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Abstract. The scattering transform is a multilayered wavelet-based architecture that acts as a model of con-
volutional neural networks. Recently, several works have generalized the scattering transform to
graph-structured data. Our work builds on these constructions by introducing windowed and non-
windowed geometric scattering transforms for graphs based on two very general classes wavelets,
which are in most cases based on asymmetric matrices. We show that these transforms have many
of the same theoretical guarantees as their symmetric counterparts. As a result, the proposed
construction unifies and extends known theoretical results for many of the existing graph scattering
architectures. Therefore, it helps bridge the gap between geometric scattering and other graph neural
networks by introducing a large family of networks with provable stability and invariance guarantees.
These results lay the groundwork for future deep learning architectures for graph-structured data
that have learned filters and also provably have desirable theoretical properties.
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1. Introduction. The scattering transform is a wavelet-based model of convolutional neu-
ral networks (CNNs), introduced for signals defined on R™ by Mallat in [18]. Like the front end
of a CNN, the scattering transform produces a representation of an inputted signal through
an alternating cascade of filter convolutions and pointwise nonlinearities. It primarily differs
from CNNs in two respects: (i) It uses predesigned, wavelet filters rather than filters learned
through training data, and (ii) it uses the complex modulus |- | as its nonlinear activation
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function rather than more common choices, such as the rectified linear unit (ReLU). These
differences lead to a network which provably has desirable mathematical properties. In par-
ticular, the Euclidean scattering transform is (i) nonexpansive on L2(R"), (ii) invariant to
translations up to a certain scale parameter, and (iii) stable to certain diffeomorphisms. In
addition to these theoretical properties, the scattering transform has also been used to achieve
very good numerical results in fields such as audio processing [1], medical signal processing
[7], computer vision [23], and quantum chemistry [14].

While CNNs have proven tremendously effective for a wide variety of machine learning
tasks, they typically assume that inputted data have a Euclidean gridlike structure. How-
ever, many data sets of interest, such as social networks, molecules, or surfaces appearing in
computer graphics, have an intrinsically non-Euclidean structure and are naturally modeled
as graphs or manifolds. This has motivated the rise of geometric deep learning, a field which
aims to generalize deep learning methods to non-Euclidean settings. In particular, a number of
papers have produced versions of the scattering transform for graphs [11, 12, 13, 32] and man-
ifolds [24]. These constructions provide a model of geometric deep learning architectures, such
as graph neural networks (GNNs), in a manner analogous to the way that [18] models CNNs.

In this paper, we construct two new families of wavelet transforms on a graph G from
matrices K, which are in most cases asymmetric, and provide a theoretical analysis of both
of these wavelet transforms as well as the windowed and nonwindowed scattering transforms
constructed from them. Because the matrices K are in general not symmetric, our wavelet
transforms will not be nonexpansive frames on the standard unweighted inner product space.
Instead, they will be nonexpansive on a certain weighted inner product space L2(M), where
M is an invertible weighting matrix. In important special cases, our matrix K will be either
the lazy random walk matrix P, its transpose PT, or its symmetric counterpart given by
T =D Y2PD'/2. In these cases, the weighting matrix will depend on the geometry of G.

We will use these wavelets to construct windowed and nonwindowed versions of the scat-
tering transform on G. The windowed scattering transform inputs a signal x € L?(M) and
outputs a sequence of functions which we refer to as the scattering coefficients. We may
view the windowed scattering transform as producing a sequence of features for each vertex.
Therefore, it is well suited for tasks such as node classification. The nonwindowed scatter-
ing transform replaces the low-pass matrix used in the definition of the windowed scattering
transform with an averaging operator p and instead outputs a sequence of scalar-valued coef-
ficients. In some cases, it can be viewed as the limit of the windowed scattering transform as
the scale of the low-pass tends to infinity (evaluated at some fixed coordinate 0 <i<n —1).
Since the nonwindowed scattering transform produces a single set of coefficients for the entire
graph, it is well suited for whole-graph—level tasks, such as graph classification or regression.

1.1. Preliminaries. Let G = (V, E,W) be a weighted, connected graph consisting of ver-
tices V', edges E, and weights W, with n vertices. Without loss of generality, we take the
vertices as V ={0,...,n — 1}. If x = (x(0),...,x(n — 1))7 is a function defined on V, we will
identify x with the corresponding vector in R™. Let A denote the weighted adjacency matrix
of G, let d = (d(0),...,d(n — 1))T be the weighted degree vector, and let D = diag(d). We
will let

N:=I-D Y2AD1/2

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/28/24 to 98.214.222.208 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

GENERALIZED GEOMETRIC SCATTERING 875

be the normalized graph Laplacian, let 0 < wp < w1 < ... <wp—1 < 2 denote the eigenvalues
of N, and let vy,...,v,—1 be an orthonormal eigenbasis for R (with respect to the standard,
unweighted inner product) such that Nv; = w;v;. The matrix N may be factored as

N=vQvT,

where Q0 = diag(wo,...,w,—1) and V is the unitary matrix whose ith column is v;. One
may check that wy = 0 and that we may choose vy = d'/2/||d"/?||s, where d'/? is defined
componentwise. We note that since GG is connected, we have wq > 0.

Our wavelet transforms will be constructed from the matrix T, defined by

(1.1) T,:=Vg(Q) VT :=VA, VT

where ¢ : [0,2] — [0,1] is some monotonically decreasing function such that g(0) = 1 and
9(2) =0 and Ay := diag(g(wo), ..., g(wn—1)) := diag(Ao, ..., Apn—1). We note that by construc-
tion, we have 1 = A\g > A1 > ... > A\,—1 > 0. As observed in, e.g., [16], in the case where g
is a rational function, the matrix T, can be constructed in the spatial domain via functional
calculus, and there is no need to explicitly diagonalize N, which may be computationally
expensive. Indeed, this approach is used in many popular GNNs [9, 15]. When there is no
potential for confusion, we will suppress dependence on g and write T and A in place of T,
and Agy. As our main example, we will set g(t) = g.(t) :=1 —t/2, yielding

1 1
(1.2) Ty =1-3 (I - D—l/QAD—l/Q) - (I + D_l/QAD‘W) .
In [12], Gama, Ribeiro, and Bruna constructed a graph scattering transform using wavelets
which are polynomials in T, , and in [13], Gao, Wolf, and Hirn defined a closely related graph
scattering transform from polynomials of the lazy random walk matrix

].
. 1l/2 1/2 1

In order to unify and generalize these frameworks, we will let M be an n X n invertible matrix
and let K be the matrix defined by

(1.3) K=K,m:=M'T,M.

Note that K depends on the choice of both ¢ and M and thus includes a very large family of
matrices. However, we shall suppress this dependence in order to avoid cumbersome notation.
As important special cases, we note that we may obtain K =T by setting M =1, and we may
obtain P and P” by setting g(t) = g,(t) and letting M = D~'/2 and M = D'/2, respectively.
More generally, as we shall see below, the function g controls the eigenvalues of K, while the
matrix M influences the eigenvectors of K. Since the eigenvalues and eigenvectors uniquely
determine K, they strongly affect any wavelets derived from K. Thus, the two parameters g
and M allow for a wide range of possible graph wavelet constructions.

In section 2, we will construct two wavelet transforms ng) and W§2) from functions of
K. We note that the matrix K is not self-adjoint on the standard, unweighted inner product
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space (except in the case K = T). Therefore, we will introduce a weighted inner product
space, L2(M), of signals defined on V with inner product defined by'

(1.4) (x,y)m := (Mx,My)o,

where (-,-)2 denotes the standard, unweighted inner product on R"™. To better understand
this definition, we note that if M = D2 then (x,y)par2 = Y1 x(i)y(i)d(i)*. Thus,
(X,¥)pesz is a weighted L? inner product with weights depending on the degree of each
vertex. We note that the norms [|x[|3; := (x,x)m and [x|% = (x,x)2 are equivalent and
that m”XHQ < |Ix||lm < [|M]|2]|x]|2, where for a matrix B, we shall let ||B||m and ||B|2
denote its operator norms on L?(M) and on the standard, unweighted L? space. If 7 is a
countable indexing set and X = {x;};c7 is a family of vectors, then we will also let ||X||m
denote the M¢?(L2(M)) norm of X and ||X||2 denote its norm on the vector-valued L? space.
If T' = (B;)ier is a family of matrices, then we will say that I' is a frame if there exist
0 < e <(C < oo such that

(1.5) clx|fr < I1Bx|Rg =Y IBix[3r < ClixlRs  Vx € L*(M).
i€l
The following lemma will be useful in studying the frame bounds of the wavelet transforms
constructed from K.
Lemma 1.1. The matriz K is self-adjoint on L?(M).

