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Abstract

Active learning (AL) aims to improve model performance
within a fixed labeling budget by choosing the most informa-
tive data points to label. Existing AL focuses on the single-
domain setting, where all data come from the same domain
(e.g., the same dataset). However, many real-world tasks of-
ten involve multiple domains. For example, in visual recog-
nition, it is often desirable to train an image classifier that
works across different environments (e.g., different back-
grounds), where images from each environment constitute
one domain. Such a multi-domain AL setting is challeng-
ing for prior methods because they (1) ignore the similar-
ity among different domains when assigning labeling budget
and (2) fail to handle distribution shift of data across different
domains. In this paper, we propose the first general method,
dubbed composite active learning (CAL), for multi-domain
AL. Our approach explicitly considers the domain-level and
instance-level information in the problem; CAL first assigns
domain-level budgets according to domain-level importance,
which is estimated by optimizing an upper error bound that
we develop; with the domain-level budgets, CAL then lever-
ages a certain instance-level query strategy to select samples
to label from each domain. Our theoretical analysis shows
that our method achieves a better error bound compared to
current AL methods. Our empirical results demonstrate that
our approach significantly outperforms the state-of-the-art
AL methods on both synthetic and real-world multi-domain
datasets. Code is available at https://github.com/Wang-ML-
Lab/multi-domain-active-learning.

1 Introduction
The performance of machine learning models, especially
supervised learning ones, largely hinges on the amount of
labeled data available. However, in practice, labels are of-
ten expensive, tedious, or time-consuming to obtain. Active
learning (AL) tackles this problem by ‘actively’ choosing
the most informative data points (e.g., data with the most un-
certain model predictions) to label, thereby achieving higher
accuracy with the same labeling budget.

Existing AL research mostly focuses on the single-
domain setting, where all data come from the same domain,
e.g., the same dataset. In practice, however, real-world tasks
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Figure 1: Among the four domains, domain O2 is the closest to the
other three domains. Assigning more labels to this representative
domain O2 could better generalize to other domains, since similar
domains may have similar decision boundaries.

often require actively querying labels among multiple do-
mains with the same input space. For example, to train an
object recognition model that detects and classifies wildlife
animals in different environments, where images from each
environment constitute one domain, one needs to carefully
decide how to spend the labeling budget among the differ-
ent domains to achieve the highest average accuracy across
all domains. In such cases, it is sub-optimal to directly per-
form single-domain AL separately for each domain. The
reasons are two-fold. (1) Domain similarity: Single-domain
AL fails to effectively consider the similarities of different
domains when considering cross-domain generalization and
assigning labeling budget. In the wildlife detection exam-
ple, it would be more cost-effective to spend more com-
puting resources and more budget on representative envi-
ronments, i.e., domains that are more similar to other do-
mains, as the improvement on such domains could better
generalize to other domains, as shown in Fig. 1. (2) Distri-
bution shift: Single-domain AL fails to handle the distribu-
tion shift of data across different domains because it tends to
learn domain-specific features instead of domain-invariant
features, leading to poor cross-domain generalization and
rendering the query strategies less effective.

Therefore the key challenges for effective multi-domain
AL are to estimate/incorporate domain similarity and to han-
dle distribution shift. Our approach for addressing both chal-
lenges starts by constructing a surrogate domain for each
original domain. Specifically, a surrogate domain consists
of a weighted collection of all labeled data points from all
domains, where the weights reflect the similarity among dif-
ferent domains. For example, the weight between two simi-
lar domains is expected to be higher than that between two
distant domains. To estimate and incorporate domain simi-



larity, we develop an upper bound on the average error of
all domains and then estimate the similarity weights among
the domains by minimizing this bound. To handle distribu-
tion shift, we use the same upper bound as the loss function
to learn an encoder that maps input data from different do-
mains into an aligned feature space, thereby reducing the
distribution shift.

Specifically, our theoretical analysis shows that: (1) by
jointly estimating the similarity weights and learning the en-
coder, one can minimize the upper bound for the average er-
ror among all domains; (2) the optimal strategy is achieved
when each domain’s labeling budget is proportional to its to-
tal similarity weight, i.e., the sum of similarity weights from
one domain to all N domains. We summarize our contribu-
tions as follows:
• We propose Composite Active Learning (CAL) as the

first general deep AL method to take into consideration
both domain-level and instance-level information for ad-
dressing the problem of multi-domain active learning.

• We analyze our method and provide theoretical guar-
antees that CAL with our budget assignment strategy
achieves a better upper bound on the average error of all
domains.

• We provide empirical results on both synthetic and real-
world datasets with detailed ablation studies, showing
that CAL significantly improves performance over the
state of the art for multi-domain active learning.

