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Abstract

Motivation: Accurately representing biological networks in a low-dimensional space, also known as network
embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an
unsupervised method based on biased random walks. However, while many networks, including functional gene
interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge
weights during the biased random walk generation process, thus under-using all the information in the network.

Results: Here, we present node2vecþ, a natural extension of node2vec that accounts for edge weights when
calculating walk biases and reduces to node2vec in the cases of unweighted graphs or unbiased walks. Using two
synthetic datasets, we empirically show that node2vecþ is more robust to additive noise than node2vec in weighted
graphs. Then, using genome-scale functional gene networks to solve a wide range of gene function and disease
prediction tasks, we demonstrate the superior performance of node2vecþ over node2vec in the case of weighted
graphs. Notably, due to the limited amount of training data in the gene classification tasks, graph neural networks
such as GCN and GraphSAGE are outperformed by both node2vec and node2vecþ.

Availability and implementation: The data and code are available on GitHub at https://github.com/krishnanlab/
node2vecplus_benchmarks. All additional data underlying this article are available on Zenodo at https://doi.org/10.
5281/zenodo.7007164.

Contact: arjun@msu.edu or arjun.krishnan@cuanschutz.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Graphs and networks naturally appear in many real-world datasets,
including social networks and biological networks. The graph struc-
ture provides insightful information about the role of each node in
the graph, such as protein function in a protein–protein interaction
network (Krishnan et al., 2016; Liu et al., 2020). To more efficiently
and effectively mine information from large-scale graphs with thou-
sands or millions of nodes, several node embedding methods have
been developed (Cui et al., 2018; Hamilton et al., 2017). Among
them, node2vec has been the top choice in bioinformatics due to its
superior performance compared to many other methods (Ata et al.,
2021; Yue et al., 2019). However, many biological networks, such
as Greene et al. (2015) and Johnson and Krishnan (2022), are dense
and weighted by construction, which we demonstrate to be

undesirable conditions for node2vec that can lead to sub-optimal
performance.

Node2vec (Grover and Leskovec, 2016) is a second-order ran-
dom walk-based embedding method. It is widely used for unsuper-
vised node embedding for various tasks, particularly in
computational biology (Nelson et al., 2019), such as for gene func-
tion prediction (Liu et al., 2020), disease gene prediction (Ata et al.,
2018; Peng et al., 2019), and essential protein prediction (Wang
et al., 2021a; Zeng et al., 2021). Some recent works built on top of
node2vec aim to adapt node2vec to more specific types of networks
(Valentini et al., 2021; Wang et al., 2021b), generalize node2vec to
higher dimensions (Hacker, 2021), augment node2vec with add-
itional downstream processing (Chattopadhyay and Ganguly, 2020;
Hu et al., 2020), or to study node2vec theoretically (Davison and
Austern, 2021; Grohe, 2020; Qiu et al., 2018). Nevertheless, none
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of these follow-up works account for the fact that node2vec is less
effective for weighted graphs, where the edge weights reflect the (po-
tentially noisy) similarities between pairs of nodes. This failing is
due to the inability of node2vec to differentiate between small and
large edges connecting the previous vertex with a potential next ver-
tex in the random walk, which subsequently causes less accurate
modeling of the intended walk bias.

Meanwhile, another line of recent works on graph neural net-
works (GNNs) has shown remarkable performance in prediction
tasks that involve graph structure, including node classification
(Bronstein et al., 2021; Wu et al., 2021; Zhang et al., 2021).
Although GNNs and embedding methods like node2vec are related
in that they both aim at projecting nodes in the graph to a feature
space, two main differences set them apart. First, GNNs typically re-
quire labeled data, while embedding methods do not. This label de-
pendency makes the embeddings generated by a GNN tied to the
quality of the labels, which in some cases, like in biological net-
works, are noisy and scarce. Second, GNNs typically require node
features as input to train, which are not always available. In the ab-
sence of given node features, one needs to generate them, and often
GNN algorithms use trivial node features such as the constant fea-
tures or node degree features. These two differences give node
embedding methods a unique place in node classification, apart
from the GNN methods.