Proof. Since T is symmetric, we may use (1.3) and (1.4) to see that
(KX, Y>M = <MX, TMy>2 = <MX7 M(MilTM)Y>2 = <MX7 MKy>2 = <X7 Ky)M u

It will frequently be useful to consider the eigenvector decompositions of T and K. By
definition, we have T = VAV, and therefore Tv; = \;v;. Since the matrices T and K are
similar with K =M~!TM, one may use the definition of (-,-)ar to verify that the vectors

u; .= Mflvi

form an orthonormal eigenbasis for L?(M) with Ku; = A\;u;. One may also verify that w; :=
MTv; is a left eigenvector of K and W,LTK = )\iw;f forall0<i<n-—1.

In the following section, we will construct wavelets from polynomials of K, where for a
polynomial p(t) = axt® +...4+ a1t +ag, we define p(B) := a;,B* +... 4+ a1 B +agl. The following
lemma uses (1.1) to derive a formula for polynomials of K and T and relates the operator
norms of polynomials of K to polynomials of T. It will be useful for studying the wavelet
transforms introduced in the following section. For a proof, see section SMI1.

Lemma 1.2. For any polynomial p, we have
(1.6) p(T)=Vp(A)VT and p(K)=M"1p(T)M=M"'Vp(A)VIM.

Consequently, for all x € L2(M), we have ||p(K)x|m = ||p(T)Mx||2.

ITo avoid confusion, we note that our definition differs from the notation sometimes used in the literature
where (x,y)m is defined by y” Mx.
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In light of Lemma 1.2, for any polynomial p, we may define p(T)'/? and p(K)'/? by
(1.7) p(T)2:=Vp(AM)2VT and p(K)/2=M"1Vp(A)/2VTM,

where the square root of the diagaonal matrix p(A) is defined entrywise. We may readily
verify that p(T)!/?p(T)"/? =p(T) and p(K)"*p(K)'/? = p(K).

1.2. Previous work on graph scattering transforms. Several previous works have intro-
duced different formulations of the graph scattering transform. [12, 11, 32] construct the
scattering transform using symmetric wavelets and show their constructions have similar sta-
bility and invariance properties to the Euclidean scattering transform. There have also been
works empirically demonstrating that the graph scattering transform is effective for tasks
such as graph classification [13], vertex classification [27, 20, 21], graph synthesis [31, 4], and
combinatorial optimization [19]. However, much of this empirical work has been done using
asymmetric wavelets, to which the theoretical guarantees of [12, 11] and [32] do not apply.

In this paper, we will focus on unifying and generalizing the theoretical properties of the
different formulations of the graph scattering transform. Analogously to the Euclidean scatter-
ing transform, we will show that the windowed graph scattering transform is (i) nonexpansive
on L?(M), (ii) invariant to permutations of the vertices up to a factor depending on the scale
of the low-pass (for certain choices of K), and (iii) stable to graph perturbations. Similarly,
we will show that the nonwindowed scattering transform is (i) Lipschitz continuous on L2(M),
(ii) fully invariant to permutations, and (iii) stable to graph perturbations. Importantly, we
note that this is the first work to produce such theoretical guarantees for graph scattering
transforms using asymmetric wavelets and is also the first to establish Lipschitz continuity of
the nonwindowed graph scattering transform.

In [32], the authors construct a family of wavelet convolutions using the spectral decompo-
sition of the unnormalized graph Laplacian and define a windowed scattering transform as an
iterative series of wavelet convolutions and nonlinearities. They then prove results analogous
to Theorems 3.2, 3.5, and 3.8 of this paper for their windowed scattering transform. They
also introduce a notion of stability to graph perturbations. However, their notion of graph
perturbations is significantly different from the one we consider in section 4.

In [12], the authors construct a family of wavelets from polynomials of Ty, in the case
where g(t) = g«(t) =1 —t/2 and showed that the resulting nonwindowed scattering transform
was stable to graph perturbations. This construction was generalized in [11], where the authors
introduced a more general class of graph convolutions, constructed from a class of symmetric
matrices known as “graph shift operators.” The wavelet transform considered in [12] is nearly
identical to the WSQ) introduced in section 2 in the special case where ¢g(t) = g, (t) and M =1,
with the only difference being that our wavelet transform includes a low-pass filter.

In [13], wavelets were constructed from the lazy random walk matrix P = D'/2TD~1/2,
These wavelets are essentially the same as the WSQ) in the case where g(t) = g,(t) and M =
D~ 1/2, although similarly to [12], the wavelets in [13] do not use a low-pass filter. In all of these
previous works, the authors carry out substantial numerical experiments and demonstrate that
scattering transforms are effective for a variety of graph deep learning tasks. We also note
that Chen, Cheng, and Mallat first introduced a substantially different version of the graph
scattering transform in [5, 6] using Haar wavelets. However, the construction and analysis
considered there differ substantially from the previously discussed works.
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In addition to helping us understand the stability and invariance properties of deep net-
works on graphs, the scattering transform also helps us investigate the important question,
“what sort of filters should be used in a GNN?” Most popular GNNs, such as [15], typi-
cally average information over one-hop neighborhoods in order to produce a smooth hidden
representation of the vertices, which effectively corresponds to filtering out high-frequency
information via a low-pass filter. Scattering, on the other hand, uses multiscale filters that
can encode long-range dependencies and effectively capture high-frequency information. In
[20, 27], it was shown that this allows for improved numerical performance in situations
where high-frequency information is important. Moreover, graph scattering—style networks
also been shown to be effective for molecule generation [31] and solving combinatorial opti-
mization problems [19]. In the former case, the large receptive field of the wavelets allows
scattering to capture the global structure of the molecule, and in the latter case, the use of
wavelets rather than low-pass filters allows one to distinguish a member of the clique from a
node which is connected to to most but not all nodes within the clique.

Here we shall focus on unifying and generalizing the theory of several of these previous
constructions. Our introduction of the matrix M allows us to obtain wavelets very similar
to either [12] or [13] as special cases. Moreover, the introduction of the tight wavelet frame
w Jl allows us to produce a network with provable conservation of energy and nonexpansive
properties analogous to [32]. To highlight the generality of our setup, we introduce both win-
dowed and nonwindowed versions of the scattering transform using general (wavelet) frames
and provide a detailed theoretical analysis of both.

1.3. Organization, contributions, and summary of main results. In section 2, we will
construct two families of graph wavelets Wﬁl) and Wgz)_ In section 3, we will introduce
windowed and nonwindowed versions of the graph scattering transform and analyze their
continuity and invariance properties. Then in section 4, we will analyze the stability of the
networks to perturbations. In section 5, we will discuss the relationship between scattering
and other GNNs, and in section 6, we will present numerical experiments before offering a
brief conclusion in section 7.

The following is a summary of our main theoretical results. Unless otherwise stated, all
results apply to both choices of wavelets, both the windowed and the nonwindowed scattering
transform, and to general diffusion matrices K.

e Section 2: Propositions 2.1 and 2.2 show that the wavelets ng) are an isometry and
W§2) are a nonexpansive frame on L2(M).

e Section 3: Proposition 3.1 shows that if = ug, then the windowed scattering trans-
form converges to the nonwindowed scattering transform as J — oo. Theorem 3.2
shows that the windowed scattering transform is nonexpansive and that the nonwin-
dowed scattering transform is Lipschitz continuous on L#(M). Theorem 3.4 shows
that the energy in the mth order scattering coefficients decays exponentially in m,
and Theorem 3.5 shows that therefore the scattering; transform preserves all of the
energy of the input signal if we use the wavelets W JI). Theorems 3.6 and 3.7 show
that the windowed scattering transform is equivariant and that the nonwindowed scat-
tering transform is invariant to permutations. Finally, Theorem 3.8 shows that the
windowed scattering transform is invariant in the limit at J — oo if K =P7.
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e Section 4: Theorems 4.1 and 4.2 provide stability guarantees for W) and W) in
the special case where K = T. Theorem 4.3 then allows these results to be extended
to general K. Finally, Theorems 4.7 and 4.11 establish stability of the windowed and
nonwindowed scattering transforms.

1.3.1. Contributions. As discussed in section 1.2, there has been a significant amount of
work developing, analyzing, and applying different versions of the graph scattering transform.
Therefore, in this section, for the sake of clarity, we will highlight several aspects of our paper
which are different than these previous works.

e The wavelet family W JQ) includes the wavelets of [12] and [13] as special cases, but
it also includes many other wavelets, including, in particular, a one-family parame-
ter of wavelets based on diffusion operators of the form K = D*TD™“, where the
wavelets from [12] and [13] correspond to a = 0 and o = —.5. Moreover, the wave-
lets W Jl are new and are not utilized in any previous version of the graph scatter-
ing transform. In our experiments in section 6, we consider scattering transforms
which use wavelets W), based on diffusion matrices K = D™*TD?, for 6 =12
and a = —0.5,—-0.25,0,0.25,0.5. We find that the optimal choice of wavelet varies
significantly from one data set to another. Therefore, it is our recommendation that
practitioners use a validation procedure to select the optimal wavelets for a given task.
Moreover, we note that the new wavelets Wf,n outperform WSQ) on most data sets and
that the intermediate values of «, i.e., o = £0.25, often deliver superior performance
to the values considered in previous work (aw=0 or —0.5).

e [12] and [13] considered only nonwindowed versions of the scattering transform,
where we consider both windowed and nonwindowed versions. Importantly, unlike
its nonwindowed counterpart, the windowed scattering transform can be applied to
vertex-level tasks, such as node classification or combinatorial optimization problems.
Additionally, utilizing both versions of the scattering transform is crucial to proving
that the nonwindowed scattering transform is Lipschitz continuous in Theorem 3.2
that and no analogous result for the nonwindowed scattering transform exists in pre-
vious work.

e Our stability result for the nonwindowed scattering transform, Theorem 4.11, consid-
ers perturbations both to the graph structure and to the input signal x, whereas the
analogous result in [12] only considered perturbations to the graph structure. The
proof of this result directly utilizes the Lipschitz continuity of the nonwindowed scat-
tering transform discussed above and therefore would have been nontrivial for the
authors of [12] to prove since they did not consider a windowed scattering transform.