2 Related Work
Active Learning. There is rich literature on active learning
[31, 36, 3, 15, 19, 4, 7]. Typically they apply a query strat-
egy to find the most informative unlabeled samples to label,
thereby achieving improved accuracy given a fixed label-
ing budget. Common query strategies include uncertainty-
based strategies to choose data with high uncertainty [32,
27, 24, 23, 42, 34, 40, 11], density-based methods to choose
representative samples [35, 38, 17, 18, 10, 14], and hybrid
approaches to balance uncertainty and diversity of chosen
samples [2, 8, 5, 21, 22]. A few early works are related
to both active learning and multi-domain learning for spe-
cific applications such as text classification [25] and rec-
ommend system [48]. However, they are limited to linear
methods and need careful feature engineering; therefore they
are not applicable to our general setting that often involves
highly nonlinear data and deep learning (see Sec. 3 in the
Supplement for detailed discussion and results). Different
from these previous works, our method focuses on the gen-
eral multi-domain active learning setting. We also note that
our method does not assume specific instance-level query
strategies and is therefore compatible with (and orthogonal
to) any previous AL methods (that is, our proposed frame-
work can be used to extend any single-domain AL methods
to the multi-domain setting), as shown in later sections.

(Active) Domain Adaptation. Among prior work on
domain adaptation (a different problem setting), most rel-
evant to our work is domain adaptation methods that
leverage domain relations, e.g., domain adaptation across
continuously indexed domains [43], graph-relational do-
mains [46], taxonomy-structured domains [26], incremental

domains [37], and domains with unknown domain indices
(to be inferred from data) [45]. A few recent works utilize
AL to improve performance in a target domain [33, 39, 28,
13]. Their key ideas are to first perform domain adaptation to
match the distributions of the source and target domains, and
then apply query strategies to select useful unlabeled sam-
ples from the target domain. Here we note several key differ-
ences between active domain adaptation and multi-domain
AL. (1) Active domain adaptation distinguishes between
source domains and target domains, while multi-domain AL
does not. (2) Active domain adaptation assumes access to all
labels in the source domains even from the beginning, while
multi-domain AL starts with only unlabeled data in all do-
mains (except that in AL’s initial round, one would randomly
sample a few data points to label). (3) Active domain adap-
tation aims to improve performance (e.g., accuracy) only on
the target domain, while multi-domain AL aims to improve
the average performance of all domains. Such differences
preclude its direct application to our multi-domain active
learning settings; in Sec. 5, we show that even after care-
ful adaptation to our setting, active domain adaptation often
underperform even naive active learning baselines.

3 Methodology
In this section, we review the basics of single-domain
AL, and formalize the MUlti-Domain Active Learning
(MUDAL) setting. We then revisit our key ideas in Sec. 1
and describe our methods.

3.1 Preliminaries: Single-Domain AL
Existing AL methods typically consider a single-domain set-
ting and optimize performance by using a query strategy to
choose data points to label, within a given budget. Specifi-
cally, an AL model is trained in R + 1 rounds with a total
labeling budget of M = m0 + R × m. In this process, m0

data points, randomly sampled from the unlabeled training
set, are labeled in the initial round. In each of the following
R rounds during the query stage, the encoder extracts fea-
tures from all unlabeled data. A query strategy then utilizes
these features to select and label additional m samples.

3.2 Multi-Domain AL
Notation. With the input and labels denoted as x and y, re-
spectively, we denote the N original domains’ associated
input data distributions as {Oi(X)}Ni=1 and the correspond-
ing joint input-label distributions as {Oi(X,Y )}Ni=1; all do-
mains share the same input space and label space. We as-
sume a shared encoder e and a shared classifier h for all
domains. We denote as z = e(x) the feature extracted by
the encoder and {Oi(Z)}Ni=1 the N domains’ feature distri-
butions. Accordingly, we use X , Y , and Z to denote ran-
dom variables. We treat the already labeled data points as
separate domains (more details in Sec. 3.3) and therefore
have N additional labeled domains with feature distribu-
tions {Lj(Z)}Nj=1. Similarly we have N additional surro-
gate domains {Si(Z)}Ni=1, each of which is a mixture of
the N labeled domains. With slight notation overload, we
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Figure 2: Overview of our proposed framework. Left: 3 labeled domains and 3 original domains in the input space. Right: In the
latent space, CAL constructs surrogate domain S2 using α-weighted labeled domains S2(Z) =

∑3
j=1 α2,jLj(Z), and estimate

similarity weights α2,j by minimizing the distance between surrogate domain S2 and its original domain O2. All encoders e
share the same parameters. The encoder e, domain similarity {α2,j |j = 1, 2, 3}, and conditional discriminator f play a min-
max game to reduce the distance between S2 and O2 by joint similarity estimation and feature alignment. The classifier h is
trained on all surrogate domains S1, S2 and S3. For clarity, we omit surrogate domains S1 and S3.

use Oi, Si, Lj to denote original, surrogate, and labeled do-
mains, respectively.

