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Abstract—This paper proposes a new and improved implemen-
tation of a quantum integer multiplier. Performing arithmetic
computations is sometimes a necessary step in the implemen-
tation of quantum algorithms. In this work, Quantum Fourier
Transform is used in order to perform scalable arithmetic in a
generic bit-width quantum system. In the phase domain, addition
can be implemented through accumulated controlled rotations on
the qubits’ state. Leveraging this, and inspired by the classical
implementation of an array multiplier, a new integer multiplier
is fully designed and tested in a quantum environment.

The depth of a quantum circuit is the number of computational
steps necessary to completion, and it is a key parameter that
reflects on the performance of the design. The new design reduces
the quantum depth of the design from the exponential order of
the previously proposed designs to polynomial order.

Index Terms—Quantum Computing, Quantum Multiplication,
Quantum Fourier Transform, Array Multiplier

I. INTRODUCTION

THE subject of Quantum Computing is in its early stages
of development, and new technologies and algorithms are

constantly evolving. Much like classical computing, small-
scale circuit designs are used as building blocks for large-
scale algorithms. One such example described by Sashwat
Anagolum pursues scaling the arithmetic of existing quantum
adder designs to develop a quantum multiplier [1].

The importance of an efficient quantum multiplication
algorithm stems from the wide range of applications that
benefit from this operation. Improvements made to a quantum
multiplication algorithm could prove useful for different ap-
plications, such as modular multiplication in Shor’s algorithm
[2], or could play a role in the implementation of oracles for
Grover’s search algorithm [3].

Designing principle circuits through quantum means is
usually done in the hope of achieving a computational speedup
in comparison with classical computation. On the other hand,
encoding data in a quantum state and reading it out is compu-
tationally expensive, and hybrid quantum-classical implemen-
tations require data transfers that hurt performance. Hence,
when a basic computation cannot be implemented with better
performance in its quantum version, it may still be beneficial
for larger quantum applications that would have to be hybrid
otherwise, exchanging information back and forth between the
quantum and classical worlds.

The design previously proposed [1] takes in integers as
binary inputs and computes their product as a binary output.
This implementation arrives at a product through a quantum
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circuit that takes advantage of the Quantum Fourier Transform
(QFT) and the phase domain.

In the Noisy Intermediate-Scale Quantum (NISQ) era [4],
noise is a critically limiting factor. In addition, computations
are constantly challenged by decoherence time, the time that it
takes for a quantum system to degrade and fall out of its quan-
tum state. The circuits that describe quantum computations
are characterized by the number of qubits that they require,
or width, and the number of computational steps necessary
to completion, or depth. In the NISQ era, circuits must reach
completion before qubits fall out of their delicate quantum
state. As technology improves and the number of qubits
available grows while the error and noise levels decrease,
reaching the post-NISQ era, the depth of the circuit will still be
a critical factor that needs to be reduced, with a direct impact
on the performance of the computation. Depth is a metric of
performance and the parallelism of the computation.

This paper looks at the scalability of the implementations
and takes a close look at the depth of the designs for future
implementations. As this paper will show, the depth of the
computation of the original phase basis design scales exponen-
tially with the size in classical bits of the operands. To achieve
improved performance results, and given the sensitivity to
noise and error rates of current quantum computers, it is
critical to reduce, to the extent possible, the depth of the
computation.

The scalability problem of quantum circuit design is ubiq-
uitous in this field, but it is exacerbated by naive design
practices. A good understanding of the properties of quan-
tum algorithms leads to more efficient designs with reduced
requirements for the number of qubits and quantum gates.
On the other hand, the description of quantum applications
and circuits displays strong similarities with the hardware
design approaches that have been commonly used in classical
computing. For example, in the context of Field Programmable
Gate Arrays (FPGAs), or Application Specific Integrated Cir-
cuits (ASICs). Both are potentially described at the (qu)bit-
wise level through logical one and two-(qu)bit gates in a sort
of Quantum Description Language (in parallel to Hardware
Description Languages). This paper looks into well-known
HDL approaches for inspiration and proposes a new and
efficient quantum integer multiplier design.