Here, we propose an improved version of node2vec that is more
effective for weighted graphs by taking into account the edge weight
connecting the previous vertex and the potential next vertex. The
proposed method node2vecþ is a natural extension of node2vec;
when the input graph is unweighted, the resulting embeddings of
node2vecþ and node2vec are equivalent in expectation. Moreover,
when the bias parameters are set to neutral, node2vecþ recovers a
first-order random walk, just as node2vec does. Finally, we demon-
strate the superior performance of node2vecþ through extensive
benchmarking on both synthetic datasets and network-based gene
classification datasets using various functional gene interaction net-
works. Node2vecþ is implemented as part of PecanPy (Liu and
Krishnan, 2021) and is available on GitHub: https://github.com/
krishnanlab/PecanPy.

2 Materials and methods

We start by briefly reviewing the node2vec method. Then, we illus-
trate that node2vec is less effective for weighted graphs due to its in-
ability to identify out edges. Finally, we present a natural extension
of node2vec that resolves this issue.

2.1 Node2vec overview
In the setting of node embeddings, we are interested in finding a
mapping f : V ! R

d that maps each node v 2 V to a d-dimensional
vector so that the mutual proximity between pairs of nodes in the
graph is preserved. In particular, a random walk-based approach
aims to maximize the probability of reconstructing the neighbor-
hoods for any node in the graph based on some sampling strategy S.
Formally, given a graph G ¼ ðV;EÞ (the analysis generalizes to
directed and/or weighted graphs), we want to maximize the log
probability of reconstructing the sampled neighborhood N SðvÞ for
each v 2 V:

max
f

X
v2V

logPðN SðvÞjf ðvÞÞ : (1)

Under the conditional independence assumption, and the param-
eterization of the probabilities as the softmax normalized inner
products (Grover and Leskovec, 2016; Mikolov et al., 2013b), the
objective function above simplifies to:

max
f

X
v2V

X
v02N SðvÞ

hf ðv0Þ; f ðvÞi � log Zv

� �
: (2)

In practice, the partition function Zv ¼
P

v02Vhf ðvÞ; f ðv0Þi is
approximated by negative sampling (Mikolov et al., 2013a) to save

computational time. Given any sampling strategy S, Equation (2)
can find the corresponding embedding f, which is achieved in prac-
tice by feeding the random walks generated to the skipgram with
negative sampling (Mikolov et al., 2013b).

Node2vec devises a second-order random walk as the sampling
strategy. Unlike a first-order random walk (Perozzi et al., 2014),
where the transition probability of moving to the next vertex vn,
denoted as PðvnjvcÞ, depends only on the current vertex vc, a
second-order random walk also depends on the previous vertex vp,
with transition probability Pðvnjvc; vpÞ. It does so by applying a bias
factorapqðvn; vpÞ to the edge ðvc; vnÞ 2 E that connects the current
vertex and a potential next vertex. This bias factor is a function that
depends on the relation between the previous vertex and the poten-
tial next vertex, and is parameterized by the return parameter p and
the in–out parameter q. In this way, the random walk can be gener-
ated based on the following transition probabilities:

Pðvnjvc; vpÞ ¼
apqðvn; vpÞwðvc; vnÞP

v2NðvcÞ apqðv; vpÞwðvc; vÞ
if ðvc; vnÞ 2 E

0 otherwise

;

8><
>: (3)

where the bias factor is defined as:

apqðvn; vpÞ ¼

1

p
if vp ¼ vn

1 if vp 6¼ vn and ðvn; vpÞ 2 E
1

q
if vp 6¼ vn and ðvn; vpÞ 62 E

:

8>>>><
>>>>:

(4)

According to this bias factor, node2vec differentiates three types of
edges: (i) the return edge, where the potential next vertex is the previ-
ous vertex (Fig. 1a); (ii) the out edge, where the potential next vertex is
not connected to the previous vertex (Fig. 1b); and (iii) the in edge,
where the potential next vertex is connected to the previous vertex
(Fig. 1c). Note that the first-order (or unbiased) random walk can be
seen as a special case of the second-order random walk where both the
return parameter and the in–out parameter are set to neutral
(p ¼ 1; q ¼ 1).

