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Microglia depletion facilitates the display of maternal behavior and alters
activation of the maternal brain network in nulliparous female rats

Courtney N. Dye, M.S.", Dominic Franceschelli, B.S.?, Benedetta Leuner, PhD?3# and
Kathryn M. Lenz, PhD?34#

"Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
2Department of Psychology, The Ohio State University, Columbus, OH, USA
3Department of Neuroscience, The Ohio State University, Columbus OH, USA
4Institute of Behavioral Medicine Research, The Ohio State University, Columbus, OH,
USA

#These authors contributed equally

Corresponding author:

Dr. Kathryn M. Lenz

Address:
045 Psychology Building
1835 Neil Avenue Mall
Columbus, OH 43210

Phone: (614) 292-8565
Email: lenz.56@osu.edu

Abbreviations used:

colony-stimulating factor 1 receptor (CSF1R)

phosphate buffered saline (PBS)

Normal Donkey Serum (NDS)

prelimbic prefrontal cortex (PFC)

nucleus accumbens (NAc)

preoptic area (POA)

medial amygdala (MeA)

periaqueductal grey (PAG)

anterior olfactory nucleus (AON)

barrel field within the primary somatosensory cortex (S1BF)



34

35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Abstract

As a pregnancy progresses, inhibition of aversion circuitry and activation of
reward-related pathways is necessary for the onset of maternal care postpartum. We
and others have also demonstrated significant neuroimmune changes that emerge
during late pregnancy and persist postpartum, most prominently decreased microglia
numbers within limbic brain regions. Here we hypothesized that microglial
downregulation is important for the onset and display of maternal behavior. To test this,
we recapitulated the peripartum neuroimmune profile by depleting microglia in non-
mother (i.e., nulliparous) female rats who are typically not maternal but can be induced
to behave maternally towards foster pups after repeated exposure, a process called
maternal sensitization. BLZ945, a selective colony-stimulating factor 1 receptor
(CSF1R) inhibitor, was administered systemically to nulliparous rats, which led to ~75%
decrease in microglia number. BLZ- and vehicle-treated females then underwent
maternal sensitization and tissue stained for AfosB to examine activation across
maternally relevant brain regions. We found BLZ-treated females with microglial
depletion met criteria for displaying maternal behavior significantly sooner than vehicle-
treated females and displayed increased pup-directed behaviors. Microglia depletion
also reduced threat appraisal behavior in an open field test. Notably, nulliparous
females with microglial depletion had decreased numbers of AfosB+ cells in the medial
amygdala and periaqueductal gray, and increased numbers in the prefrontal cortex and
somatosensory cortex compared to vehicle. Our results demonstrate that microglia
regulate maternal behavior in adult females, possibly by shifting patterns of the activity
in the maternal brain network.
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1. Introduction

Over 200 million people worldwide become pregnant each year [1]. Successful
maternal care is necessary for the well-being of both mother and offspring, with life-long
consequences when perturbed [2-4]. Across mammalian species, new mothers exhibit
coordinated changes in the neural circuits that regulate processes essential for
appropriate maternal behavior. When considering maternal care in rodents, this involves
inhibition of aversion circuitry and activation of reward-related pathways, resulting in a
shift from pup avoidance or attack, to pup-directed behavior [5,6].

Neuroendocrine factors mediating the transition from aversion to reward have
been well-elucidated [7-9]. However, pregnancy affects nearly every system in the body
[10], and one system that undergoes particularly profound changes is the immune
system. In the periphery, pregnancy induces a shift from a pro-inflammatory toward a
more anti-inflammatory signaling milieu. This occurs to prevent an attack on non-self
cells (i.e., the fetus), and is therefore necessary to support a successful pregnancy and
healthy fetal development [11-13]. While the timing and general purpose of these shifts
in the peripheral immune milieu are well established, considerably less is known about
the status of immune cells and inflammatory signaling within the central nervous system
during pregnancy. We and others have recently shown that the brain of pregnant and
postpartum rats displays significant decreases in the number of innate immune cells,
called microglia [14-16]. These decreases are particularly observed in several limbic
brain regions that play critical roles in maternal care [16], including the prefrontal cortex,
nucleus accumbens, amygdala, and hippocampus. This decrease in microglia emerges
during late pregnancy and persists until at least postpartum day 8, the time frame during
which maternal behavior is at its highest. Microglia return in number by postpartum day
21, the same time at which pups are ready to be weaned.