Problem Setting. We assume a two-step procedure for
MUDAL. Specifically, with R + 1 training rounds, denote
M = m0+R×m as the total budget, where m =

∑
j m

(r)
j

(m(r)
j denotes the sub-budget for domain j in round r). In

Round 0, m0

N instances are randomly sampled from each do-
main as the initial training set. Each remaining round r con-
sists of two steps: (1) domain-level selection, where a MU-
DAL algorithm decides on an additional sub-budget m(r)

j for
each domain j, and (2) instance-level selection, where the al-
gorithm applies a query strategy to choose m

(r)
j data points

in each domain j to label. The goal is to estimate the optimal
sub-budget m(r)

j such that the average classification error
among all domains can be minimized. To facilitate analysis
below, we further define β(r)

j as domain j’s proportion of the

total budget until round r, i.e., β(r)
j =

m0/N+
∑r

k=1 m
(k)
j

m0+r×m .

3.3 Method Overview
Below we provide an overview for a simplified version of
CAL including domain-level and instance-level selection,
using Fig. 2 as a running example.

Constructing Surrogate Domains. A labeled domain
cannot fully represent its original domain; this is because
labeled data are not I.I.D. samples from the original do-
main due to query strategies. Therefore in each round r,
our approach starts by constructing a surrogate domain for
each original domain. Specifically, a surrogate domain con-
sists of a weighted collection of all labeled domains (de-
fined in Sec. 3.2), where the weights reflect the similar-
ity among different domains. Fig. 2(left) shows an exam-
ple with N = 3 domains in the input space. Correspond-
ingly we have 3 labeled domains {Lj}3j=1, where data are
already sampled by query strategies and labeled in the pre-
vious rounds during AL, and 3 original domains {Oi}3i=1,
which include both labeled and unlabeled data (i.e., the size

of an original domain remains constant across rounds). For
each original domain Oi(Z) in the latent space induced by
the encoder e, e.g., O2(Z) at the bottom of Fig. 2(right),
we construct a surrogate domain Si(Z) as a mixture of all
labeled domains, i.e., Si(Z) =

∑3
j=1 αi,jLj(Z), where

αi,j ≥ 0 and
∑

j αi,j = 1. Fig. 2(right) shows an exam-
ple of constructing surrogate domain S2 for original domain
O2(Z) as S2(Z) = 0.2L1(Z)+0.5L2(Z)+0.3L3(Z). Ac-
cordingly, with classifier h taking S2(Z) as input, ϵS2

=
0.2ϵL1

+ 0.5ϵL2
+ 0.3ϵL3

is the surrogate error to approxi-
mate original domain O2’s error.

Domain Similarity (Importance) Estimation. Each sur-
rogate domain Si is a similarity-weighted sum of the N la-
beled domains {Lj}Nj=1. Given an encoder e, we can then
estimate the similarity weight αi,j between labeled domain
Lj and original domain Oi, by minimizing the distance be-
tween the original domain feature distribution Oi(Z) and
the surrogate domain feature distribution Si(Z), denoted as
d(Oi(Z),Si(Z)). For example, in Fig. 2(right) we estimate
the similarity weights {α2,j}3j=1 by minimizing the distance
d(O2(Z),S2(Z)), where S2(Z) =

∑3
j=1 α2,jLj(Z).

Distribution-Shift Reduction with Feature Alignment.
To reduce distribution shift across domains, we propose to
learn an encoder e such that feature distributions from differ-
ent domains can be aligned. Suppose the similarity weights
{αi,j} are given, we search for an encoder e that minimizes
the distance d(Oi(Z),Si(Z)) = d(Oi(e(X)),Si(e(X))).
Note that this is different from adversarial domain adapta-
tion [16] which directly aligns different Oi(Z)’s; our pre-
liminary results show that such direct alignment does not
improve, and sometimes even hurts performance.

Joint Similarity Estimation and Feature Alignment.
Finally, we perform joint optimization combining both sim-
ilarity estimation (which learns αi,j) and feature alignment
(which learns the encoder e). As shown in Fig. 2, The en-
coder e, similarity weights, and conditional discriminator f
play a min-max game to reduce the distance between surro-
gate domain S2 and its original domain O2 in the latent (fea-



ture) space with joint optimization. Further theoretical anal-
ysis shows that such joint optimization provides a tighter up-
per bound for the average classification error of all domains
(more details in Sec. 3.4 and Sec. 4).

