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ABSTRACT: Understanding the phonon characteristics of two-
dimensional (2D) molybdenum ditelluride (MoTe,) under strain is
critical to manipulating its multiphysical properties. Although there
have been numerous computational efforts to elucidate the strain-
coupled phonon properties of monolayer MoTe,, empirical
validation is still lacking. In this work, monolayer 1H-MoTe,
under uniaxial strain is studied via in situ micro-Raman spectroscopy.
Directionally dependent monotonic softening of the doubly
degenerate in-plane Eig phonon mode is observed with increasing
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uniaxial strain, where the Eég peak red-shifts —1.66 + 0.04 cm™'/% along the armchair direction and —0.80 + 0.07 cm™'/% along the
zigzag direction. The corresponding Griineisen parameters are calculated to be 1.09 and 0.52 along the armchair and zigzag
directions, respectively. This work provides the first empirical quantification and validation of the orientation-dependent strain-
coupled phonon response in monolayer 1H-MoTe, and serves as a benchmark for other prototypical 2D transition-metal tellurides.
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T ransition-metal tellurides, as the relatively heavier
members of the atomically thin two-dimensional (2D)
transition-metal dichalcogenide (TMDC) family, are the only
TMDCs with a stable metalloid chalcogen (tellurium). In
particular, molybdenum ditelluride (MoTe,) is of great interest
for its ambient-stable yet readily and reversibly tunable
polymorphs, each with drastically different multiphysical and
highly layer-dependent intrinsic properties. Evidence of exotic
phenomena such as Rydberg excitons,' edge supercurrents,””
switchable ferromagnetic domains,* and fractional quantum
anomalous Hall states’ have also been discovered in various
phases of MoTe,. The most stable polymorph of MoTe, is the
semiconducting 2H phase, with an indirect band gap of ~0.9
€V in its few-layered (2H-) form and a direct band gap of ~1.1
eV in its monolayer (1H-) form.°”® This 2H-phase exhibits a
trigonal-prismatic crystal structure with the space group P6;/
mmc and point group Ds,.”'° Additionally, the other
polymorphs of MoTe, include 1T, 1T’, T,, and 3R phases." "'
These diverse MoTe, polymorphs, each with unique crystal
structures, symmetries, and intrinsic properties, allow a myriad
of potential applications spanning optoelectronics, super-
conductors, chemical sensors, neuromorphic elements, and
quantum devices.”"*~"”

The phononic properties of MoTe, reflect the structural
variations among different polymorphic phases. Phonon
evolution modulated by strain is preferred owing to its
nondestructive attributes and its pronounced reversibility
under the constraints of ambient conditions.'® In comparison,
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other strategies to induce phase transition in MoTe, have
included the tuning of Te vacancies, such as through
controlled chemical vapor deposition (CVD)," alloying,™
laser irradiation,”"** electrostatic doping,z‘%'24 plasma etching,25
thermal treatment,®*® etc. These methods are effective in
tuning the phonon status but permanently affect materials’
lattice structures and stoichiometric compositions. Thus,
gaining insight into the strain—phonon coupling properties
of MoTe, can lead to a facile way for low-power control over
various states of phonons.

To date, only very few experimental studies have reported
on the strain-induced phonon evolution in MoTe,, with all of
these findings being limited to multilayer MoTe,. These
studies yielded disparate findings, including both the presence
and absence of phase change from 2H to 1T’ under uniaxial or
biaxial tensile strains (0.2—4.5%).'®*"7>° Another type of
phase change from 1T’ to a quoted semiconductin§ phase was
also reported under 0.33% uniaxial tensile strain.’® Computa-
tionally, density functional theory (DFT) calculations have
been adopted to study the energy barrier variations between
2H and 1T’ phases under various strain conditions.’** The
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2H to 1T’ phase transition has been consistently found to be
more accessible under uniaxial tension along the armchair
direction compared to the zigzag direction. The evolution in
phonon dispersion of the 2H/1H phase®*™*® and 1T phase’’
has also been reported, but only under biaxial tension. There
are quantitative discrepancies between different DFT studies
due to the varying selection of the DFT solver and calculation
setup. Thus far, the evolution in the phonon dispersion of 1H/
2H-MoTe, under uniaxial tension has not been reported.