This paper’s design offers efficiency improvement over
existing quantum multipliers coming from two sources: the
efficient use of addition on the phase domain (a quantum prop-
erty) and the classical hardware design of array multipliers.
The depth of a quantum circuit is the number of computational
steps necessary to completion, and it is a key parameter that
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reflects on the performance of the design. Reducing depth is
based on the efficiency of the computations as well as how
parallelism is exploited through them.

Section II briefly reviews significant work in the field of
quantum arithmetic to put this paper into context. Section III
describes the original phase basis multiplier, some immediate
improvements to it, and the new proposed approach. Results
comparing these designs are presented in Section IV, followed
by the key takeaways in Section V.

II. BACKGROUND AND RELATED WORK

Quantum arithmetic has been developing for a few decades,
with new algorithms and techniques being proposed for effi-
cient and fast operations on qubits. Primarily, the algorithms
developed were only for integer arithmetic; over time, the
operations on the floating point were also considered.

Adders are relevant to this discussion, as multipliers always
involve additions in one way or another. The implementation
of quantum addition using a full adder is given precisely by
Sohel et al. [5]. A basic full adder can be described with
CNOT and Toffoli quantum gates. The n-qubit design requires
an n-qubit quantum register and an n-bit classical register to
hold the values for input and output in the quantum domain
and the measured value in the classical domain. The paper
demonstrated the complete implementation of the full adder
truth table, with multiple intermediate steps in which the qubits
are used to store the intermediate values that are not required
at the end. The ripple carry adder circuit proposed by Vedral
et al. [6] demonstrates the addition of two n-bit numbers as
input and outputs a single bit, the high bit of the sum. These
circuits require n−1 ancillae qubits, with 4n+1 CNOT gates
and 4n+1 Toffoli (doubly controlled-NOT) gates, resulting in
limited parallelism. The circuit was improved and was reduced
to one ancilla qubit proposed by Cuccaro et al. [7] with 2n+1
Toffoli gates, 5n+O(1) CNOT gates, and 2n+ 1 negations;
the estimated depth is 2n+ 1.

Floating point arithmetic falls outside of the scope of this
paper. The paper by Seidel et al. [8] on Efficient Floating
Point Arithmetic for Quantum Computers proposed encoding
the mantissa and the exponent part separately as quantum
variables, known as bi-quantum encoding. Depending on the
state of the exponent register, the mantissa would need to be bit
shifted to add two bi-quantum encoded floats. Theoretically,
a circuit like this could be built using Fredkin gates and an
incrementor gate, but it would be exceedingly complicated.
An additional challenge of floating point computations is the
encoding of quantum information. The encoding of the input
as quantum states is challenging; the opposite, where the result
that is in a quantum state is converted to classical data, is
the output problem. In general, these two issues are difficult
to tackle effectively in a quantum computer, and often it
is assumed that the data is available in quantum states by
some means. Another crucial concept is studying quantum
algorithms that include all-quantum input and output data.
Examples include quantum machine learning for quantum
data, principal component analysis, quantum simulators, etc.
The proposed solutions assume an efficient quantum algorithm

exists to achieve the quantum state preparation of the rows and
columns of a matrix, such as by QRAM [9].

Due to the unique characteristics of quantum information
and the core linear algebra features of quantum mechanics,
some linear algebra computations may be more immediate to
implement than bit-wise computations. Matrix multiplication
is one of these computations. The paper on matrix multiplica-
tion [10] discusses the use of Swap test [11], SVE [12] and
HHL [13] algorithms for quantum matrix multiplication and
the complexity of preparing the required quantum states. The
HHL algorithm requires the input matrix to be Hermitian and
the vector to be in amplitude encoding. The preparation of
these steps can take significant computational resources.

The focus of this paper is on the efficient multiplication
of two integers in a quantum environment. Some quantum
algorithms may require a multiplication of two integers as a
necessary step, and as stated above, the transfer of information
back and forth between the classical and quantum environ-
ments may be prohibitive in terms of time and resources.
A quantum implementation of a multiplier of two integers
was proposed in [1] to make use of repetitive addition of a
multiplicand, a number of times determined by the value of
the multiplier. This approach to the multiplication of integers
is commonly utilized by both people and computers. The
simplicity behind this idea makes it easy to implement and
scale to fit one’s needs. The paper takes this as the starting
point of the new proposed design.

