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In contrast to energy and angular momentum, electric charge is conserved in mergers of charged black

holes. This opens up the possibility for the remnant to have Kerr-Newman parameter χ2 þ λ2 greater than 1

(with χ and λ being the black hole dimensionless spin and dimensionless charge, respectively), which is

forbidden by the cosmic censorship conjecture. In this paper, we investigate whether a naked singularity

can form in quasicircular mergers of charged binary black holes. We extend a theoretical model to estimate

the final properties of the remnant left by quasicircular mergers of binary black holes to the charged case.

We validate the model with numerical-relativity simulations, finding agreement at the percent level. We

then use our theoretical model to argue that while naked singularities cannot form following quasicircular

mergers of nonspinning charged binary black holes, it is possible to produce remnants that are arbitrarily

close to the extremal limit.
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I. INTRODUCTION

This paper is concerned with quasicircular mergers of

electrically charged black holes. To set the stage of our

work, it is convenient to first consider the more familiar

case without charge. In 2006, it was observed that the latest

stages of the inspiral of two highly spinning black holes

are significantly different compared to the nonspinning

counterpart [1]. The main difference is that inspiral of

spinning black holes takes substantially longer than the

nonspinning case—an effect that is referred to as the orbital

hang-up. One way to understand why this happens involves

conservation of angular momentum and the cosmic censor-

ship conjecture. If all the angular momentum available in

the system (orbitalþ spins) were to end up in the remnant,

the object would be over-extremal, i.e. its dimensionless

spin χ would be larger than 1. Such a black hole is not

possible in general relativity, and Kerr spacetimes with

χ > 1 are not black holes, but naked singularities (see,

e.g. [2]). Given that the formation of naked singularities

is forbidden by the cosmic censorship conjecture,
1
the

binary has to radiate away all the excess angular momen-

tum to be able to merge. To do so, the black holes inspiral

for longer so that the gravitational waves can carry away the

excess angular momentum.

Now, consider mergers of charged black holes. While

energy and angular momentum can be radiated away,

electric charge is always conserved. For this reason, a

natural question to ask is whether it is possible to start

from charged black holes with individual charge-to-mass

ratio λ < 1 and form an extremal remnant.
2
If this does

not happen, how is the formation of a naked singularity

avoided? Is there a charge-induced orbital hang-up? Does

the system inspiral or does it outspiral after sufficient

energy has been radiated away? This paper aims to answer

these questions by extending the method described in [5,6]

to charged black hole binaries. We are going to refer to

this method as “BKL” (Buonanno-Kidder-Lehner)
3
from

the initials of the original authors [5].
4
The approach is

based on conservation arguments and analogy with point
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1
Note, however that the formation of naked singularities in

fine-tuned dynamical scenarios is possible [3].

2
In [4], we investigated a similar question checking whether

ultra-relativistic head-on collisions of black holes can lead to
extremal configurations. We found that there is no indication that
this can happen. In that case, the formation of a naked singularity
was avoided by the large kinetic energy in the system.

3
Not to be confused with the BKL singularity studied by

Belinski-Khalatnikov-Lifshitz.
4
The contribution of [6] is to include the loss of energy due to

gravitational wave. As we will discuss later, this is needed to
match the to reach percent-level agreement with the numerical
relativity simulations.
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particles. Previous studies have shown that this simple

argument is surprisingly effective at capturing the remnant

properties to within a percent [6]. We validate our extended

model via numerical relativity simulations of quasicircular

mergers of nonspinning, charged binary black holes, and

use it to argue that quasicircular inspirals of charged binary

black holes cannot form naked singularities. We focus on

configurations in which the black holes have charge with

the same sign so that the total charge is greater than the

individual black hole charges, which give the remnant

black hole the possibility to maximize the Kerr-Newman

parameter through its charge.

The goal of our paper is to explore and understand better

cosmic censorship in the nonlinear regime and see if it

introduces novel effects. Several linear arguments argued

that black holes cannot be overcharged [7], but the question

is still open for the nonlinear case. Moreover, while this

paper focuses on fundamental physics implications, the

analytic model predicting the remnant properties that is

developed here has direct astrophysical applications.

Charge in the astrophysical context of binary mergers has

recently received some attention as “charge” can acquire

different meanings from magnetic monopoles to modified

gravity (see, e.g., Introduction in [8]). Additionally, rem-

nant properties can be useful when studying populations of

magnetically charged primordial black holes (see, e.g., [9])

and in gravitational-wave astronomy, where they are the

starting point to study the ringdown signal (see, e.g. [10]).