We now turn our attention to weighted networks, where the edge
weights are not necessarily zeros or ones. Consider the case where vn is
connected to vp, but with a small weight (Fig. 1d), i.e. ðvn; vpÞ 2 E and
0 < wðvn; vpÞ � 1. According to the definition of the bias factor, no
matter how small wðvn; vpÞ is, ðvc; vnÞ would always be considered as
an in edge. Since in this case vn and vp are barely connected, ðvc; vnÞ
should in fact be considered as an out edge. In the extreme case of a
fully connected weighted graph, where ðv; v0Þ 2 E for all v; v0 2 V,
node2vec completely loses its ability to identify out edges.

Thus, node2vec is less effective for weighted networks due to its
inability to identify potential out edges where the terminal vertex vn

is loosely connected to a previous vertex vp. Next, we propose an ex-
tension of node2vec that resolves this issue, by taking into account
of the edge weight wðvn; vpÞ in the bias factor.

Fig. 1. Illustration of different settings of return and in–out edges. vp, vc and vn indi-

cate the previous, current, and next vertices. The solid and dotted lines represent

edges with large and small edge weights, respectively. (a–c) return, out and in edges

considered by node2vec. (d–f) Variations of (c) when taking into account of edge

weights, where node2vec fail to distinguish from (c)
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2.2 Node2vecþ
The main idea of extending node2vec is to identify potential out
edges ðvc; vnÞ 2 E coming from vp, where vn is loosely connected to
vp. Intuitively, we can determine the ‘looseness’ of ðvc; vnÞ based on
some threshold edge value. However, given that the distribution of
edge weights of any given node in the graph is not known a priori, it
is hard to come up with a reasonable threshold value for all net-
works. Instead, we define the looseness of ðvc; vnÞ based on the edge
weight statistics for each node v.

lðvÞ ¼
P

v02N ðvÞwðv; v0Þ
jN ðvÞj

rðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
v02N ðvÞðwðv; v0Þ � lðvÞÞ2

jN ðvÞj

s

~wcðv;uÞ ¼
wðv; uÞ

maxflðvÞ þ crðvÞ; �g

: (5)

Formally, we first define ~wcðv; uÞ, a normalized version of the
edge weight wðv;uÞ, based on the mean lðvÞ and the standard devi-
ation rðvÞ of the edge weights connecting v, as in Equation (5). In
practice, we clip the denominator of ~wcðv; uÞ by a small number �
(1e�6 by default) to prevent divide by zero in some cases when c is
set to be negative. Then, we say v 2 V is c -loosely connected (or
simply loosely connected if c ¼ 0) to u 2 V if ~wcðv;uÞ < 1.
Intuitively, we would like to treat an edge as being ‘not connected’ if
it is ‘small enough’. Finally, an edge ðv; uÞ is c -loose if v is c-loosely
connected to u, and otherwise it is c -tight. Without loss of general-
ity, we consider the case of c ¼ 0 in the subsequent sections to sim-
plify the notion of looseness.

Based on the definition of looseness of edges, and assuming
vp 6¼ vn, there are four types of ðvc; vnÞ edges (see Fig. 1c–f).
Following node2vec, we categorize these edge types into in and out
edges. Furthermore, to prevent amplification of noisy connections,
we added one more edge type called the noisy edge, which is always
suppressed.

2.2.1 Out edge

As a direct generalization to node2vec, we consider ðvc; vnÞ to be an
out edge if ðvc; vnÞ is tight and ðvn; vpÞ is loose (Fig. 1b and d). The
in–out parameter q then modifies the out edge to differentiate ‘in-
ward’ and ‘outward’ nodes, and subsequently leads to Breadth First
Search or Depth First Search like searching strategies (Grover and
Leskovec, 2016). Unlike node2vec, however, we further parameter-
ize the bias factor a based on ~wcðvn; vpÞ. Any choice of monotonic
function should work, but we choose to use the linear interpolation
in this study for simplicity and leave it as future work to explore
more sophisticated interpolation functions such as the sigmoidal
functions. Specifically, for an out edge ðvc; vnÞ, the bias factor is
computed as acpqðvp; vc; vnÞ ¼ 1

qþ ð1� 1
q Þ ~wcðvn; vpÞ. Thus, the

amount of modification to the out edge depends on the level of
looseness of ðvn; vpÞ. When wðvn; vpÞ ¼ 0, or equivalently
ðvn; vpÞ 62 E, the bias factor for ðvc; vpÞ is 1

q, same as that defined in
node2vec.

