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Abstract

This paper series aims to establish a complete correspondence between fine-grained (FG) and
coarse-grained (CG) dynamics by way of excess entropy scaling (introduced in Paper I). While
Paper II successfully captured translational motions in CG systems using a hard sphere mapping,
the absence of rotational motions in single-site CG models introduces differences between FG and
CG dynamics. In this third paper, our objective is to faithfully recover atomistic diffusion
coefficients from CG dynamics by incorporating rotational dynamics. By extracting FG rotational
diffusion, we unravel, for the first time reported to our knowledge, a universality in excess entropy
scaling between the rotational and translational diffusion. Once the missing rotational dynamics
are integrated into the CG translational dynamics, an effective translation-rotation coupling
becomes essential. We propose two different approaches for estimating this coupling parameter:
the rough hard sphere theory with acentric factor (temperature-independent) or the rough Lennard-
Jones model with CG attractions (temperature-dependent). Altogether, we demonstrate that FG
diffusion coefficients can be recovered from CG diffusion coefficients by (1) incorporating
“entropy-free” rotational diffusion with translation-rotation coupling and (2) recapturing the
missing entropy. Our findings shed light on the fundamental relationship between FG and CG
dynamics in molecular fluids.



I. Introduction
This paper is the third in a series (with the preceding articles referred to as Paper I! and II? hereafter)
concerning the artificially “fast” dynamics in coarse-grained (CG) systems.? In order to bridge the
accelerated CG dynamics with respect to the reference fine-grained (FG, i.e., usually atomistic-
level) dynamics, we extensively employed the excess entropy scaling formalism that explicitly
links a thermodynamic property of the system to its dynamics. These efforts originated from
Rosenfeld’s scaling relationship:*+°

D* = Dy exp(aSey),

(1)
where D™ is the dimensionless diffusion coefficient rescaled by macroscopic units
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and the molar excess entropy is defined as
Spr = o2 = (S(p T) = Sia(p, T)).
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In Paper I,! we developed a generalized theory to account for various modal contributions in order
to compute excess entropy. We particularly focused on water by utilizing our recently developed
CG model: BUMPer (Bottom-Up Many-Body Projected Water).” 8 For FG and CG water systems,
we discovered that Eq. (1) holds with a similar exponent a for the same molecular system upon
the coarse-graining process:

InDjic = aFCsEC + In DS = 0.73 x sES + 2.15,
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Figure 1: Excess entropy scaling for the FG (red dot) and CG (blue dot) water systems. We also
plot the scaling relationships discovered in Paper I:' FG relationship [dashed red line, Eq. (4)] and
CG relationship [dashed blue line, Eq. (5)]. To match FG and CG dynamics, the excess entropy is
corrected for the CG system as shown in sky blue dot, but it does not agree with the FG dynamics
due to the differences in D).

Our ultimate goal is to establish a complete correspondence between FG and CG dynamics, as
shown in Fig. 1. From Egs. (4) and (5), the characteristic terms that differentiate FG and CG
dynamics stem from the intercept, or the “entropy-free” diffusion coefficient Dy, and the excess
entropy S.,. The differences in excess entropy between the FG and CG systems are referred to as
the “missing entropy” (or mapping entropy).” '° We recently discovered that the missing entropies
are entropic contributions from motions “beneath” the resolution of CG models that are lost during
the coarse-graining process.'?

Even though we can estimate the missing entropy term, s,,, to recover the FG dynamics from the
CG model, as depicted in Fig. 1, the entropy-free diffusion coefficient D, is relatively difficult to
interpret, as this quantity does not have any clear physical origin. However, in Paper II, we
developed a theory to analytically derive the D, term for CG models.? The central idea of Paper II
was twofold: (i) Single-site CG models have the same resolution as hard sphere liquids and (ii)
repulsive interactions in short-range regions mostly determine the structure of CG systems (from
classical perturbation theory!!-16). Therefore, we developed a new theory to construct an equivalent
hard sphere system by preserving the long wavelength density fluctuations!”!® of the given CG
system, which we named “fluctuation matching”. Since the hard sphere dynamical properties are
expressed as a function of effective packing fraction, or effective diameter, such a hard sphere
mapping allows for determining the entropy-free dynamical properties as well.223 The fluctuation
matching approach provides an analytical formulation for D, that recapitulates the trends from the
CG simulations. Also, we were able to predict the accelerated CG diffusion coefficients at different
temperatures based on FG information only. Nevertheless, this analytical theory is not directly
applicable to FG systems, as various motions (not only translational) exhibited at the atomistic
resolution are correlated. The present paper is devoted to filling this gap by presenting a more
complete dynamical correspondence between the CG and FG systems.

The central differences between the single-site CG model and the reference FG model are ascribed
to rotational motions exhibited at the FG resolution. Although FG particles involving in rotational
motions are integrated out at the center-of-mass (CG) level, an effect of rotation on overall FG
translation must be considered as the rotational diffusion occurs concurrently with translational
diffusion during FG simulations.?*?¢ In contrast, a single-sitt CG model can only have
translational motions as rotational motions are integrated out with the coarse-graining process.
Since introducing rotations to the system will slow down the overall dynamics by more rapidly
decaying the velocity autocorrelations, the accelerated CG dynamics can be effectively corrected
by recovering the missing dynamical features that originate from the FG behavior. However, two
important questions arise: (1) How to extract the missing rotational motions from the FG system,
and (2) how to introduce and couple the extracted rotational diffusion to the existing translational
diffusion of the CG system?

First, applying the excess entropy scaling proposed by Rosenfeld to rotational motions is not
straightforward because the choice of scaling schemes and excess entropies is ambiguous.



Furthermore, even if one establishes the correct scaling relationship for rotational diffusion that is
consistent with the original Rosenfeld scheme, it is unclear how to link rotational diffusion with
translational diffusion because their units are different. In this paper, we resolve this conundrum
by projecting rotational displacements onto translational components based on our previous
findings in which CG sites can be regarded as effective hard spheres. This so-called “arc
approximation” is expected to effectively project rotational displacements on the hard sphere
surface to translational displacements, allowing for the Rosenfeld scaling to be employed to
rotational motions. An effort to link translational diffusion with rotational diffusion is not
completely new as one can relate classical hydrodynamic theory to simple kinetic theory. In such
a way, it is shown that translational diffusion described by the Stokes-Einstein relation?’ is
explicitly related to the Stokes-Einstein-Debye relation?® that determines rotational diffusion.
Nevertheless, our attempt to assess rotational diffusion as missing motions from the coarse-
graining process is an alternative and new approach. Excess entropy terms relevant to rotational
diffusion can be readily obtained from our framework demonstrated in Paper I, as well as theories
developed by Lazaridis, Karplus,?® and Zielkiewicz.*® When the Rosenfeld-like scaling scheme is
in place, a natural extension is to also examine if the same scaling law will hold for rotational
diffusion. This validation will serve as proof of universality in excess scaling relationships for
different underlying motions.