Given the concurrent timing of microglia downregulation in the peripartum brain
and the onset of maternal behavior, we aimed to investigate whether these microglia
changes are involved in the onset and display of maternal behavior. One approach for
examining the role of microglia involves global depletion with selective colony-
stimulating factor 1 receptor (CSF1R) inhibitors. The CSF1 pathway is essential for
microglia survival, and accordingly its inhibition causes rapid apoptosis [17]. In adult
male mice, microglia depletion with PLX5622, a CSF1R inhibitor [18] did not have any
significant effects on locomotor, anxiety-like, or cognitive behavior. Similarly, there were
no effects on sociability in male mice following microglia depletion via systemic
administration of another CSF1R inhibitor, PLX3397 [19]. However, since females were
not examined, the possibility remains that microglia are important for the display of
female-specific social behaviors like maternal caregiving.

Rats that have never been mothers (e.g., nulliparous females) do not
spontaneously display maternal behavior, but alloparenting behavior can be induced
through continuous or repeated exposure to foster pups. This process, known as
maternal sensitization, has been a valuable model for exploring the factors responsible
for maternal care [20-27]. Here, we used the maternal sensitization model to investigate
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microglia modulation of maternal behavior for the first time. Specifically, we depleted
microglia from the brains of nulliparous rats and tested whether recapitulating the
decreased microglia tone that we previously observed in the maternal brain would
impact their subsequent sensitization to maternal behavior and display of caregiving
behaviors. We then examined number of cells expressing AfosB across brain regions
important for facilitating the shift from aversion to reward in promoting maternal care. As
AfosB is a marker of neuronal activation and accumulates in neurons after repeated
exposure to external stimuli [28], in this case continuous foster pup exposure, this would
provide insights into which brain regions across extensive maternal circuitry were
differentially active during the sensitization procedure as a result of microglia depletion.
Together these studies implicate microglia downregulation in facilitating maternal
behavior onset, possibly by shifting patterns of the activity in the maternal brain network.

2. Materials and Methods

2.1 Animals. All procedures were conducted in accordance with The Guide for
the Care and Use of Laboratory Animals published by the National Institutes of Health
and approved by The Ohio State University Institutional Animal Care and Use
Committee. Adult female nulliparous Sprague Dawley rats and timed gestational day 8
and gestational day 15 pregnant rats (Harlan/Envigo) were ordered, single housed upon
arrival and provided with nesting material. Pregnant rats served as surrogates to
provide foster pups for nulliparous animals. Animal cages for all animals were kept in
the same temperature- and humidity-controlled room maintained on a 12/12hour
light/dark cycle. Animals were given food and water ad libitum. Upon study completion,
surrogate dams and foster pups were used for other pilot studies within the lab when
possible or humanely euthanized with CO».

2.2 Microglia Depletion. In this study, we utilized a CSF1R antagonist, BLZ945,
that works via a similar mechanism to PLX5622 used by many other groups to deplete
microglia in rodents. BLZ945 is equally effective at microglia depletion, [29] but unlike
PLX drugs, was widely commercially available at the time we began these experiments.
A 10 mg/ml solution of BLZ945 (Selleckchem; #S7725) was prepared 1-2 days before
use in vehicle of 20% 2-hydroxy-propyl-B-cyclodextrin (Sigma; H107-5G), (powder
dissolved in molecular H20). Adult female rats were injected intraperitoneally with
BLZ945 (N=4) at a dosage of 60 mg/kg or an equivalent volume of vehicle (N= 4)
followed by a second administration 48 hours later. A pilot study for dose effectiveness
revealed that a larger dose (100mg/kg) achieved the same depletion level as the dose
(60mg/kg) used for sensitization experiments. Twenty-four hours following the second
injection, rats were euthanized to verify effectiveness of BLZ945 at depleting microglia.
Additional groups of adult female rats were randomly assigned to receive vehicle (N =
12) or BLZ945 (N = 12) according to the same administration paradigm, but 24 hours
after the second injection, the maternal sensitization procedure began.