Furthermore, the mismatch in the number of MoTe, layers
studied in experimental versus computational studies and their
respective findings further exacerbate the discrepancies in the
literature. While most of the computational studies have been
based on monolayer MoTe,, all of the experimental measure-
ments to date have only been done on flakes ranging between
2 and 100 layers."®*" = For these thicker crystals, interlayer
slippage may occur and affect the coherency of strain transfer
from the substrate.”® Therefore, strictly isolating MoTe,
crystals that are monolayers is critical for obtaining reliable
strain—phonon coupling results. Moreover, the hexagonal
primitive unit cell and trigonal-prismatic coordination of 2H-
MoTe, means that the in-plane mechanical loading response of
2H-MoTe, is directionally dependent. However, none of the
reported experimental results thus far distinguished the lattice
orientation. To resolve these knowledge gaps, it is imperative
to empirically validate the directionally dependent strain—
phonon coupling within monolayer 1H-MoTe,.

In this work, in situ micro-Raman spectroscopy was used to
monitor the phonon evolution of monolayer 1H-MoTe, as a
function of the uniaxial tensile strain. For the first time, a
consistent directionally dependent, monotonic red-shift of the
in-plane vibrational E), phonon mode was empirically
substantiated for both armchair and zigzag directions. Such
strain—phonon coupling reveals the potential applications of
these 2D materials in detecting minuscule structural
deformations in situ, conducive to the development of
nanoscale sensors for mechanical, optical, electrical, and
biological applications.””**~*" By quantifying the Eég mode
Griineisen parameter based on the strain-coupled phonon
response, this work sets a benchmark for the strain-engineering
of MoTe, and is generalizable to other 2D tellurides.
Understanding the phononic behaviors of these 2D materials
is essential for harnessing their unique properties for novel
optoacoustic and thermomechanical applications.

Among all the currently isolatable 2D TMDCs, MoTe,
exhibits the lowest energy difference (43 meV) between the
two most stable semiconducting a-form (1H or 2H) and
semimetallic f-form (1T’) phases,”’ with its phononic
properties being highly sensitive to external fields. Under
ambient conditions, hexagonal 2H-MoTe, (denoted as 1H-
MoTe, in the monolayer form) is the most stable
conﬁguration41 of MoTe, where the Te atoms are in
trigonal-prismatic coordination around the Mo atoms with a
primitive hexagonal unit cell (Figure 1a).

As 2D monolayer crystals are considered “all surface”
materials, controlled uniaxial strain could be introduced to
monolayer MoTe, by straining a deformable substrate
underneath, where the properties of the substrate play an
important role in effective strain transfer and the correspond-
ing phononic coupling with the MoTe,. Accordinzg to shear-lag
analysis, it has been theoretically established*” and exper-
imentally verified*’ that interfacial strain transfer efficiency has
a positive correlation with the shear modulus of the substrate,
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Figure 1. (a) Crystal structure of the 1H phase monolayer MoTe,.
The 1H phase is semiconducting with trigonal-prismatic coordination.
(b) Schematic of monolayer 1H-MoTe, (~0.67 nm thick, 20—50 ym
in lateral size) aligned on PET substrates (~0.79 mm thick, SO mm
long) under unstrained (upper) and uniaxially strained (lower)
configurations along the zigzag (left) and armchair (right) crystal
directions. Due to the minuscule ratios between the monolayer 1H-
MoTe, and PET sheet in both lateral size (~4 X 107*) as well as
thickness (~9 X 1077), the 1H-MoTe, adhered to the PET surface is
considered under uniaxial applied tensile strain when PET sheets are
bent.