A integer multiplier architecture can also be found in [14].
In this work, like that by Anagolum [15], the proposed QFT
and its inverse (IQFT) are unnecessarily repeated, as will be
shown. When it comes to the multiplier of integers, the work
by Ruiz-Perez and Garcia-Escartin [16] proposes a similar ap-
proach to the one discussed here. The mathematical description
is described, however, does not include any implementations,
and like the previous two [15], [14] it does not discuss or
compare the depth of the design.

III. QUANTUM MULTIPLIER DESIGNS

The original quantum multiplier design in the phase basis
[1] is based on the repeated addition of the multiplicand in
an accumulator, as many times as the multiplier indicates.
This repeated addition takes place in the phase domain. The
basic functionality of this multiplier is as follows: The initial
state of the accumulator is encoded in the phase domain
through a QFT, so the multiplicand can control the rotations
of the qubits’ phases depending on the significance of the
qubit upon which the rotation is acting. The multiplier is
then decremented by 1 (the value stored in the ancillary
qubit), and this cycle is repeated until the multiplier has
reached 0. Last, the accumulator is returned to encoding in
the computational basis through an IQFT to extract the result
of the multiplication.

Therefore, the design uses four main groups of qubits: (1)
the multiplier, (2) the multiplicand, (3) the accumulator, and
(4) one ancillary qubit. Figure 1 represents these four groups
and their initialization stage in the case of a 1x1 multiplier.
According to this, the width of the system is given by 2(n+
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m) + 1, where n represents the number of multiplier qubits
and m represents the number of multiplicand qubits.

accumulator

multiplier x

multiplicand x

ancillary x

classical register

Fig. 1: Initialization for the multiplier architecture, implement-
ing 1x1 in this case. The accumulator by default is initialized
to |00⟩, while multiplier and multiplicand both take states |1⟩
and |1⟩ to represent the 1’s in the multiplication. One ancillary
qubit is necessary to implement the repeated subtraction of 1
to decrement the multiplier.

The implementation is composed of three elementary build-
ing blocks: the QFT, the evolve stage, and the IQFT.

A. QFT and IQFT

In order to place the accumulator’s qubits into the phase
domain to perform addition, a QFT operation is performed to
change the basis of the quantum state, according to Equation
1.

QFT =
1√
N

N−1∑
j,k=0

e
i2πjk

N |k⟩⟨j| (1)

The QFT operator applied to the accumulator transforms
its representation from the computational basis |k⟩ to the
phase basis |j⟩. An example of a two-qubit QFT quantum
gate implementation is shown in Figure 2. Table I shows the
results on the quantum state of this transformation (column
QFT (state)). The circuit accounts for the phase rotations
necessary for both qubits to transition into the phase domain
through the use of a controlled rotation after the first Hadamard
gate. While this operation is relatively simple, its depth quickly
increases as more qubits become necessary for multiplication.

accumulator

H

H
π
2

|Ψ2⟩|Ψ1⟩|Ψ0⟩

Fig. 2: Quantum fourier transform stage.

Similar to the QFT operator, an IQFT operator is used to
change the basis of each qubit of the accumulator from the
phase domain back to the computational basis, allowing for
the result of the multiplier to be measured into the classical

bits. The IQFT is performed as described by Figure 2. Similar
to the QFT circuit, it utilizes two Hadamard gates as well as
a controlled phase shift, though in this case, the phase shift
is negative rather than positive. IQFT has the same depth as
QFT, which contributes to the rapid growth in depth as bit
width increases.

QFT =
1√
N

N−1∑
j,k=0

e
−i2πjk

N |j⟩⟨k| (2)

accumulator

H

−π
2 H

|Ψ0⟩ |Ψ1⟩ |Ψ2⟩

Fig. 3: Inverse quantum fourier transform stage.