2.3 Maternal Sensitization. Each day between 8:30-10:30am, a home cage
observation was performed. Nulliparous females were given three same-aged foster
pups (1-10 days old) scattered in the home cage opposite to where the nulliparous
female was positioned [23, 24]. The youngest available foster pups were used each day,
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and age of pups was balanced across conditions. Incidences of maternal and non-
maternal behaviors were tabulated every 30 sec for a 30-minute period via scan
sampling, for a total of 60 scans (2 per minute). Maternal behaviors included: huddling
(laying on or in physical contact with pups), pup-licking (licking the pup’s
body/anogenital region), pup-sniffing, retrieving (grasping of the pup with the mouth and
returning it to the nest), mouthing (grasping the pup with the mouth, carrying it around,
but not to the nest), and nest-building (collecting and/or handing nesting material). Non-
maternal behaviors included: self-grooming, eating, rearing (two front paws off the
ground), sniffing air (with head/neck extended), and resting (no general motor activity,
not in contact with pups). Each morning, the pups were removed from the nulliparous
female’s home cage and replaced by milk-replete foster pups that had remained with a
lactating surrogate for at least 24 hours. Continuous pup exposure was chosen as it
allows for more rapid sensitization as has been previously reported [21, 30, 31]. Pups
can remain healthy for that time frame, and as such there were zero instances of pup
death due to poor thermoregulation or malnutrition in the current study. The daily
observation began when the replacement pups were added to the cage. All
observations took place in the animal colony room and were performed by a single
observer. Nulliparous females were considered maternal (“sensitized”) when they
licked, retrieved, and grouped all three pups within the 30-minute observation period on
two consecutive days. The first of these two consecutive days was operationalized as
the day the animal become maternal (e.g., the latency to maternal behavior onset).

2.4 Open Field Test The day after maternal criteria were met, rats were
subjected to an open field test (60cm x 60cm arena) for 10 minutes under red light
following a 10 minute habituation period to the behavioral testing room. The task was
video recorded and scored by a rater blind to experimental conditions. Videos were
scored for time spent in the center of the arena, number of entries into the center of the
arena, and number of grid crosses that occurred as a proxy measure of overall
locomotor behavior. One hour following the completion of the open field test, animals
were euthanized.

2.5 Tissue processing, histology, and cell counting. Animals were deeply
anesthetized with Euthasol and then transcardially perfused with 0.01M phosphate
buffered saline (PBS) and 4% paraformaldehyde. Brains were extracted, post-fixed in
4% paraformaldehyde for 24 hours followed by 30% sucrose solution. Brains were
sectioned coronally at 40pm into cryoprotectant. Tissue sections were subsequently
mounted on charged slides and microglia immunofluorescent staining according to the
following procedure. Tissue was washed in 0.01M PBS, followed by 30 minutes in 50%
methanol to quench background fluorescence. Antigen retrieval was performed using a
tris-EDTA buffer for 10 minutes in a 90°C water bath followed by 10 minutes in the
buffer at room temperature. Tissue was permeabilized for 1 hour with 0.4% Triton-x100
in 0.01M PBS and blocked for 1 hour in 5% Normal Donkey Serum (NDS; Lampire
Biological Laboratories, #7332100) in 0.4% Triton in 0.01M PBS. To label Iba1+
microglia (Wako [#019-19741]) or AfosB (Abcam [ab184938]), tissue incubated in
primary antibody (1:500) with 2.5% NDS in 0.4% Triton in 0.01M PBS for 24 hours at
4°C. Slides were well rinsed and secondary antibody (donkey anti-rabbit Alexa Fluor+
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highly cross-adsorbed 647+ [Invitrogen, #A32795]; 1:200) added with 2.5% NDS in
0.4% Triton in 0.01M PBS for 2 hours. Slides were cover-slipped with Prolong Diamond
Antifade mountant (Invitrogen, #P36970). Four to six representative images per animal
for all regions of interest (ROI), counterbalanced across hemispheres, were obtained in
Stereolnvestigator (MBF Bioscience) on a Zeiss Axioimager M2 microscope and a
CX9000 Digital Camera. ROls analyzed included (with stereotaxic coordinates in
reference to bregma [32]: prelimbic prefrontal cortex (PFC; +3.20mm), nucleus
accumbens (NAc; +1.20mm), preoptic area (POA; -1.30mm), medial amygdala (MeA,; -
2.80mm), periaqueductal grey (PAG; -5.60mm), anterior olfactory nucleus (AON;
+3.70mm), and the barrel field within the primary somatosensory cortex (S1BF; -
1.30mm). Iba1 was captured at 10x and AfosB was imaged at 20x. Images were then
analyzed by a rater blinded to conditions in ImageJ.