Domain-Level Selection as Sub-Budget Decision Using
Similarity Weights. With the estimated similarity αi,j , we
then assign budget such that representative domains, i.e., do-
mains that are more similar (important) to other domains
(larger

∑N
i=1 αi,j), will receive more labeling budget.

Instance-Level Selection. With the assigned domain-
level budget, we then apply an instance-level query strategy
(e.g., uncertainty-based strategy [31]) to select data points to
label.

Remark: Domain-Level Selection Is Agnostic to
Instance-Level Selection. Domain-level selection is agnos-
tic to, and therefore compatible with, any instance-level se-
lection methods. We consider such independence as an ad-
vantage of our CAL framework; any existing instance-level
selection method, such as Margin [32] and BADGE [2], can
be used as a sub-routine for CAL to work with our proposed
domain-level selection algorithm. Therefore, CAL’s key in-
novation is in (1) the first general two-level framework for
multi-domain AL and (2) the first general domain-level se-
lection method, rather than inventing new instance-level se-
lection methods.

3.4 Composite Active Learning
Upper Bound for the Average Error of All Domains. We
are now ready to present our full method, dubbed Com-
posite Active Learning (CAL), to jointly estimate similarity
weights, perform feature alignment, and assign sub-budget
across domains. Formally, CAL tries to minimize an up-
per bound for the average error of all original domains
1
N

∑
i ϵOi

(h ◦ e).
Our bound consists of three terms: (i) an αj-weighted

average of errors in all labeled domains
∑

j αjϵLj
(h ◦ e),

where αj = 1
N

∑
i αi,j is the summary similarity score for

labeled domain Lj , h(·) is the classifier, and ϵLj (h◦e) is the
expected classification error in labeled domain Lj given h(·)
and e(·); (ii) the average H∆H-distance [6] between each
original domain Oi and its surrogate domain Si, denoted
as 1

N

∑
i
1
2dH∆H(Oi(e(X)),Si(e(X))); (iii) an h-agnostic

term 1
N λi, where λi = minhi

(ϵOi
(hi ◦ e) + ϵSi

(hi ◦ e))
and hi is the i-th domain-specific classifier; ϵOi

(hi ◦ e) and
ϵSi(hi ◦ e)) are the expected classification error in original
domain Oi and surrogate domain Si, respectively. We sum-
marize the upper bound below (proofs in Sec. 4 and Sec. 2
of the Supplement):

min
h,e

min
α

∑
j
αjϵLj

(h ◦ e)+

1
N

∑
i

1
2dH∆H(Oi(e(X)),Si(e(X))) + 1

N

∑
i
λi, (1)

where i indexes original domains and surrogate domains
while j indexes labeled domains. α = [αi,j ]

N,N
i=1,j=1 is a

similarity matrix containing the similarity weights. Note
that by the definition of surrogate domains, the first term∑

j αjϵLj
(h ◦ e) = 1

N

∑
i ϵSi

(h ◦ e).

The surrogate Si(e(X)) =
∑

j αi,jLj(e(X)) is
a weighted average of all labeled domains; therefore
dH∆H(Oi(e(X)),Si(e(X))) connects the labeled domain
error, which can be computed, to the original domain error,
which we want to minimize, through our constructed surro-
gate domains Si.

Objective Function. The three terms in Eqn. 1 lead to a
minimax game as our objective function.

The first term
∑

j αjϵLj (h◦e), equal to 1
N

∑
i ϵSi

(h◦e),
in Eqn. 1 leads to the first term of our objective function:

Vh(h, e,α) = 1
N

∑N

i=1
ESi [LY (h ◦ e(x), y)]

=
∑N

j=1
αjELj [LY (h ◦ e(x), y)], (2)

where ESi and ELj denote the expectation over the data dis-
tribution of (x, y) in surrogate domain Si and labeled do-
main Lj respectively and LY is the cross-entropy loss for
multi-class classification. This term indicates that classifier
h is shared by and trained on all surrogate domains.

The second term 1
N

∑
i
1
2dH∆H(Oi(e(X)),Si(e(X)))

in Eqn. 1 leads to the second term of our objective function:

Vd(f, e,α) = 1
2N

∑N

i=1
{EOi [LD(f(e(x), i), 1)]

+
∑N

j=1
αi,jELj [LD(f(e(x), i), 0)]}, (3)

where EOi denotes expectation over the data distribution of
(x, y) in original domain Oi. LD is the cross-entropy loss
for binary classification. f is a conditional feature discrim-
inator that takes the feature e(x) and the domain index i as
input and classifies whether e(x) comes from original do-
main Oi or surrogate domain Si =

∑
j αi,jLj . Note that

minf Vd(f, e,α) measures how well the discriminator can
distinguish between original domain Oi and surrogate do-
main Si =

∑
j αi,jLj , and therefore connects to the dis-

tance term 1
N

∑
i
1
2dH∆H(Oi(e(X)),Si(e(X))) in Eqn. 1.