B. A two qubit example of addition in the phase domain.

Table I 1 summarizes the different ways in which in-
formation is represented in the computational basis vs. the
phase domain through QFT, for a two-qubit example. The
information in the QFT case is encoded in the relative phase
of each basis state. For example, while the |00⟩ state gets
transformed into a state where there is no relative phase
difference between the different basis states, |01⟩ has a π

2
relative phase on |01⟩, π relative phase on |10⟩, and 3π

2 relative
phase on |11⟩ (π2 ) increments, which is also represented in a
π phase difference on the first qubit and π

2 on the second. As
one moves down the table, the last column evolves by rotating
each qubit:

φ =
nπ

2(N − s)

where n is the number’s decimal value, N is the number of
qubits used for the representation, and s is the significance
of each individual qubit. In the case of a three-qubit repre-
sentation, the third qubit would change its relative phase at π

4
intervals.

Looking at Table I, it can be noticed that adding two
numbers can be achieved by rotating each individual qubit by
the corresponding relative phase. For example, to take the state
from n = 1 to n = 3, one would simply apply a rotation of
2π = 0 to q1’s relative phase and 2π

2 = π to q0’s relative phase.
This would be equivalent to an addend a = (2)d = (10)b
each of the addend’s bits is represented by qa, where a is the
significance of each of the addend’s qubits. It can be said more
generally that controlled rotations of

φ =
2aπ

2(N − s)

1QFT implementations require swapping the qubits at the end. The mis-
alignment between this table and the circuit implementation showing reverse
order is due to this swapping stage, but implementations are correct in all
cases.
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TABLE I: QFT breakdown for two qubit case. When the
state is placed in the phase domain, this means that the
information is encoded in the relative phases of the states: n
column represents the classical decimal value encoded in the
quantum state, CB column represents the computational basis
encoding of this value. QFT (states) represents the QFT of
this computational basis encoding, and next to it, QFT (qubits
q1, q0) represents the state of each qubit in that global QFT
state, in this case with two qubits of significance qs.

n CB QFT (state) QFT (qubits q1, q0)
0 |00⟩ |00⟩+ |01⟩+ |10⟩+ |11⟩ (|0⟩+ |1⟩)(|0⟩+ |1⟩)
1 |01⟩ |00⟩+ i |01⟩ − |10⟩ − i |11⟩ (|0⟩ − |1⟩)(|0⟩+ i |1⟩)
2 |10⟩ |00⟩ − |01⟩+ |10⟩ − |11⟩ (|0⟩+ |1⟩)(|0⟩ − |1⟩)
3 |11⟩ |00⟩ − i |01⟩ − |10⟩+ i |11⟩ (|0⟩ − |1⟩)(|0⟩ − i |1⟩)

on each result qubit are controlled by each of the addend’s
qubits.

With this in mind, a multiplication can be performed
through the accumulation of the multiplicand a number of
times indicated by the multiplier using accumulated rotations
in the phase space. This evolution of the QFT state towards
the accumulated QFT is implemented in the evolve stage,
described next.

C. Evolve Stage

The evolve stage is responsible for the addition acting upon
the accumulator by the multiplicand, which is repeated each
iteration. The evolve stages occur after the accumulator has
been placed into the phase domain. Figure 4 depicts the evolve
stage of a one-qubit accumulation on a two-qubit register
through rotations on the most and least significant qubits.

accumulator

π

π
2

multiplicand

Fig. 4: Evolve stage of a one qubit multiplicand on a two qubit
accumulator. π and π

2 controlled rotations are employed upon
the most and least significant bits of the accumulator, using
the multiplicand qubit as the control.

This addition could have also been done entirely within
the computational basis using a combination of C-NOT
and Toffoli gates, acting as classical XOR and NAND
gates respectively, [17]. However, as it will be shown, the
depth of the computational basis chained full adder circuit,
especially when the size of the multiplicand is large, would be
increasingly inefficient compared to a series of phase rotations.

D. Subtractor

The purpose of this stage is to decrement the multiplier by a
constant value of “1” and then check if the multiplier is equal

to “0” via a classical measurement. If so, the algorithm stops.
If the multiplier is non-zero, another round of the algorithm
must be performed.

The subtractor stage of the original multiplication algorithm
looks very similar to the addition stage. This is because it
utilizes the same theory and stages, but in this case, it is acting
on the multiplier. By inverting the phase of the controlled rota-
tion gates that were performed within the addition algorithm,
subtraction is performed rather than addition.

multiplier H −π H

ancillary

Fig. 5: Decrement of Multiplier - Combination of the QFT,
IQFT, and Evolve Stages.

