For each of the 240 pa-
rameter combinations (10 migration rates, 4 sample sizes and 6 read
depths), we simulated 10 replicates, for a total of 2400 simulated
data sets. Genotype likelihood output was converted to Beagle file
format with custom scripts, and we used these data as input into
WGSassign.

To determine the influence of genetic differentiation on as-
signment accuracy, we calculated the effective sample size and
leave-one-out (LOO) assignment accuracy for each population. In
WGSassign, LOO is performed by iteratively removing an individual
of known origin from its source population, calculating allele fre-
guencies within the source populations using the remaining individ-
uals and then calculating the likelihood that the removed individual
originated from each of the different source populations. The LOO
method is widely used to avoid the bias that arises from using train-
ing data that also include data being tested. The assigned population
was determined by maximum likelihood.

In the second simulation, we conducted a deeper assessment of
the behaviour of effective sample size and its influence on assign-
ment accuracy. We implemented two-population island models as
in the previous simulation, but included all sample combinations of
10, 30, 60 and 100 individuals for a population and read depths of
0.5X, 0.75X, 1X, 2X, 4X and 6X with 10 replicates for a total of 5760
simulations. We set migration rate at 0.005 for moderate genetic dif-
ferentiation based on the previous simulation. In each run, we sim-
ulated an extra 20 individuals from each of the two populations and
these individuals were held out from allele frequency calculations
for the respective population and used for standard assignment
accuracy. After performing initial assignment, if a population had a
higher effective sample size than the other population, then individ-
uals were removed to standardize the effective sample sizes, and
assignment was performed again. In this simulation, all SNPs were
used that had MAF > 0.05.

In the third simulation, we assessed the performance of the
WGSassign z-score metric for determining whether an individual
of unknown origin that is assigned to a population is actually from
an unsampled population. We implemented a three-population
stepping-stone model with 20, 60 or 110 individuals per population
using msprime. We varied the migration rate parameter between
0.0001 and 0.01 in 20 equal increments. Individuals had simulated
mean read depths of 1X or 5X. We used populations 1 and 2 in the
stepping-stone model as reference populations and calculated the
reference z-scores using WGSassign from all but 10 individuals in
these two populations. We assigned 10 individuals from population
3 and 10 from population 2 to the reference populations (1 and 2)
using WGSassign. We calculated the z-scores of these individuals'
assignments to demonstrate the behaviour of the z-score metric
for correctly assigned individuals (i.e. the individuals from popula-
tion 2 that were assigned to population 2) versus individuals from
an unsampled population (i.e. the individuals from population 3 that
were assigned to population 2).

Finally, to illustrate the relation of effective sample size to
read depth and absolute sample size for the purpose of study
design, we simulated from a two-population island-model co-
alescent to produce 10 replicates of all combinations of sam-
ple sizes in {10,12,15,20,30,60,80,120} and read depths in
{0.5X,0.75X, 1X, 2X, 3X, 4X, 5X, 6X} for a total of 640 simulations. The
two populations had the same number of samples and read depths,
and the migration rate was set at 0.005. Effective sample size was
calculated for all these replicate simulations. These values were cho-
sen such that ‘equal sequencing effort’ could be compared, in this
case for a total sequencing depth of 60X (e.g. 120 individuals at 0.5X
to 10 individuals at 60X).

2.5 | Application to empirical data

We used WGSassign on data from yellow warblers to testits accuracy
when applied to individuals from a species exhibiting isolation by dis-
tance (Bay et al., 2021; Gibbs et al., 2000). Previous work on yellow
warblers has found weak differentiation between populations, with
pairwise F¢r values on the order of 0.01 or less (Gibbs et al., 2000).
Blood samples from 105 individuals was collected via brachial veni-
puncture in the years 2020 and 2021. These served as reference
samples from three populations—North, Central and South—pre-
viously described in Bay et al. (2021) and Gibbs et al. (2000). We
extracted DNA from blood using the manufacturer's protocol for
Qiagen DNEasy Blood and Tissue Kits. Whole-genome sequenc-
ing libraries were prepared following modifications of lllumina's
Nextera Library Preparation protocol (Schweizer & DeSaix, 2023)
and sequenced on a HiSeq 4000 at Novogene Corporation Inc., with
a target sequencing depth of 2X per individual.

Sequences were trimmed with TrimGalore version 0.6.5 (https://
github.com/FelixKrueger/TrimGalore) and mapped to the NCBI
yellow warbler reference genome (Sayers et al., 2022) (accession
number JANCRA010000000) using the Burrows-Wheeler Aligner
software version 0.7.17 (Li & Durbin, 2009). After mapping, the re-
sulting SAM files were sorted, converted to BAM files and indexed
using Samtools version 1.9 (Li et al., 2009). We used MarkDuplicates
from GATK version 4.1.4.0 (McKenna et al., 2010) to mark read du-
plicates and clipped overlapping reads with the clipOverlap func-
tion from bamuUtil (https://genome.sph.umich.edu/wiki/BamUtil:_
clipOverlap). To reduce sequencing depth variation, we used the
DownsampleSam function from GATK to downsample reads from
BAM files with greater than 2X coverage, to 2X coverage. To identify
genetic markers from low-coverage WGS data, we used stringent
filtering options in ANGSD version 0.9.40 (Korneliussen et al., 2014)
of mapping quality >30 and base quality >33. We retained SNPs
with read data in at least 50% of individuals and an MAF > 0.05. The
genetic data are stored at https://doi.org/10.5061/dryad.h9wOvt4pj
(DeSaix et al., 2023).