2. The graph wavelet transform. In this section, we will construct two families of graph
wavelet transforms based off of the matrix K = M~'TM introduced in section 1.1. In the
following sections, we provide a theoretical analysis of the scattering transforms constructed
from each of these wavelet transforms.

Let J>0. For 0<j<J+1, let p; be the polynomial defined by

1—t if j=0,
pi(t) =S¥ =¥ if1<5< T,
2’ ifj=J+1,
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and let g;(t) :=p;(t)'/? for 0 <t < 1. We note that by construction,

J4+1 J+1
(2.1) D pit)= q(t)’=1forall 0<t <1,
j=0 j=0

Given these functions, we define two wavelet transforms by

W= (o el} e 10, 8 — g (K) and
2 2 2 2 2
W@ = {\If§ ),q>f,)}0<j<J, v = pi(K), ) =pr(K),

where ¢;(K) is defined as in (1.7). The next two propositions show that W§1) is an isometry

and that W&Q) is a nonexpansive frame on L?(M) (defined in (1.4)). We provide proofs in
section SM2.

Proposition 2.1. WL(,I) is an isometry from L2(M) to M¢?(L?(M)). That is,

J
1 2 1 2 1 2
Wl = D103 + 10 %3 = I35 for all x € L2(M).
=0

Proposition 2.2. W§2) 1§ a nonexpansive frame; i.e., there exists a universal constant ¢ > 0,
which in particular is independent of M, J, or the eignenvalues of T, such that

J
2 2 2
clxle < WP xI3g = S 18P x|3g + 18P xI3g < IxI3s  for all x € L2(M).
7=0

Remark 2.3. If we omit the low-pass operator ‘I>E,2), we can repeat the arguments of

Proposition 4.1 of [12] to show that {\115-2)}0< j<J is a nonexpansive frame, with a lower bound
depending on the geometry of G, when restricted to x such that (x,ug)p = 0. For certain
tasks, this may be advantageous. For example, if K =P7 we may check that ug is a constant
vector and that ¥;up = p;j(K)ug = 0. Therefore, these restricted wavelets could be used to
produce a representation of an input x which is invariant to the addition of a constant vector.

3. The geometric scattering transform. In this section, we will construct the scattering
transform as a multilayered architecture built off of a frame W, such as the wavelet transforms
W‘(]l) and W§2) introduced in section 2. We shall see that the scattering transform is a
continuous operator on L?(M) whenever W is nonexpansive. We shall also see that it has
desirable conservation of energy bounds when W = WSI) due to the fact that WL(,U is an
isometry. On the other hand, we shall see in the following section that the scattering transform

has stronger stability guarantees, which are independent of the graph size, when W = WSQ) .

3.1. Definitions. We generalize the wavelet frames ng) and W§2) defined in section 2.
Let J be any countable indexing set, and let W := {¥;, ®};c 7 be a frame on L?(M) with

clbelRn < IWxIa ==Y 1R + 18x34 < Clix|1Ra
JjET
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for some 0 < ¢ < C < oco. In this paper, we are primarily interested in the case where
J=10,...,J} and W is either ng) or WSQ), meaning that ¥; = \Ilg-l) and ® = @y) fori=1,2,
respectively. If a result is specific to these cases, we will write “let VW be either W‘(jl) or W§2),”
in which case we are implicitly assuming that J = {0,...,J}. In general, it will be useful
to think of the matrices ¥; as wavelets and ® as a low-pass filter, but we emphasize that
this specification is not required for many of the results that follow. Indeed, we will define
the geometric scattering transform for generic frames in order to highlight the relationship
between properties of the scattering transform and properties of the underlying frame.

We let M be the pointwise modulus operator on Mx := (|x(0)[,...,|x(n — 1)|) and let
Uljlx:=MVY;x for j € J. We view this transformation U[j] as a hidden layer of our network
and will construct a multilayered architecture by iteratively applying this transformation at
different values of j. Formally, for m > 0, let J™ denote the m-fold Cartesian product of J
with itself, and for an index path p= (j1,...,7m) € J™, let

Ulplx:=Uljp]... Uljilx=MVY, ---MV; x.

For m = 0, we declare that J° is the empty set and interpret U[p.]x = x when p. is the
“empty index.” Next, we define the windowed scattering coefficients by

S[p]x :=®U|[p]x.

In this definition, the final multiplication by the (low-pass) matrix ® is interpreted as a local
averaging, but one could choose a different type of matrix ® so long as the frame condition
still holds. We will also define nonwindowed scattering coefficients which replace this local
averaging by a weighted global averaging. Specifically, we let pu € L?(M) be a weighting vector
and define the nonwindowed scattering coefficients by

S[pJx := (i, U[p]x)m-

One natural choice is p = (MTM)f1 1, where 1 is the vector of all ones. In this case, one

may verify that S[p|x = ||U[p]x||1, and we recover a setup similar to [13]. Another natural

choice is p =19 =M"1vy, in which case we recover a setup similar to [12] if we set M =1.
Given these coefficients, we define an operator U : L2(M) — M/?(L2(M)) by

Ux:={Ulp|Jx:m>0,p=(j1,..-,Jm) €T}
Next, we define the windowed and nonwindowed scattering transform S : L2(M) — M/¢2(L2(M))
and S:L?(M) — M/? by
Sx:={S[pjx:m>0,peJ"} and Sx:={S[pjx:m>0,peJ"}.
When W is either of the graph wavelet transforms WL(,U or WL(,Q) constructed in section 2 and

J =H{0,...,J}, we may write S; in place of S if we want to emphasize the dependence on
J. Similarly, when we want to emphasize the dependence on p we will write S,, in place of

S. We will let S¢ and S denote the fth layer of the windowed and nonwindowed scattering
transforms

SOx:={S[plx:p=(j1,....je) €T} and §x:={S[plx:p=(jr,....se) € T}.
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When W is either of the wavelet transforms W(l) or WSQ) constructed in section 2 and
1 = up, we may view the nonwindowed scattering transform as the limit of the windowed
scattering transform as J — oo. Formally, we can prove the following proposition.

Proposition 3.1. Let W be either of the wavelet transforms W(l) or W&z) constructed in
section 2, and let p=ugy. Then for all paths p € J™ and all x € LQ(M),
lim |S,s[p]x — (Su, [P|x)uo[m =0,
J—o0

where, on the left-hand side, we assume that J is large enough such that S ;[p] is well-defined.
For a proof of Proposition 3.1, see section SM3.

3.2. Continuity and conservation of energy properties. The following theorem shows
that the windowed scattering transform S is nonexpansive and that the nonwindowed scatter-
ing transform S is Lipschitz continuous whenever the underlying frame W is nonexpansive.

Theorem 3.2 (nonexpansiveness). If W is a frame with C <1 in (1.5), then
(3.1) ISx — Syllm < [x —yllv  for all x,y € L*(M).
(1)

Furthermore, if W is either of the wavelet transforms W5~ or W§2) constructed in section 2,
p =g, and min; |ug(i)| >0, then we have

st My
V/nmin; [ug ()|
The proof of (3.1) is similar to analogous results in, e.g., [18] and [32]. Equation (3.2) is

proved by using Proposition 3.1 to view S as the rescaled limit of S; as J — oo and applying
Fatou’s lemma. We note that the scaling factor of ﬁ is a consequence of the fact that we

(3.2) 1Su,x = Su,y

have assumed ug to have unit norm on L2(M). A full proof is provided in section SM5.

Remark 3.3. The proof of (3.2) relies on (3.1), Proposition 3.1, and Fatou’s lemma.
Therefore, we are not able to establish this inequality for general g and W, which do not satisfy
the assumptions of Proposition 3.1. However, if ® is invertible, one can use the relationship
Ux = &~ 1Sx to show that gu is still Lipschitz continuous since

1Spx = Spuyllz < lplvl @™ IvlISx — Syl < el |27 Inallx =yl

The next theorem shows that if W is either of the wavelet transforms constructed in
section 2, then U experiences rapid energy decay. This implies that it is possible to obtain
a good representation of an input signal x using only a few layers. Our arguments use ideas
similar to the proof of Proposition 3.3 in [32], with minor modifications to account for the
fact that our wavelet constructions are different. See section SM6 for a complete proof.

