Bioinformatics, 39(1), 2023, btad047
https://doi.org/10.1093/bioinformatics/btad047
Advance Access Publication Date: 23 January 2023
Original Paper

OXFORD

Systems biology
Accurately modeling biased random walks on weighted

networks using node2vec-+

Renming Liu ® ', Matthew Hirn ® %3 and Arjun Krishnan ® "*-*

'Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, M| 48824, USA,
2Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA, 3Center for Quantum Computing, Science &
Engineering, Michigan State University, East Lansing, MI 48824, USA and *Department of Biomedical Informatics, University of
Colorado Anschutz Medical Campus, Aurora, CO 80045, USA

*To whom correspondence should be addressed.
Associate Editor: Pier Luigi Martelli

Received on August 14, 2022; revised on January 16, 2023; editorial decision on January 18, 2023; accepted on January 20, 2023

Abstract

Motivation: Accurately representing biological networks in a low-dimensional space, also known as network
embedding, is a critical step in network-based machine learning and is carried out widely using node2vec, an
unsupervised method based on biased random walks. However, while many networks, including functional gene
interaction networks, are dense, weighted graphs, node2vec is fundamentally limited in its ability to use edge
weights during the biased random walk generation process, thus under-using all the information in the network.
Results: Here, we present node2Zvec+, a natural extension of nodeZvec that accounts for edge weights when
calculating walk biases and reduces to node2vec in the cases of unweighted graphs or unbiased walks. Using two
synthetic datasets, we empirically show that node2vec+ is more robust to additive noise than node2vec in weighted
graphs. Then, using genome-scale functional gene networks to solve a wide range of gene function and disease
prediction tasks, we demonstrate the superior performance of node2vec+ over node2vec in the case of weighted
graphs. Notably, due to the limited amount of training data in the gene classification tasks, graph neural networks
such as GCN and GraphSAGE are outperformed by both node2vec and node2vec+.

Availability and implementation: The data and code are available on GitHub at https://github.com/krishnanlab/
node2vecplus_benchmarks. All additional data underlying this article are available on Zenodo at https://doi.org/10.
5281/zen0do.7007164.

Contact: arjun@msu.edu or arjun.krishnan@cuanschutz.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

undesirable conditions for node2vec that can lead to sub-optimal
performance.

Node2vec (Grover and Leskovec, 2016) is a second-order ran-
dom walk-based embedding method. It is widely used for unsuper-
vised node embedding for various tasks, particularly in
computational biology (Nelson et al., 2019), such as for gene func-

1 Introduction

Graphs and networks naturally appear in many real-world datasets,
including social networks and biological networks. The graph struc-
ture provides insightful information about the role of each node in
the graph, such as protein function in a protein—protein interaction

network (Krishnan et al., 2016; Liu et al., 2020). To more efficiently
and effectively mine information from large-scale graphs with thou-
sands or millions of nodes, several node embedding methods have
been developed (Cui ef al., 2018; Hamilton et al., 2017). Among
them, node2vec has been the top choice in bioinformatics due to its
superior performance compared to many other methods (Ata et al.,
2021; Yue et al., 2019). However, many biological networks, such
as Greene et al. (2015) and Johnson and Krishnan (2022), are dense
and weighted by construction, which we demonstrate to be

©The Author(s) 2023. Published by Oxford University Press.

tion prediction (Liu ef al., 2020), disease gene prediction (Ata et al.,
2018; Peng et al., 2019), and essential protein prediction (Wang
et al., 2021a; Zeng et al., 2021). Some recent works built on top of
node2vec aim to adapt node2vec to more specific types of networks
(Valentini et al., 2021; Wang et al., 2021b), generalize node2vec to
higher dimensions (Hacker, 2021), augment node2vec with add-
itional downstream processing (Chattopadhyay and Ganguly, 2020;
Hu et al., 2020), or to study node2vec theoretically (Davison and
Austern, 2021; Grohe, 20205 Qiu et al., 2018). Nevertheless, none

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

20z Ke 62 uo 1senb Aq G0Z8669/.0PEIG/|/6E/3I0IHE/SOIEWLIOIONG/ WO dNO"dIWBPEOE//:SA)Y WOy POPECIUMOC]

https://orcid.org/0000-0002-6025-6492
https://orcid.org/0000-0003-0290-4292
https://orcid.org/0000-0002-7980-4110
https://github.com/krishnanlab/node2vecplus_benchmarks
https://github.com/krishnanlab/node2vecplus_benchmarks
https://doi.org/10.5281/zenodo.7007164
https://doi.org/10.5281/zenodo.7007164
https://academic.oup.com/

R.Liu et al.

of these follow-up works account for the fact that node2vec is less
effective for weighted graphs, where the edge weights reflect the (po-
tentially noisy) similarities between pairs of nodes. This failing is
due to the inability of node2vec to differentiate between small and
large edges connecting the previous vertex with a potential next ver-
tex in the random walk, which subsequently causes less accurate
modeling of the intended walk bias.