We implemented principal components analysis (PCA) to ensure
reference samples from each of our source populations actually
showed geographic signatures of clustering in the PCA. In order to

ASURDIT SUOWIWO)) dANEaI1) d[qearidde Ay Aq PaUISA0S Ie SI[ONIE V() (aSN JO ST 10§ ATRIqU] SUI[UQ AJ[IA UO (SUODIPUOI-PUB-SULIA)/ WO K[1m’ KIRIqI[UI[U0//:sd)Y) SUONIPUOD) PUE SWLIT, 3y} 23S “[$20Z/10/0€] U0 Aeiqry aurfuQ A3[IM ‘987H1 X01Z-1+0T/1111°01/10p/wod K[im’ AIeiqrourjuo sjeuinoflsaqy/:sdny woiy papeofumod ‘0 ‘X012 40T


https://github.com/isinaltinkaya/vcfgl
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap
https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap
https://doi.org/10.5061/dryad.h9w0vt4pj

DEeSAIX ET AL.

BRITISH

assess our ability to accurately assign individuals of unknown origin
to breeding populations, we determined the accuracy of assignment
of the known breeding origin individuals using WGSassign's leave-
one-out approach.

For the second empirical data set, we applied WGSassign
to previously published data from Chinook salmon (Thompson
et al., 2020) to assess its utility in situations with low to extremely
low read depth and poor-quality DNA. For this scenario, we enter-
tained the task of assigning Chinook salmon to either the Klamath
River basin, or the Sacramento Basin. These populations are quite
distinct, with pairwise Fg; values between the basins on the order
of 0.1. So, it should be quite easy to distinguish fish from the two
basins. However, in WGS data from Thompson et al. (2020), there
were several fish from rivers in the Klamath basin collected from
carcasses with low read depth. These fish were excluded from
most analyses in Thompson et al. (2020) because they did not
reliably cluster with other fish from their populations on a PCA;
however, we evaluate here if their basin of origin can be recov-
ered using WGSassign. Additionally, through downsampling of
reads from the BAM files, we investigate if average read depths as
low as 0.001X in the sample being assigned can deliver accurate
assignments.

We included fish from the closely related Feather River Spring,
Feather River Fall, San Joaquin Fall and Coleman Late Fall collec-
tions as members of the Sacramento River source population,
while fish from the closely related Salmon River Fall and Spring and
Trinity River Fall and Spring collections constitute samples from the
Klamath River source population. With 64 fish in each source pop-
ulation, we removed the 12 fish from each that had the fewest se-
quencing reads to serve as our 24 ‘unknown’ fish to be assigned to
the populations. The remaining 52 in each population served as the
reference samples.

The genotype likelihoods for the reference sample were in a VCF
file produced by GATK. This was filtered using bcftools (Danecek
et al., 2021) to retain only biallelic SNPs with a MAF > 0.05 which
were missing data in fewer than 30% of the samples. Additionally,
data from chromosome 28, which holds a region strongly differen-
tiated between spring-run and fall-run Chinook salmon (Thompson
et al., 2020), were excluded. These genotype likelihoods were stored
in a Beagle-formatted file using a custom script.

The data for the test samples were extracted from BAM files.
We used samtools stats (Li et al.,, 2009) to determine the aver-
age read depth in each BAM and used that number with samtools
view to downsample each BAM five times with five separate seeds
to average read depth levels of 0.001X, 0.005X, 0.01X, 0.05X, 0.1X,
0.5X and 1.0X, when those read depths were lower than the full read
depth of the file. Genotype likelihoods for the 24 individuals were
then called with ANGSD v0.940 (Korneliussen et al., 2014) using the
-sites options to call only the sites found in the Beagle-formatted
file of the reference samples. After genotype likelihood estimation
in the test samples, the Beagle file of reference samples was filtered
to include only the sites output by ANGSD. The total number sites
in each data set was recorded, as was the number of informative
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sites (those with unequal likelihoods for the three different geno-
types) within each individual. The resulting Beagle files were then
passed to WGSassign to compute the likelihood of population origin
for each of the test fish, and the results were plotted using R version
4.0 (R Core Team, 2022).

3 | RESULTS
3.1 | Effective sample size simulations

Fisher information and effective sample size are shown for three rep-
resentative values of 8 (0.05, 0.3 and 0.5) in Figure 1. As expected,
observed Fisher information for allele frequency from sequencing
read data increases as the average sequencing depth increases,
reaching a limit at the observed information from fully observed
genotypes. The absolute value of the observed Fisher information
varies widely over the different allele frequencies; however, the
relative values of information from genotypes and from sequencing
reads vary less, and the effective sample size is largely consistent
across the range of minor allele frequencies from 0.05 to 0.5, show-
ing the effective sample size to be a useful metric. The flattening
of the curves for observed information from sequencing data as
the average read depth increases indicates the diminishing returns
of additional sequencing depth versus additional samples, for esti-
mating allele frequencies that has been noted previously (Buerkle &
Gompert, 2013; Fumagalli, 2013; Lou et al., 2021).