2.2.2 Noisy edge

We consider ðvc; vnÞ to be a noisy edge if both ðvc; vnÞ and ðvn; vpÞ
are loose (Fig. 1e). Heuristically, the noisy edges are not very in-
formative and thus should be suppressed regardless of the setting of
q to prevent amplification of noise. Thus, the bias factor for a noisy
edge is set to be min 1; 1

q

n o
.

Notice that by introducing the noisy-edge term, we create dis-
continuity to the bias factor when ~wcðvn; vpÞ > 1 and ~wcðvc; vnÞ
switches from greater than one to less than one. We provide an alter-
native solution to node2vecþ in the Supplementary material, which
continuously extends the out edge term with the noisy edge term.
However, we empirically show that the continuous version of
node2vecþ performs no better than node2vecþ. Hence, in the main
paper, we stick to the ‘discontinuous’ but simpler version of
node2vecþ.

2.2.3 In edge

Finally, we consider ðvc; vnÞ to be an in edge if ðvn; vpÞ is tight, re-
gardless of wðvc; vnÞ (Fig. 1c and f). The corresponding bias factor is
set to neutral as in node2vec.

Combining the above, the bias factor for node2vecþ is defined
as follows:

acpqðvp; vc; vnÞ ¼

1

p
if vp ¼ vn

1 if ~wcðvn; vpÞ � 1

min 1;
1

q

� �
if ~wcðvn; vpÞ < 1

and ~wcðvc; vnÞ < 1
1

q
þ 1� 1

q

� �
~wcðvn; vpÞ if ~wcðvn; vpÞ < 1

and ~wcðvc; vnÞ � 1

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(6)

Note that the last two cases in Equation (6) include cases of
ðvn; vpÞ 62 E. Based on the biased random walk searching strategy
using this bias factor, the embedding can be generated accordingly
using (2). One can verify, by checking Equation (6), that this is in-
deed a natural extension of node2vec in the sense that

• For an unweighted graph, the node2vecþ is equivalent to

node2vec.
• When p and q are set to 1, node2vecþ recovers a first-order ran-

dom walk, same as node2vec does.

Finally, by design, node2vecþ is able to identify potential out
edges that would have been obliviated by node2vec.

3 Experiments

3.1 Synthetic datasets
We start by demonstrating the ability of node2vecþ to identify po-
tential out edges in weighted graphs using a barbell graph and the
hierarchical cluster graphs. For simplicity, we fix c ¼ 0 for all
experiments in this section.

3.1.1 Barbell graph

A barbell graph, denoted as B, is constructed by connecting two
complete graphs of size 20 with a common bridge node (Fig. 2a). All
edges in B are weighted 1. There are three types of nodes in B, (i) the
bridge node; (ii) the peripheral nodes that connect the two modules
with the bridge node; and (iii) the interior nodes of the two modules.
By changing the in–out parameter q, node2vec could put the periph-
eral nodes closer to the bridge node or interior nodes in the embed-
ding space.

When q is large, node2vec suppresses the out edges, e.g. an edge
connecting a peripheral node to the bridge node, coming from an in-
terior node. Consequently, the biased random walks are restricted to
the network modules. In this case, the transition from the peripheral
nodes to the bridge node becomes less likely compared to a first-
order random walk, thus pushing the embeddings between the
bridge node and the peripheral nodes away from each other.
Conversely, when q is small, the transition between the peripheral
nodes and the bridge node is encouraged. In this case, the embed-
dings of the bridge node and the peripheral nodes are pulled to-
gether. To see this, we run node2vec with fixed p ¼ 1, and three
different settings of q ¼ ½1;100; 0:01�. Indeed, for q ¼ 100, node2-
vec tightly clusters interior nodes and pushes the bridge node away
from the peripheral nodes, and for q ¼ 0:01, the peripheral nodes
are pushed away from the interior nodes (Fig. 2b). Since node2vec
and node2vecþ are equivalent when the graph is unweighted (see
Section 2), we omit the visualization of node2vecþ embeddings for
B in the main paper (see Supplementary material).