The analytic model described in this paper is computa-

tionally efficient, which makes it optimally suited for quick

estimates.

This paper is structured as follows. In Sec. II, we

describe the formalism we developed for predicting the

properties of the remnant of charged binary black holes. In

Sec. III, we show and discuss our results. We conclude with

Sec. IV. We work in geometrized and gaussian units with

G ¼ c ¼ ð4πε0Þ−1 ¼ 1, with G being Newton’s constant,

c the speed of light in vacuum, and ε0 the permittivity of

vacuum.

II. SETUP

We approach the problem of quasicircular mergers of

charged black holes with an analytical model that we

validated with numerical relativity simulations. In Sec. II A,

we discuss the analytical method, and in Sec. II B we

present our framework for the full nonlinear calculations.

A. Analytical model

To estimate the properties of the remnant left by the

merger of two charged black holes, we follow Ref. [6],

which extended the approach outlined of Ref. [5]. This

method is based on conservation principles and an effective

one-body treatment. The core assumption of the model is

that energy and angular momentum lost can be determined

by looking at the properties of the innermost stable circular

orbit (ISCO) of a properly computed effective background

spacetime [5,6,11]. This is because the system loses the

vast majority of its initial energy and angular momentum

during the inspiral, and when it reaches the ISCO, the

plunge is so rapid that there is no significant loss of energy

and angular momentum (i.e., the emission is small com-

pared to the rest of the inspiral). In a nutshell, the method

consists of finding a suitable background spacetime and

computing the properties of its innermost-stable circu-

lar orbit.

1. The effective one-body problem

BKL [5] propose to treat the general relativistic two body

problem as if it was in the limit of extreme mass ratio,

where the system is equivalent to a test mass in a back-

ground spacetime. Strictly speaking, this approach is

invalid for comparable masses, but previous work found

that the agreement with the full nonlinear solution is

excellent [5,6]. Hence, we adopt the same basic idea and

extend it to include the charge in black hole spacetimes.

Consider two black holes that are separated by a distance

that is large enough so that we can give them a well-defined

mass and charge m1, m2, and q1, q2, with total mass and

charge M ¼ m1 þm2, Q ¼ q1 þ q2. The equivalent one-

body problem has a test-mass with massmred, charge qred in
a Kerr-Newman spacetime with mass M, charge Q, and

angular momentum J. Here, mred and qred are the reduced
mass and charge, defined as

mred ¼
m1m2

M
; ð1aÞ

qred ¼
q1q2
Q

: ð1bÞ

As we will see later, it is more convenient to work

with dimensionless charge λ ¼ Q=M, q ¼ qred=mred, and

dimensionless spin χ ¼ J=M2.

In the BKL framework, the energy (angular momentum)

radiated by gravitational waves is the orbital energy

(angular momentum) of the test particle up to the inner-

most-stable circular orbit.
5
We make the same assumption

and compute final mass, spin, and charge for a binary

merger by studying the ISCO. If ε
q

ISCOðλ; χÞ is the specific
energy at the ISCO for a particle with reduced charge q in a

Kerr-Newman spacetime with charge-to-mass ratio λfinal
and dimensionless spin χfinal (note, ε is independent of the

mass M), the energy radiated is

EGW ¼ mred −mredε
q

ISCOðλfinal; χfinalÞ; ð2Þ

5
Note that there are two ISCOs, prograde and retrograde with

respect to the rotation of the black hole. In this paper, we only
consider prograde ones.
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where λfinal and χfinal have yet to be determined.

Conservation of energy implies that

Mfinal ¼M −Erad ¼Mð1− νð1− ε
q

ISCOðχfinal; λfinalÞÞÞ; ð3Þ

where Erad is the total energy emitted in gravitational and

electromagnetic waves, and ν ¼ mred=M is the symmetric

mass ratio. Similarly, all the angular momentum is radiated

away except for the amount available at the ISCO, which is

JISCO ¼ mredMlqðλfinal; χfinalÞ, where l is the dimensionless

angular momentum at the ISCO of a Kerr-Newman space-

time with charge λfinal and spin χfinal.
6
Therefore, we have

that

χfinal ¼
JISCO

Mfinal
2
¼ νlISCOðχfinal; λfinalÞ

½1 − νð1 − εISCOðχfinal; λfinalÞÞ�2
: ð4Þ

Charge is conserved, so Qfinal ¼ Q ¼ q1 þ q2, and

λfinal ¼
Q

Mfinal

¼ λ

1 − νð1 − εISCOðχfinal; λfinalÞÞ
: ð5Þ

Finally, we have the coupled system of nonlinear algebraic

equations

χfinal ¼
νl

q

ISCOðχfinal; λfinalÞ
½1 − νð1 − ε

q

ISCOðχfinal; λfinalÞÞ�2
; ð6aÞ

λfinal ¼
λ

1 − νð1 − ε
q

ISCOðχfinal; λfinalÞÞ
: ð6bÞ

The unknowns in these equations are χISCO and λISCO, that

we find numerically with the Levenberg-Marquardt algo-

rithm [12,13] as implemented in the root function in

scipy.optimize [14].