2.6 Statistical analysis. One-way ANOVAs with Tukey’s post hoc comparisons
were used to analyze efficacy of the two different drug doses on microglia depletion.
Unpaired two-tailed t-tests were conducted to compare vehicle vs BLZ treatment
outcomes on behavior, and Welch’s corrections used when between group variances
were unequal. Statistical significance for these experiments was set at a = 0.05.
Pearson’s correlations were conducted between: open field behavior and latency to
reach maternal criteria, AfosB counts and select maternal behaviors (latency to reach
maternal criteria, licking pups, and sniffing pups), and AfosB counts between brain
regions within both experimental groups. Fisher r-to-z transformations were performed
followed by Fisher Z-tests on transformed data [33] to assess any potential differences
in correlations between experimental groups. Bonferroni correction was applied to these
analyses (a = 0.05/# comparisons) to control for multiple comparisons. Data points were
considered statistical outliers when greater than +2 standard deviations away from the
mean and removed when appropriate. Effect size (eta squared [R?]) calculations were
reported for significant effects, where a value of 0.01 is considered a small effect, 0.06 a
medium effect, and 0.14 (or higher) a large effect. Statistics were conducted in Prism 9
Software (GraphPad Software; San Diego, CA) or R (version 4.2).

3. Results

3.1 BLZ945 treatment successfully and rapidly depleted microglia

BLZ945 treatment led to a significant decrease in microglia number relative to
vehicle treatment across all brain regions examined. The average reduction in microglia
number across region was ~75%, and there were no differences in the level of depletion
produced between the two doses of BLZ945. Full statistical results are shown in Table
1. Only the data for vehicle vs 60mg/kg are shown in Figure 1 because the 60 mg/kg
dose was chosen for use in subsequent experiments. Data for 100mg/kg dosing is
depicted in Supplemental Figure 1.
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240 Table 1. One-way ANOVA results with Tukey’s multiple comparisons between vehicle, 60mg/kg of
BLZ945, and 100mg/kg of BLZ945 demonstrating effects on microglia cell numbers across brain regions.

One-way ANOVA Tukey’s HSD

F(df) P R? Vehicle vs 60mg/kg BLZ  Vehicle vs 100mg/kg BLZ  60mg/kg vs 100mg/kg BLZ

PFC 1(;29'?' p<0.0001 0.962 p < 0.0001 p < 0.0001 p=0512
256.9 _

NAc 29) P< 0.0001 0.983 p < 0.0001 p < 0.0001 p=0.912
83.44 _

POA 29 P< 0.0001 0.949 p < 0.0001 p < 0.0001 p=0.635
109.3 =

AMY 2.9) p <0.0001 0.961 p < 0.0001 p <0.0001 p =0.496
161.0 _

PAG 2.9) p <0.0001 0.973 p <0.0001 p <0.0001 p=0.374
71.68 _

AON 2.8) p <0.0001 0.947 p < 0.0001 p <0.0001 p =0.806
106.6 _

S1BF p <0.0001 0.960 p <0.0001 p < 0.0001 p =0.381

(2.9)
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Figure 1. A.) Representative images (10x) from the prefrontal cortex (PFC), nucleus
accumbens (NAc), preoptic area (POA), amygdala (AMY), periaqueductal gray (PAG),
anterior olfactory nucleus (AON), and barrel field within primary somatosensory cortex
(S1BF). and B.) quantification of Iba1+ microglia of vehicle- and BLZ945-treated (60mg/kg)
adult females 24hrs following treatment administration. Individual data points represent animal
average of 4 images. Error bars represent mean + SEM. One-way ANOVA, Tukey’s HSD: ****
P <0.0001. Data from BLZ945 100mg/kg treatment group not depicted.