3.2 | Genetic simulations

In the first simulation, genetic differentiation between the sampled
individuals from the two populations ranged from -0.003 to 0.13
Fsr. Across all read depths within each category of number of sam-
ples (10, 50, 100, 500), assignment accuracy increased with genetic
differentiation and generally high assignment accuracy was achieved
even with low genetic differentiation (Figure 2). Accuracy above
90% was reached for all simulations within the 500 samples cat-
egory with Fs; > 0.004, 100 samples category with Fsr > 0.006, 50
samples category with Fs; > 0.015 and the 10 samples category with
Fsr > 0.043. Within each sample size category, increasing average
read depth, and therefore effective sample size, resulted in higher
assignment accuracy, especially when populations had weak genetic
differentiation (Figure 2).

Runtime for the simultaneous calculation of Fisher informa-
tion, effective sample size and allele frequency for populations in
WGSassign was fast. With two populations and 100,000 loci being
analysed in parallel with 20 threads, runtime was less than 10s for
populations with 100 samples or less, and between 15 and 30s
for populations with 500 samples. Leave-one-out assignment re-
quires population allele frequency to be recalculated for each in-
dividual in the population, and time required for that recalculation
increases linearly with sample size. Accordingly, runtime for LOO
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FIGURE 1 (a) Observed information calculated for simulated data summarized either as fully observed genotypes (purple) or as genotype
likelihoods (orange) computed from sequencing read data of different depths simulated from the genotypes. Fully observed genotype data
are not affected by read depth, but an independent set of fully observed genotypes was simulated for each different value of read depth,
and these are all shown in the figure. (b) Effective sample sizes calculated for simulated genotype likelihood data. In each figure, the facet
headers give the true population allele frequency, the x-axis gives the average read depth in the simulations and the distribution of quantities
in the y direction is summarized as boxplots showing the median (dark line) the first and third quartiles (the edges of the boxes) the largest
(or smallest) value no further than 1.5 x the interquartile range from the first (third) quartiles (the whiskers) and outliers beyond the whiskers

(individual points). All simulations had 100 individuals.

cross-validation is expected to increase quadratically with increasing
number of samples per population, and we observe this: FOR 100
samples for the two populations at 1X mean individual read depth,
LOO assignment had a mean runtime of 51s and, for 500 samples,
run time was 1743s.

The second set of simulations showed that at weak to moder-
ate genetic differentiation (mean Fsr = 0.0055), assignment accu-
racy was close to 100% when effective sample sizes of the two
populations were equal and had at least eight effective individuals
(Figure 3a). However, at higher measures of effective sample size,
the two populations could have different effective samples sizes and
still have high assignment accuracy (e.g. effective samples sizes of
20 vs. 100). Assignment bias occurred when there were sufficient
differences between the effective sample sizes that individuals were
only being incorrectly assigned from the lower effective sample size
population (Figure 3b).

Importantly, when effective sample size is roughly equiva-
lent between the two populations but the number of samples and
read depth differ, assignment accuracy is still high and unbiased
(Figure 3c,d). This pattern was apparent up through the maximum
tested magnitude difference of 12 (Figure 3c,d).

At higher genetic differentiation (Fs; > 0.1), samples can readily
be identified as coming from an unsampled population using the z-
score metric in WGSassign (Figure 4). At such high differentiation,
individuals from an unsampled population tend to have z-scores less
than -3 compared to individuals correctly assigned to a population
having z-scores in (- 3, 3), as expected of a standard unit normal.
With weaker genetic differentiation (Fs < 0.1), sample size and
read depth have a more noticeable effect on the behaviour of the
z-score metric (Figure 4). Generally, higher reference sample sizes
and read depths allow individuals from unsampled populations to be
distinctively identified from individuals that are truly from a sampled
source population.

The simulations demonstrating the relationship of read depth and
absolute sample size for producing effective sample size in a single
population highlighted that prioritizing sample size over sequencing
depth results in higher effective sample size. In the provided example
of an equal sequencing effort of 60X (i.e. total sequencing depth of a
single population), effective sample size increased as more samples
at a lower read depth were used—with the lowest effective sample
size of 7.8 for 10 individuals at 6X which increased threefold to 24.5
for 120 individuals at 0.5X (Figure 5). In other words, if a researcher
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FIGURE 2 Each point represents a single simulation run of the
two-population island model when effective sample sizes were
greater than 0.1 individuals. Panels are ordered by the number

of individuals (10, 50, 100, 500) sampled from each of the two
populations. The proportion of correctly assigned individuals, via
LOO cross-validation for one population is given on the y-axis and
genetic differentiation (Fs7) between the two populations is on
the x-axis. The points are coloured by effective sample size (log,q
scale) of the population. Assignment accuracy in simulation runs
with similar genetic differentiation increases with greater effective
sample sizes (lighter colours).

had the option to sequence 10 individuals at 6X from a population or
120 individuals at 0.5X, the latter strategy would provide over three
times as much information regarding allele frequency estimation de-
spite the same sequencing effort.
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3.3 | Application to empirical data

Variant calling with the Yellow warbler samples identified 5,301,627
SNPs. Using all SNPs, Yellow warbler reference samples were accu-
rately assigned to either the North, Central or East populations using
leave-one-out self-assignment. All 35 reference samples from both
the North and East populations were assigned with 100% accuracy,
and of the 35 birds from the Central population, 34 were correctly
assigned.