A measurement of the multiplier qubits is performed every
iteration. This measurement can be done without collapsing
the quantum state of the accumulator or the multiplicand
because the multiplier qubits have no entanglement with the
other qubits within the circuit.

E. Improvements on the original design

Two primary improvements were made to the original
design: (1) the removal of the ancillary bit used in the
subtraction, and (2) the removal of iterative QFT and IQFT.

1) Removal of the ancillary qubit: This was done by
making a custom sub1 method that does not require a second
argument to use as a control. Because there is always a
subtraction of one from the multiplier, there is no reason to
use an ancillary bit to store the value. Instead, an uncontrolled
phase rotation of the bits within the multiplier can be directly
applied. For the scenario of 1x1, this is simply a single phase
gate with -π rotation. Figure 6 shows the improvement that
removes the need for the controlled-rotation gate (Figure 5).
This only reduces the total qubit count by one, but in this
scenario, every qubit counts.

2) Removing the iterative QFT and IQFT: The original
design transformed the accumulator in and out of the phase
domain with each iteration, with QFT-IQFT implementations.
This design can be improved. At the beginning of the
algorithm, the accumulator is placed into the quantum
phase domain via the QFT, then the evolve stage is run as
many times as needed, and finally, only at the end does
the accumulator transform back into the computational
domain via the IQFT so that it can be measured. Doing
this removes the unnecessary transformations into and out
of the phase domain and does not affect the algorithm’s
functionality because the multiplier has no entanglement with
the accumulator. Therefore, each iteration, it can be measured
without affecting the quantum state of the accumulator qubits.
Figure 6 illustrates the complete multiplication of 1x1 after
the improvements are implemented. The original proposed
design intended to apply IQFT after each accumulation and
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accumulator

H π H

H π/2 π/2 −π/2 H

multiplier x H −π H

multiplicand x

classical register

Init. QFT Acc. Addition Decrement IQFT Acc.

Fig. 6: Full 1x1 Multiplication Circuit Post Improvements. Each section is outlined to improve readability.

QFT again before the next iteration. This improvement upon
the original proposal [1] significantly reduces the depth of
the accumulation process, as will be shown in Section IV.

F. New quantum array multiplier approach

The array multiplier approach has been used in the design
of classical multipliers and leverages parallelism for better
performance [18] in different contexts, and in particular for
Field Programmable Gate Array (FPGA) hardware design, and
as such, it has proven its effectiveness. The array multiplier is
a combinational circuit that, in the classical domain, multiplies
two binary numbers using a shifted array structure, as shown
in Figure 7.

FAFAFA

FAFAFA

B0

B1

B2

P0P1P2P3P4P5

A0

A0

A0

A1

A1

A1

A2

A2

A2

Fig. 7: Structure of an Array Multiplier architecture utilizing
both Full Adders and AND logic gates.

The basic building block of an array multiplier is a single-
bit Full Adder (see Figure 8). The function of a full adder is to
add two single-bit binary values, a and b, along with a carry-
in, ci, outputting a one-bit addition, Sum, and a carry-out,

c0. Carries are necessary in the case of overflow (i.e. binary
1 + 1 = 10).

A

B

Cin

S

Cout

Fig. 8: Classical full adder logic circuit design.

Let the multiplier be A (bits an−1-a0) and the multiplicand
be B (bits bm−1-b0). Similarly to the pencil and paper algo-
rithm learned at school, every pair of bits ai, bj , needs to be
multiplied, shifted, and added together in columns. Therefore,
when multiple Full Adders are strung together in a single
row, it allows for a multi-bit addition to take place, in which
the individual bit addition occurs along with any carries that
would normally take place in full addition. In order to create
a multiplier using these full adders, the addition takes place
after each pair of bits has been multiplied (by AND gates),
and these need to be connected in both rows and columns as
shown in Figure 7. The number of columns depends on the
bit size of input A, while the number of rows is determined
by the number of bits in B. Each row following the first is
shifted once to the left to signify an increase in the magnitude
of the resulting sum of the row. The resulting product has a
bit width equal to the sum of the input bit widths. Using this
architecture, regardless of input values, an output product is
guaranteed to be correct and without overflow.