Next, we perturb the barbell graph by adding loose edges with edge
weights of 0.1, making the graph fully connected. This perturbed bar-
bell graph is denoted ~B. As expected, node2vec failed to make use of
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the q parameter (Fig. 2c), since none of the edges are identified as an
out edge. On the other hand, node2vecþ can pick up potential out
edges and thus qualitatively recovers the desired outcome (Fig. 2d).
Note that both node2vec and node2vecþ have similar results for ~B
when q ¼ 1. This confirms that node2vecþ and node2vec are equiva-
lent when p and q are set to neutral, corresponding to embedding with
unbiased random walks. Finally, when using non-neutral settings of q,
node2vecþ is able to suppress some noisy edges, resulting in less scat-
tered embeddings of the interior nodes (Fig. 2d).

3.1.2 Hierarchical CLUSTER graph

We use a modified version of the CLUSTER dataset (Dwivedi et al.,
2022) to further demonstrate the advantage of the node2vecþ due
to identifying potential out edges. Specifically, the hierarchical clus-
ter graph K3L2 contains L ¼ 2 levels (3 including the root level) of
clusters, and each parent cluster is associated with K ¼ 3 children
clusters (Fig. 3a). There are 30 nodes in each cluster, resulting in a
total of 390 nodes. To generate the hierarchical cluster graph, we
first generate point clouds via a Gaussian process in a latent space so
that the Euclidean distance between two points from two sibling
clusters is about twice (

ffiffiffi
2
p

to be precise) the expected Euclidean dis-
tance from one of the two points to a point in the parent cluster,
which is set to be 1. The noisiness of the clusters is controlled by the
parameter r, which is set to 0.1 by default. These data points are
then turned into a fully connected weighted graph using a RBF ker-
nel (see Supplementary material). We consider two different tasks
(Fig. 3a), (i) cluster classification: identifying individual cluster iden-
tity of each node in the graph and (ii) level classification: identifying
the level to which the clusters correspond to. We split the nodes into
10% training and 90% testing and use the multinomial logistic

regression model with l2 regularization for prediction. The evalu-
ation process, including the embedding generation, is repeated 10
times, and the final results are reported by Macro F1 scores.

As shown in Figure 3b, the performance of node2vec is not
affected by the q parameter because the graph is fully connected.
Meanwhile, node2vecþ achieves significantly better performance
than node2vec for large q settings for both tasks, demonstrating the
ability of node2vecþ to identify potential out edges and use this in-
formation to perform localized biased random walks. Similar results
are observed on a couple of different hierarchical cluster graphs
K3L3, K5L1 and K5L2 (see Supplementary material).

On the other hand, one might suspect that the issue with the fully
connected graph can be alleviated by sparsifying the graph based on
certain edge weight thresholds. Such an approach is widely adopted
as a post-processing step for constructing functional gene interaction
networks. Here, we show that even after sparsifying the graph ag-
gressively, node2vecþ still outperforms node2vec. In particular, we
sparsify the K3L2 graph using the edge weight threshold 0.45, which
is the largest value that keeps the graph connected. We then perform
the same evaluation analysis above on this sparsified graph
K3L2c45. In this case, node2vec indeed performs significantly better
than before the sparsification for both tasks. Nonetheless,
node2vecþ achieves even better performance, still out-competing
node2vec (Fig. 3c).

Finally, we conduct a fine-grained evaluation analysis, showing
that node2vecþ consistently outperforms node2vec under a wide
range of conditions, including edge threshold, train-test ratio and
noise level (see Supplementary material).

3.2 Real-world datasets
Our primary motivation for developing node2vecþ stems from the
fact that many functional gene interaction networks are dense and
weighted. To systematically evaluate the ability of node2vecþ to

Fig. 2. Barbell graph. (a) Illustration of the barbell graph, and three different types

of nodes indicated by the different marker styles. (b) Embedding of the barbell graph

B using node2vec. (c, d) Embedding of the noisy barbell graph ~B using node2vec

and node2vecþ, respectively. Each one of (b–d) contains three different settings of

q: 1, 100 and 0.01

Fig. 3. Hierarchical CLUSTER graph classification task. (a) Illustrations of the K3L2

hierarchical clusters. Left: top-down view of the clusters. Right: adjacency matrix of

K3L2; colored brackets indicate the corresponding cluster levels of the nodes. (b)

Classification evaluation on K3L2. (c) Classification evaluation on K3L2c45
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embed such biological networks, we consider various challenging
gene classification tasks, including gene function and disease gene
predictions. Furthermore, we devise experiments with previously
benchmarked datasets BlogCatalog and Wikipedia (Grover and
Leskovec, 2016) and confirm that node2vecþ performs equal to or
better than node2vec, depending on whether the network is
weighted (see Supplementary material).