The third term 1
N

∑
i λi in Eqn. 1 leads to the third term

of our objective function:

Vλ({hi}Ni=1, e,α) = 1
N

∑N

i=1
ESi [LY (hi ◦ e(x), y)]

= 1
N

∑N

i=1

∑N

j=1
αi,jELj [LY (hi ◦ e(x), y)], (4)

which is an upper bound of 1
N

∑
i λi in Eqn. 1 (more details

in Sec. 1.2 in the Supplement). Different from the classifier
h trained on all surrogate domains, hi is the domain-specific
classifier which is trained only on surrogate domain Si (note
that hi is omitted in Fig. 2 for clarity).

Putting them all together, Eqn. 1 corresponds to the fol-
lowing minimax game as the final objective function:

min
h,e,{hi}N

i=1

min
α

max
f

Vh(h, e,α)− λdVd(f, e,α)

+Vλ({hi}Ni=1, e,α), (5)
where λd is a hyperparameter to balance loss terms (the per-
formance of the classifier and feature alignment in particu-
lar), since too heavy penalization over the feature-level mis-
alignment may harm the performance. In all experiments, λd

is set to 1, which already achieves good performance.



Assigning Sub-Budget for Each Domain. After train-
ing converges in round r, we then assign budget such that
domain j’s proportion of the total budget until round r,
β
(r)
j ∝

∑N
i=1 αi,j . In Sec. 4, we prove that this is the op-

timal sub-budget that minimizes the error bound.

3.5 Enhancing CAL with Augmented
Instance-Level Acquisition

We propose a new instance-level strategy, dubbed Gradient
with Discriminator Score (GraDS), which combines
domain-level information with the gradient-based method,
BADGE, to enhance our CAL. We choose to build GraDS
on BADGE, since we found that combining CAL with
BADGE is more effective than other strategies (more results
in the Supplement). Our GraDS incorporates into BADGE
the computed “outlier score” (i.e., our discriminator’s out-
put probability f(Z, i) = Oi(Z)

Oi(Z)+Si(Z) ), which evaluates
how much a data point looks like an outlier to the surro-
gate domain and therefore needs to be labeled in the next
round. Multiplying the BADGE gradient with the outlier
score f(Z, i) leads to a revised gradient, which is then used
with k-means++ [1] to select samples for labeling. GraDS
prioritizes data points with higher outlier score (f(Z, i)) and
classifier uncertainty (BADGE gradient) in each round to re-
duce classification error in the original domain. See more
details on GraDS in Sec. 1.5 of the Supplement.

4 Theoretical Analysis
In this section, we provide theoretical analysis for CAL. We
first provide an upper bound for the error of one original do-
main in Lemma 4.1, based on which we develop the upper
bound for the average error over all original domains in The-
orem 4.1. We then prove the optimality of CAL’s sub-budget
assignment strategy in Theorem 4.2. All proofs are in Sec.
2 of the Supplement.

Lemma 4.1 below provides theoretical guarantees that
connect the prediction errors of Si and Oi.

Lemma 4.1 (Error Bound for One Domain). Let H be a
hypothesis space, and h, hi ∈ H : Z −→ [0, 1]. Oi(Z) is
the feature distribution of original domain i, and its surro-
gate domain Si(Z) =

∑
j αi,jLj(Z) is a weighted average

of N labeled domains {Lj(Z)}Nj=1. With the surrogate er-
ror ϵSi

(h) =
∑

j αi,jϵLj
(h) and λi = minhi

(ϵOi
(hi) +

ϵSi
(hi)), we have:

ϵOi(h) ≤ ϵSi(h) +
1
2
dH∆H(Oi(Z),Si(Z)) + λi

=
∑
j

αi,jϵLj (h) +
1
2
dH∆H(Oi(Z),

∑
j

αi,jLj(Z)) + λi

Based on Lemma 4.1, Theorem 4.1 upper bounds the av-
erage error of all original domains.

Theorem 4.1 (Error Bound for All Domains). Let H be a
hypothesis space of VC dimension d and h, hi ∈ H : Z −→
[0, 1] be any hypothesis in H. If labeled domains contain M
data points in total, with βjM assigned to labeled domain

j, then for any δ ∈ (0, 1), with probability at least 1− δ:

1
N

∑
i
ϵOi

(h) ≤
∑

j
αjϵLj

(h) + 1
2N

∑
i
dH∆H(Oi(Z),Si(Z))

+ 1
N

∑
i
λi = U ≤ UE

(6)

where UE is a further upper bound involving the empirical
error

∑
j αj ϵ̂Lj

(h):

UE =
∑
j

αj ϵ̂Lj
(h) + 2

√√√√(
∑
j

α2
j

βj
)(

2d log(2(M+1)+log(
4

δ
))

M )

+ 1

2N

∑
i

dH∆H(Oi(Z),Si(Z)) + 1

N

∑
i

λi, (7)

where αj = 1
N

∑
i αi,j , Si(Z) =

∑
j αi,jLj(Z),∑

j αi,j = 1, and λi = minhi(ϵOi(hi) + ϵSi(hi)).