The classical design is very efficient on hardware because
it is easily parallelized. For an nxn bit multiplier circuit, only
n rounds of addition need to be performed. Hence, the array
multiplier has an O(n) complexity, whereas the non-parallel
repeated addition multiplier has an O(2n) time complexity. The
key concept here, pertaining to the proposed implementation,
is the structure composed of AND gates and one-bit full
adders.

This concept is applicable to the phase domain quantum
multiplier. Figure 11 illustrates the example of a two-qubit
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multiplier (p = a∗ b). The product will be placed in the phase
domain through a QFT. A double control rotation takes the
place of each and-gate pair and the corresponding addition if
the shape of a rotation in the phase domain. These rotations
are implementing the additions in the same way as they were
explained in Section III-B, and Table I.

In the classical design, each full adder takes in both the
result of the current row and the previous row. In the quantum
design, it is not necessary to have any dependencies on the
previous row due to the fact that each row provides the phase
shift directly to the product. The accumulation of the rotations
on each of the product qubits also takes care of the carry
dependencies that do not exist in the quantum implementation.
This allows the product of the two inputs to be successfully
multiplied. There is no need to decrement any multipiers,
measure for comparison against zero, or repeat QFT-IQFT
blocks; only one is required at the beginning and end of the
computation, acting on the product quantum array.

It should be noted that one drawback of this circuit design
is that, while it does not need to measure qubits throughout
the computation, it does not reduce in size when provided
with inputs that are smaller than the bit size. In the repeated
addition, the addition only needed to be performed as many
times as the multiplier indicated. In the new Quantum Array
Multiplier (QAM), the structure is generic, and only the
encoding changes the operands and product. Therefore, the
depth of the circuit depends on the size of the operands and not
on their values. As we will show in Section IV, this drawback
is quickly overcome by a much more efficient design.

G. Computational Basis Multiplier: one more multiplier for
comparison

The use of the QFT was prompted by the poor scalability
of the strictly computational basis implementation. This im-
plementation is based on repeated addition, but this addition
is performed in the computational basis. In order to perform
the same operation while staying in the computational domain,
multiple Toffoli gates were used, as shown in Figure 12.

IV. RESULTS

With these proposed improvements and new approach,
quantum circuits were implemented and simulated without
noise on the Qiskit Aer Simulator [19]. The results were
always correct in all cases. As per performance, since the
execution was not performed on real hardware, we present
the depth of the circuits as a metric of efficiency and an
approximate metric of compared performance for all different
designs. This depth was provided by Qiskit’s depth function.
Therefore, it does not include swap gates to match any specific
hardware layout; it is simply a reflection of the number of
computational quantum layers necessary for completion.

A. Summary of designs

Following the explanation above (Section III), four designs
of a quantum multiplier were implemented and compared:

• Original Phase Basis (OPB): This design implements
multiplication of two integers by repeatedly adding the

|a1⟩

|a0⟩

|b1⟩

|b0⟩

|p3⟩ π
8

π
4

π
4

π
2

|p2⟩ π
4

π
2

π
2 π

|p1⟩ π
2 π π

|p0⟩ π

Fig. 9: Quantum multiplier of 2-qubit operands. The product
|p⟩ register is already placed in the phase domain after its QFT
block (not shown in this figure). Rotations are applied to the
product when the multiplication of the two qubits results in
a 1-value to be added to each corresponding product qubit in
the phase domain.

a-input

b-input

product0 π
2

−π
2

π
2

Fig. 10: Double control rotation decomposition

value of the multiplicand into the accumulator as many
times as indicated by the multiplier. The multipler is
decremented towards a zero value that indicates the end
of the computation. This addition is performed in the
Phase domain by applying QFT and IQFT every time
the accumulator is incremented. This implementation
also requires the measurement and comparison of the
multiplier.

• Improved OPB (I OPB): This design follows the same
approach as OPB. In this case, however, one single
QFT and IQFT stage is needed on the accumulator. In
addition, the subtraction on the multiplier does not require
an ancilla qubit to indicate that the value 1 is being
subtracted. QFT and IQFT remain on the multiplier for
each increment of the accumulator.