3.2.1 Datasets

Human functional gene interaction networks: We consider function-
al gene interaction networks, which is a broader class of gene inter-
action networks that are routinely used to capture gene functional
relationships.

• STRING (Szklarczyk et al., 2021) is an integrative gene inter-

action network that combines evidence of protein interactions

from various sources, such as text-mining, high-throughput

experiments, etc.
• HumanBase-global is a tissue-naive version of the HumanBase

(Greene et al., 2015) tissue-specific networks (previously known

as GIANT), which are constructed by integrating hundreds of

thousands of publicly available gene expression studies, protein–

protein interactions and protein–DNA interactions via a

Bayesian approach, calibrated against high-quality known func-

tional gene interactions.
• HumanBaseTop-global is a sparsified version of HumanBase-

global that eliminates all edges below the prior of 0.1.

Multi-label gene classification tasks: We follow the procedure
detailed in Liu et al. (2020) to prepare the multi-label gene classifica-
tion datasets. More specifically, we prepare two collections of gene
classification tasks (each is called a gene set collection):

• GOBP: Gene function prediction tasks derived from the

Biological Processes gene sets from The Gene Ontology

Consortium (2018).
• DisGeNET: Disease gene prediction tasks derived from the dis-

ease gene sets from the DisGeNET database (Pi~nero et al., 2016).

After filtering and cleaning up the raw gene set collections, we
end up with �45 functional gene prediction tasks and �100 disease
gene prediction tasks (Table 1). These gene classification tasks are
challenging primarily due to the scarcity of the labeled examples,
with on average 100 and 200 positive examples per task for GOBP
and DisGeNET, respectively, relative to the (order of) tens of thou-
sands of nodes in the networks.

We split the genes into 60% training, 20% validation and 20%
testing according to the level at which they have been studied in the
literature (based on the number of PubMed publications associated
with each gene). In particular, the top 60% most well-studied genes
are used for training; the 20% least-studied genes are used for test-
ing, and the rest are used for validation. For GNNs, we report the
test scores at the epoch where the best validation score is achieved.

3.2.2 Baseline methods

We exclude several popular node embedding methods, such as
DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015) and

GraRep (Cao et al., 2015), from our main analysis, as it has been
shown previously in various contexts (Ata et al., 2021; Grover and
Leskovec, 2016; Yue et al., 2019) that node2vec is superior.

On the other hand, we include two popular GNNs, GCN (Kipf
and Welling, 2016) and GraphSAGE (Hamilton et al., 2017) in our
comparison. Both methods have shown exceptional performance on
many node classification tasks, but their performance on the gene
classification tasks here still needs to be better studied. For
GraphSAGE, we consider the full-batch training strategy with mean
pooling aggregation following the Open Graph Benchmark (Hu
et al., 2021).

3.2.3 Experiment setup

Evaluation metric: Following (Liu et al., 2020), we use the
log 2

auPRC
prior as our evaluation metric, which represents the log 2 fold

change of the average precision compared to the prior. This metric
is more suitable than other commonly used metrics like AUROC as
it corrects for the class imbalance issue that is prevalent in the gene
classification tasks here, as well as emphasizes the correctness of top
predictions.

Tuning embeddings parameters: For node2vec and node2vecþ,
we train a one versus rest logistic regression with l2 regularization
using the embeddings learned. The parameters for embeddings
including dimension, window-size, walk-length and number of
walks per node are set to 128, 10, 80 and 10, respectively, by de-
fault. We tune the hyperparameters for node2vec ðp;qÞ and for
node2vecþ ðp; q; cÞ via grid search using the validation sets. To keep
the grid search budget comparable, we search p and q over
f0:01; 0:05;0:1;0:5; 1; 5; 10; 50; 100g2 for node2vec ðn ¼ 81Þ; we
search p and q over f0:01;0:1;1; 10; 100g2, together with c 2
f0;1; 2g for node2vecþ ðn ¼ 75Þ.