In turn, the missing dynamics in CG simulations can be recuperated by including projected
rotational components from the FG point of view. However, once we reintroduce the rotational
degrees of freedom to the translational CG motions, exchanges between angular and linear
momentum upon collision occur, and the so-called “translation-rotation coupling” must be
considered.’!-3¢ In Paper I1, CG diffusion was described as an effective hard sphere diffusion from
the Enskog theory,? which provides accurate dynamic properties over various density ranges but
is limited in that it was developed for perfectly “smooth hard spheres” in which the particles do
not exchange any angular momentum upon collision.>” 3 This assumption works well for the
single-site CG model where there is only translational motion — there would be no need to consider
angular momentum exchanges. However, if we integrate the FG rotational diffusion to the CG
particles, we must account for the angular momentum exchanges upon collision.

To correctly address the coupled motions in such CG models, we adopt the concept of “rough hard
spheres” introduced by Chandler® and extensively developed in the 1970-80s.3* To analytically
model the reduced diffusion from rapidly decaying velocity autocorrelations under translation-
rotation coupling, Chandler developed a rough hard sphere theory where the diffusion coefficient
is a smooth hard sphere diffusion coefficient scaled by a roughness parameter, which accounts for
the coupling between translational and rotational motions upon collision.>*#? Based on this theory,
we assert that the full FG dynamics can be recovered from the CG dynamics with a correct
translation-rotation coupling once the roughness parameter of water is determined. Since the
roughness parameter is highly related to the non-sphericity of molecules, we leverage the reported
correlation between the roughness parameter and the non-sphericity of molecular liquids* to
derive the translation-rotation coupling factor for water.

In summary, we study here the aforementioned connections between FG and CG dynamics and
aim to recover the FG diffusion coefficients of water from the simple CG diffusion coefficients at
different temperatures.



II. Theory
2-1. Rotational Diffusion at FG Resolution
In Paper I, we obtained the translational diffusion coefficient by employing Einstein’s relation to
the center-of-mass mean squared displacement (MSD)
Ncg

D, = lim —(Rz(t)) _ hm z IR,(®) - R,(0)|",
(6)

where R, (t) denotes the position of the center-of-mass of molecule 7 at time ¢z. Analogously, the

rotational diffusion coefficient is defined as
Nce

Drox = Jim - (§(0) = fim 7o Z|¢,(t)—¢,(0)|
)

In Eq. (7), {(¢?(t)) is the rotational mean square displacement represented as a rotational
displacement vector ¢, (t) for the molecule 7 at time 7. However, unlike translational motions, the
rotational displacement vector ¢;(t) by definition is bounded from 0 to 2z rad. Hence, to assure

the unboundedness of 5,(1:), we alternatively divide the changes in rotational displacements as
discrete vectors and integrate them up at each step. Figure 2 demonstrates a schematic procedure

for constructing d_;,(t) from the normalized polarization vector p;(t) following the original
work.®
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Figure 2. Schematic procedure for calculating the unbounded rotational mean square
displacements: (a) FG trajectory of rotational motions for water from (b) top-view and (c) side-
view. For each molecule, we calculate the normalized polarization vector p; (blue) at every time

step. The time differential of the rotational displacement A(;B (black arrow) is calculated using two



adjacent normalized polarization vectors at time ¢t and t + 6t. Finally, the rotational displacement
¢ is obtained from a summation of Ag as shown by the red line in (a).

The normalized polarization vector is defined as a vector from the center-of-mass position to the
midpoint between two oxygen atoms, which is an axis for the Coy symmetry. For the two adjacent
FG configurations at a time step of t and t + &t from the given FG trajectory, we define a
differential of rotational displacement vector as Agg ;(t + 6t) where the magnitude of the
differential is an angle spanned by the polarization vectors from ¢ to t + &t
|A¢, (t + 86)| = cos™1(p, (t) - (¢ + 6¢)),

(8)

with direction given by
A, (t + 8 1l B, () x P, (¢ + 5t).

)
Therefore, we construct the differential vectors from adjacent configurations and perform a
discrete integration to obtain the rotational displacement vector from the initial time ¢, to the final

time t with Ng, steps
- d - ; t - to
Bi(0) = ) A e+ =)
5t

i=t0
(10)
By design, Equation (10) is no longer bounded, and we can utilize Eq. (7) to obtain D,;.

2-2. Excess Entropy Scaling for Rotational Diffusion: Challenges
From the rotational diffusion coefficients obtained at the FG resolution, a Rosenfeld-like excess
entropy scaling relationship can be designed as
Dior = D exp(a™tsigh),
(11)
where D/, is the rescaled rotational diffusion, and a™" is the scaling factor for rotational diffusion.
To examine if Eq. (11) holds, two variables must be determined: D}, and s}2t.

Yet, applying the excess entropy scaling for the rotational diffusion can be problematic since there
are no macroscopic units that are consistent with the dynamics at the macroscopic level. For
translational diffusion, it is shown that the rescaling scheme given by Eq. (2) is consistent with the
characteristic length and timescales of Newtonian dynamics, and this can be further extended to
the hidden scale invariance of strongly correlated systems.*% 47 However, such a rescaling scheme
does not exist in the case of rotational diffusion. To our knowledge, only a relatively small number
of studies have been conducted on rotational diffusion scaling compared to that of translational
diffusion. Most of these contributions from Chopra, Truskett, and Errington applied the following

scaling scheme:*8-3!

—_

* —
Drot - Drot

N =

.
(o) R
(12)

Even though the above scaling scheme is suggested to demonstrate a Rosenfeld-style scaling, there
is no apparent physical connection between the scaling scheme in Eq. (12) and the macroscopic



units. The authors of Refs. 48-51 report that excess entropy scaling is observed in rotational
diffusion using Eq. (12), but any scaling scheme will eventually give rise to a linear relationship

since ( - ) and (m) are constant. Therefore, a well-founded, physical scaling relationship is still

needed for rotational dynamics.

Also, directly scaling rotational diffusion can be problematic as it lacks a physical link with
translational diffusion. Note that rotational diffusion is in units of rad’-s!, whereas translational
diffusion is in units of m?s’!. Therefore, the two diffusion coefficients are not directly related,
while their dynamical behaviors must be somehow related. In order to quantitatively estimate the
effect of rotational dynamics on the mapped FG translation, an alternative approach is needed to
bridge between two different diffusion processes.