Theorem 3.4 (energy decay). Let W be either of the wavelet transforms W}l) or W}Z)
constructed in section 2. Then for all x € L2(M) and all m > 1,

(33) T HU[P]XH%/IS< ‘;ﬁr) S Ul

pej7n+l GJWL
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Therefore, for all m >0,

dyin "
3.4 > 10l (1- 5 )l

peJmt!

The next theorem shows that if W = ng), then the windowed graph scattering transform
conserves energy on L2(M). Its proof is nearly identical to the proof of Theorem 3.1 in [32].
However, we give a full proof in section SM7 for the sake of completeness.

Theorem 3.5 (energy conservation). If W= ng), then
[1Ssx|lp = 1xllM  for all x € L2(M).

3.3. Permutation invariance and equivariance. In tasks such as graph classification, two
graphs are equivalent if one is a permutation of the other. In this section, we will show
that both U and the windowed graph scattering transform are equivariant with respect to
permutations. As a consequence, we will show that the nonwindowed scattering transform
is fully permutation invariant and that the windowed scattering transform, under certain
assumptions, is permutation invariant up to a factor depending on the scale of the low-pass
filter.

Let S,, denote the permutation group on n elements, and, for II € S,,, let II(G) be the
graph obtained by permuting the vertices of G. If G’ =II(G), we define M’ by M’ := I[IMII”.
To motivate this definition, we note that if M is the identity, then M’ is also the identity.
Additionally, in the case where M is the square-root degree matrix D'/2, we note that the
square-root degree matrix on G’ is given by (D’)}/2 =IID'/21I”, and a similar formula holds
when M = D~/2. Therefore, in these three cases (which correspond to K = T,P7, and P,
respectively, if g = g, ), we may view M’ as the analogue of M associated to G’. Similarly, we
consider the analogues of YW and p on G’, given by

(3.5) W =TIWn" .= {0,117 0PI };c7 and p':=Tlpu.

We also let U’,S’, and S’ denote analogues of U, S, and S on G’ constructed from W' and p'.
To further understand the definition of W, we note that the natural analogue of T on G’
is given by T’ :=IITII”. Therefore, Lemma 1.2 implies that for any polynomial p,

p (M) /M) = (M) ~'p (T') MY = (tMmi”) ™ p (r?) (o7
=TIM~!p(T)MII?
=TIp (M~ 'TM) IT"

with a similar formula holding for ¢ := p!/2. Thus, if W is either of the wavelet transforms WSl)

or Wf,Z), then W' is the analogous wavelet transform constructed from K’ := (M/)~1T/M’.
Given our definitions, it is now straightforward to prove the following equivariance theorem.
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Theorem 3.6 (equivariance). Let I € S,, be a permutation, let G' =II(G), and let W' be
the wavelet transform on G' defined as in (3.5). Then for all x € L*(M),

U'Tlx =T1TUx and S'TIx =TISx.

The following result shows that the nonwindowed scattering transform is permuation in-
variant.

Theorem 3.7 (invariance for the nonwindowed scattering transform). Let II € S,, be a per-
mutation, G' =1I(G), and let W' be the wavelet transform on G' defined as in (3.5). Then

STx=Sx forallxe L% (M).

For proofs of Theorems 3.6 and 3.7, see section SMS&. Next, we will use Theorem 3.6 to
show that if W is either W‘(jl) or W§2) and M = D'/2, then the windowed scattering transform
is invariant on L2(D'2) up to a factor depending on the scale of the low-pass filter. We note
that 0 < A\; < 1. Therefore, A} decays exponentially fast as ¢ — oo, and so if J is large, the
right-hand side of (3.6) below will be nearly zero. We also recall that if our spectral function
is given by g(t) = g«(t), then this choice of M will imply that K = PT.

Theorem 3.8 (invariance for the windowed scattering transform). Let W be either W‘(Il) or
W(Q), let 1€ S,, G' =1I(G), and let W' be the wavelet transform on G’ defined as in (3.5).
Assume that M=DY2, so K=PT. Let t =271 if W= WSI) and t=27 if W=W®. Then

1/2
(3.6) 1S/11x — S yx||pi/z < AT —1||piye (1+!]fi”1> |%||p1/2 for all x e L2(DY/?).

min
For a proof of Theorem 3.8, see section SM9. We note that while the term on the right-
hand side of (3.6) does depend on the permutation II, one may use the triangle inequlity to
bound it uniformly by ||II — I|jpi2 < 14 4/ %. In particular, this implies that the right-
hand side converges to zero as J — oo. It is also important to note, as illustrated by Figure 1,
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Figure 1. Using W§2), we compare the windowed scattering coefficients Syx of a signal x on a graph G to
the windowed scattering coefficients S ;IIx of the permuted signal lIx on the graph G' =TI(G) for increasing J
and with K equal to both T and PT. As we can see, the difference rapidly converges to zero when K =P but
not when K ="T. Here, we took G to be an Erdés—Reny random graph with 100 vertices and the probability of
connecting two vertices with an edge as p=0.7. The entries of x are i.i.d. standard Gaussian random variables.
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that the windowed scattering transform is not invariant for general K. Indeed, inspecting
the proof, we see that the invariance of the windowed scattering transform is a result of the
invariance of the low-pass filter ® ;. For large values of J, this operator essentially projects the
signal x onto the bottom eigenvector ug. Thus, the invariance of the low-pass filter is a result
of ug being a constant vector. Since ug =M~1d!/2, this only occurs when M = D2, We also
note that in [32], the scattering transform is constructed from the unnormalized Laplacian,
whose bottom eigenvector is always constant, which is key to the invariance result obtained
there.

4. Stability to graph perturbations. In this section, let G = (V, £, W) and G= (‘7, E, W)
be weighted, connected graphs with |V| = |V| = n, and let M and M be invertible matrices.
Throughout this section, for any object X associated to G or L2(M), we will let X denote
the analogous object on G or L?(M), so, e.g., d is the degree vector on G.

Our analysis here is motivated by two problems in the machine learning literature on
graphs. The first problem is graph classification, and the second problem is graph alignment.
In graph classification problems, one wishes to assign a label to a graph G. In this setting,
one requires a representation of GG that is invariant to permutations of the vertex indices since
this operation does not change the underlying graph. Relatedly, graphs that are “similar”
often have similar labels (or even the same label). Thus, the representation should also be
stable (or at least continuous) to small perturbations of the graph G. On the other hand,
one desires a representation that is able to distinguish between graphs that are “dissimilar,”
indicating that it should retain as much information about G as possible.

The graph alignment problem involves trying to find the “best” correspondence between
the vertices of two graphs G and G with the same number of vertices. In this setting, one
requires a representation of each vertex in the graph, so that the representation of each vertex
in G may be compared to the representation of each vertex in G. In this case, permutation
invariance is not required and in fact would be a detriment, as a permutation-invariant repre-
sentation would not be able to align a graph with a permutation of itself. Instead, one requires
a permutation-equivariant representation. Additionally, one may want the representation to
be locally quasi-invariant in the sense that permutations of small numbers of vertices (in prac-
tice located near each other in the graph) will not affect the representation too much. As with
the graph classification problem, the representation should be stable to perturbations of the
graph and retain as much information about the structure of the graph as possible.

Following [12], as well as [8] and [22], our first measure of the distance between two
graphs G and G will be the “diffusion distances” given by dist(T,T) := ||T — T||;. This
distance measure it not permutation invariant in the sense that if Gisa permutation of G,
then || T — T2 is not zero in general. However, since T is a diffusion operator, the distance
measure provided by [|T — ’T‘H will be stable with respect to relatively small perturbations
of the edge weights. Such a distance measure is useful for equivariant models, used in, e.g.,
graph alignment. For invariant problems, though, such as the graph classification task, if G
is equal to G up to a permutation of its vertex/edge indices, then G is the same graph as G.
As such, the following permutation-invariant graph distance is preferred:

distinea (G, G) = rr[réin | T —T2.

n

G'=I1(G)
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We will show that the geometric wavelet transform, which is a permutation-equivariant
transform, is stable with respect to ||T — T||2. We will then use this result to prove that the
nonwindowed geometric scattering transform, which is a permutation-invariant representation
of the graph G, is stable with respect to distiny.(G,G). Additionally, we show that the
windowed geometric scattering transform, which is an equivariant transform, is nevertheless
stable with respect to distNZ-m,a(G,G) plus a term that measures the size of the permutation
required to align G with G but that is dampened by the inverse of the scale of the low-pass
filter.