Chinook salmon were accurately assigned to either the
Sacramento or Klamath river basins even at read depths as low as
0.001X (Figure 6). All 12 test samples from the Sacramento river
were correctly assigned at all read depth levels, and, of the 12
Klamath test fish, 11 were correctly assigned at all read depth lev-
els, while one was correctly assigned at all read depth levels except
for one of the five replicates at read depth 0.001X. The four sam-
ples with lowest full read depth (the four at the bottom of Figure 6)
have log-likelihood ratios that are noticeably smaller than those of
the remaining 20 fish even when downsampled to similar read depth
levels, suggesting that these samples suffer from factors other than
low read depth, such as poor quality DNA or contamination. The
number of informative sites per individual varied from 11,866 to
906,505 at full read depth, and from 370 to 3257 at 0.001X, while
the total number of sites varied from 955,185 at full depth to 48,220
at 0.001X (Table 1). Evidently, at low read depths, each individual
assignment relies on a set of informative SNPs that overlaps little

with the informative SNPs in other individuals.

4 | DISCUSSION

Here, we present WGSassign and demonstrate its utility for popu-
lation assignment with low-coverage WGS data. Our results, from
both simulated and empirical data, show that low-coverage WGS
data can be used to achieve high assignment accuracy even among
weakly differentiated populations (Fsr < 0.01). We show that balanc-
ing effective sample size among populations is essential for avoiding
assignment bias due to variation in the precision of allele frequency
estimation for different populations. Effective sample size can also
be used to guide decisions in study design for choosing the number
of samples and sequencing depth in a given population. The ability
to perform population assignment on large numbers of individuals,
cost-effectively sequenced at low-coverage across the whole ge-
nome, further expands the utility of low-coverage WGS for popula-

tion and conservation genomics.

4.1 | Performance of WGSassign and implications
for population assignment studies

Our implementation of WGSassign allows users to perform popula-
tion assignment analyses from genotype likelihood data. Features
of WGSassign include standard and leave-one-out (LOO) population
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FIGURE 3 Mean assignment accuracy (a) and mean difference in assignment accuracy (b; assignment accuracy of population

2 -population 1) were compared for populations with an array of effective sample sizes, listed on the axes as ranges. Equal effective

sample sizes are along the plots' diagonals. Assignment accuracy was high when effective sample sizes were sufficiently high, even when
unbalanced. When effective sample sizes were approximately equal, assignment accuracy was high regardless of the combination of read
depths and number of samples (c, d). Approximately equal effective sample sizes are found along the diagonal where the axes display a range
of the magnitude of difference for depth (y-axis) and sample size (x-axis) for population 2 in relation to population 1 (e.g. 2 /3 — 1.5x indicates
the number of individuals in the sample from population 2 is between two-thirds and three-halves of the sample size from population 1).

The centre tile of the plot, 2 /3 — 1.5x%, indicates when effective sample size is equal due to approximately similar sample numbers and read

depth.

assignment, as well as calculations of effective sample sizes (of both
individuals and populations) and a z-score metric for determining
whether an individual is from an unsampled population. Importantly,
as implemented, these analyses can be parallelized across loci, which
allows for fast computation of data produced from low-coverage
WGS, even for computationally intensive applications such as LOO

assignment. Studies of wild populations are typically limited in the
number of samples available for sequencing, where 50 may be a
large number of samples for a given population. With such a sam-
ple size, leave-one-out assignment at a standard low-coverage read
depth of 1X could be expected to have a runtime on the order of
minutes for multiple populations and a million loci.
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FIGURE 4 Results from the three-population stepping stone model demonstrate the behaviour of the z-score metric in identifying
individuals from an unsampled population (Pop3) assigned to a population in the reference compared to individuals correctly assigned to
their source population of origin (Pop2). The column facets list the number of samples used for the reference populations while the rows are
the population of origin and sequenng depth. Symmetric lines subtending 90%, 99% and 99.9% of the mass of a standard unit normal random
variate are given by vertical lines (dotted, dashed and solid, respectively). In this simulation, Pop3 individuals are expected to be incorrectly
assigned to Pop2 (since there are no Pop3 individuals in the reference set) and accordingly the z-score metric should depict this by falling

outside the mass of the standard unit normal random variate.