which is determined by the Young’s modulus and Poisson
ratio. The Poisson ratio also factors into the calculation of the
Griineisen parameter. Substrates with high Young’s moduli and
strong adhesion allow the strain to be effectively transferred to
the surface 2D materials, thus enabling a higher range of strain
modulation. 1H-MoTe, monolayers were exfoliated from bulk
crystals and directly transferred, isolated, and aligned onto
polyethylene terephthalate (PET) through micromechanical
exfoliation as described in the Supporting Information (SI).
Benefiting from the strong interaction between 1H-MoTe, and
the PET substrate, the uniaxial strain applied to the PET
surface is coherently transferred to 1H-MoTe, during the
mechanical loading process (Figure 1b and Figure S1), up to
the maximum applied strain. The zigzag edge formation energy
(~0.569 eV/A) for 2H-MoTe, is lower than that of armchair
edges (~0.645 eV/A).** Consequently, the 1H-MoTe,
monolayers preferentially presents their edges along zigzag
directions (Figure S3). Taking advantage of this phenomenon,
the mechanical loading direction is finely controlled by
identifying the clean zigzag edges, ensuring that the uniaxial
strain is applied strictly along either the armchair or the zigzag
direction to study the directional dependence.
Complementary metrology and spectroscopy measurements
were used to isolate monolayer 1H-MoTe, crystals to study.
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Raman spectra of mono-/bi-/tri-/quad-layer and bulk 2H-
MoTe, crystals adhered to the PET surface (Figure 2a) were
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Figure 2. Identification of the monolayer 1H-MoTe,. (a) Raman
spectra of 1H/2H-MoTe, with different numbers of layers. The A,
peak near 170 cm™" and the Eég peak near 231 cm ™" are characteristic
peaks of the 1H phase. The B, vibration peak near 289 cm™ is absent
for bulk and monolayer MoTe, but activated in few-layer crystals due
to the breaking of translational symmetry. (b) Schematic of the out-
of-plane A, and B,, vibrational modes and in-plane Eig mode. Gray
arrows indicate the vibration directions of atoms. (c) AFM image for
monolayer 1H-MoTe, on PET and the height profile corresponding
to the dotted line section, exhibiting an average step height of 0.67 +
0.10 nm.

characterized and distinguished. PET itself does not have any
Raman-active modes between 100 and 400 cm™' where
characteristic peaks of 1H-MoTe, are located. The Raman
spectra of monolayer 1H-MoTe, was compared on PET and
SiO,/Si substrates. No significant differences in Raman peak

positions and the full width at half-maximum (fwhm) for the
monolayer 1H-MoTe, on both substrates were observed,
indicating that PET is an appropriate substrate for studying the
phonon behavior of 1H-MoTe, through Raman spectroscopy
(Figure S2).

Three Raman-active peaks are present for IH/2H-MoTe,,*
corresponding to two out-of-plane vibrational modes and one
in-plane vibrational mode (Figure 2b). The out-of-plane A,
mode entails the mutual vibration of two Te atoms in the basal
plane. The out-of-plane B,, mode involves the vibrational
interaction between Te and Mo atoms within the same layer,
exhibiting a 180° phase difference from the adjacent layers. As
for the in-plane E%g vibrational mode, the Mo and Te atoms
oscillate opposite to one another within the same layer.*® With
an increasing number of layers in a crystal, the Raman
intensities for Eig peaks first increase for up to ~3 layers and
then decrease for thicker crystals. This trend in MoTe, has
been interpreted to be due to the combination of optical field
enhancements by the substrate, optical interference, and
varying force constants between inner and outer layers."”
Similar phenomena have also been observed for other TMDCs
including MoS,"® and WTe,.* The B,, peak near 289 cm™ s
absent in monolayer and bulk 1H/2H-MoTe, but activated in
few-layer crystals due to breaking of the translational
symmetry.”° Monolayer crystals that exhibit Raman
signatures with the absence of the B,, peak while
demonstrating a strong Eig peak were additionally verified
for their single-layer thinness via atomic force microscopy
(AFM). The measured step height from the PET substrate to
the monolayer 1H-MoTe, surface is ~0.67 + 0.10 nm,
consistent with the reported interlayer separation range (0.6—
0.65 nm).’

a

Raman intensity (a.u.)
=
N

E, peak position (cm™)

210 220 230 240 250
Raman shift (cm™)

b .