2. ISCO for a charged particle in a Kerr-Newman

spacetime

To solve the system defined by Eq. (6), we need to

compute the dimensionless energy ε and angular momen-

tum l for particles with charge-to-mass ratio q on the ISCO

of Kerr-Newman spacetimes. If we focus on the equatorial

plane and work in Boyer-Lindquist coordinates ðt; r; θ;ϕÞ,
these quantities can be calculated using an effective

potential VeffðrÞ. For Kerr-Newman black holes with unit

mass,
7
charge λ, and spin χ, Veff is given by [15–17]

(see, Sec. IVA. in [17])

VeffðrÞ ¼
1

r4
½−ΔðrÞ þ ðΔðrÞ − χ2Þl̃2ðrÞ

− 2χðr2 þ χ2 − ΔðrÞÞl̃ðrÞε̃ðrÞ
þ ððr2 þ χ2Þ2 − ΔðrÞχ2Þε2ðrÞ�; ð7Þ

with

ΔðrÞ ¼ r2 − 2rþ χ2 þ λ2; ð8aÞ

l̃ðrÞ ¼ lðrÞ þ q
λ

r
χ; ð8bÞ

ε̃ðrÞ ¼ εðrÞ þ q
λ

r
; ð8cÞ

where εðrÞ and lðrÞ are the specific energy and dimension-

less angular momentum (l ¼ a=mred) for circular orbits of

radius r. The properties of the ISCO are found solving the

following equations simultaneously

VeffðrISCOÞ ¼ 0; ð9aÞ

dVeff

dr
ðrISCOÞ ¼ 0; ð9bÞ

d2Veff

dr2
ðrISCOÞ ¼ 0; ð9cÞ

for rISCO, εISCO ¼ εðrISCOÞ and lISCO ¼ lðrISCOÞ.
Equations (9a) and (9b) impose circularity of the orbit,

Eq. (9c) the condition of being innermost stable.

These equations can be solved analytically, but it is

simpler and faster to solve them numerically. In practice,

we use SymPy [18] to derive symbolically VeffðrÞ and

Eq. (9). Then, we solve this system numerically using

the root function in scipy.optimize [14]. This gives

us ε
q

ISCOðλ; χÞ and l
q

ISCOðλ; χÞ for a particle of charge-to-

mass ratio q in a Kerr-Newman spacetime with dimension-

less charge and spin λ and χ. This is what we need in

order to solve Eq. (6). The Python code that implements

the entire scheme is provided in the Supplemental

Material [19].

B. Numerical simulations

We validate the model described in the previous section

using two sets of numerical relativity simulations. First, we

use the simulations of the quasicircular inspiral and merger

of unequal-mass (mass ratio of 29=36) charged black holes
we presented in [4,17,20,21]. Second, we perform new

simulations with higher resolution and charge. The second

set consists of eleven simulations with charge-to-mass ratio

up to λ ¼ 0.6 (like sign charge) and equal mass. Systems

with higher λ take a significantly longer time to merge and

require higher resolution and larger numerical grid. Given

that our current set of simulations already took months to

6
Ml is the specific angular momentum, so mredMl is the

actual angular momentum.
7
Note, ε and l are independent of the mass.
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complete, the computational cost for calculations with

larger change-to-mass ratio is currently prohibitive.

Our numerical relativity simulations solve the coupled

Einstein-Maxwell equations in a 3þ 1 decomposition of the

spacetime (for more details, see, [22–24]) and use the

Einstein Toolkit [25–28] for the numerical integration.

We generate initial data with TwoChargedPunctures [8]

for systems of two black holes with fixed charge-to-mass

ratio λ. We use sixth-order finite-difference methods to evolve

the spacetime with the Lean code [29], which implements

the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-

lation of Einstein’s equations [30,31] and the electro-

magnetic fields are evolved with the massless version of

the ProcaEvolve [32] code, part of Canuda suite

[33,34]. We locate apparent horizons with AHFinder-

Direct [35,36], and their physical properties are mea-

sured with QuasiLocalMeasuresEM, a version of

QuasiLocalMeasures [37] updated to implement

the isolated horizon formalism in full Einstein-Maxwell

theory (see Sec. II C in [8]).