With the upper bound U in Eqn. 6 above, one can tighten
the upper bound using minh,e minα U , leading to CAL’s
objective function in Eqn. 5.

Note that in each round of multi-domain AL, domain j’s
accumulated budget ratio is βj . Therefore one can search
for the optimal βj that minimizes the error bound in Eqn. 7.
Theorem 4.2 below shows that the optimal sub-budget strat-
egy is achieved when βj = αj =

1
N

∑
i αi,j .

Theorem 4.2 (Optimal Budget Assignment). Assuming
αj > 0 and βj > 0 for j = 1, 2, ..., N , with

∑
j αj = 1

and
∑

j βj = 1. The optimal upper bound for the average
error of all domains, i.e., UE in Eqn. 7, is achieved when
βj = αj =

1
N

∑
i αi,j for j = 1, 2, ..., N .

Intuitively the optimal sub-budget assignment βj =
1
N

∑
i αi,j implies that representative domains that are more

similar (important) to other domains will receive a greater
labeling budget.

5 Experiments
5.1 Baselines and Implementations
We compared our CAL with six AL baselines, includ-
ing Random [31], Margin [32], BADGE [2], Cluster-
Margin [8], Energy [44], and BvSB-DA [20]. Among them,
Random is a simple strategy that randomly selects data
points to label. Energy is a state-of-the-art hybrid query
strategy for active domain adaptation (see Sec. 2 for differ-
ences between multi-domain AL and active domain adapta-
tion); we adapt their query methods for our multi-domain
AL setting. BvSB-DA combines domain adaptation (DA)
and active learning. Margin, BADGE, and Cluster-Margin
are state-of-the-art query strategies based on uncertainty
and/or diversity (more details in the Supplement). Each
baseline has two variants, Joint, which treats all data as a
single domain and performs instance-level AL, and Sepa-
rate, which assigns identical labeling budgets to each do-
main and performs instance-level AL in each domain.

Implementation. We run a model in R = 5 rounds plus
an initial round, with three different random seeds, and re-
port the average results over three seeds (see Sec. 1 of the
Supplement for more details).



Table 1: RotatingMNIST results (%). “Joint” and “Separate” indicate joint and separate assignment, respectively (see details in Sec. 5.1).
We mark the best results with bold face.

Query
Random Margin BADGE Cluster-Margin Energy BvSB-DA

CAL (Ours)
Joint Separate Joint Separate Joint Separate Joint Separate Joint Separate Joint Separate

Round 0 49.3 49.2 49.3 49.2 49.3 49.2 49.3 49.2 49.3 49.2 47.1 47.1 51.7
Round 1 59.3 58.4 59.9 59.3 59.6 61.0 59.7 58.7 59.8 59.8 58.3 57.6 71.8
Round 2 65.2 64.5 65.4 65.8 65.9 66.2 66.0 65.6 65.5 64.7 62.8 63.2 81.0
Round 3 69.4 68.8 69.7 70.6 69.7 71.4 70.1 70.0 69.7 69.2 68.0 69.0 85.7
Round 4 77.7 77.7 80.5 80.3 79.2 80.5 80.2 80.6 79.2 80.1 74.1 74.2 87.8
Round 5 79.9 80.5 81.9 83.1 82.5 83.1 82.2 83.3 82.1 82.9 77.4 76.9 87.9

Average 66.8 66.5 67.8 68.1 67.7 68.6 67.9 67.9 67.6 67.6 64.6 64.6 77.7

Table 2: Office-Home results (%). “Joint” and “Separate” indicate joint and separate assignment, respectively (see details in Sec. 5.1). We
mark the best results with bold face.