__/w
: 0.4%

210 220 230 240 250
Raman shift (cm™)

Raman intensity (a.u.)

EJ, peak position (cm™) Q.

232
231} >
. -1.66£0.04cm"/%
230+
229} - - ’_'\f\
Fosee \
ael LI LT h
LA AAS .
227 I 1 1 1 1
00 05 10 15 20
Uniaxial strain e, (%)
232
231} >
: ~—-0.80£0.07 cm™/%
230} \
229} >
'9.0.8,
'"rfﬂww)
228\ p<_pd »<
o od od
227 — :

0.0 05 1.0 15 2.0
Uniaxial strain ¢,, (%)

Figure 3. Evolution in the Raman spectra of monolayer 1H-MoTe, under applied uniaxial tensile strain along the (a, c) armchair direction and (b,
d) zigzag direction. The initial E}, peak position with no applied strain is marked with a blue vertical dashed line. The Ej, peak position consistently
red-shifts with increasing tensile strain along both the (c) armchair direction and (d) zigzag direction across all samples, exhibiting average shifts of
—1.66 + 0.04 and —0.80 + 0.07 cm™'/%, respectively. Insets illustrate the Eig vibrational mode of monolayer 1H-MoTe, and applied strain

directions with respect to the crystal lattices.
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The PET substrate is subjected to bending via a custom
apparatus (Figure S1), yielding purely uniaxial tensile strain
applied to the surface 1H-MoTe, monolayers. This uniaxial
tensile strain applied to the surface 1H-MoTe, monolayers is
estimated by the maximum tensile strain on the surface of the
PET substrate, following the relation®' € = k-t/2, where t is the
thickness of the PET substrate (~0.79 mm) and « is the
curvature of the localized region where the monolayer 1H-
MoTe, is attached. The applied tensile strain was also
confirmed from top-view optical images via edge detection
by tracking the lateral deformation of 1H-MoTe, monolayers
(Table. S1).>* The applied strain quantified by either of the
two measurements are nearly identical with a maximum
deviation of <0.2% strain (as described in the SI).

In situ micro-Raman spectroscopy was used to monitor the
phonon response of monolayer 1H-MoTe, to varying uniaxial
strains along distinct crystallographic directions. With no strain
applied, a prominent Raman peak for the Eig mode at ~231
cm™" is observed (Figure 3a). Under progressively increasing
uniaxial strains up to 1.9% along the armchair direction, the Eég
peak monotonically red-shifts with a rate of —1.66 + 0.04
cm™'/% (Figure 3c). The lower Raman frequency concomitant
with larger applied uniaxial strain is attributed to lattice
expansion and decay into lower energy phonons.” At even
higher applied strains, fracture occurs in some of the 1H-
MoTe, monolayers, leading to the strain release reflected by an
abrupt blue shift of the Eig peak (Figure S4). When subjected
to tensile strain along the zigzag direction, the Eig peak exhibits
a comparatively more gradual red shift with a rate of —0.80 +
0.07 cm™'/% (Figure 3b,d). The strain-coupled phonon
evolution in 1H-MoTe, along the zigzag direction is weaker
compared to the armchair direction, which is consistent with
the directionally anisotropic phase energy landscape of MoTe,
under uniaxial strain.”’ Apart from MoTe,, other 2D Mo- and
W-dichalcogenides such as MoS,, MoSe,, WS,, WSe,, and
WTe, have all been computationally predicted to exhibit a
similar directionally resolved strain-coupled phonon re-
sponse.””>> Experimentally, strain-induced phonon softening
has been reported for all these 2D transition-metal sulfides and
selenides,”*™>” while direction dependence has only been
reported for MoS, thus far.” The protocol established for
strain modulation developed in this work, including control
over the layer number and lattice orientation, serves as a
benchmark for future investigations of the phonon properties
of other TMDCs and the ever-growing repertoire of 2D
materials more generally.