3.2 Microglia depletion promoted onset of maternal behavior and reduced
threat appraisal behavior

After verifying that the BLZ945 treatment strategy led to substantial and rapid
microglia depletion, we applied the maternal sensitization procedure to another cohort
of nulliparous females one day following the second administration of BLZ945.
Nulliparous females undergoing maternal sensitization must display retrieval, grouping,
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and huddling to be considered fully maternal, but the full criteria for maternal behavior is
typically preceded by exhibiting sporadic maternal behaviors as well as other non-
maternal behaviors [25, 26].

BLZ945- and vehicle-treated animals showed several notable differences in
behavior in the days leading up to reaching maternal sensitization criterion. Prior to
reaching the threshold for sensitization, BLZ-treated females showed increased pup-
directed behaviors that included more licking, #(11.09) = 2.54, p = 0.027, R? = 0.369,
and sniffing of foster pups relative to vehicle-treated females, {(13.98) = 3.35, p = 0.005,
R?2 =0.445, while vehicle-treated females had higher rates of ‘other’ behaviors #(9.20) =
2.46, p =0.036, R? = 0.260 (Fig. 2A). All other observed behaviors did not vary by
experimental treatment, p’s > 0.1. With regard to the days needed to reach sensitization
threshold, BLZ-treated females had a significantly shorter latency to display full
maternal behavior than vehicle-treated animals, #(22) = 2.23, p = 0.0365, R?=0.184
(Fig. 2B).

The day after an animal was designated as maternal, it was tested in the open
field to assess threat appraisal behavior. BLZ-treated animals showed decreased threat
appraisal behavior compared to vehicle-treated animals, as measured by increased
time spent in the center of an open field, #(21) = 4.67, p < 0.001, R? = 0.509, as well as
increased number of entries into the center of the open field, {(21) = 3.21, p = 0.004, R?
= 0.329. These differences were not due to changes in locomotor activity, as indicated
by similar numbers of grid crosses between groups, #(21) = 0.26, p = 0.780. (Fig. 2C).
When correlating time spent in the center of the open field with latency to maternal
criteria (Fig. 2D), there was only a significant correlation in the vehicle-treated animals, r
=-0.658, p = 0.027, R?=0.433, and not the BLZ-treated group, r = -0.044, p = 0.891.

3.3 Microglia depletion prior to maternal sensitization altered AfosB
expression across maternally relevant brain regions

Next, we examined the extent to which there was a difference in activity across
brain regions governing these behaviors resulting from microglia depletion, using AfosB*
cells as a proxy for chronic neuronal activation. In the sensitized animals who
previously had microglia depleted with BLZ945, there was increased number of AfosB*
cells in both the PFC, #(22) = 2.346, p = 0.028, R?=0.20 and the S1BF, t#(21) = 2.248, p
=0.035, R?=0.194, when compared to those that were treated with vehicle (Fig. 3A).
Furthermore, there was a significant decrease in number of AfosB™ cells in both fear
appraisal regions assessed, the MeA, #(20) = 2.947, p = 0.008, R?=0.303, and the
PAG, £(19) = 5.363, p < 0.0001, R?=0.602, in BLZ-treated animals compared to
vehicle-treated. BLZ-treated animals trended towards increased numbers of AfosB* cells
in both the NAc, #(22) = 1.808, p = 0.084, and the POA, t(22) = 1.824, p = 0.082,
compared to those treated with vehicle, although both failed to reach significance. There
was no difference in the AON, #(21) = 0.1099, p = 0.914, between treatment conditions.