• Computational Basis Multiplier (CBM): for comparison,
the repeated addition is also performed on the computa-
tional basis as opposed to the phase domain, through the
use of Toffoli and CNOT gates.

• Quantum Array Multiplier (QAM): for the new ap-
proach inspired by the classical array multiplier, double-
controlled rotations realize bit multiplication and conse-
quent addition.
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Multiplier0 X

Multiplier1 X

Multiplicand0 X

Multiplicand1 X

Product0

QFT

π

IQFT

Product1
π
2 π π

Product2
π
4

π
2

π
2 π

Product3
π
8

π
4

π
4

π
2

c4

Fig. 11: Quantum Array Multiplier (QAM) with each stage connected starting with the QFT stage, followed by each of the
row additions and finally the IQFT.

multiplier x X

multiplicand x

Product0

Product1

classical

Fig. 12: Computational basis multiplication of two 1-qubit
numbers. The result is stored in the output qubits, which is
then measured into the classical register.

B. Depth and width of the compared circuits

1) Width of quantum multipliers: All four compared quan-
tum multipliers use almost the same number of qubits for the
same size operands. The number varies by only one more qubit
when the computation takes place in the Original Phase basis
implementation. Therefore, the width is width = 3(m ∗ n)
where m and n are the size in bits (qubits) of the two integer
operands. Figure 13 plots the number of qubits used in the
implementation of square products of MxM numbers (up to
12 qubits per operand). According to this plot and trend, the
number of qubits is not necessarily a limiting factor for the
implementation of the integer multiplier, and in any case, it is
not a factor that can be improved across the proposed designs
since it remains equal or very similar for all of them.

2) Depth of quantum multipliers: Depth is a critical param-
eter in the design of any quantum circuit. At the time of this
research, the correctness and efficiency of these circuits were
only verified through simulation, and as such, this research
does not provide performance metrics on real hardware. Depth,
however, defined as the number of computational steps neces-
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Fig. 13: Width for all compared circuits, for square products
of up to 12 qubits per operand (maximum operand decimal
value is 4095 for the 12 qubit case). Variations of +/- 1 qubit
occur across designs, but all designs follow the same trend.

sary to completion, is a first approximation to the performance
and performance improvements that one design displays over
the other. Depth partially depends on the parallelism that the
computation is able to extract out of the gates acting on its
corresponding qubits.

The quantum array multiplier approach uses parallelism and
quantum phase computation to significantly improve the depth
of the design. On one hand, the computation on the phase
domain and the double-controlled rotations to implement the
AND-adder combos make efficient use of the quantum proper-
ties. Rotations can accumulate directly on the product qubits,
avoiding information exchange in between ”rows”, and there
is no need to pass carry information. In addition, parallelism
is exploited since each controlled gate can act independently
as long as it acts on separate qubits. For example, looking
at Figure 11, the first double-controlled rotation (acting on
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qubits Multiplier0,Multiplicand0 and Product0) can be
performed at the same time as double-controlled rotations
eleven or twelve (on qubits Multiplier1,Multiplicand1 and
Product2 or product3).

On the other hand, as stated in Section III, the original
phase-basis multiplier, based on repeated addition, only per-
formed the additions demanded by the multiplicand, while the
new proposed algorithm always performs the same number of
additions for a given operand size. For that reason, the circuits’
depth comparison depends on the numbers being multiplied.
The comparisons are presented for the two extreme cases: the
trivial Mx1 product and the square MxM product.

Figure 14 plots the Qiskit reported depth for the trivial
product Mx1. Since OPB (Original Phase-Basis) only has to
add onto the accumulator once, while the QAM (Quantum
Array Multiplier) performs all the double-controlled rotations
for the general MxM multiplier circuit, OPB depth is signif-
icantly lower for the cases shown, up to 4095x1 (12 qubits
per operand). The trend continues as shown for this trivial
case, and there is no difference in depth for the Phases
basis multipliers, OPB and I OPB (improved) cases. The
computational basis multiplier is slightly better than the OPB
or I OPB cases up to the M = 127 case. After that, CBM’s
circuit is deeper than the OPB cases. As it will be shown,
CBM scales worse than the rest of them for trivial or square
products.
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Fig. 14: Trivial Mx1 product depth comparison.