In order to carry out this analysis, we introduce additional terms which measure the
difference between the matrices M and M. Specifically, we let

R;:=R;(M,M):=M"'M and Rj;:=Ry(M,M):=MM '
and consider the quantities H(M,M) and R(M,M) defined by
K(M. M) = ma{masc {1~ R, [T~ R ")} and

ROV, M) = masg{mac{ Rl [R; 2}

When we choose K to be P or PT7 we have M = D*!/2 which implies that R; = R2 =
dlag( )ﬂ/ 2,
More generally, if M and M are diagonal matrices, then L JM ) and L2( ) can be viewed
as a weighted versions of the standard L? space and (M, M) and Rx(M, M) measure how
different these weightings are. . . .
We note that by construction, we have 1 < R(M,M) < (M, M) + 1. Thus, if M ~ M,
we will have x(M, M) ~ 0 and consequently R(M, M) ~ 1. We also note that we will have
k(M, M) =0 and R(M, M) = 1 if either M =1 (so that K = T) or if M = D*!/2 and the
graphs G and G have the same degree vector. The latter situation occurs if, e.g., G and G are
regular graphs of the same degree. Furthermore, we note that if M is diagonal, then R; = Rao.
We only need two separate matrices R1,Ro when M is not a diagonal matrix. However, in
our prototypical examples, we have M =1 or M = D*/2_ all of which are diagonal.

Therefore, H(M M) measures how different the degree vectors d and d are.

4.1. Stability of the wavelet transforms. In this section, we analyze the stability of the
wavelets ng) and Wgz) constructed in section 2. Our first two theorems provide stability
bounds for K =T. These results will be extended to general K by Theorem 4.3.

_ Theorem 4.1 (stability of W((Il) with K = T). Suppose that G = (V,E,W) and G =
(V,E,W) are weighted, connected graphs with |V| = |V| = n. Let A} = max{A;,\1}, and
let M =1 so that K=T. Let W( ) be the wavelets constructed from T in section 2, and let

W(l) be the corresponding wavelets on G constructed from T. Then there exists a constant
Chx, depending only on A}, such that

WS WD )2 < Oy 270 T - T

The proof of Theorem 4.1 is in section SM10. Our next result provides stability bounds
for WSZ) when M =1 (i.e., K=T). The proof, given in section SM12, is closely modeled after
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the proofs of Lemmas 5.1 and 5.2 in [12]. However, due to a small change in the derivation,
our result appears in a slightly different form.

Theorem 4.2 (stability of W'?) with K = T). Suppose that G = (V,E,W) and G =
(YN/,E,W) are weighted, connected graphs with |V| = |V| = n. Let A\t = max{A1,\1}, and
let M =1 so that K="T. Let WSQ) be the wavelets constructed from T in section 2, and let
VN\{(ﬁ) be the corresponding wavelets constructed from T. Then

W@ w2 < oyl Tl

Comparing Theorems 4.1 and 4.2, we note that while W5~ ) has the advantage of being a
tight frame, W( ) has the advantage of possessing stronger stability guarantees. Numerical
experiments indicate that W}, ) i is indeed less stable to minor graph perturbations than Wf, ).
In Figure 2, we plot the stability of both Wf,n and W§2) on Erdds—Rényi, Watts—Strogatz
(small world), and Barabédsi—Albert (preferential attachment) random graphs. For each ran-
dom graph G, we obtained a perturbed graph G by adding mean-zero Guassian noise to each
of the edge weights at noise level o = 0.1. For all three random graphs, the operator norm
of W(l) )7\//51) was significantly larger than W( ) W( ). We also note that the bounds in
Theorem 4.1 increase exponentially in .J, but we do not observe this behavior in practice.

Theorems 4.1 and 4.2 show that the wavelets W((Il) and W§2) are stable on L? in the special
case that K = T. Our next theorem extends this analysis to general K and to more general
functions of K. In particular, it can be applied to any situation where WT = {r;(T)},es and

T = {rj(’i‘)}je 7 form frames on the unweighted L? space, where J is some indexing set
and each of the functions r; is a polynomial or the square root of a polynomial. We note that
in the case where M is close to M, we have K(M,M) ~ 0. Therefore, Theorem 4.3 will imply

12 ~ 112
that HWK — WKHM <6 HWT — WTH2. For a proof, see section SM13.

Theorem 4.3 (wavelet stability for general K). Suppose that G = (V,E,W) and G =
(V,E,W) are weighted, connected graphs with |V|=|V|=mn, and let M and M be invertible
matrices. Let J be an indexing set, and for j € J, let r;(-) be either a polynomial or the square
root of a polynomial. Suppose that WT = {r;(T)}jes and WT :iTj(T)}jej are frames on
the unweighted ~L2 space with C < 1 in (1.5) for both WT and WT. Let K = M~'TM, and
let WK and WX be the frames defined by {r;(K)};es and {Tj(ﬁ)}jej. Then

HWK - WRH; <6 <HWT - WTHE 4 (M, M)?(5(M, M) + 1)2> .

The following corollary is an immediate consequence of Theorem 4.3 combined with The-
orems 4.1 and 4.2. As noted prior to the statement of Theorem 4.3, in the case where M is
close to M, the terms involving x(M, M) will be small.

_ Corollary 4.4 (stability of W( ) and W( ) with general K). Suppose that G = (V,E,W) and
G=(V,E,W) are weighted, connected gmphs with ]Vg [V|=n. Let M and M be invertible

matrices, and let \j = max{\, /\1} Let WJ and W§2 be the wavelet transforms constructed
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Figure 2. We plot the operator norm of ng) — Wﬁl) and WF,Q) — W§2) as a function of J on Erdés—Rényi
(n = 100,p = .1), Watts—Strogatz (n = 100,k = 20,p = .1), and Barabdsi-Albert (n = 100,m = 10) random
graphs. The perturbed graphs G were obtained by adding Gaussian noise (0 = .1) to the edge weights of G.
Observe that for all three random graphs, the wavelets WLSQ) are more stable than W, Howewver, it appears

that the operator norm of both WF,U - W}l) and W® — Wﬁz) can be taken to be independent of J. In these
experiments, we chose K =T and did not include the low-pass filter ®; in our wavelets.
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from K in section 2, and let )7\//51) and Wf) be the corresponding wavelet transforms construc-
ted from K. Then

wa,” — W Hz < Cx; (270l T = T + 5(M, M)* (5(M, M) +1)?) and
HW}P - W HZ < Cx; (IT = Tl + (M, M) (5(M, M) +1)%)

Remark 4.5. Inspecting Corollary 4.4, we see that our wavelets may become less stable as
k(M, M) increases. In particular, in the case where M =D® and M = D, we have

/{(M,M):max{‘l— <;f§)a - <§>a|}

Therefore, values of « closer to zero lead to tighter stability bounds.

)

One might also wish to replace Corollary 4.4 with an inequality written in terms of |K —
K| rather than ||T — T||,. This can be done by the following proposition. Recall that if
M ~ M, then k(M,M) ~ 0 and R(M, M) ~ 1. Therefore, (4.1) implies that | T — Ty <
IIK — KHM For a proof of Proposition 4.6, see section SM14.

Proposition 4.6. Suppose that G = (V,E,W) and G= (V,E,W) are weighted, connected
graphs with |V|=|V|=n. Then

(4.1) IT = Tll2 < £(M, M) (1+ ROV, M)?*) + R(M, M)|[K — K|u.

4.2. Stability of the geometric scattering transform. In this section, we will prove sta-
bility bounds for the windowed and nonwindowed scattering transform. We will state these
results in terms of the stability bound of the underlying wavelet transform and also the upper
frame bound of YW when considered as on operator on L?(M). We do this both to emphasize
that the stability of the scattering transform is a consequence of the stability of the underlying
frame and so that our result can be applied to scattering transforms built onto of other graph
wavelet constructions. We will assume that G = (V, E,W) and G = (V,E,W) are weighted,
connected graphs such that |V| = |V| =n; let M and M be n x n invertible matrices; and
assume that W = {¥;, ®};cs and W = {\I/],Cb}]ej are frames on L?(M) and L2( ) such
that C' <1in (1.5). For a family of matrices I' = (B;);cz, where 7 is a countable index set, we
define the operator norm of T': L?(G,M) — MEQ(LQ(G,M)) as ||T|lm = SUD gy =1 |ITx || -
If IT is a permutation and G’ =II(G), then we will let W' := IIWIIT = (I, 17, 117 }je 7
denote the corresponding permuted wavelet frame.

Theorem 4.7 provides stability guarantees for the windowed scattering transform with
bounds that |[W — W|m and [[W| M. Similarly, Theorem 4.11 guarantees stability for the
nonwindowed transform. By Theorems 4.1, 4.2, and 4.3 as well as Proposition 4.10, these
results imply that the scatterlng transforms constructed from Wf, ) or W§ ) are stable in the
sense that if G is similar to G and M is similar to M then the scattering transforms S and S
will produce similar representations of an inputted signal x. Many of the ideas in the proof of
Theorems 4.7 and 4.11 are similar to those used to prove Theorem 5.3 in [12]. The primary
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difference is Lemma SM15.1, which is needed because W is not (in general) a nonexpansive
frame on L?(M), and therefore our results will involve terms related to the operator norm of W
on L2(M), which can be controlled by Proposition 4.10. We also note that both Theorems 4.7
and 4.11 consider pertubations to both the input signal x and the graph structure, whereas
Theorem 5.3 of [12] only considered perturbations to the graph structure.