We then assessed whether there was a pattern to changes in AfosB cell numbers
between brain regions. Network analyses of each treatment group (Fig. 4A) show within
group correlations (see Supplement Table 1 for full statistical results). We examined
whether these correlations varied by treatment condition and found significantly different
patterns of activation in vehicle-treated rats compared to rats that had microglia
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depleted prior to maternal sensitization (Fig. 4B). Finally, we examined whether AfosB
numbers correlated with the display of maternal behaviors. Statistical results are
displayed in Supplemental Table 2. There were no significant correlations with overall
latency to reach maternal criteria, or pup-directed licking or sniffing with AfosB numbers
across brain regions in either vehicle or BLZ treated animals.

Overall, microglia depletion prior to maternal sensitization led to shifts in AfosB*
staining throughout the maternal brain network of sensitized animals. Moreover, there
are distinct differences between treatment conditions in the pattern of AfosB* between
brain regions, though no relationship was found with the display of maternal behaviors.
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Nac-S1BF 0.29 0.41 -0.292 0.771
PAG-S1BF 0.21 0.06 0.289 0.772
POA-PAG -0.09 -0.11 0.039 0.969
314 POA-MeA 0.29 0.29 0.023 0.981
315

316 Figure 4. A.) Correlation networks of AfosB counts between brain regions within Vehicle and
BLZ-treated animals. Transparency and width of lines represents strength of correlation.
Regions that have similar correlation patterns cluster together. Black dashed lines represent
within group correlations between regions that have p-values < 0.05, but do not remain
significant following Bonferroni correction (significance set at p < 0.002). B.) Statistical
comparison of AfosB correlations in Vehicle-treated animals vs correlations in BLZ-treated
animals. Between treatment group comparisons that reached statistical significance (p < 0.002)
are denoted above dashed line for ease of presentation.
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4. Discussion

We and others have previously reported decreased microglia number in the
maternal brain that emerges during late pregnancy and persists for at least one week
postpartum [14, 15]. Here, we showed that experimentally inducing decreased microglia
tone in nulliparous female rats led to an accelerated onset of maternal behavior in a pup
sensitization paradigm. Thus, even in the absence of hormonal manipulations,
recapitulating the neuroimmune profile seen in the peripartum brain is sufficient to
promote the display of maternal behaviors in nulliparous females. Moreover, we found
that microglia depleted females showed increased investigative behaviors specifically
directed toward pups, and evidence of decreased threat appraisal behavior on the open
field test without impacting overall locomotor activity levels. The novel finding that
microglia manipulations facilitate maternal caregiving behavior in maternally-
unexperienced animals points to an unappreciated role for neuroimmune cells in
adaptive function in the adult female brain.

Pups are initially aversive stimuli to non-sensitized female rats [30], and
avoidance behavior is partially mitigated by inhibition of brain regions involved in fear
and anxiety-like behaviors [31, 34-36]. Thus, we sought to determine whether a more
rapid display of maternal behavior could be attributed to a reduction in threat appraisal.
There were significant changes in AfosB staining in the MeA and PAG, two regions
critical for the aversion behavior that non-maternal rodents exhibit in response to pup
exposure. Specifically, there was a decrease in activation of these regions if the animals
were treated with BLZ prior to being sensitized, compared to those treated with vehicle.
While the loss of microglia did also reduce threat appraisal behavior in the open field,
this effect did not correlate with a faster onset of maternal care. Thus, changes in threat
appraisal alone are likely insufficient to account entirely for the accelerated onset of
maternal care after microglial depletion. This is consistent with previous work showing
that only inhibiting the fear response was inadequate in promoting a quicker onset of
maternal behavior in nulliparous females [37].