2-4. Arc Approximation: Link Rotation to Translation

In Paper II, we demonstrated that it is physically reasonable to treat the single-site CG site as a
hard sphere with an effective diameter that gives consistent dynamics with the CG reference.?
Hence, at the mapped FG resolution, the overall FG trajectories can be thought of as hard sphere
trajectories containing both rotation and translation. Since the effective hard sphere diameter for a
given FG trajectory remains unchanged, the rotational displacement would still not deviate from
the hard sphere.

In this regard, translational displacement arising from rotational motions can be projected onto the
hard sphere surface. Then, under the hard sphere approximation (thus no changes in hard sphere
diameters), it is reasonable to approximate translational components due to rotations as the arc
length g;_,o¢ on the hard sphere surface with its diameter Ryg

Ot—rot = RHS : ¢I(t):

(13)
where ¢, (t) = |<]_5)1(t) | We will provide a detailed discussion for computing Ryg for a given CG
system in Section 3-2. Equation (13) directly links rotational displacements to translational
displacements using a hard sphere approximation, which we denote as the arc approximation. By
adopting this approach, the effective translational diffusion coefficient due to rotation, as denoted

by D;_ot, can be formulated in terms of Einstein’s relation
Ncg

Dt rot — hm t(atz—rot(t)> hm6_N_ZIRHS ¢I(t) RHS ¢I(O)|2
cG

(14)
We note that a similar description for the anisotropic diffusion coefficients of colloidal particles
has been suggested as the product between the distance from the center and rotational diffusion
motions.>* 33 Another physical interpretation underlying Eq. (13) is possible at the hydrodynamic
level, known as the Stokes-Einstein®* > and Stokes-Einstein-Debye?® relationships. An extension
of the present approach to hydrodynamic description will be discussed in a subsequent paper in
this series.

In turn, we can reapply the original Rosenfeld scaling to the translational displacements resulting
from rotational diffusion as
Di_ror = D&t exp(atrotst rot).



(15)
Since D;_ o denotes the translational diffusion in units of m?-s”!, we can apply the same rescaling

scheme from the original work by Rosenfeld to obtain the dimensionless diffusion coefficient
1

3
Di_rot = Di—rot P 1
()’
m
(16)
The last term to be determined before employing Eq. (15) is the excess entropy term related to

rotation, sS; .

2-3. Excess Entropy for Rotation
In Paper I, we proposed a calculation scheme for excess entropy! based on the two-body
contribution from the multiparticle correlation expansion>®->?

§@ = —znfm{g(z)(r) Ing®@ () - [¢gP () - 1]}r? - dr,

(17)
in which g@® (r) is the pair distribution function. Since pair r in Eq. (17) includes both the pair
distance r = |r| = |r, — r;| and the orientation of each particle w, and w,, an accurate pair

excess entropy was obtained by considering contributions from both translations and orientations

using the decomposition method suggested by Lazaridis, Karplus,?” and Zielkiewicz*°

9Pr,) = gP(rwy, wy) = g2 - g (w1, wy 7).

(18)
We have previously shown that this decomposition approach shares an identical factorization
scheme with the two-phase thermodynamic (2PT) method:%%-62

ST = S5 + So8 = Sim + Stat + Suib.

(19)
Since contributions from vibrational motions to excess entropy are negligible in water, the
rotational entropies from Eq. (19) should correspond to the orientational entropy from the
definition given by Lazaridis and Karplus.?® In order to apply excess entropy scaling for rotation,
we followed Refs. 48-51 and chose the excess entropy associated with the FG rotational motion to

be the overall excess entropy of the FG system, i.e.,

t-rot _ FG
Sex = Sex -

(20)
Equation (20) can be further understood as follows. Since the computed rotational diffusion
coefficients are obtained from the FG trajectories involving both translation and rotation at the
same time, the extracted rotational motion is not completely independent from the center-of-mass
translation, as it is conditional to its translational motion: ¢, (t) = ¢;(t|R(t)).

Finally, the Rosenfeld-like excess entropy scaling for translational diffusion due to the projected
rotational diffusion is formulated as

1
3
D =D . P = pt-rot oy (at—rotSFG
t—rot t-rot 1 0 p ex J-
kgT\2
=B
)
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Our main objective here is to check if Eq. (21) holds, and, if so, to compare the fitted exponent

a'~r°t with the exponents from translational diffusion that are universal to FG and CG trajectories
gtrans — oFG — aCG.

2-5. Translation-Rotation Coupling
From Chandler’s work on translation-rotation coupling,®® the diffusion coefficient of rough hard
spheres, Drys, can be related to that of smooth hard spheres, Dgys, as
Drus = ApDsgs.

(22)
The roughness parameter in Eq. (22), Ap, is bounded from zero to unity, reflecting the translation-
rotation coupling. Namely, A is unity for perfectly smooth hard spheres and deviates to zero as a
molecule becomes highly non-spherical. Thus, introducing a concept of rough hard spheres can
effectively account for the translation-rotation coupling.

Even though the physical picture of A, is clear as a measure of sphericity of the given molecule,
Chandler did not derive any systematic expressions for Ap in his original work for carbon
tetrachloride, reporting an Ap = 0.54 by comparing the Enskog-based smooth hard sphere
diffusion coefficients to experiment.®® After a decline in popularity of the hard sphere theory, the
roughness parameters based on the hard sphere prediction and experiments were reported for only
a handful of liquid systems in literature,** resulting in a lack of extensibility over other types of
liquids. Despite its semi-empirical nature, after almost 30 years, Ruckenstein and Liu proposed an
alternative way to assess the roughness parameter based on the non-sphericity of molecules.**
Among various metrics for non-sphericity, they chose acentric factor w that is known as a
quantitative measure of the non-sphericity based on
w = —logh,,, (T, =0.7) -1,

(23)
where B, , is the reduced vapor pressure P, . = P/F, at the reduced temperature T, = T /T, =
0.7.%% 65 Pitzer found that non-spherical liquids deviate from the ideal behavior described by the
theorem of the corresponding states®® in the pressure-temperature phase diagram, and this
deviation can be quantified as Eq. (23). Since the acentric factor represents the non-sphericity of a
molecule and can also be measured in experiment, it has become a standard factor for phase
characterization and for improving phase-behavior computations from equations of state. In this
regard, the central argument of Ruckenstein and Liu was to establish a link between the roughness
parameter and the acentric factor by examining their correlations over 42 different data sources for
26 different liquid systems.** In the end, they found a correlation between A, and w as

Ap = 0.9673 — 0.2527w — 0.70w?.