Implicit in standard population assignment tests is that there will
always be a population with a maximum likelihood of assignment,
even if the individual does not originate from any of the reference
populations. To address this issue, we developed a z-score metric for
testing whether an individual could be from an unsampled popula-
tion. The z-score is based on the individual's observed likelihood of
assignment in relation to the expected likelihood from a hypothet-
ical individual from the same population with the same allele count
data as the individual being tested. The z-score metric functions
as expected at higher genetic differentiation (Fs; > 0.05) and with
larger reference samples by distinguishing the majority of individu-
als incorrectly assigned as having much lower z-scores (outside the
90% expected mass of the distribution of z-scores) than correctly
assigned individuals. We recommend that any studies that may have
incomplete sampling coverage of all genetically distinct populations
test for correct assignment with the z-score metric. However, since
this metric is limited by sample size and genetic differentiation, a
robust approach towards using it would involve, first, observing the
metric's behaviour by testing it upon individuals of known origin,
calculating z-scores both for the population they are from and the
other populations.

For high assignment accuracy, source populations need to have
sufficient effective sample sizes in relation to genetic differentia-
tion among the populations. For example, in our simulations for low

to moderate levels of genetic differentiation (mean Fsr = 0.0055),
an effective sample size of roughly eight individuals was sufficient
when effective sample sizes were balanced (Figure 3). If the refer-
ence populations' effective sample sizes are sufficiently high for the
given genetic differentiation, individual samples being assigned can
have extremely low read depth for accurate assignment. Our results
from downsampled Chinook salmon data showed that individuals
were still correctly assigned to populations (Fs = 0.1) when individ-
ual samples had average read depths as low as 0.001X. While the
minimum sequencing coverage needed for highly accurate popula-
tion assignment depends on genetic differentiation, this has power-
ful implications for population assignment studies, especially those
that are conducted at a large scale. For example, in the mid-2000s,
an arduous, international, multi-laboratory study was undertaken
to standardize a DNA database of 13 microsatellite loci for genetic
stock identification of Chinook salmon at a coast-wide scale (Seeb
et al., 2007). With today's sequencing power, a low-coverage WGS
approach could provide a cost-effective method for creating a refer-
ence baseline of known populations without the need for extensive
standardization of genetic makers. Fish of unknown origin could be
sequenced at very low read depth, and still be accurately assigned to
populations from the reference baseline. Furthermore, using WGS
data streamlines the process of adding new reference populations to
compare to previous analyses because the loci used for assignment
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FIGURE 5 The relation between read depth and number of samples in determining the effective sample size for a single population
highlights the potential for different sampling design strategies. Notably, effective sample increases more rapidly with changes in number

of samples than read depth. The x-axis provides the number of samples from a single population, the y-axis is the mean read depth for the
corresponding population, and the value listed is the mean effective sample size across 10 replicate simulations using all SNPs with minor
allele frequency > 0.05(126,019-158,871). Tiles outlined in red have equal sequencing effort based around 60 individuals at 1X. Given the
same amount of sequencing effort, effective sample size increases when the number of samples is prioritized over sampling depth, with a
low of 7.8 for 10 individuals at 6X and a high of 24.5 for 120 individuals at 0.5X. Off-diagonal values allow the comparison of sampling design
strategies of different sequencing effort, for example, sequencing 20 individuals at 1X (effective sample size=6.1) versus sequencing 10

individuals at 2X (effective sample size=4.6).

are not pre-selected to maximize genetic differentiation and thereby
potentially subject to ascertainment bias.

We note that WGSassign can be used in conjunction with other
clustering approaches for low-coverage WGS data (e.g. PCangsd;
Meisner & Albrechtsen, 2018). Notably, the formal population as-
signment implemented in WGSassign requires a priori delineation
of populations. In species that live in discrete population groups,
this can be done without genetic data. However, when species
are distributed more continuously, then unsupervised clustering
approaches in tandem with geography and other covariates (e.g.
behaviour, morphology) can be used to delineate reference popu-
lations. Assignment accuracy from WGSassign on a set of hold-out
individuals can be used to determine if the identified populations
are informative for assignment. The use of complementary cluster-
ing methods is also informative for identifying if test samples are
from populations not represented in the reference samples as well as
identifying admixed individuals. Importantly, clustering methods for
population structure can be biased by variation in sequencing depth
among individuals (Lou et al., 2021), while WGSassign is less influ-
enced by that variation in sequencing depth. Accordingly, WGSassign
is expected to give more reliable assignment in the face of sequenc-
ing depth variation than unsupervised clustering approaches.

4.2 | Accounting for population sample size and
read depth with effective sample size

Our development of the effective sample size metric provides a pow-
erful tool for population genomics studies using low-coverage WGS
data and informing study design. Previous studies have provided
recommendations for the number of individuals and sequencing
depth required to accurately estimate allele frequencies with low-
coverage WGS data (Buerkle & Gompert, 2013; Fumagalli, 2013;
Lou et al., 2021). Effective sample size provides a metric to quantify
these recommendations and determine the precision of allele fre-
quency estimation needed for different applications. For example,
the recommendation of (Lou et al., 2021) at least 10 individuals with
1X average sequencing depth for allele frequency estimation can be
quantified as an effective sample size of 2.4 individuals in the simu-
lations from this study (Figure 5) and does correspond to sufficient
precision to achieve accurate assignment at moderate genetic dif-
ferentiation (Figure 3). However, at weaker genetic differentiation
among populations, effective sample size needs to be increased for
accurate assignment. Quantifying the amount of information gain
for different study designs can inform researchers on how to more
efficiently allocate resources for sequencing efforts.
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FIGURE 6 Log-likelihood ratios for assignment at different read depth levels for the Chinook salmon data. On the y-axis are different

Chinook salmon samples, labelled by their population, a colon, their ID number and then in parentheses the average read depth of

their aligned data at full depth. On the x-axis is the log-likelihood ratio in favour of assignment to their own (correct) population on a
‘pseudo-log’ scale that accommodates negative values. Positive numbers indicate correct assignment. Colours denote the read depths
after downsampling. There are five points for each individual at each value of downsampling, reflecting the five different seeds used for

downsampling.