Tuning GNN parameters: For both GNNs, we train one model
for each combination of a network and a gene set collection in an
end-to-end fashion. The architectures are fixed to five hidden layers
with a hidden dimension of 128. Since the gene interaction networks
here do not come with node features, we use the constant feature for
GCN and the degree feature for GraphSAGE, respectively. We use
the Adam optimizer (Kingma and Ba, 2014) to train the GNNs with
100 000 max number of epochs. The learning rates are tuned via
grid search from 10�5 to 10�1 based on the validation performance.
The optimal learning rates that result in a decent convergence rate
without diverging are 0.01 and 0.0005 for GCN and GraphSAGE,
respectively (see Supplementary material).

3.2.4 Experimental results

Tuning c significantly improves performance for dense graph: The c
parameter in node2vecþ (see Section 2.2) controls the threshold of
distinguishing in edges and out edges. A small or negative valued c
considers most non-zero edges as out edges. Conversely, a large val-
ued c identifies less out edges. When the input graph is noisy and
dense, assigning a larger c (e.g. 1) can act as a stronger denoiser to
suppress spurious out edges. Figure 4 compares the gene classifica-
tion test performance between c ¼ 0 and c ¼ f1; 2g with optimally
tuned p, q using the HumanBase-global network. Higher testing
scores are achieved by larger c settings, illustrating that, to properly
‘denoise’ the fully connected weighted graph HumanBase-global, we
need to increase the noisy edge thresholds. On the contrary, the dif-
ference in performance due to the c settings is less pronounced for
sparse networks like HumanBaseTop-global and STRING (see
Supplementary material).

GNN methods performs worse than node2vec(1): In all set-
tings, node2vecþ significantly outperforms both GNN methods
(Fig. 5). Notably, for the STRING network, both node2vec and
node2vecþ outperform the two GNNs by a large margin. The
sub-optimal GNN performance here illustrates that, despite being
powerful neural network architectures that can leverage the graph
structures, GNNs alone cannot learn effectively given a limited
number of labeled examples. On the contrary, the embedding
processes of node2vec(þ) are task agnostic and can be carried out
effectively without labels. These results indicate that gene

Table 1. Number of tasks (i.e. gene sets or node classes) for each

combination of network and gene set collection

GOBP DisGeNET

HumanBase 46 (98.3) 103 (225.9)

STRING 41 (100.0) 97 (221.5)

Note: The number in the parenthesis is the average number of positive

examples.

node2vecþ 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/1/btad047/6998205 by guest on 29 M
ay 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data


classification tasks based on gene interaction network are more
effectively solved by unsupervised shallow embedding methods
than GNNs.nod2vec1 matches or outperforms node2vec:
node2vecþ significantly outperforms node2vec [Wilcoxon paired
test (Wilcoxon, 1945) P < 0.05] except for the DisGeNET tasks
using HumanBaseTop-global and STRING networks, in which
cases the two methods perform equally (Fig. 5). The performance
differences are especially pronounced when using the fully con-
nected and noisy HumanBase-global network, demonstrating
node2vecþ’s ability to learn robust node representations in the
presence of noise. Nevertheless, when the network is less dense
(e.g. HumanBaseTop-global), node2vecþ is still able to perform
at least as well as node2vec, indicating that node2vecþ is overall
a good replacement of node2vec.

3.2.5 Tissue-specific functional gene classification

A key feature of functional gene interaction networks constructed
using gene expression data is capturing biological context specifi-
city, such as tissue-specificity provided by the HumanBase networks.

Thus, we further demonstrate the use case of node2vecþ using
tissue-specific functional gene classification tasks derived from
Zitnik and Leskovec (2017). After processing, there are 25 tissue-
specific functional gene classification tasks, with 12 different tissues
found in the HumanBase database. We follow a similar experimen-
tal setup as above, and for each tissue-specific functional gene classi-
fication task, we report the followings: (i) matched: the prediction
performance using the corresponding tissue-specific network; (ii)
other: the average prediction performance using tissue-specific net-
works other than the corresponding tissue; (iii) global: the predic-
tion performance using the tissue-naive network.