(24)
For unknown liquid molecules, we claim that Eq. (24) can yield a suitable translation-rotation
coupling parameter by examining how the liquid molecule is non-spherical, and this idea can be
applied for our CG water case. Yet, we also note that this correlation is somewhat ad hoc, and thus
some errors may arise when applying Eq. (24) to systems beyond the parametrized sets, such as
water.

2-6. Computational Details
The computational details and results of this paper are along the same lines as the previous papers
in our series.! 2 In this subsection, we briefly provide essential information needed to describe the



system setting in this work. Readers are referred to Paper I for the complete set-up of the FG and
CG simulations and the CG parameterization.

In general, the bottom-up CG interaction parameters are derived from FG simulations to precisely

reproduce structural correlations. "> Particularly, in this work, the CG model of water (BUMPer)
is parameterized from four different FG force fields: SPC/E, SPC/Fw, TIP4P/2005, and

TIP4P/Ice.” 8 Unlike conventional pairwise CG models, these BUMPer interactions are designed

by projecting three-body Stillinger-Weber interactions onto pairwise basis sets, and thus the

integrated three-body contributions give rise to high-fidelity CG models at inexpensive

computational cost, resulting in a more faithful recapitulation of two-body and N-body correlations.
In the earlier BUMPer work, we designed the BUMPer force fields to be temperature transferable,

and thus the effective interactions can span from 280 K to 360 K for every 20 K at 1 atm (spans

the entire liquid range at 1 atm).® We adopt this temperature range (five different temperatures) to

analyze the effect of temperature on self-diffusion.

I11. Results

3-1. Rotational Diffusion in Water

Figure 3 depicts the rotational mean square displacements for four different BUMPer models
parameterized by different FG force fields at different temperatures. The monotonically increasing
feature of the rotational mean square displacements with time confirms the unboundedness of the
devised scheme in Fig. 2. As expected, the rotational displacements also increase as temperature
increases from 280 K to 360 K.

(a) T=280(K) —— T =340 (K) (b) T=280(K) —— T =340 (K)
T =300 (K) T =360 (K) —— T =300 (K) T =360 (K) ——
T =320 (K) T =320 (K)
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Figure 3. Rotational mean square displacement (¢?(t)) from the FG trajectories at temperatures
from 280 K to 360 K: (a) SPC/E, (b) SPC/Fw, (c) TIP4P/2005, and (d) TIP4P/Ice. While the
rotational displacement increase with temperature, its unit (rad?) is not consistent with the
translational displacement.
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In Table 1(a), we calculate D,,; by employing Eq. (7) to the scheme described in Fig. 2. The
computed values are listed in a similar order as the previous work utilizing the SPC/E force fields,
as 1071-10"2 rad?-ps™! from Ref. 76 or 10'°-10!! rad?s! from Ref. 49, confirming the validity of our
calculations. However, as stated in Paper L,! translational diffusion occurs at different orders and
has units of m?s!. (One interesting avenue to explore for future work is to link the Stokes-Einstein
relation and Stokes-Einstein-Debye relation for water.?”- 2%) In turn, due to the differences in the
units for translational and rotational diffusion, applying the Rosenfeld-like scaling schemes and
recovering the missing dynamics are not possible, as illustrated in Fig. 3.

Table 1: Rotational diffusion coefficients of water evaluated for FG models: (a) SPC/Fw, (b) SPC/E, (c)
TIP4P/2005, and (d) TIP4P/ice. We calculated the effective rotational diffusivity Dy and its translation
component D;_,: by employing the arc approximation at various temperatures (280-360 K).

(a) SPC/E (b) SPC/Fw

Temperature  D,o, (rad*ps™') Dy ,or (cm*s™') Temperature D, (rad®>-ps™) Do (cm*-s™)
280 K 7.65x107 8.19x10°¢ 280 K 1.01x10™ 1.08x10°
300K 1.08x10™! 1.17x10° 300K 1.68x10™! 1.82x107
320K 1.58x10 1.72x107 320K 2.18x10" 2.37x107°
340 K 2.02x10™" 2.23x107 340 K 2.77%10™" 3.05%107
360 K 2.69x10" 3.00x107 360 K 3.31x10" 3.69x107

(c) TIP4P/2005 (d) TIP4P/Ice

Temperature  D,o, (rad*ps™') Dy ,or (cm*s™') Temperature D, (rad®>-ps™) Do (cm*-s™)
280 K 6.00x10 6.41x10° 280 K 3.28x10 3.53x10°¢
300K 1.02x10™ 1.11x10° 300K 5.77x102 6.26x10°°
320K 1.52x10™ 1.66x10° 320K 9.39x10 1.03x10°
340K 2.09x10™ 2.31x107° 340K 1.47x10™! 1.64x107
360 K 2.71x10" 3.04x107 360 K 2.00x10"! 2.25x107

3-2. Excess Entropy Scaling of Rotational Diffusion

Introducing the arc approximation allows one to quantitatively assess the role of rotations in excess
entropy scaling. In order to utilize Eq. (13), the effective hard sphere radius Rys must be
determined beforehand. Among various hard sphere approximations,”’ Paper II discussed two
different mapping approaches for CG models, the Barker-Henderson perturbation and fluctuation
matching, to obtain an effective hard sphere diameter or packing fraction.?

In this section, we employ the Barker-Henderson approach to obtain the hard sphere property in
order to employ the arc approximation [Eq. (13)]. Since the rotational motion is confined to each
molecule, we are not interested in capturing the long wavelength properties, which are of particular
interest in fluctuation matching. Namely, we aim to analyze the many-body CG PMF on the basis
of pairwise interactions and determine its effective diameter to approximate the size of the hard
spheres. The work by Barker and Henderson gives the effective hard sphere diameter for the CG
system as

11



Ooit = f "1 - exp(—BUR))] - dR,

(25)
where R, is determined to the shortest possible distance that gives zero CG interaction: U(Ry) =
0. Then, the effective hard sphere radius of CG system is estimated as gz /2. Equation (25) can
be readily applied to the many-body CG PMFs at different temperatures that were depicted in Fig.
2 of Paper L.! Paper II provides a comprehensive discussion of the theories for hard sphere
mapping,” and Table Al in Appendix A lists the estimated oy values for different water models.
Next, the translational components of the rotational mean square displacement ((Rys¢)?(t)) are
shown in Fig. 4. The temperature-dependent trend of the projected displacements also resembles
the trend from the pure rotational displacements in that they only differ by the hard sphere radius.
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Figure 4. Translational-component of rotational mean square displacement ((Rys¢)?(t)) from the
FG trajectories at temperatures from 280 K to 360 K: (a) SPC/E, (b) SPC/Fw, (c) TIP4P/2005, and
(d) TIP4P/Ice. The arc approximation allows for assessing the missing motions in terms of excess
entropy scaling.