TABLE 1 Numbers of informative SNPs (i.e. those covered by at
least one read, such that the genotype likelihood is not equal for all
three genotypes) at different downsampled coverage levels of the
Chinook salmon data.

Within individuals

Coverage Min Mean Max Total

Full depth 11,866 577,982 906,505 955,185
1.0X 49,432 610,137 756,970 955,155
0.5X 31,032 426,405 554,470 955,018
0.1X 31,032 159,077 195,926 884,475
0.05X 11,866 88,712 114,431 734,813
0.01X 3769 21,337 28,044 307,815
0.005X 1882 11,126 14,807 186,384
0.001X 370 2326 3257 48,220

Note: ‘Within Individuals’ gives the minimum, mean and maximum
number of informative SNPs within any single individual across the five
downsampled replicates. ‘Total’ refers to the total number of variant
sites in the downsampled data set. Individuals with a full read depth less
than one of the downsampled levels, like 1.0X, were excluded from the
downsampled data set.

Unbalanced effective sample sizes among source populations
can result in biased assignment of individuals to the populations
with the highest effective sample sizes. We recommend that pop-
ulation assignment studies use the LOO assignment in WGSassign
to determine if biased assignment is occurring. If all individuals
across populations have similar average read depths, then subset-
ting source populations to the same number of samples for allele

frequency calculation should remove this bias. However, different
populations may tend to have higher or lower read depths, espe-
cially if different DNA sources are used, which will result in different
effective sample sizes despite equal numbers of individuals. In this
case, the individual effective sample size (Equation 13) output from
WGSassign can be used to determine how many (and which) individ-
uals to remove from the populations with the highest effective sam-
ple sizes. Alternatively, individuals could be further downsampled to
reduce their effective sample size, which would decrease the overall
population's effective sample size. Studies using low-coverage WGS
data for population assignment can explore these different strate-
gies with WGSassign to determine what is most effective for their
data sets.

4.3 | Further improvements for
population assignment

Currently in our implementation of WGSassign, the issue of only a
single allele being observed in a population, and thereby producing
a likelihood of O, is avoided by correcting a population with a minor
allele frequency of O at a given locus to ﬁ, where nis the number
of individuals in the population. Essentially, this treats the locus as
having a rare allele that would be observed in a single copy if an-
other individual was to be sampled. Another approach specifies a
formal prior for the allele frequencies in each population (Rannala
& Mountain, 1997). We note that the latter approach yields perfor-
mance that is very similar to ours; however, implementing a prior

for allele frequencies that accounts for the a priori expectation
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that allele frequencies at a locus are expected to be similar be-
tween weakly differentiated populations (Falush et al., 2003; Pella
& Masuda, 2006) could further improve performance of population
assignment. In particular, we expect that it would ameliorate as-
signment bias with unequal sample sizes and also improve the dis-
tribution of posterior probabilities of assignment so that they more
closely reflect the amount of uncertainty in each assignment. The
parameters of these more complex prior distributions could likely
be estimated very accurately using WGS data for use in an empirical
Bayes approach (Maritz, 2018); however, we leave that for future
research.
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APPENDIX A: FISHER INFORMATION

Fisher information from genotype likelihoods

We focus on the information for the #th locus in the kth reference
population. Accordingly, we drop the k,# subscript from 6 and the
¢ subscript from g. Furthermore, since L() is a sum over the n, ref-
erence samples from k, we must simply find the derivative for the
term in the sum corresponding to a single individual, knowing that
the Fisher information will be the sum of that quantity over all n,
individuals. To further ease notation, we will write L;(9) for the ith

individual's term in the sum for L(#), while we drop the superscript (i)
L)

from the g's. Thus, we seek — T

QSUIIT SuOWWo)) dANea1)) d[qedrjdde oy £q pauraaoS aIe SA[ANIE Y SN JO sa[NI 10] A1IqIT AUIUQ AJ[IAL UO (SUOTIPUOI-PUR-SULIA) WO KA1 KIeIqI[aur[uo//:sdnt) suonipuo) pue swid L, 3y 39S “[$z0g/10/0€] uo Areiqry autjuQ A1 “98ZH1 X01Z-1#0T/1 111 01/10p/wod K3[1m’ ATeIqrjaurjuo’speuinolsaqy/:sdny woij papeojumod ‘0 ‘X01Z1+0T


https://doi.org/10.21203/rs.3.rs-1871359/v1
https://doi.org/10.21203/rs.3.rs-1871359/v1
https://doi.org/10.1111/2041-210X.14286
https://doi.org/10.1111/2041-210X.14286

DEeSAIX ET AL.