Due to the empirical nature of the micromechanical
exfoliation and transfer process of MoTe, crystals, some flakes
may yield residual strain distributions which makes their initial
Eig peak position deviate from 231 cm™'. Therefore, only
“strain-free” samples with an initial Eég peak position close to
231 cm™" were selected and subjected to strain engineering
and characterization. The average initial Eég peak position for
all of the measured samples is 230.82 + 0.13 cm L A tight
agreement in the rate of red-shift can be seen among different
monolayer samples screened (Figure 3c,d), despite small
deviations in the initial Eég peak position.

To further quantify the strain-coupling with the phonon
vibrational modes, the fwhm of the evolving Eég mode (Figure
4c,d) was extracted from the Raman spectra under various
uniaxial tensile strains along both armchair and zigzag
directions (Figure 4a,b). Only a tiny amount of broadening
was observed during the strain loading process with the fwhm
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Figure 4. Full width at half-maximum (fwhm) of the E71_g Raman peak
for monolayer 1H-MoTe, under applied uniaxial tensile strains along
the (a) armchair direction and (b) zigzag direction. The fwhm of the
Eig Raman peak remains relatively unchanged for increasing tensile
strains both along the (c) armchair direction and (d) zigzag direction,
exhibiting average increases of 0.42 + 0.12 and 0.25 + 0.0S cm™/%,
respectively. Insets illustrate the Eig vibrational mode of monolayer
1H-MoTe, and applied strain directions with respect to the crystal
lattices.

broadening at a rate of 0.42 + 0.12 cm™ /% for the armchair
direction and 0.25 + 0.05 cm™'/% for the zigzag direction. The
normalized maximum broadening in the fwhm is 11% for the
armchair direction and 7% for the zigzag direction. This small
amount of broadening is unlikely to be due to the emergence
of new Raman modes as a result of phase transitions (such as
in the 1T’ phase). A possible reason could be modifications in
the dielectric environment, potentially impacting phenomena
such as interfacial band bending.®" This very small broadening
of the fwhm further substantiates that no phase transition
occurred in monolayer 1H-MoTe, under uniaxial tensile strain
up to 1.9%, along neither the armchair direction nor the zigzag
direction.

The Griineisen parameter (y) is a key parameter that
quantifies the coupling strength between the applied strain
(lattice distortion) and the resultant shift in the phonon
frequency. By extracting the strain-dependent Raman spectra,
the directionally resolved Griineisen parameters can be
experimentally determined for monolayer 1H-MoTe,.
Through uniaxial strain, the Griineisen parameters are
calculated as®

Awg'2 . + Aa)EZg

o = —— 2% =
Eag 208 (1 —v)e
28

where @) is the intrinsic Ej, peak position at zero strain,
2% g

Awg—'zg is the shift of the Eig phonon due to & the uniaxial

strain in the crystal (+ indicates the shift direction relative to

zero strain), and v is the in-plane Poisson ratio of 1H-MoTe,
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(prev10usly estlmated to be ~0.25 for both armchair and zigzag
directions®*®*). When uniaxial tensile strain is applied to an
ideal freestanding 1H-MoTe, (along the longitudinal direc-
tion), the intrinsic Poisson effect causes the material to
contract in the lateral “perpendicular” direction. However, the
strong adhesion between monolayer 1H-MoTe, and the PET
substrates®® over the entire range of applied strains in this
study (up to ~1.9%) ensures coherent deformation and strain
transfer between the PET substrate surface and the 1IH-MoTe,
monolayers. The Poisson effect from the PET (Poisson ratio of
~0.34) is inherited by 1H-MoTe, and is considered here for
the Griineisen parameter estimation. Given that no observable
peak splitting was observed for any of the monolayer 1H-
MoTe, under various strains (as evidenced by the consistent
fwhm of the E2g peaks), the as-measured EZg phonon shift is
considered to originate from a single vibrational mode (Ezg)
Therefore, in the absence of any peak split, the Awg, + Awg,