We now perform the excess entropy scaling to examine the scaling exponent for rotation. For four
different FG force fields, Fig. 5(a) confirms that the scaling behavior follows a natural logarithm
of the projected diffusion coefficients and is proportional to the overall FG excess entropies with
the relationship
InD{_ o = 0.73 X sES + 1.57.
(26)
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Figure 5. Examination of the Rosenfeld scaling for water rotation and its universality. (a) FG
scaling relationship for the projected rotation where the SPC/E (red circles), SPC/Fw (green circles),
TIP4P/2005 (blue circles), TIP4P/Ice (purple circles) models fall into a linear scaling relation
shown in Eq. (26) (dashed green line). (b) Introduced excess entropy scaling schemes are invariant
under different motions: rotation (red circles) and translation (blue circles). The rotational scaling
[dashed green line, Eq. (26)] exhibits an almost identical slope as that of the translational scaling
[dashed orange line, Eq. (5)], supporting the universality of the scaling relationships.

Remarkably, the central result of our work is that the scaling exponent from the projected rotation
in Eq. (26) is almost identical to the scaling exponent from the translational motional in Eq. (5).
Both equations are plotted in Fig. 5(b), indicating

at—rot ~ (ZCG ~a

FG.

(27)
Given the fact that the excess entropy scaling of overall FG trajectory also gives almost a similar
exponent aFC, our findings confirm the universality of the excess entropy scaling over different
motions. This is particularly important because, from this universality, any differences in diffusion
can be fully understood as changes in excess entropy and the entropy-free dynamics
Dy.Furthermore, our findings provide a systematic framework that can be potentially useful to
effectively describe the accelerated dynamics of any CG model beyond the single-site CG
resolution. As long as the missing entropies and motions due to coarsening can be characterized,
the present framework can predict such changes in the diffusion coefficients.

3-3. General Overview of Corrected CG Diffusion

Based on our findings in the previous section, we summarize our general understanding of the
differences in FG and CG dynamics in this section (Fig. 6).
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Figure 6. Schematic diagram for single-site CG dynamics of liquids. (a) Upon coarse-graining, the
rotational degrees of freedom do not remain at the CG model, and thus the CG simulations represent
only translational dynamics. (b) The correct representation of FG dynamics in the CG model can
be done by integrating the rotational diffusion dynamics from the FG level onto the CG level. From
a hard sphere point of view, we perform the arc approximation to assess the missing dynamics.
Note that this process is done as a post-analysis of the naive CG dynamics, not for constructing a
new CG model.

By coarse-graining the liquid system to a single-site representation, the CG diffusion only contains
translational motion since rotational motion does not remain at the CG resolution
DCG — Dtrans — Dsrans exp(asgcans .

(28)
In Eq. (28), we proposed « as a universal exponent for all FG and CG systems. The parameterized
CG model can only mimic translational motion since rotational diffusion is integrated out during
the coarse-graining process. To correct for this accelerated CG dynamics, we introduce the
rotational contributions from the FG level

pt-rot — D(‘g—rot exp(asgg.).

(29)
Because Eq. (28) and (29) have different entropy terms stf2"S and sES, our approach explains why
it is difficult to directly relate translational diffusion with rotational diffusion.

Applying this idea to water, Eq. (26) suggests that the missing rotational contribution to the
reference FG diffusion is about In D{™"°" = 1.57. Since this contribution is completely missing in
the CG description, we claim that this portion should be effectively added to the CG dynamics in
order to recover the reference dynamics. However, this is also when the translation-rotation

coupling comes into play.

3-3. Translation-Rotation Coupling of Water
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We now introduce the idea of imposing a translation-rotation coupling. Our approach is different
from the conventional hard sphere work by Chandler?® as well as Berne and Montgomery.** From
the conventional perspective, a hard sphere description was applied to accurately capture the
overall diffusion behavior with respect to the reference diffusion. Thus, in such treatments, both
translation and rotation should be considered at the same time while modeling the hard sphere
system, resulting in a coupling between these two motions. However, our approach does not fully
stem from hard sphere modeling as our primary purpose of using the hard sphere is to understand
the CG translational diffusion.? In other words, we first constructed the CG model via bottom-up
approaches, keeping only the translational degrees of freedom of the CG system. We do not have
to consider translation-rotation coupling in the CG system, since there are no rotational degrees of
freedom left. Therefore, by having only translational motion, we design an effective hard sphere
system that can faithfully recapitulate translational motion, as seen from the CG simulation
described in Paper II. However, once we integrate the rotational information from the FG
trajectories to the resultant hard sphere system, both the translational and rotational motions appear
in the hard sphere system at the CG resolution, and thus the resultant dynamics should be coupled.

In summary, the aforementioned procedures to recover the full dynamical information from CG
diffusion can be performed in three sequential steps: (1) Correcting for s., in Eq. (5), (2)
incorporating the entropy-free rotational diffusion effect from D{™™*, and (3) considering the

translation-rotation coupling.

As initially introduced in Paper I and also depicted in Fig. 1 of this paper, correcting the excess
entropy term by recuperating missing entropy is not enough to fully recover the FG dynamics
because the rotational motions are not considered. By adding a translation-component of the
rotational diffusion, the overall diffusion becomes more in agreement with the reference FG
diffusion. Namely, by introducing the missing rotational motions, the overall CG dynamics
effectively slows down compared to the pure CG translational diffusion. Finally, we consider the
coupling between the rotational and translational diffusion. The coupling parameter, which is also

the roughness parameter of water Agzo, is given by Eq. (24).

From the critical temperature and pressure measured for water in Ref. 78, the acentric factor can
be estimated as wy,o = 0.344 using Eq. (23). As the acentric factor reflects the non-sphericity of
a molecule, the computed value is within a reasonable range (less than 1). Using this value, we

obtained the fitted roughness parameter Agzo = 0.798. That is, under angular and linear

momentum exchanges in realistic collision conditions, the effective diffusion is expected to be
reduced by ~ 20%.