Methods in Ecology and Evoluti EEE“JJ?!ML

SOCIETY

We start by finding the first derivative:

oL@ o
9 06

Iog[go(l—e)z +3,20(1 - 0) +g202].
Let
u=go(1- 6)2 +9126(1-6) +3292
=90(1-20+6%)+3,(20—26%) +g,6,

and note that

g_; = 95(20-2)+8,(2—40)+8,20

=20(30 +82 —231) +2(31 —80)-
Since 9 log(u) / 90 = (du / d6)u~1, we have that

aL;6 -1
%) = (20(g0 +82 — 281) + 2(81 ~ 90)) (80(1~0)* +8:20(1- ) +8,07) .

Proceeding, define v and w as follows:

7l
V=20(8i0+8i2~2311) +2(8i1=8io0) = a_;
-1
W= (g,-yo(l—o)z +3i,129(1—0)+3i,292> =ut,

aL;(6)
a0
easily using the product rule: (vw)’ = v/w + w’v. To do so, we first find

and note that we can rewrite = vw, and take the derivative of that

the derivatives

, oV

4 =%=2(30+32—231)
w=W__ ‘2%=—u‘2v,
20 20

Then, we put them together with the product rule

%L, roy2
L6 =Vwi+w' =L
002 u u? )
_ 2(8o+3,~231) _ 20(30+8,-281) +2(31 %)
S(1-0+8,20(1-0)+8,0> \ 85(1-0)°+8,20(1-0)+8,0% )

Restoring the k, # subscript to 6, and the (i) superscript and # subscript
to g, negating, taking the sum over the n, individuals and evaluating at
the MLE yields I{’ (6, ) in Equation (10).

Expected fisher information from observed genotypes

Under Hardy-Weinberg equilibrium, the allelic type of the two
gene copies within a locus is independent of one another, and
thus, a sample of n diploids with fully observed genotypes is
equivalent to a sample of 2n gene copies, each one an independ-
ent Bernoulli trial with success probability . Finding the ex-
pected Fisher information in such a case is a standard exercise,
but we repeat it here for completeness. For a single such vari-
able Y;, we have P(Y; =y|8) = 6(1-6)"", so the log-likelihood
for that single observation is L;(0) = ylogf + (1 —y)log(1 - 0). It
follows that

1-y 9? y 1-y

and — L= - = - .
1-6 0% " 02 (1-9)

7} y
2i@ey=71—
20 i) 0

The expected Fisher information in a single gene copy is the expecta-

tion of the negative second derivative given the true value of 6:

92 _ly  1-y |1 11
[E[—ﬁh(é))] —[E[e2 +(1_0)2] =7 +—1_(9 =i 0)

Since information from independent variables is additive, the infor-
mation for 2n such Bernoulli variables is 2n[6’(1 —0)] - Evaluating the
expectation under the assumption that the true value of 6 is /H\kf gives
le(4 ) in Equation (11).

APPENDIX B: Z-SCORE CALCULATION

In order to assess whether an individual A's genotype could not
plausibly have come from one of the K source populations, even
though it was assigned to population k, we wish to compare A's
log read probability given that it originated from population k,
logP(R®| 6, ), to the distribution of log read probability values
expected from individuals that actually are from population k.
Complicating matters, these log read probabilities are heavily
influenced by the read depth, and to a lesser extent, by the re-
lationship between allele depths (how many reads of each allele
were seen) and the genotype likelihoods. So, in fact, we must
compare logP(R®|6,) to the distribution of logP(R| 8,) expected
from an individual that originates from source k, but also has read
depths at each locus exactly the same as individual A, and also has
genotype likelihoods that exhibit the same relationship to allele
depths as those in individual A (this relationship will be influenced
by such factors as the base quality scores and the genotype likeli-
hood model used).

In previous applications, with far fewer markers, determining
such a distribution of the log probability of the observed data
has been done through simulation, for example, in the ‘exclusion
method’ of Cornuet et al. (1999); however, with genomic-scale
data, it would be impractical to simulate thousands of new mul-
tilocus genotypes, each with potentially millions of loci, to assess
whether each individual (with their own, specific read depth val-
ues) might be from a population not included among the source
populations. Instead of simulation, we develop the expected dis-
tribution of log probabilities using a central limit theorem (CLT) ap-
proximation. Note that, since P(Rl 0k) is a product over many loci,
IogP(R| Bk) is a sum over loci. We will write the contribution of each

locus to that sum as:

W, = |0g[3f,o(1—9k,f)2 +8,12(010) (1= 6kr) +gf,2(9k,f)2] =1(8/+0ks),

where we include the notation f(g, 6, ) to emphasize the fact that
W, is a deterministic function of 6, , and the vector of genotype likeli-
hoods g, = (8,.0,8¢.1:9¢2)- It is important to recognize in this context
that 6, , is considered fixed while g, is a random variable. By extension,
then, so too is W, a random variable. By the CLT, the sum of very many
independent W, random variables can be approximated by a normal
distribution with mean y and variance ¢ given by:
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Thus, we seek E(W, ) and Var(W,).