Theorem 4.7 (stability for the windowed scattering transform). Let G = (V,E, W) and

G= (IN/,E,/V[\?) be weighted, connected graphs with |V| = H~/| =n; let M and M be invertible
n X n matrices; and let J be an indexing set. Let W ={U;, ®}jes and W = {(I;j,(i;}jej be
frames on L2(M) and LQ(M) such that C <1 in (1.5). Let S and St be the (th layers of
the windowed scattering transforms on G and G. Further assume that St is approrimately
permutation invariant up to a factor of B in the sense that

(4.2) st — s’ < Blxlln

for all x e L3(M) and I1 € S,,. Then for all x € L2 (M) and x € L2(M),

(4.3) Hsfx - §f§”2

¢
< R(M,T)? inf (BHX!2 +[TIx — |2 + V2[W' = W|mr (Z \IW\]M) \§H2> :
G'=I1(G) k=0

Remark 4.8. We can interpret each term in the right-hand side of (4.3). The first term is a
direct result of the approximate permutation invariance of the windowed scattering operator.
The second term measures the best possible alignment of the input signals x and X, whereas
the third term measures the best possible alignment of the wavelet operators on G and G.
Note that if there is a permutation II such that G =II(G) and x = IIx, then the only nonzero
term is B||x||2. This result is more general than an approximate invariance result, though,
since it also characterizes the stability of the windowed scattering transform in terms of the
stability of the wavelet operators and the similarity of the input signals x and X (which are
often functions of the graphs G and G, respectively).

In order to prove Theorem 4.7, we need the following lemma (proved in section SM15).

Lemma 4.9. Under the assumptions of Theorem 4.7, we have

V4
(4.4) Hsfx . sfoM <V2IW - Win (Z HWIH&) Ix|[p for all x € LA(M).
k=0

Proof of Theorem 4.7. Let II € S, be a permutation, and let G’ =1I(G). By Theorem 3.6,
we have IIS* = (S*)'II. Therefore, the triangle inequality implies that

(4.5) Hsfx - s%?HQ < HSEX IS ]| + [|(S9)/TIx — (SY)'X]|2 + | (SH'% — §QH2
The assumption (4.2) implies that
(4.6) |S°x — IIS'x|| < R(M, T)||S*x — IIS*x||a < BR(M, 1) ||x|lae < BR(M, I)?||x]|.
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Similarly, by Theorem 3.2, we have that
(4.7) 1(8°)Tx — (S°)'%|2 < ROM', 1)?|[TIx — X[ 2,

and applying Lemma 4.9 yields

l
(4.8) H@QQ—SthvﬁmNnnWmﬂ—m%W<§:mw&>Hﬂb
k=0

Since G’ =TI(G), one may check that R(M,I) = max{|| M|z, [M™!|]2} = R(M’,1). Therefore,
combining (4.5) with (4.6), (4.7), and (4.8) yields

L
|s'x—s| < rov,D? <B!X|!2+ 00 = Xllz + VW = W (Z Wh’%) H%\h) ,

k=0
and so infimizing over II completes the proof. |

The following proposition shows that if M is close to | M, then an upper frame bound
for W can be used to produce an upper frame bound for W on L?(M) provided the wavelet
operators satisfy certain conditions. This result yields a more transparent upper bound in the
stability results of Theorem 4.7 for the types of wavelet operators covered by the proposition.
More specifically, combining Proposition 4.10 with Theorem 4.7 allows one to refine (4.3) to

|8’ - s'%|
2

{4
<R(M,I)? inf (BHX\Ia + [T = K|z + V(W = Wl (ZR(MM)Z’“) \ng> :
G'=T1(G) k=0

We note that this result can be applied to both ng) and WSQ). For a proof, see section SM16.

Proposition 4.10. Suppose that G = (V,E,W) and G = (‘N/,E,W) are weighted, con-
nected graphs with |V| = |‘Zl = n. Let M and M be invertible n X n matrices, and let
K=MITM,K = M 'TM. Let J be an indexing set, and for j € J, let r;(-) be ei-
ther a polynomial or the square root of a polynomial. Suppose that W = {r;(K)}jcs is a
frame on L2(M) with C <1 in (1.5), and similarly assume that W= {Tj(f()}jej is a frame
on LQ(M) also with C' <1 in (1.5). Then W is a bounded operator on L?(M) and

Wxlag =D Il (K)x|Rs < ROV, M)*|[x]§y-
JjeJ
The following is the analogue of Theorem 4.7 for the nonwindowed scattering transform.
For a proof, see section SM17.

_ Theorem 4.11 (stability for the nonwindowed scattering transform). Let G = (V,E,W) and
G = (V,E,W) be weighted, connected graphs with |V| = |V|=n; let M and M be invertible
n x n matrices; and let J be an indexing set. Let W ={VU;, ®}ics and W = {¥;, };cs be
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frames on L2(M) and LQ(M) such that C' <1 in (1.5). Let S¢ and St be the (th layers of the
windowed scattering transforms on G and G. Further assume that p=ugy and p="1ugy. Then

~ 2 4
<7 G~ 2R(M,I ~
(4.9) ‘ Sfx — S’x|| <3 inf ],%(—’),ZHHX—XH%
o TeS, \ nmin; [ug(7)]
-1 2 N
+2R(M,1)?||pl3x (ZHWVM/) W = WlRe %13
k=0

+RM, M)?||p" — fall3e[I%]135

+R(M,I)*R(M,T)*(1 +R(M’aM))HﬁHgMK(M/7M)H?~<HM>~

Remark 4.12. As in Theorem 4.7, we can interpret each term in the right-hand side of
(4.9). In fact, the first two terms above are very similar to the second and third terms of
(4.3) and have the same interpretation. The third term in (4.9) measures the best possible
alignment of the measures p and g, while the last term measures the best possible alignment
of M and M through x(M’,M). While x, M, and p can be chosen independently of G,
often they depend on G, and thus it is reasonable to assume that a small perturbation of G,
reflected in é, would lead to a small change in these quantities.

Furthermore, when interpreting the right-hand side of the above equation, one should
keep in mind that if there exists a permutation II such that M’ = IIMII” is close to M,
we will have R(M/,M) ~ 1 and x(M',M) ~ 0. In our canonical examples, we have either
M=Ior M= D*/2 which implies that R(M,T) < ||d|](1></>2 Moreover, if one assumes that
M=M=M=Tand u=p=p'= ﬁl to recover a setup similar to [12], then we have

k(M M) =0and K =T, which implies that ug = %, and so the above result simplifies to

Thus, setting IIx = X, this result essentially includes Corollary 5.4 of [12] as a special case.

<. ol . 1d]|Z.]|d]|x ~12 0 21 TN =12
stx— 55| <o int (Al e gy 4 — W 12 )

9 nes, \ min; |d(7)]?

5. Scattering view of GNNs. The main contributions of the theoretical framework es-
tablished here are twofold. First, it provides an overarching characterization of geometric
descriptors captured by scattering features, which have been shown effective both at the node
level and at whole-graph—level tasks. Second, it provides a mathematical foundation for study-
ing a wide range of GNNs, analogous to the role played by the Euclidean scattering transform.
To further establish this second aspect, we review several prominent GNNs and discuss the
relationship between them and the scattering transform.

5.1. Aggregate-transform architectures. Most GNN architectures can be modeled as
alternating between two fundamental types of operations: (i) Aggregate: For each signal x,
replace x(i) with a value aggregated from its neighbors, e.g., x(i) = >,z wijx(j), where
N; a local neighborhood of node 7. Different architectures vary in their definition of the N
and the weights w;;. However, a common theme is that this operation is applied separately

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/28/24 to 98.214.222.208 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

GENERALIZED GEOMETRIC SCATTERING 893

on each graph signal. (ii) Transform: Between aggregation steps, GNNs apply a nodewise
transformation on the features of each node, typically in the form of a shallow neural network.

Together, these two operations extend the “convolutions” used in CNNs over images. We
note that the typical implementation of such convolutions differs from the traditional mathe-
matical definition of a convolution by considering not only the sliding-window application of
a local filter (essentially equivalent to the aggregate step) but also an operation that mixes
together resulting filter outputs (essentially equivalent to the transform step). On images, the
grid organization of pixels naturally lends itself to learnable filters that can easily translated
over the image. However, in graph domains, there is no such natural notion of translation.
Therefore, GNNs are limited in the aggregations they can use, and most of them default to
employing predetermined aggregations, somewhat analogous to the use of predefined wavelet
filters in the original scattering transform. This makes the scattering framework discussed
here particularly suitable for providing a solid foundation for not only understanding but also
constructing GNNs. Indeed, in the Euclidean case, the scattering transform deviates from
CNNs both by removing the channel-mixing (transform) operation and by replacing learned
filters with handcrafted ones. Here, however, the only deviation comes from the exclusion of
channel-mixing operations in the transform step. Moreover, these channel-mixing operations
can be added to the scattering transform in hybrid architectures, such as [20, 21]. To further
emphasize this perspective, we will discuss common implementations of the aggregation step
in GNNs and how they relate to the scattering framework.