Somatosensory and chemosensory input from pups is also critical in facilitating
the reinforcing properties of maternal-pup interactions and reducing neophobic
responses [7, 38]. The somatosensory cortex in mothers is responsible for governing
tactile interactions with pup, both through whisker stimulation that occurs during sniffing,
and in maternal animals, suckling during lactation [8, 39, 40]. Increased AfosB cell
numbers in S1BF following microglia depletion is consistent with the increased display
of pup-directed sniffing exhibited by the BLZ-treated animals. The olfactory system also
mediates maternal caregiving, with pup odor being a well-established aversive cue in
nulliparous females that normally acts to inhibit maternal care. There is some evidence
that microglia depletion leads to olfactory deficits, which if present in the current study,
could have led to accelerated maternal sensitization [35, 37]. However, studies showing
olfactory deficits examined developmental microglia depletion and weeks-long depletion
in adult animals [41, 42]. Here, using acute microglia depletion, we did not see any
difference in activation of the AON, and behaviorally the BLZ-treated animals spent
more time engaging in sniffing the foster pups. Thus, olfactory impairments are unlikely
to be responsible for the maternal phenotype displayed after microglia depletion.
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Increased activation of reward-related regions is necessary for maternal care to
be displayed [5]. Retrieval and pup-directed licking and sniffing are behaviors often
linked with increased dopaminergic activity [43] in mesolimbic reward pathways [9].
AfosB staining, though trending higher following microglia depletion, did not reach
significance in the NAc. There may have been a ceiling effect in this measure, as we
collected tissue after animals were fully sensitized, and pup interactions should be
rewarding to animals across both treatment groups. Examining immediate early gene
expression earlier in the sensitization process may be more likely to capture differences
in reward-related regions. The POA serves as an important central integrator to regulate
approach and avoidance responses [9] and as all sensitized animals completed the shift
from avoidance to approach, it is possible that microglia loss would also significantly
impact activation of this area earlier in the sensitization procedure than we examined
here.

We found increased activation in the PFC in microglia depleted animals
compared to those treated with vehicle. The PFC, especially the medial prelimbic
subregion where our analyses were focused, is important for modulating maternal care
behaviors. Via output projections to the nucleus accumbens, the prelimbic PFC
regulates dopaminergic activity and guides motivated maternal behavior [44]. Moreover,
it has been shown that lesions of the PFC impair pup retrieval and pup licking [45], two
behaviors that in the current study were promoted in microglia-depleted females.
Increases in dendritic architecture in the PFC have also been linked to improved
attention and behavioral flexibility in maternal rats, as tested in an attentional set shifting
task [46]. Rats that perform worse in an attentional set shifting task also have been
found to be less attentive to pups and spend less time licking pups [47]. Behavioral
flexibility is necessary in sensitization paradigms [48], therefore it would be valuable to
determine the consequence of PFC microglia loss on cognitive and executive function,
and the extent to which it affects the display of maternal behaviors. Determining the
consequences of both PFC and widespread microglia loss on cognition in adult females
could also reveal important sex-specific roles for adult microglia function, as previous
studies of microglia depletion in male rodents reported no major changes in cognitive
outcomes [49], but may be missing female-specific effects.

These studies provide an important foundation for future work determining which
regions of the maternal brain are most impacted by the peripartum downregulation of
microglia. Microglia-neuronal crosstalk is important for maintaining homeostatic
conditions [50, 51]. Microglia shape neural circuitry, and consequently behavioral
outputs, by regulating myelination, neurogenesis, and synaptic patterning [29, 52, 53].
This can be accomplished either through directly phagocytosing synaptic elements, or
through the release of diffusible factors, such as cytokines, chemokines, complement
components, and growth factors, leading to activation of downstream signaling
pathways [51, 53, 54]. During late pregnancy, the brain rapidly adapts a widespread
neuroplastic state to allow the mother to successfully provide care for her offspring.
Absence of microglia has been linked to increased dendritic spine density [55], while
increases in dendritic spines have also been shown in the postpartum brain [46, 56, 57].
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Given that maternal microglia alterations are occurring at this same time [14], there may
be a mechanistic link between microglia downregulation and circuit remodeling
necessary to permit the onset of maternal behavior [58].