3-5. Recovered Diffusion Coefficients: Temperature-Independent Agzo

We now quantitatively assess the recovered diffusion coefficient from the previous subsection in
comparison to the reference diffusion coefficients from the FG simulations. Figure 7 provides an
overview of the diffusion coefficients from the FG and CG simulations along with the recovered
CG dynamics for comparison.
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Figure 7. Diffusion coefficients of water for the FG (red solid) and CG (green solid) systems at
different temperatures: (a) 280 K, (b) 300 K, (c) 320 K, (d) 340 K, and (e) 360 K. We recovered
the FG dynamics (blue solid) from the CG diffusion coefficient values using a temperature-
independent parameter Ap [Eq. (24)].

Among the four different FG force fields, we find that SPC/Fw deviates the most by an average
error of 32%. This difference can be understood from the nature of the force field: the oxygen-
hydrogen bonds and hydrogen-oxygen-hydrogen angles are designed to be flexible unlike the rigid
SPC/E or TIP4P-based models. Despite the fact that the vibrational modes of water are mostly
negligible, this slight contribution violates the entropy partition scheme of Eq. (19). Also, while
extracting the rotational diffusion, the polarization vector p;(t) may not be able to fully capture
rotation due to perturbations that originate from the oxygen-hydrogen bond vibrations. These
vibrational contributions may result in deviations in the recovered diffusion coefficients.

The recovered CG diffusion coefficient DEZ™" and the error ratio DEE'" /Dgg are presented in Table
2 and B1, repspectively. Our treatment, which incorporates rotational effects and translation-
rotation coupling, successfully captures 72.6% of the FG dynamics from the CG dynamics. It is
important to note that this agreement was achieved by strictly following the original description
for the translation-rotation coupling reported by Chandler. In other words, in Eq. (22), A, was
assumed to be rigorously density and temperature independent.’® Nonetheless, with the
introduction of the rough hard sphere model, high-pressure NMR spin echo techniques have
allowed for the examinination of the temperature and density dependence of the coupling
parameter.”” In spin echo experiments, the accurate determination of diffusion coefficents is
achieved by adjusting the coil current in the presence of a pulsed field gradient.®® These
experimental studies have revealed that the roughness parameter varies with temperature for small
liquids.8!- 82
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Table 2: Diffusion coefficients of water evaluated for FG and CG models. Based on Fig. 7, the recovered
CG diffusion coefficients (DEg'") are listed for comparison and show high agreement with the FG diffusion
coefficient at low temperatures. We demonstrated the fidelity of our approach by testing at various
temperatures (280-360 K) using the four FG force models and their corresponding BUMPer CG models:
(a) SPC/E, (b) SPC/Fw, (c) TIP4P/2005, and (d) TIP4P/Ice.

(a) SPC/E (Diffusion in cm?-s™) (b) SPC/Fw (Diffusion in cm™s™)

Temp Dgg Dcg D& Temp Dgg Dcg D&
280K 1.55x10°  1.22x10*  1.96x10° 280K  2.20x10°  9.39x10°  1.70x10°
300K 2.51x10°  1.51x10*  2.64x10° 300K 3.53x10°  1.20x10%  2.31x10°
320K 3.98x10°  1.54x10*  291x10° 320K  4.84x10°  1.47x10*  3.26x10°
340K 5.33x10°  1.78x10*  3.63x10° 340K 6.08x10°  1.63x10*  3.77x10°
360K 6.12x10°  1.96x10*  4.37x10° 360K 6.77x<10°  1.81x10*  4.64x10°
(c) TIP4P/2005 (Diffusion in cm?s™) (d) TIP4P/Ice (Diffusion in cm™s™)

Temp Dgg Dcg D&t Temp Dgg Dcg D&
280K 1.20x10°  9.41x10°  1.32x10° 280K  6.04x10°  7.60x10°  9.50x10°
300K 2.11x10°  1.17x10*  1.79x10° 300K  1.24x10°  9.79x10°  1.32x10°
320K 3.25x10°  1.50x10™  2.44x10° 320K 1.88x10°  1.21x10*  1.71x107
340K 4.45x10°  1.59x10*  2.85x10° 340K 2.94x10°  1.43x10*  2.20x10°
360K 6.20x10°  1.62x10*  3.16x10° 360K  4.00<10°  1.51x10*  2.52x10°

In Chandler’s original work, the initial application focused on the carbon tetrachloride (CCls) with
a temperature and density independent A, value of 0.54.3° Subsequent experimental studies
confirmed the absence of temperature depencency for CCls, CF4, CHF3, CFCls, and CF3CL.#> 83
However, it has been observed that molecules with large dipole moments experience a significant
decrease in intermolecular interactions at higher temperatures, indicating a general decrease Ap.*
This observation led to a more systematic treatment reported by Easteal and Woolf for simple
polyatomic fluids.?* 3% Motivated by these studies, we propose that the roughness parameter for
water should also exhibit a temperature dependency. While a direct examination of water is
challenging due to the lack of comprehensive experiments at normal density conditions®37 (except
for NMR studies of water at compressed supercritical states®®: %), it is worth noting that water
exhibits strong hydrogen bonding in its liquid phase. Therefore, the strong hydrogen bonding in
water suggests a temperature-dependent A, behavior, which differs from Chandler’s original
model.*’

3-6. Recovered Diffusion Coefficients: Temperature-Dependent AgZO(T)
As shown in Table 2, the recovered CG diffusion coefficient, obtained using the temperature-

independent AI;ZO = 0.798, strongly indicates that A];ZO should decrease at higher temperatures,
such as 360 K. Furthermore, the relative accuracy of the recovered diffusion coefficients becomes
more pronounced at lower temperatures. For example, as observed in Table B1, the averaged error
ratio D&Q'" /Dgg consistently decreases with increasing temperature from 1.18 at 280 K to 0.90 at

300 K, then 0.77 at 320 K, 0.67 at 340 K, and finally 0.64 at 360 K.
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In order to accurately account for the temeperature-dependent dipole moment of water, we adopt

the approach proposed by Speedy et al. to introduce weak temperature dependence to the coupling

parameter.”® Based on the Arrhenius-like temperature dependence of D in several liquids, Ref. 90

attributed this temperature-dependent coupling behavior to the attractive part of the intermolecular

potential. Speedy originally derived the temperature dependence based on Lennard-Jones fluids as
Dyj = Dys(op) exp(—€/2kgT),

(30)
where oy represents the hard sphere diameter from Boltzmann’s definition®® and € corresponds to
the Lennard-Jones potential energy minimum, which is the attractive part of the Lennard-Jones
interaction. For Eq. (30), while the original Ref. 90 did not explicitly refer to the term
exp(—e€/2kgT) as the translation-rotation coupling factor Ap, we note that this term is essentially
the temperature-dependent coupling to the translational diffusion. Therefore, we extend Eq. (30)
to the bottom-up CG models of liquids as:

Dcg = Dsus exp(—€ca/2kpT).