Figure 15 plots the depth for the other extreme case, the
MxM square product. These numbers are reported for operands
of up to 12 qubits (4095 decimal number) for all designs listed
at the beginning of this section. Two lines are plotted for each
of these designs: (1) the Qiskit reported depth value for each
design and product size, and (2) the calculated trend for each
of them. The trends are only approximate but fit exponential
trends for the original, improved, and computational designs,
while the new proposed Quantum Array Multiplier shows a
polynomial O(n3) trend.

The behavior of the new QAM design is so much better than
the other three that it is hard to appreciate its depth in Figure
15. Table II shows the specific depth number for each design
12 qubit case (4095) case. The computational basis multiplier
had a depth of over 864K and was not plotted in Figure 15.
To better appreciate the depth differences between the designs,
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Fig. 15: Comparison of reported depth (in thousands) and
calculated trends for the square MxM multiplier designs.

Figures 16 and 17 display the relative depth of the original and
improved designs (CBM, OPB, and I OPB) against the new
proposed QAM design.

Design Depth Relative Depth
over QAM (-x better)

CBM 864058 114x
QPB 434071 57x

I QPB 339981 45x
QAM 7561 1x

TABLE II: Reported depth for the 12 qubit, MxM case
(4095x4095 in decimal value). The third column shows the
improvement of QAM over the corresponding designs. 1x is
QAM against itself.

Figure 16 displays the relative depth of each design com-
pared to the new proposed QAM. For example, for the 4095
operand case, the depth of the QAM is over 114x better
than the computational basis implementation (CBM), over 57x
better than the original computation on the phase domain
(OPB), and over 44x better than the improved phase domain
implementation (I OPB).
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Fig. 16: Relative depth against the lowest depth case, QAM,
for MxM cases ranging from 1 qubit operand to 12 qubit
operand (decimal value 4095).

Figure 17 takes a closer look at the small size cases. Depth
improvement thanks to QAM is shown when the bars surpass
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the 1x line. Due to the fact that repeated additions will have a
lower depth for smaller numbers, in the small operand cases,
these bars do not reach the 1x line, showing that the fixed size
multiplier implemented in QAM does have a higher depth than
the others. However, QAM quickly improves, surpassing the
1x line for the 3 qubit case (operand M = 7) in the case
of OPB, 4 qubits (operand M = 15) for CBM, and 5 qubits
(operand M = 31) for I OPB.
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Fig. 17: Closer look at the relative depth for small size cases.
Better depth of QAM can be seen in bars above the 1x line.

V. CONCLUSION

This paper proposes a new design of a quantum inte-
ger multiplier inspired by the classical array multiplier: the
Quantum Array multiplier (QAM). The new approach lever-
ages quantum mechanics by performing the addition through
controlled rotations in the phase domain, while at the same
time increasing parallelism through array multiplication. This
design avoids the need to transfer information from one row
to the next in the array, and it also cancels the need to pass
carry information, thanks to the accumulated rotation on each
individual qubit of the resulting product.

Another three quantum integer multipliers were imple-
mented and compared against the new approach: one similar
to a classical implementation, through repeated additions on
the computational basis (CBM); a second one, which initially
proposed the repeated addition through phase rotation (OPB);
and a third one with improvements upon the latter (I OPB).
The width of all designs was shown to be almost equivalent
and not necessarily a limiting factor for these computations.
The depth was also compared for all of them as an ap-
proximate metric of scalability and performance. For small
magnitude operands, repeated addition performs better than
the new QAM, since the structure of QAM is always the same
no matter how small the operand, while the others (CBM,
OPB, and I OPB) only repeat additions as many times as
indicated by the multiplier. But for the cases tested, as soon
as operands surpassed magnitudes 7-31, the depth was many
times reduced in the case of QAM. In fact, QAM’s depth
grows with polynomial O(n3), while the other algorithms
display exponential growth in depth.

Due to limited access to quantum hardware, implemen-
tations for real performance results and accuracy were not

tested. However, this paper shows the new QAM’s potential
as an efficient implementation of a quantum integer multiplier.
This will particularly benefit quantum algorithms that require
multiplication of integers. By implementing multiplication
directly on the quantum hardware, costly quantum-classical
data exchange is avoided.
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