term can be simplified to 2Awg,, and the equation can be

. 66
rewritten as

B Aa)EZg

]/Elg - =

v)e

Based on the empirically measured results, the Eig mode
Griineisen parameters for monolayer 1H-MoTe, are estimated
to be Ve, (ac) = 1.09 £ 0.03 along the armchair direction and

wg, (1 =

Ve (zz) = 0-52 £ 0.04 along the zigzag direction. The positive y
values with increasing in-plane tensile uniaxial straln indicate a
decrease in frequencies (phonon softening),’” which is
consistent with the fact that the EZg vibration belongs to in-
plane acoustic modes. To the best of our knowledge, this is the
first empirically derived estimation of the directionally
dependent Griineisen parameters in monolayer 1H-MoTe,,
and these values fall within the range of computationally
derived results (0.52—0.99) reported thus far (Table
$3).396%%% Moreover, according to the Slack model, the lattice
thermal conductivity is inversely related to the Griineisen
parameter. Given these empirically derived anisotropic
Griineisen parameters, an inference can be drawn that 1H-
MoTe, exhibits anisotropic and higher basal-plane thermal
conductivity in the zigzag direction compared to the armchair
direction. This inference of the anisotropic in-plane thermal
conductivity is consistent with previous DFT calculations.®* It
is worth noting that first-principles studies have suggested that
anisotropy in the basal plane thermal conductivity exists in
1T'/Ty#MoTe, but not in 2H-MoTe, due to crystal
symmetry.”*®” However, the lateral symmetry of 1H/2H-
MoTe, is broken upon application of uniaxial strains, leading
to a disparity in the frequency of dominant heat-carrying
phonons along different lateral directions. Therefore, these
results are not in conflict with each other.

As previously mentioned, the discrepancies in the strain-
coupled phonon evolution of MoTe, between computational
and empirical studies thus far are mainly due to the mismatch
in their applied strain conditions and crystal configurations
(Figure S). Before this present work, all the reported
experimental results (whether uniaxially or biaxially applied
strain) have neglected crystal orientation, and none of these
studies were based on monolayer 1H-MoTe, (they were all 2—
100 layers). As a result, there exist large inconsistencies
between the empirically measured versus computationally
derived strain-coupled Eig phononic properties. To the best of
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Figure S. Summary of strain—phonon coupling of the Eég phonon
mode in 2H-MoTe, reported in the literature. This present study is
the first to empirically quantify the Ez phonon evolution of
monolayer 1H-MoTe, (red and purple plots in (a) and (b)). This
is also the first study to delineate between uniaxially applied tensile
strain along the armchair and the zigzag directions to reveal 1H-

MoTe,’s directionally dependent phononic proper-
ties B1827-31,33-36,70

our knowledge, this work is the first to empirically quantify the
E%g phonon evolution of monolayer 1H-MoTe, under uniaxial
tensile strain along both armchair and zigzag directions.

In summary, the directionally dependent strain—phonon
coupling of monolayer 1H-MoTe, under uniaxial tensile strain
is quantified for the first time. The characteristic phonon
modes were measured with respect to uniaxial strain via in situ
micro-Raman spectroscopy, with the E%g peak monotonically
red-shifting at rates of —1.66 + 0.04 and —0.80 + 0.07 cm ™' /%
along the armchair and the zigzag directions, respectively.
Moreover, the calculated Griineisen parameters of 7g, (ac) =
=052 +
0.04 along the zigzag direction provide an empirical bench-
mark for future strain engineering efforts of MoTe, and other
2D transition-metal tellurides. This work provides the first
rigorous characterization of the anisotropic strain-induced
phonon response in monolayer 1H-MoTe,, and it finally
clarifies the disparities between previously reported exper-
imental observations and computational results.

1.09 + 0.03 along the armchair direction and 7g, (77
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