(31)
In contrast to € in Eq. (30), ecg in Eq. (31) represents the CG interaction strength, which deviates
from a pure hard sphere repulsion. Since bottom-up CG interactions are many-body CG PMFs,
determining €cg for CG models is not as straightforward as in the Lennard-Jones cases.® ¢7-7°
Nevertheless, as a zeroth-order approximation, we can estimate €cg by considering the interaction
strength (i.e., potential energy minimum) within the first coordination shell of water. This
approximation effectively captures the attractive interaction nature of water. As a future direction,
we plan to further refine this approximation by leveraging our previous work to investigate the
low temperature anormaly of CG water.® In Ref. 8, we developed a systematic mapping of the CG
water interaction U(R) to the ramp interaction €g using an energy-conserving mapping

Ry
47Tpf [U(R) — eg]R?*g(R)dR = 0,
Ry
(32)
where R, and R, correspond to the minimum and maximum pair distances, respectively, satisfying
U(R,) = U(Rz) = eg.

Employing the zeroth-approximation, we extracted the ecg values for various force fields and
temperature conditions, which are listed in Table C1, and the temperature-dependence of the
roughness parameter can be accounted by estimating exp(—€cg/2kgT) factor. Remarkably, the
estimated value of exp(—ecg/2ksT) at 280 K closely aligns with the temperature-independent

Agzo value determined by the acentric factor. In particular, the estimated values were 0.800 for
SPC/E, 0.849 for SPC/Fw, 0.781 for TIP4P/2005, and 0.737 for TIP4P/Ice. This agreement can be
interpreted as indicating that Agzo captures the translation-rotation coupling near the freezing
temperature, and it is expected to increase as temperature rises. With this factor in mind, we
performed a temeperature-dependent correction, as presented in Table 3 and Fig. 8.
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Figure 8. Diffusion coefficients of water for the FG (red solid) and CG (green solid) systems at

different temperatures: (a) 280 K, (b) 300 K, (c) 320 K, (d) 340 K, and (e) 360 K. We recovered

the FG dynamics (purple solid) from the CG diffusion coefficient values using a temperature-

dependent parameter exp(—€ecg/2kgT) [Eq. (31)].
Comparing the results in Table 2, we can observe a significant improvement in DEg'™" at higher
temperatures. Overall, Eq. (31) can recover 92% of the FG dynamics across different force fields
and temperatures, as shown in Table B2. Considering the magnitude of the accelerated diffusion
D¢ /Drg ranging from 2 times to 13 times (with an average value of 5), our approach demonstrates
surprisingly good performance. Given that various degrees of freedom are integrated out at the CG
resolution, our approach suggests that back-mapping of dynamic information is possible under the
excess entropy scaling relationship. Even though the hard sphere theory has lost its popularity due
to the many developments in computer simulations, our findings suggest that physical principles
extending from the hard sphere theory can be still very useful for understanding how CG dynamics
corresponds to FG dynamics in molecular liquids.

Table 3: Diffusion coefficients of water evaluated for FG and CG models. Based on Fig. &, the recovered
CG diffusion coefficients (D&g™") are listed for comparison, resulting in good agreement with the FG
diffusion coefficient at all temperatures studied in this work (280-360 K). We demonstrated the fidelity of
our approach by using the four FG force models and their corresponding BUMPer CG models: (a) SPC/E,
(b) SPC/Fw, (c) TIP4P/2005, and (d) TIP4P/Ice.

(a) SPC/E (Diffusion in cm?-s™) (b) SPC/Fw (Diffusion in cm?-s™)
Temp Drg Dcg Deeg™ Temp Drg Dcg Deg™*
280 K 1.55x10” 1.22x10"* 2.08x10° 280K 2.20x107 9.39x10” 1.71x107

300K 2.51x107 1.51x10™ 2.94x10° 300 K 3.53x107 1.20x10* 2.61x107
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320K 3.98x107 1.54x10™ 3.47x10° 320K 4.84x107 1.47x10™ 3.83x107
340K 5.33x107 1.78x10™ 4.52x10° 340K 6.08x107 1.63x10™ 4.64x107
360 K 6.12x107 1.96x10™ 5.64x10° 360 K 6.77x107 1.81x10™ 5.94x107
(c) TIP4P/2005 (Diffusion in cm*s™) (d) TIP4P/Ice (Diffusion in cm*s™)

Temp Dgg Dcg D¢g™ Temp Dgg Dcg D¢g™
280 K 1.20x107 9.41x107 1.30x10° 280K 6.04x10° 7.60x107 8.77x10°
300K 2.11x107 1.17x10* 1.88x10° 300K 1.24x107 9.79x107 1.31x107
320K 3.25x107 1.50x10™ 2.75x10° 320K 1.88x107 1.21x10™ 1.84x107
340K 4.45%107 1.59x10* 3.43x10° 340K 2.94x107 1.43x10™ 2.55%x107
360 K 6.20x107 1.62x10™ 3.98x10° 360 K 4.00x107 1.51x10* 3.07x107

IV. Conclusions

In this paper, we establish a comprehensive correspondence between the fine-grained (FG) and
coarse-grained (CG) dynamics of water, elucidating the physical nature underlying the accelerated
CG dynamics of molecular liquids. Based on the excess entropy scaling relationship of the FG and
CG dynamics proposed in Paper I,' this work fills the gap between the entropy-free diffusion
coefficients, Dy, and the excess entropy, S.,, of FG and CG systems. While the differences
between the FG and CG configurational entropies can be resolved at the single-site resolution, the
central idea is to extract the missing rotational motion from the FG trajectory to recover the full
dynamics. Given that there seems to be no rigorous Rosenfeld-like macroscopic scaling scheme
for the rotational diffusion coefficient, we developed here a method to assess the translational
component from such rotations, assuming that these motions only occur on the effective surface
of a molecule. This idea is built upon our observation from Paper II that the CG particle can be
described as an effective hard sphere, as the CG diffusion can be thought of as a hard sphere
process.? Applying the Rosenfeld scaling to the translational component from rotations, we
discover that the scaling exponent is evidently invariant under different motions, suggesting its
universality.