We work with Cartesian grids with Berger-Oliger adap-

tive mesh refinement as provided by Carpet [38]. The

simulations use between nine and thirteen refinement levels

centered on and tracking the centroid of the black hole

apparent horizons. The initial separation is 12.1M, where

M is the total ADMmass of the system. Eccentricity is kept

below 0.01 with the method described in [17]. For the

higher values of charge, we also had to manually adjust the

initial momenta to meet the target eccentricity. We did so

through trial and error. The resolution of our unequal-mass

simulations isM=65 for the unequal mass case, whereas out

set of equal-mass simulations has charge-dependent reso-

lution as follows: the finest grid spacing set to Δxfinest ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p

=320M,
8
which ensures that the horizons are

resolved with more than 80 grid points. The damping

parameters η and κ in the evolution equations of the shift

vector and the electric field were set to 1.5M and 10M. We

refer the reader to [4,17,20] for a detailed complete

discussion of the methods and tools we employ.

In addition to the convergence studies described in

[4,17,20], we performed more simulations at higher reso-

lution to estimate errors an convergence properties. In all

cases, we find that the quasilocal properties of the black

hole (mass, spin, charge) are exceptionally well-behaved

and we estimate the numerical error due to finite resolution

to be at the level of 0.1%.

III. RESULTS

In Fig. 1, we show the predictions of themodel formergers

of black holes with the same mass and charge-to-mass ratio

and we plot the result from the numerical-relativity simu-

lations (squares).

We measure the total error as

RMS Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

χmodel − χsim

χmodel

�

2

þ
�

λmodel − λsim

λmodel

�

2

s

;

ð10Þ

and find that the error is about 1.5% independently of the

value of λ (bottom panel). By comparing the two terms in

Eq. (10), we find that most of the error comes from the

charge-to-mass ratio as opposed to the spin. We also find

the same error level and behavior in the unequal-mass cases

we consider here. Therefore, we conclude that the method

described in the previous sections is effective at predicting

the properties of the remnant left by the merger of two

charged black holes with mass ratios close to unity, and

equal charge-to-mass ratio. Considering the complex and

nonlinear system under consideration, this is a remarkable

agreement.

Our numerical relativity simulations verified that the

method described in Sec. II A can correctly capture the

properties of the remnant left by the merger of charged

black holes. With this, we can now look at what happens

when we consider the case with λ → 1. In this, we are

interested in checking whether the remnant left by the

merger would be over-extremal, i.e., λ2 þ χ2 > 1. Kerr-

Newman spacetimes are the most general axisymmetric and

FIG. 1. Top two panels: Physical properties of the remnants left

by the merger of two equal-mass, equal-charge black holes for

the numerical-relativity simulations (squares) and the analytical

predictions (solid lines). Bottom panel: Total relative error,

measured as in Eq. (10). The error is consistently around 1.5%.

The case with mass ratio 29=36 is similar.

8
In isotropic coordinates, the horizon radius for a Reissner-

Nordström black hole with mass M1 ¼ 0.5M and charge Q1 ¼
λM1 is

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p

=4M.
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stationary four-dimensional electrovacuum spacetimes, and

when λ2 þ χ2 > 1 they describe naked singularities. So, a

merger of charge black holes such that the remnant has

λ2 þ χ2 > 1 would be a good candidate to violate cosmic

censorship.

At this point, it is useful to recall what happens in the

case of the merger of two uncharged black holes with spin

χ0 → 1. If we assumed that all the angular momentum and

mass end up in the remnant black hole, we would find that

the Kerr remnant has spin (for identical black holes with

prograde dimensionless spin χ0) 2χ0 þ χorbital > 1, hinting

to a violation of the cosmic censorship conjecture. This

does not happen because the vast majority of the total

angular momentum is radiated away through emission of

gravitational waves. In particular, the system orbits for

longer than the nonspinning case to radiate all the excess

angular momentum and ensure that the remnant is a black

hole and not a naked singularity. We can construct a similar

thought experiment for the case of charge, with the

difference that charge is conserved. Therefore, if we start

with charge-to-mass ratio λ0, the remnant must have

λ > 2λ0 (because there is emission of energy), and its spin

must be greater than 0. So, it appears that there could be

conditions that favor λ2 þ χ2 > 1. Given charge conserva-

tion, Nature has to find a new way to avoid the formation of

a naked singularity, if cosmic censorship is not violated.