Query
Random Margin BADGE Cluster-Margin Energy BvSB-DA

CAL (Ours)
Joint Separate Joint Separate Joint Separate Joint Separate Joint Separate Joint Separate

Round 0 32.8 32.8 32.8 32.8 32.8 32.8 32.8 32.8 32.8 32.8 31.0 31.0 34.5
Round 1 42.0 42.8 41.3 41.6 42.1 42.6 41.4 42.8 41.5 41.2 37.6 38.0 46.3
Round 2 48.3 48.6 47.4 46.6 48.3 48.1 46.4 47.0 47.7 48.0 44.6 44.8 52.8
Round 3 52.4 52.6 50.5 51.3 51.9 52.0 50.0 50.6 51.4 51.2 48.3 48.3 57.4
Round 4 56.9 57.6 55.2 55.9 57.3 57.1 54.9 55.9 56.2 56.0 51.4 53.2 59.6
Round 5 57.7 58.0 55.4 57.7 57.7 56.9 56.0 57.5 58.1 58.4 52.9 53.9 60.9

Average 48.4 48.7 47.1 47.6 48.3 48.2 46.9 47.8 48.0 47.9 44.3 44.9 51.9

5.2 RotatingMNIST
To show insight and effectiveness of our methods, we be-
gin with a synthetic dataset, RotatingMNIST-D6 with 6 do-
mains, where original domain i contains images with rota-
tion angles in the range [(i−1)×30◦, i×30◦). The training
and test sets of each domain contain 10000 and 1666 im-
ages, respectively. The total labeling budget per round m is
150, which is 0.25% of the training set.

Accuracy. Table 1 shows the accuracy for different meth-
ods. One interesting observation is that the performance of
joint assignment and separate assignment is very similar
for each baseline method. Additionally, Table 1 reveals that
directly aligning the original domains as BvSB-DA does
can actually harm performance; in the DA setting, align-
ing source and target domains improves performance be-
cause source domains have plenty of labeled data and there-
fore provide valuable classification-relevant information for
target domains; this is not the case for our AL setting be-
cause most data points are unlabeled; therefore, insufficient
labeled data of the original domains in BvSB-DA lead to in-
accurate estimation of domain classification accuracy, which
introduces misleading classification-relevant information to
each domain, leading to a decrease in overall classification
accuracy. It is also worth noting that our full method CAL
achieves the highest accuracy, surpassing BvSB-DA and
the five instance-level methods (Random, Margin, BADGE,
Cluster-Margin, and Energy) by up to 13.1% and 11.2%, re-
spectively, in terms of average accuracy across all rounds.

Estimated Domain Similarity αi,j . To gain more in-
sights on CAL’s domain selection step, we visualize the es-
timated similarity weights αi,j in Fig. 3. Specifically, Fig. 3
shows CAL’s estimated similarity matrix α = [αi,j ]

6,6
i=1,j=1

on RotatingMNIST-D6 and the corresponding sub-budget
for each domain βj = αj = 1

6

∑
i αi,j . We observe that
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Figure 3: Estimated similarity αi,j and αj for RotatingMNIST-
D6.
(1) nearby domains have larger αi,j , which makes sense
since they have similar rotation angles, (2) more budget is
assigned to the middle domains, which is expected since la-
beling middle domains improves performance for domains
on both sides, (3) α1,6 and α6,1 are larger, which is because
digits 0, 1, and 8 are identical after they are rotated by around
180◦ (see Sec. 3 in the Supplement for more results on vi-
sualizing αi,j , including visualization on more datasets and
the evolution of the similarity matrix from round 0 to round
5).

5.3 Real-World Datasets
We use three real-world datasets: Office-Home (65 classes)
[41], ImageCLEF (12 classes) [30], and Office-Caltech (10
classes) [12]. Each dataset consists of four domains (for
more details, refer to Section 1.4 of the Supplement). We
split each dataset into training and test sets. In each round,
we allocate a labeling budget of 200, 20, and 20, respec-
tively for the three datasets. This budget represents approx-
imately 1% of the training set for each dataset. Tables 2∼4



Table 3: ImageCLEF results (%). “Joint” and “Separate” indicate joint and separate assignment, respectively (see details in Sec. 5.1). We
mark the best results with bold face.

Query
Random Margin BADGE Cluster-Margin Energy BvSB-DA

CAL (Ours)
Joint Separate Joint Separate Joint Separate Joint Separate Joint Separate Joint Separate

Round 0 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 35.8 35.8 41.7
Round 1 52.9 49.8 58.2 58.8 54.4 54.0 56.1 52.2 54.2 58.0 53.0 49.7 61.2
Round 2 60.0 57.8 64.6 61.7 62.2 58.5 59.5 59.9 63.2 63.3 58.4 57.0 69.5
Round 3 66.2 65.0 68.8 69.0 66.4 64.7 65.8 65.6 66.5 70.2 63.3 66.5 75.3
Round 4 70.0 69.8 74.3 71.2 73.1 68.0 71.9 70.0 71.5 72.7 69.3 70.7 74.9
Round 5 69.4 69.5 72.0 71.5 71.9 70.3 71.0 71.0 71.8 71.1 66.6 67.5 77.1

Average 59.7 58.6 62.9 62.0 61.2 59.2 60.6 59.7 61.1 62.5 57.7 57.9 66.6

Table 4: Office-Caltech results (%). “Joint” and “Separate” indicate joint and separate assignment, respectively (see details in Sec. 5.1). We
mark the best results with bold face.