Based on the universality of excess entropy scaling, we propose a general description of the
corresponding FG and CG diffusion coefficients. We claim that the translation at the FG level
contains not only the translational motion observed in the CG simulation but also the rotational
motion conditioned to molecular translation. Hence, the entropy-free component of the FG
diffusion coefficient should consider both rotational and translational contributions, whereas the
CG dynamics from the CG simulation exhibit only translational motion due to the missing degrees
of freedom. By incorporating the translation-component from rotation at the FG level to the center-
of-mass translation at the CG level, we find that the full FG dynamics can be faithfully recovered
from the CG dynamics when the translation-rotation coupling is also addressed.

In Paper 11, we demonstrated that pure translational motion of CG particles can be described by
the smooth hard sphere diffusion using the Enskog theory.? However, for a non-spherical system
with changes in angular and linear momentum upon collision, the assumption of the Enskog theory
is violated, and an effective coupling parameter should be introduced. Here, in this Paper III, based
on Chandler’s early observations,*!> 323 we evaluate the translation-rotation coupling parameter
for water from its non-sphericity described by the theorem of corresponding states. However, we
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observe that Chandler’s treatment may not be applicable for water at different temperatures due to
the presence of strong hydrogen bonding. To address this, a temperature-dependent description of
the coupling is proposed by generalizing the Speedy’s rough Lennard-Jones model to bottom-up
CG models.” Consequently, an effective reduction of the final recovered diffusion coefficients
notably recapitulates the reference FG diffusion coefficients at various temperatures, which was
previously considered as almost impossible to understand in other systematic CG theories. It
should be also noted that our framework is not confined to only water but is a generalized
framework that can in principle encompass any liquid using the acentric factor or mapping to the
Lennard-Jones liquid. In order to validate the fidelity of our proposed approach, future work will
focus on extending this method to a variety of (bottom-up) CG liquids with diverse interaction
profiles.®! This includes exploring the behavior of liquids such as CCls that was originally studied
in Chandler’s paper.*®

One possible future direction is to apply the developed framework to glassy dynamics from the
CG glass-forming liquid.”>** It has been demonstrated that the ratio between the translational and
rotational diffusion represented by the Stokes-Einstein and Stokes-Einstein-Debye relations breaks
down in the supercooled regime.”® > As an extension of the recent work on the low-temperature
behavior of the CG BUMPer model,? an examination of such dynamical heterogeneities of water
could be of great interest as well. In addition, taken one step further, recovering FG dynamics from
the CG dynamics of polymers can help design high-fidelity CG models since polymers exhibit
highly correlated phenomena, whereas conventional CG models have yet to completely
recapitulate the many-body correlations with correct dynamics.”¢-1%

To summarize, our findings elucidate the differences between the CG and FG dynamics from the
perspective of missing motions and entropies in the CG model. Combining this with our series of
previous papers,!> 2 our systematic approaches allow us to predict the accelerated CG diffusion
coefficients solely based on FG information and also to recover the reduced FG diffusion
coefficients from the accelerated CG information. We note that the single-site CG mapping using
center-of-mass provides simple entropic terms and tractable diffusion phenomena, allowing us to
elucidate the forward (FG — CG) and backward (CG — FQG) correspondences. For the case where
the CG model is no longer at a single-site resolution, a more sophisticated treatment should be
developed. A resolution-based systematic description can help to understand the speed-up factors
in inhomogeneous or more complex biomolecular systems, in which accurate dynamics are
required to obtain correct kinetic information. An alternative yet very important future direction is
a bottom-up derivation of the excess entropy scaling relationship. There has been continuous effort
to derive a rigorous theory of excess entropy scaling, ranging from mode coupling theory!?! to
mean first passage time!'? to Boltzmann’s formula for simple deterministic Hamiltonian
systems.!% Recently, a notable contribution involved deriving this scaling relationship as a general
inequality between entropy and kinetics with an exponent of 2/d (d: dimension).!** Combining
these approaches, the ultimate goal of the bottom-up CG dynamics would be to rigorously derive
the scaling relationship for the many-body CG Hamiltonian by extending the Boltzmann’s formula
or by examining whether the general inequality yields an accurate bound for practical molecular
CG systems.
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APPENDIX
A. Estimation of hard sphere diameter of water using Barker-Henderson theory

Table Al: Estimated hard sphere diameter (in A) of CG water models at various conditions, calculated
using the Barker-Henderson criterion [Eq. (25)].

Barker-Henderson Hard Sphere Diameter (A)

Temperature
SPC/E SPC/Fw  TIP4P/2005 TIP4P/Ice
280 K 2.534 2.532 2.532 2.540
300 K 2.542 2.549 2.563 2.552
320K 2.557 2.557 2.560 2.568
340K 2.570 2.567 2.577 2.583
360 K 2.589 2.587 2.592 2.600

+: Previously reported in Ref. 2.

B. Error ratio between the recovered FG dynamics and the reference FG dynamics
1. Temperature-independent case

Table B1: Error ratio DGg"" /Dgg between the recovered CG diffusion coefficients from this work, using
Chandler’s approach (Ref. 39), and the reference FG diffusion coefficients at different temperatures and
FG force fields.

Diffusion ratio DEE' /Dgg

Temperature
SPC/E SPC/Fw  TIP4P/2005 TIP4P/Ice
280K 1.26 0.77 1.10 1.57
300K 1.05 0.66 0.85 1.06
320K 0.73 0.67 0.75 0.91
340K 0.68 0.62 0.64 0.75
360 K 0.72 0.69 0.51 0.63

2. Temperature-dependent case

Table B2: Error ratio D&g"" /Dgg between the recovered CG diffusion coefficients from this work, using
Speedy’s approach (Ref. 90), and the reference FG diffusion coefficients at different temperatures and FG
force fields.
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Diffusion ratio D&E'" /Dgg

Temperature
SPC/E SPC/Fw  TIP4P/2005 TIP4P/Ice
280K 1.34 0.78 1.08 1.45
300K 1.18 0.74 0.89 1.06
320K 0.87 0.79 0.85 0.98
340K 0.85 0.76 0.77 0.87
360 K 0.92 0.88 0.64 0.77

C. Interaction Strength for CG Water

Table C1: e interaction parameter in Eq. (31) estimated from the BUMPer CG interactions. The
determined € value corresponds to the minimum potential value in the first coordination shell [2.5 <
R < 3 (A)]. The temperature-dependent coupling parameter was then estimated as exp(—ecg/2kgT).

€cg from CG interactions (kcal/mol)

Temperature
SPC/E SPC/Fw  TIP4P/2005  TIP4P/Ice
280K 0.182 0.248 0.274 0.340
300K 0.139 0.124 0.209 0.274
320K 0.065 0.083 0.133 0.194
340K 0.010 0.026 0.057 0.107
360 K -0.041 -0.029 -0.007 0.043
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