2
E[Wf | 9kf’va7y€k] =W, = Z Z
G=0

9€Gq
(r,a):

r+a=D,
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With these assumptions, given the total read depth D,, and y and ¢, the

joint probability of the remaining variables is:

P(G;w"fvafvgf | 9k,vavav€k) = P(G;| ek,f)P("fwaA G;ny>P(3f| "fvam’)~

The mean and the variance of W, can now be found from these by
taking expectations:

Z f(g,=9.6,,)P(G;=G,r,=r,a,=0a,9,=4| 04,.Ds.7.€)

2
Var[W, | 044, D.7,6] = Z Z Z [Wf—f(gf:g,ekyﬁ)]2P(G;:G,rf:r,af:a,g,;:g| Or s Dovr€p).
G

=0 3€G, 4
(r,a):

r+a=D,

The distribution of W, clearly depends on the distribution of g,.
We develop such a distribution, hierarchically, based on the follow-

ing assumptions:

1. g, depends directly on the observed allele depths. Let r, be
the number of reference alleles and a, the number of alter-
nate alleles observed in the reads covering site #, and let y
denotes an individual-specific effect of base quality scores,
etc., on the genotype likelihoods. Then, we denote this con-
ditional probability distribution as P(g,|r..a,,y) and we will
denote the set of values that g, might take for a given pair
(r,a) as G,, Note that here we are asserting that given the
allele depths, the genotype likelihood is independent of the
genotype. This is a relatively unpalatable assumption, but we
make it because we do not have access to the information
we would need (knowledge of the true underlying genotypes)
to easily relax this assumption, and it eases the computations
considerably.

2. Theread depthsr,and a, depend on the genotype, G; at locus # of
the individual being sequenced and on a population-specific error
rate, €¢,. The model for this is simple binomial random sampling
from a total read depth of D,, with a probability ¢,, independently
for each read, that the base in question will be read incorrectly.

Hence:

(1-e) ey ifGy=0
(1/2) ifGi=1
e (1-¢)" ifGy=2,

D,!

P(rf,af|G;,Dﬁ) = W

wherea, =D, - r,, always. (We note thatr, and D, completely de-
termine a,, but we leave bothr, and a, in the preceding and follow-
ing probability expressions for ease of explanation later.)

3. The frequency of G} in source population k follows Hardy-
Weinberg equilibrium with an allele frequency of 6, ,, so P(G%| 6 )
is given by Equation (1).

As there is no documented distribution for P(g,|r,,a,, ), we simply
use the empirical distribution of g, values across all loci within the in-
dividual having allele depths of r and a. In practice, values of g for any
particular pair (r,a) are typically clustered around a single value, and
we discretize that distribution into a histogram with a small number, b,
of bins defined by the value of the largest of the three elements of g,
thus imagining P(gfl ry,d,, y) as a discrete distribution with weight onb
values of g, each one the mean of the values of g within the bin. Itis also
possible to remove loci that have particularly odd values of g. For ex-
ample, GATK sometimes assignsa g, of (1/3, 1/3, 1/3)to loci with
read depths r = 1, a = 0. Any such aberrant values can be removed,
without penalty, since the  and 62 that we seek are conditioned upon
a set of loci. The parameter ¢, might be estimable, but for now we as-
sume a value for it, like ¢, = 0.01.

After all this, a sum over the loci included in the metric gives us the
mean and variance of the normal distribution that the log genotype
probabilities of a matched individual (same loci, same read depths,
same relationship between allele depths and g) from population k
would be expected to have:

L
H= 5f[E[Wf | 0xs:Dpo7, ek]

=1
L

o= 6,Var[W, | 04,,D;.7,¢d,
=1

where §, = 1if the locus # was included in the calculation, and O oth-
erwise. Thus, the variable

@ _ logP(R®|6,) — u
A T S L A—
k c

should, by the CLT, have a normal distribution with mean O and vari-
ance 1.

Of course, there are several reasons why the actual distribution
of z(kA’ might depart from a Normal(0, 1): Our calculations for the
mean and variance of each locus are unlikely to be perfectly reli-
able, the rate of sequencing error might be higher or lower than
we assume, or there might be genetic structure within population

k, and hence also within the reference samples from population k.
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Thus, we correct the z-score so that it exhibits a mean of 0 and a
variance of 1 for the reference samples, themselves, from popula-
tionk. Withi =1, ... ,n, denoting the reference samples from popu-

lation k, we calculate

Ny
- 1 (i) —2 1 W_3)?
ze.=— )z’ and o, = (z —z).
k nkzk nk—lgf ke ok

Then, we assess whether an unknown individual A assigned to popula-

tion k may have come from an unsampled population using:

As in the likelihoods calculated by WGSassign, values of ékyf
are used in place of values of 6, , in all of the above calculations.
Furthermore, when calculating the z scores for each individual from
the reference samples, the value of 6, , used must be one estimated
while leaving the individual out of the sample (analogous to the LOO

procedure described in the paper).
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