Here, we examined AfosB expression as an indicator of which regions of the
maternal circuitry might be implicated in the behavioral phenotype displayed following
microglia depletion. Correlations of AfosB expression between brain regions showed
different patterns of activation between vehicle-treated animals and those who had
microglia depleted prior to sensitization, which suggests circuit level differences in
neuronal activity. Additional studies examining co-localization of specific neuronal
markers with AfosB to determine which populations are being activated would be a
useful first step in understanding how microglia downregulation led to changes in the
patterns of activity of the maternal brain network. For example, in the POA, AfosB
expression co-localizes with oxytocin neurons following parturition in maternal animals
[59], and reactivity in this region can increase following pup exposure [60]. However,
AfosB can be expressed by diverse cell populations across brain regions [59, 61, 62].
The breadth of regions examined here allows for the possible combination of excitatory
and inhibitory populations experiencing changes in fosB expression, which would have
varying implications for circuitry output. Another possibility is that transcription of fosB
itself is an essential component for promoting maternal sensitization, as mice lacking
the fosB gene have been found to be unable to care for or nurture pups [63]. Elucidating
whether microglia depletion promoted an adaptive neuronal response to drive
behavioral changes, or whether behavior changes promoted neuronal responses
following microglia depletion could provide valuable mechanistic insight into the
phenotype demonstrated here.

Correlations of fosB cell numbers across brain regions with the display of specific
maternal behaviors (latency to reach maternal criteria, pup-directed sniffing, and pup-
directed licking) yielded no significant results in both vehicle and BLZ-treated animals.
This strengthens the idea that circuit levels differences in neuronal activity might be
more relevant to consider when further exploring the mechanism governing behavioral
changes following microglia depletion. It is also important to again consider that fosB
measurements were taken after all animals were fully sensitized. It is possible that
group-based relationships between fosB expression in individual brain regions with the
display of a specific behaviors might be detectable earlier in the sensitization process,
when brain remodeling to permit caregiving behaviors is underway.

One caveat related to our experimental approach is that certain aspects of our
microglia depletion strategy did not exactly recapitulate the downregulation of microglia
seen in the maternal brain. We previously documented that microglia numbers decrease
significantly across limbic regions in the maternal brain, but that the decrease does not
occur in the motor cortex [14]. In contrast, peripheral administration of the CSF1R
inhibitor BLZ945 led to decreased microglia in both limbic and non-limbic regions in
adult female rats in this study. Moreover, global CSF1R inhibition has been shown to
deplete peripheral monocytes and macrophages in addition to microglia [64]. Trafficking
of peripheral immune cells into the brain can impact affective behavior [65, 66], so it is
possible that the loss of peripheral innate immune cells could contribute to the social
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behavior phenotype we observed. However, the ability of peripheral immune cells to
impact affiliative behavior in homeostatic conditions or in maternal animals remains to
be established. CSF1R inhibitors are useful tools in examining how simultaneous
microglia downregulation across many brain regions in a functional circuit is important in
modulating behavior, but it is relevant to consider that a global depletion may have
different outcomes than those occurring more specifically in a particular subset of brain
regions.

In our current study using the maternal sensitization paradigm, we did not directly
assess how pup characteristics may be influencing the development of maternal
behavior of the nulliparous animal after microglia loss. For example, some previous
work has shown that male and female pups can elicit varying caregiving responses due
to sex differences in urine odor [67] or pup ultrasonic vocalizations [68]. Whether the
effect of microglia manipulations on maternal behavior is influenced or moderated by
pup characteristics would be an important future question as we consider a broader role
for microglia as mediators of social behavior.

In conclusion, our results show BLZ945 was effective at rapidly and non-
invasively depleting microglia in the adult female rat brain. Further, we demonstrate a
strong pro-social and anxiolytic behavioral phenotype following microglia depletion in
the healthy adult brain of nulliparous female rats. These behavioral changes were
accompanied by alterations in AfosB staining across brain regions critical for maternal
care. There are two major implications of these findings. First, when considered with
prior work suggesting little behavioral impact of microglial depletion in adult males [18,
49] the current data suggest that there may in fact be key functions for microglia in
modulating behavior in adult females. Second, these data give insight into the parts of
the maternal brain network that are most impacted by microglia loss, and thereby may
lead to advancements in our understanding of neuroimmune function in the maternal
brain. Overall, this work suggests that the suppression of microglia seen in the brain
during pregnancy may serve an adaptive role, permitting the onset of maternal
behavior. Together, these data are transformative in that they provide evidence that
microglia functional changes are relevant to study across a variety of research areas in
neuroscience and behavior.
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