Query
Random Margin BADGE Cluster-Margin Energy BvSB-DA

CAL (Ours)
Joint Separate Joint Separate Joint Separate Joint Separate Joint Separate Joint Separate

Round 0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 47.0 47.0 53.0
Round 1 73.7 77.6 72.1 72.5 74.5 68.8 70.9 69.0 70.5 74.5 65.0 67.3 80.7
Round 2 79.4 80.9 79.0 81.7 80.3 78.9 77.5 81.1 82.5 82.9 79.7 76.2 89.3
Round 3 85.4 85.3 84.6 86.3 86.8 87.7 83.7 87.8 88.1 87.9 83.9 86.5 91.6
Round 4 89.3 88.4 89.6 91.5 89.0 91.7 88.6 90.4 90.4 90.3 87.8 90.0 93.2
Round 5 90.6 90.4 90.3 91.0 89.5 92.4 91.3 89.3 87.7 91.0 88.4 89.2 93.0

Average 78.1 78.8 77.6 78.8 78.3 78.3 77.0 77.9 78.2 79.4 75.3 76.1 83.5

Table 5: Ablation study (%) for CAL. 2nd and 3rd denote the
second and the third terms of Eqn. 5, respectively. CAL+BADGE
denotes the combination of domain-level CAL and BADGE. We
mark the best results with bold face.

Method
CAL CAL+ w/o w/o w/o 2nd

BADGE
(Ours) BADGE 3rd 2nd & 3rd

Round 0 41.7 41.7 43.4 36.7 39.6 39.4
Round 1 61.2 58.3 55.5 58.5 55.3 54.0
Round 2 69.5 67.8 63.5 63.3 59.7 58.5
Round 3 75.3 71.2 70.7 68.5 69.8 64.7
Round 4 74.9 71.2 72.1 71.0 71.2 68.0
Round 5 77.1 74.9 76.7 73.3 71.2 70.3

Average 66.6 64.2 63.7 61.9 61.1 59.2

present the accuracy (%) for different methods. Notably,
our CAL demonstrates significant improvements compared
to the baselines. Similar to the findings for RotatingM-
NIST, it is expected that BvSB-DA performs worse than the
instance-level baselines. In contrast, our CAL consistently
outperforms the instance-level baselines (Random, Margin,
BADGE, Cluster-Margin, and Energy) across all five AL
rounds.

5.4 Ablation Studies
CAL’s Components. To investigate the impact of different
components in CAL, we conduct an ablation study using
the ImageCLEF dataset. Table 5 shows the results. The full
CAL’s accuracy drops by 2.4% if our instance-level strag-
egy GraDS is replaced with BADGE, demonstrating the ef-
fectiveness of our GraDS. Moreover, removing the third and
second terms leads to performance drops of 2.9% and 4.7%
respectively. This highlights the effectiveness of the second
term in reducing distribution shift across domains and the
benefits of upper bounding λi in the third term, rather than

ignoring it. Furthermore, removing both the third and sec-
ond terms leads to a larger performance drop of 5.1%. The
results in Table 5 indicate that all CAL’s components con-
tribute to its performance improvement over the state of the
art.

Adapting Active Domain Adaptation Methods for
MUDAL. In Sec. 2, we provide a thorough comparison
between multi-domain active learning (MUDAL) and do-
main adaptation (DA). We conduct experiments using sev-
eral state-of-the-art (active) DA methods to highlight the
distinctions between MUDAL and (active) DA. Consistent
with the findings for BvSB-DA, Table 4 in the Supplement
reveals that directly aligning the original domains can ac-
tually lead to a decline in performance. For more detailed
information, please refer to Section 3 of the Supplement.

Please refer to Sec. 3 in the Supplement for more visu-
alization results, baselines, and ablation studies.

6 Conclusion and Future Work
We identify the problem of multi-domain active learning,
propose the first general AL method that integrates domain-
level and instance-level information, and provide both de-
tailed theoretical analysis and empirical results. Our work
demonstrates the effectiveness of our proposed CAL (and
its simplified variants) on multi-domain data and shows its
potential for significant real-world applications.

Our CAL method can potentially be applied to Natural
Language Processing (NLP). There are studies that have uti-
lized active learning in single-domain NLP to improve clas-
sification and in-context learning [9, 29]. With our CAL,
these methodologies can potentially be adapted to multi-
domain settings, even in imbalanced scenarios [47], with
promising performance; this is thanks to our CAL’s com-
patibility with instance-level active learning methods.
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