Figure 6 shows that node2vecþ outperforms node2vec in most
scenarios, especially when using the full HumanBase networks. In
particular, node2vecþ, using the matched tissue-specific full net-
works for the given functional gene classification tasks, results in
significantly better performance than using other (unrelated) tissue-
specific networks, as well as the global (tissue-naive) network. On
the contrary, node2vec cannot fully utilize the tissue-specific net-
works, as indicated by the lack of difference in performance between
matched and global networks.

We observe similar results using another collection of tissue-
specific co-expression networks, GTExCoExp, that are generated
using a benchmarked co-expression network generation workflow
by Johnson and Krishnan (2022) (see Supplementary material).

4 Discussion and conclusion

In this article, we proposed node2vecþ that improves upon the
second-order random walk in node2vec for weighted graphs by con-
sidering edge weights. Consequently, the corresponding node
embeddings are improved whenever the in–out walks positively in-
fluence the task (meaning that the optimal q setting is not 1).

We showed that node2vecþ better identifies potential out edges
on weighted graphs than node2vec using two synthetic datasets,
including the barbell graph and the hierarchical cluster graphs.
Furthermore, evaluations on various challenging gene classification
tasks demonstrated that embedding methods like node2vec(þ) are
superior to GNNs. GNNs learn how to orient the nodes in a low-
dimensional space to maximize the separation between nodes of
different classes in an end-to-end fashion. The suboptimal GNN
performance here highlights their need for a much larger labeled
training dataset to fully exploit the expressive power of their archi-
tectures. Unfortunately, many real-world biological applications,
such as the function or disease gene classification problems here, still
lack large amounts of labeled data. For these applications, an un-
supervised approach like node2vec(þ) may be more suitable as it
arranges the latent space purely based on the underlying graph

Fig. 4. Comparison of different c settings in node2vecþ using HumanBase-global.

Each dot represents the testing performance ( log 2
auPRC
prior ) of a specific gene set, with

optimally tuned p and q settings

Fig. 5. Gene classification tasks using protein–protein interaction networks. Each panel corresponds to a specific protein–protein interaction network (HumanBase-global,

HumanBaseTop-global and STRING). Each point in a boxplot represents the final test score for a specific task (gene set) in the gene set collection (GOBP or DisGeNET).

Starred (*) pairs indicate that the performance between node2vec and node2vecþ are significantly different (Wilcoxon P < 0.05)

6 R.Liu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/1/btad047/6998205 by guest on 29 M
ay 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data


structure, after which a less data-hungry model, such as logistic re-
gression, can be applied to perform the classifications.

Dense weighted graphs are common in biology, directly based
on the experiment [e.g. genetic interactions (Costanzo et al., 2016)],
by construction [e.g. co-expression (Zhang and Horvath, 2005)] or
by integrating multiple network datasets sources [Greene et al.,
2015; Szklarczyk et al., 2021]. Network embedding has recently
found applications in studying co-expression networks, e.g. in the
context of evolutionary and cross-species network alignment (Ovens
et al., 2021a,b), cancer prognostic gene identification (Choi et al.,
2018) and gene functional interaction prediction (Du et al., 2019).
These applications, especially the ones that leverage dense weighted
graphs, are likely to benefit from using node2vecþ.

Sparsification using a hard threshold is a common technique for
dealing with fully connected weighted graphs like co-expression (Du
et al., 2019; Zhang and Horvath, 2005). However, finding the opti-
mal cut threshold could be quite challenging [usually relying on heu-
ristics (Ovens et al., 2021a)], and such thresholding may change the
graph significantly in terms of its spectrum (Spielman and Teng,
2010). Node2vecþ, on the other hand, can be seen as a soft thresh-
olding approach that suppresses transitions over noisy edges.

Overall, node2vecþ is a natural extension of node2vec for
weighted graphs and has several desirable properties. With its general
procedure for biased random walks, node2vecþ can be easily adapted
into other methods such as KG2Vec (Wang et al., 2021b) and Het-
Node2vec (Valentini et al., 2021) that are built on top of node2vec.
Node2vecþ is available as an open-source software as part of the
PecanPy package: https://github.com/krishnanlab/PecanPy.
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