5.2. Message-passing GNNs. As a representative example of message-passing aggrega-
tion, we consider the operation used in the Graph Isomorphism Network [30]. Let X:V — R™
be a vector-valued function on the vertices, which may be thought of as either a feature vector
for each vertex or an X as an n x m feature matrix. There, the hidden state of the network
at the fth layer is given by

X)) =MLP® [ (14+D)XED@) + Y Wi )X ()
J:(ij)eE
where W (i,j) are the edge weights of G = (V, E,W) and MLP® implements the transform
step applied to the vector of aggregated features of each node i. Note that the input into
MLP® can be written as (1 +&®)(Hoo X 1)(7) with H. =1+ (1 +¢) 'A. We note that
the scaling constant (1 4 () can be combined into the MLP. Therefore, we simply consider
the aggregation step as applying the filter H.. We note that H, is quite similar in form
to the matrix Ty, defined in (1.2). We also note that the decay of H. is determined by a
parameter € that effectively balances the information retained by node i compared to the
information aggregated from its neighbors. Over multiple applications of the filter, the decay
parameter controls the propagation speed over the graph, which can essentially be interpreted
as controlling the spatial localization of information aggregated by the network in each layer.

5.3. Spectral graph convolutional networks. Spectral networks generalize convolution
via the eigendecomposition of the graph Laplacian in a manner analogous to (1.1). The
hidden state of the fth layer will be an n x Fy feature matrix given by

X = o HOXED QW) = ¢(Vdiag(hW) VIXDe®),

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/28/24 to 98.214.222.208 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

894 PERLMUTTER, TONG, GAO, WOLF, AND HIRN

where o(+) is a nonlinear activation function (e.g., ReLU, sigmoid, or absolute value in our
case) and h® is a filter in the graph Fourier domain. Here, the weight matrix ew implements
the transform step, while the convolutional filter H® implements the aggregation step. The
primary difference between this network architecture and our model is the transform steps,
which are not included in our formulation of the scattering transform. Indeed, in our analysis,
we assume that we have a single input feature x. However, we do note that scattering networks
that incorporate transform steps were shown to be effective for node classification in [20, 21].

We further note that while some networks propose to parameterize h'® as a function
of Laplacian eigenvalues (e.g., using Chebyshev [9] or Caley [17] polynomials), some of the
more popular architectures rely on nearly fully predefined filters. For example, the GCN
architecture from [15], which is often used as a representative example of spectral GNNi,
essentially implements H® as a low-pass filter derived from first-order approximation of a
parameterized polynomial. Indeed, up to renormalization (or reparametrization), the filter
considered there is given by H® =1+ D~/2AD~1/2 = 2T. Therefore, as alluded to earlier,
the relation between the scattering framework and the GCN model can be regarded as stronger
than in the traditional Euclidean case since the aggregation step in such GCN architectures
(similar to the message-passing case) relies on predetermined filters rather than flexible learned
ones.

6. Empirical results. In this section, we empirically study the performance of geometric
scattering with different wavelet families W&l) and WSZ) and with different choices of K =
M~!TM, focusing on the case where M = D® for a € {—0.5,—0.25,0,0.25,0.5}.? Notably, the
case where we use the wavelets W§2) and set =0 or —0.5 corresponds to the settings of [12]
and [13], but the other settings do not correspond to wavelets previously used in the geometric
scattering literature. We perform graph classification over 11 data sets (see Table 1) and 10
initialization seeds, reporting the mean and standard deviation (p+0) of the test set accuracy
(see section SM19 for details). Overall, the optimal setting varies significantly between data
sets, as shown in Table 5. For example, on DD, the top-performing model was WSQ) with
a = 0.25. However, this configuration is more than 10 percentage points below the top
performer on IMDB-Binary. This highlights the practical importance of having a large family

Table 1
Data set statistics, diameter, nodes, edges, and average clustering coefficient (CC).

Graphs Classes Diameter Nodes Edges CC
COLLAB 5000 3 1.86 74.49 2457.22 0.89
DD 1178 2 19.81 284.32 715.66 0.48
IMDB-B 1000 2 1.86 19.77 96.53 0.95
IMDB-M 1500 3 1.47 13.00 65.94 0.97
MUTAG 188 2 8.22 17.93 19.79 0.00
NCI1 4110 2 13.33 29.87 32.30 0.00
NCI109 4127 2 13.14 29.68 32.13 0.00
PROTEINS 1113 2 11.62 39.06 72.82 0.51
PTC 344 2 7.52 14.29 14.69 0.01
REDDIT-B 2000 2 8.59 429.63 497.75 0.05
REDDIT-5K 4999 5 10.57 508.52 594.87 0.03

2Code to reproduce these results can be found at https://github.com/atong01/trainable_symmetry.
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Table 2
Test accuracy (£ o) over 11 data sets and 10 seeds of ng) versus W§2> scattering for different choices
of a € [—0.5,-0.25,0,0.25,0.5], where M =D, corresponding to K=D~*TD®. In most settings of «, W((,l)
slightly outperforms Wf). This suggests that ng)—type filters should be explored further.

! WSI) (exact) WEQ)

-0.5 0.617 + 0.007 0.616 £ 0.012

-0.25 0.640 + 0.005 0.626 £ 0.009

0.0 0.626 + 0.012 0.623 £+ 0.006

0.25 0.619 £+ 0.010 0.638 4+ 0.008

0.5 0.626 + 0.009 0.616 £ 0.009
Table 3

Ezamination of the best parameters W(Jl) versus W§2) and o € {—0.5,—-0.25,0,0.25,0.5}, showing the
number of times each setting was the best performing over 11 data sets and 10 seeds. We find that, on average,
W;l) outperforms W§2) (64 to 46) and that a € {—0.25,0.25,0.5} outperforms o € {—0.5,0.0} (28 to 14).

o w we? Total
-0.5 12 2 14
-0.25 12 16 28
0.0 8 5 13
0.25 13 14 27
0.5 19 9 28
Total 64 46 110
Table 4

Test accuracy (uto) over 11 data sets and 10 seeds 0fW§1) scattering computation. “Ezxact” computation of
Wy) scattering requires an eigendecomposition of T and therefore O(n®) time. Computation with the Chebyshev
polynomial of order T on a graph with |E| nonzero edges takes O(t(n+ |E|)) time, which is efficient for sparse
graphs with |E| = O(n). We do not see a noticeable drop in performance when approzimating with T € {10,100}
as compared to the exact implementation, suggesting a fast implementation of approzimate Wf,n scattering
using Chebyshev approzimation.

T 10 100 exact

COLLAB 0.692 £ 0.010 0.683 £ 0.012 0.702 £ 0.009
DD 0.685 £+ 0.025 0.698 + 0.024 0.695 £ 0.039
IMDB-BINARY 0.688 £ 0.040 0.666 £+ 0.050 0.691 £ 0.031
IMDB-MULTI 0.406 £ 0.046 0.414 £ 0.029 0.398 £ 0.027
MUTAG 0.761 £+ 0.074 0.733 £+ 0.063 0.688 £+ 0.070
NCI1 0.653 £+ 0.016 0.659 + 0.029 0.645 £+ 0.030
NCI109 0.668 £ 0.022 0.628 £ 0.013 0.658 £ 0.023
PROTEINS 0.772 £+ 0.023 0.799 + 0.016 0.782 £ 0.022
PTC MR 0.325 £+ 0.095 0.333 £ 0.097 0.387 £+ 0.089
REDDIT-BINARY 0.805 £ 0.021 0.822 + 0.021 0.814 £ 0.021
REDDIT-MULTI-5K 0.410 £ 0.013 0.422 + 0.013 0.417 £ 0.016
Mean 0.624 £ 0.163 0.624 + 0.160 0.626 £ 0.151

of scattering transforms, which a practitioner can choose from via a validation procedure.
When averaged over all data sets, the best choice of « is either —0.25 or 0.25, depending on

whether one used ng) or W§2), as shown in Table 2. We also note that W Jl outperforms
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Table 5

Full results, (u =+ o) over 10 seeds for 11 data sets with varying a, {Wﬁl),W§2)}, and Chebyshev approxi-

mation of Wy) with 10 and 100 degree Chebyshev polynomials.