In Fig. 2, we plot the prediction for 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ χ2
p

for

the remnant left by the merger of two equal mass, equal

charge binaries according to the analytical model described

earlier. Cosmic censorship demands that 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ χ2
p

> 0

(M2 > Q2 þ a2). The plot shows that it is possible to

have a remnant that is arbitrary close to extremality (with

λ2 þ χ2 → 1), but it is not possible to pass this limit. This

means that the quasicircular mergers of charged black holes

should not be expected to lead to naked singularities. The

reason for this is different from the case of purely spinning

black holes, where is the emission of angular momentum

that prevents the over-extremality, and more similar to the

results found in [39] for head-on collisions. We find is that

with higher charge, the binary is less and less bound, and

the orbital acceleration is smaller and smaller. With smaller

acceleration, there is weaker emission of gravitational and

electromagnetic waves. In the limit of λ → 1, the binary

takes an infinite amount of time to merge, emitting a

vanishing amount of energy. For λ identically equal to 1, the

system is in equilibrium with gravitational and electrostatic

forces canceling out (this is the Majumdar-Papapetrou

solution [8,40,41]). In our simulations we find that a binary

with λ ¼ 0.6 orbits twice as many times as uncharged

binary before merger. Moreover, with increasing λ, the

orbital angular momentum decreases (it roughly goes as
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2
p

), so that the spin of the remnant becomes

arbitrarily small (as seen in the top panel of Fig. 1).

IV. CONCLUSIONS

In this paper, we presented an analytical and computa-

tionally cheap method to estimate the properties of the

remnant left by the merger of two charged black holes.

The method is an extension of the technique developed in

Refs. [5,6] which uses an effective-one-body treatment

and the properties of the innermost-stable circular orbit

in an equivalent Kerr-Newman spacetime. We performed

numerical relativity simulations and verified that the

method is accurate at the percent level. This shows that

the simple argument is remarkably effective at quantitative

predictions for the properties of the remnant.

While the results presented here are only for quasicir-

cular mergers, we expect them to hold for eccentric as well,

because these orbits are bound, too. The analytical method

presented here essentially compares the energy at infinity

and the energy at the ISCO, so it does not matter how one

reaches the ISCO (as in the case without charge [42]). The

only exception is that for highly eccentric mergers one

would need to consider the ISCO for these orbits. The

analytic model we presented works for arbitrary mass, spin,

and charge configurations, but our validation only involved

quasicircular mergers with nonspinning black holes of

comparable mass and charge-to-mass ratio values up to 0.6.

When more numerical-relativity simulations of charged

inspirals will be available, the validation can be extended.

This is one of the possible limitations of the argument that

overextremal black holes cannot form in quasicircular

mergers of charged black holes.

Our second goal was to learn more about quasicircular

mergers of highly charged black holes in the context of

the cosmic censorship conjecture. Charge is conserved

quantity, whereas energy and angular momentum are not.

When two identical black holes with charge-to-mass ratio

λ0 merge, the remnant has to have λ > 2λ0 because of

emission of energy. Moreover, the dimensionless spin χ of

the remnant has to be larger than 0. This opens up the

FIG. 2. Kerr-Newman parameter as a function of the initial

charge-to-mass ratio for quasicircular mergers of equal-mass,

equal-charge binaries, as predicted with the method described in

this paper. The inset shows that even with λ → 1, we have that the

Kerr-Newman parameter is larger than 0.
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possibility that some initial configurations might lead to a

remnant with λ2 þ χ2 > 1. Given that the only axisym-

metric and stationary spacetime is the Kerr-Newman one

and that λ2 þ χ2 > 1 would mean that there is no horizon,

finding such a configuration would hint to a possible way

of forming naked singularities. In the case of spin, this is

avoided via emission of angular momentum and the orbital

hang-up. Our study shows that in the charged black hole

case increasing the initial black hole charge makes the

system less and less dynamical. With λ0 → 1, the system

asymptotically takes an infinite amount of time to merge

and radiate a vanishing amount of gravitational and

electromagnetic waves. Moreover, when λ0 → 1 the orbital

angular momentum also vanishes. Therefore, we conclude

that while it is possible to produce remnants that are

arbitrarily close to extremality, it is not possible to break

the limit.

One of the reasons why it is not possible to form naked

singularities is that the system is bound, which sets a limit

on the available orbital angular momentum. In future

studies, we will test the limits of our model by considering

the case of unlike charges (which increase the angular

momentum). We will also treat the case of unbound orbits,

such as the hyperbolic encounters [43].
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