a model COLLAB DD IMDB-BINARY IMDB-MULTI MUTAG NCI1
-0.5 ng) (r=10) 0.699 £ 0.005 0.654 + 0.021 0.740 + 0.022 0.384 &£ 0.032 0.795 + 0.064 0.657 £ 0.011
ng) (r =100) 0.676 £+ 0.008 0.721 + 0.017 0.727 + 0.021 0.438 + 0.026 0.725 + 0.035 0.681 £ 0.022
ng) (exact) 0.706 £ 0.006 0.727 + 0.013 0.698 + 0.026 0.397 + 0.023 0.600 + 0.000 0.622 + 0.006
WF]Z) 0.699 £ 0.009 0.660 + 0.014 0.588 + 0.012 0.335 + 0.043 0.775 £ 0.049 0.651 £ 0.006
-0.25 W'(Il)(r =10) 0.684 +£ 0.008 0.683 + 0.013 0.655 + 0.036 0.438 + 0.033 0.660 £ 0.070 0.642 £ 0.018
ng) (r =100) 0.683 £ 0.007 0.694 + 0.026 0.635 + 0.051 0.389 + 0.016 0.700 + 0.062 0.621 £ 0.014
Wf,l) (exact) 0.701 £ 0.010 0.711 + 0.026 0.692 + 0.038 0.373 + 0.014 0.770 £+ 0.026 0.650 £ 0.004
W§2) 0.693 £ 0.007 0.674 + 0.011 0.579 + 0.017 0.401 + 0.045 0.740 £ 0.039 0.649 £ 0.009
0.0 W‘(Jl)('r =10) 0.686 £ 0.010 0.699 + 0.017 0.683 + 0.019 0.444 + 0.030 0.750 £ 0.035 0.663 £ 0.022
W;l) (7 =100) 0.698 £ 0.005 0.696 + 0.028 0.695 + 0.012 0.402 + 0.014 0.735 £+ 0.034 0.637 £ 0.017
ng) (exact) 0.690 £ 0.007 0.714 + 0.015 0.713 + 0.021 0.421 + 0.027 0.675 £ 0.063 0.638 £ 0.006
WSZ) 0.694 £ 0.007 0.720 + 0.017 0.584 + 0.019 0.428 + 0.016 0.640 + 0.021 0.667 £ 0.004
0.25 Wf,l) (r=10) 0.701 £ 0.010 0.697 + 0.023 0.688 + 0.044 0.423 + 0.014 0.775 + 0.026 0.650 £ 0.009
W\(,l) (7 =100) 0.690 £ 0.005 0.686 + 0.021 0.667 + 0.012 0.403 + 0.036 0.725 + 0.089 0.682 + 0.006
ng) (exact) 0.705 £ 0.005 0.675 + 0.041 0.684 + 0.015 0.406 + 0.016 0.690 + 0.052 0.617 £ 0.011
Wf,?') 0.700 £ 0.007 0.732 + 0.011 0.609 £ 0.032 0.427 + 0.013 0.845 + 0.064 0.658 £+ 0.010
0.5 ng) (r=10) 0.690 £ 0.007 0.695 £ 0.021 0.680 + 0.025 0.346 + 0.027 0.825 + 0.035 0.654 £ 0.006
W‘(Jl) (r =100) 0.670 £ 0.009 0.695 + 0.015 0.607 + 0.008 0.434 + 0.012 0.780 + 0.059 0.676 £ 0.008
ng) (exact) 0.708 + 0.006 0.651 £ 0.031 0.666 + 0.034 0.395 + 0.031 0.705 £ 0.055 0.696 + 0.010
Wf) 0.705 £ 0.010 0.724 + 0.021 0.608 + 0.031 0.419 + 0.045 0.590 + 0.077 0.659 £ 0.011
NCI109 PROTEINS PTC MR REDDIT-B REDDIT-M Mean
-0.5 WL(,I) (r=10) 0.631 £+ 0.008 0.772 £ 0.012 0.422 + 0.106 0.794 £ 0.009 0.403 + 0.007 0.631 £ 0.016
Wl(,l) (7 =100) 0.627 + 0.009 0.790 £ 0.014 0.292 + 0.057 0.821 + 0.021 0.412 + 0.012 0.627 £ 0.008
ng) (exact) 0.624 + 0.010 0.798 £ 0.013 0.423 + 0.056 0.789 £ 0.014 0.403 + 0.007 0.617 £ 0.007
W32> 0.663 + 0.010 0.802 £ 0.016 0.366 + 0.072 0.814 £ 0.011 0.416 + 0.007 0.616 £ 0.012
-0.25 W&l)(r =10) 0.661 + 0.007 0.790 £ 0.027 0.251 + 0.044 0.793 £ 0.008 0.406 + 0.012 0.607 £ 0.008
WSU (r=100) 0.615 £+ 0.015 0.803 +£ 0.013 0.286 + 0.096 0.820 + 0.023 0.424 + 0.009 0.609 + 0.014
W‘(,l) (exact) 0.676 + 0.004 0.791 +£ 0.009 0.456 + 0.020 0.808 + 0.017 0.410 + 0.016 0.640 + 0.005
WE,Q) 0.680 + 0.008 0.791 +£ 0.038 0.402 + 0.051 0.841 +£ 0.007 0.435 + 0.009 | 0.626 + 0.009
0.0 W§1>(T =10) 0.675 = 0.009 0.780 £ 0.024 0.292 + 0.090 0.791 £ 0.013 0.419 + 0.006 0.624 £ 0.010
ng) (r=100) 0.631 £+ 0.013 0.797 £ 0.013 0.289 + 0.069 0.814 + 0.014 0.430 + 0.013 0.620 £ 0.009
Wl(,l) (exact) 0.641 + 0.004 0.778 £ 0.024 0.384 + 0.097 0.820 +£ 0.009 0.419 + 0.011 0.626 £ 0.012
W§2) 0.647 + 0.008 0.783 £ 0.017 0.443 + 0.054 0.825 £ 0.009 0.421 + 0.014 0.623 £ 0.006
0.25 Wf,” (r=10) 0.690 + 0.006 0.759 £ 0.019 0.294 + 0.018 0.812 £ 0.011 0.412 + 0.017 0.627 £ 0.003
Wf,w (r =100) 0.627 + 0.005 0.805 + 0.007 0.375 + 0.119 0.844 + 0.014 0.418 + 0.012 0.632 £ 0.013
WL(,I) (exact) 0.673 + 0.004 0.787 £ 0.012 0.298 + 0.102 0.842 + 0.014 0.433 + 0.018 0.619 +£ 0.010
W.(12) 0.654 + 0.010 0.796 £ 0.019 0.379 + 0.022 0.822 £ 0.013 0.398 + 0.010 0.638 £ 0.008
0.5 Wv(Jl) (r=10) 0.682 + 0.011 0.758 £ 0.013 0.367 + 0.083 0.837 £ 0.015 0.412 + 0.014 0.631 £ 0.009
WSU (r =100) 0.640 + 0.007 0.800 £ 0.025 0.422 + 0.048 0.812 £ 0.017 0.429 + 0.012 0.633 £ 0.006
Wsl) (exact) 0.679 + 0.006 0.756 £ 0.020 0.370 + 0.063 0.813 £ 0.010 0.420 + 0.008 0.626 £ 0.009
W32> 0.642 + 0.005 0.794 £ 0.016 0.453 + 0.017 0.795 £ 0.019 0.391 + 0.006 0.616 £ 0.009

WSQ) in a majority of cases, as shown in Table 3. Notably, one potential drawback to W}

(1)

is that it requires computing the eigenvectors and eigenvalues of K, which is inefficient for
large graphs. However, we show that this difficulty can be overcome via an approximation by
Chebyshev polynomials with only a small loss of accuracy, as shown in Table 4.

Specifically, an exact application of the W;

(1)

filters requires an eigendecomposition of

the graph, while the W§2) filter can be calculated with a polynomial of the Laplacian.
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For large graphs with n nodes and |E| < n? edges, the W&l) filters take O(n?) time to com-
pute, whereas the W§2) filters take O(2”(|E| 4+ n)) time to compute. This means that Wgz)
filters are substantially quicker to compute than exact Wy) filters, especially for sparse graphs
and 27 < n. However, we show that the ng) filter can be approximated with a Chebyshev
polynomial approximation of order 7, which has a similar computation time to the W§2) filter
with no noticeable performance drop. In Table 4, we compare the performance of the exact
ng) implementation versus a Chebyshev approximation to the filter of order 7 € {10,100}
over 11 data sets. On average, over the data sets, the exact ng) filter has a test accuracy of
0.626 versus 0.624 for both 7 =10 and 7 = 100.

7. Future work. We have introduced a large class of scattering networks with provable
guarantees. As alluded to in section 1.2, we believe that our work opens up several new lines
of inquiry. One might attempt to learn the optimal choices of the matrix M and the spectral
function g from a parameterized family based on training data, yielding a data-driven archi-
tecture with theoretical stability guarantees. Another possible extension would be to consider
a construction similar to ours but which uses the spectral decomposition of the unnormal-
ized graph Laplacian rather than the normalized Laplacian. Such a work would generalize
[32] in a manner analogous to the way that this work generalizes [12] and [13]. Additionally,
one might attempt to incorporate an attention mechanism, such as that used in GAT [29],
into the scattering framework for improved numerical performance. Finally, one might wish
to study the behavior of the graph scattering transform on data-driven graphs obtained by
subsampling a Riemannian manifold M. Such graphs typically arise in high-dimensional data
analysis and manifold learning. It can be shown that, under certain conditions, the normal-
ized graph Laplacian converges pointwise [8, 26] or in a spectral sense [2, 3, 10, 25, 28] to the
Laplace—Beltrami operator on M as the number of samples tends to infinity. One might hope
to use these results to study the convergence of the graph scattering transforms constructed
here to the manifold scattering transform constructed in [24].
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