Meanwhile, another line of recent works on graph neural net-
works (GNNs) has shown remarkable performance in prediction
tasks that involve graph structure, including node classification
(Bronstein et al., 2021; Wu et al., 2021; Zhang et al., 2021).
Although GNNs and embedding methods like #node2vec are related
in that they both aim at projecting nodes in the graph to a feature
space, two main differences set them apart. First, GNNs typically re-
quire labeled data, while embedding methods do not. This label de-
pendency makes the embeddings generated by a GNN tied to the
quality of the labels, which in some cases, like in biological net-
works, are noisy and scarce. Second, GNNs typically require node
features as input to train, which are not always available. In the ab-
sence of given node features, one needs to generate them, and often
GNN algorithms use trivial node features such as the constant fea-
tures or node degree features. These two differences give node
embedding methods a unique place in node classification, apart
from the GNN methods.

Here, we propose an improved version of node2vec that is more
effective for weighted graphs by taking into account the edge weight
connecting the previous vertex and the potential next vertex. The
proposed method node2vec+ is a natural extension of node2vec;
when the input graph is unweighted, the resulting embeddings of
node2vec+ and node2vec are equivalent in expectation. Moreover,
when the bias parameters are set to neutral, node2vec+ recovers a
first-order random walk, just as node2vec does. Finally, we demon-
strate the superior performance of node2vec+ through extensive
benchmarking on both synthetic datasets and network-based gene
classification datasets using various functional gene interaction net-
works. Node2vec+ is implemented as part of PecanPy (Liu and
Krishnan, 2021) and is available on GitHub: https://github.com/
krishnanlab/PecanPy.

2 Materials and methods

We start by briefly reviewing the node2vec method. Then, we illus-
trate that node2vec is less effective for weighted graphs due to its in-
ability to identify out edges. Finally, we present a natural extension
of node2vec that resolves this issue.

2.1 Node2vec overview

In the setting of node embeddings, we are interested in finding a
mapping f : V — RY that maps each node v € V to a d-dimensional
vector so that the mutual proximity between pairs of nodes in the
graph is preserved. In particular, a random walk-based approach
aims to maximize the probability of reconstructing the neighbor-
hoods for any node in the graph based on some sampling strategy S.
Formally, given a graph G = (V,E) (the analysis generalizes to
directed and/or weighted graphs), we want to maximize the log
probability of reconstructing the sampled neighborhood N(v) for
eachve V:

rn;lxz log P(NS(U)V(U)) . (1)

veV

Under the conditional independence assumption, and the param-
eterization of the probabilities as the softmax normalized inner
products (Grover and Leskovec, 2016; Mikolov ef al., 2013b), the
objective function above simplifies to:

max Y < > (W) fw) - logzv) , @)

veV \veNg(v)

In practice, the partition function Z, =3, (f(v),f(¢/)) is
approximated by negative sampling (Mikolov et al., 2013a) to save

computational time. Given any sampling strategy S, Equation (2)
can find the corresponding embedding f, which is achieved in prac-
tice by feeding the random walks generated to the skipgram with
negative sampling (Mikolov et al., 2013b).

Node2vec devises a second-order random walk as the sampling
strategy. Unlike a first-order random walk (Perozzi et al., 2014),
where the transition probability of moving to the next vertex v,,
denoted as P(v,|v.), depends only on the current vertex v, a
second-order random walk also depends on the previous vertex v,,
with transition probability P(v,|v., v,). It does so by applying a bias
factoroyg (v,, vp) to the edge (v.,v,) € E that connects the current
vertex and a potential next vertex. This bias factor is a function that
depends on the relation between the previous vertex and the poten-
tial next vertex, and is parameterized by the return parameter p and
the in—out parameter q. In this way, the random walk can be gener-
ated based on the following transition probabilities:

“Pq(vﬂvvp)w(vayn) .
if (ve,v,) €EE
P(valve, vp) = ¢ Yoenv,) tpa (v vp)w(ve,v) (ver))
0 otherwise

where the bias factor is defined as:
if v, = v,

if v, # v, and (v4,vp) €E. (4)
if v, # v, and (v,,v,) ¢ E

%pq (Z/n, UP) =

Q=R =

According to this bias factor, node2vec differentiates three types of
edges: (i) the return edge, where the potential next vertex is the previ-
ous vertex (Fig. 1a); (ii) the out edge, where the potential next vertex is
not connected to the previous vertex (Fig. 1b); and (iii) the in edge,
where the potential next vertex is connected to the previous vertex
(Fig. 1c). Note that the first-order (or unbiased) random walk can be
seen as a special case of the second-order random walk where both the
return parameter and the im—out parameter are set to neutral

We now turn our attention to weighted networks, where the edge
weights are not necessarily zeros or ones. Consider the case where v, is
connected to vy, but with a small weight (Fig. 1d), i.e. (v,,v,) € E and
0 < w(vs,vp) < 1. According to the definition of the bias factor, no
matter how small w(v,,v,) is, (v¢,v,) would always be considered as
an in edge. Since in this case v, and v, are barely connected, (v.,v,)
should in fact be considered as an out edge. In the extreme case of a
fully connected weighted graph, where (v,v') € E for all v,/ € V,
node2vec completely loses its ability to identify out edges.

Thus, node2vec is less effective for weighted networks due to its
inability to identify potential out edges where the terminal vertex v,
is loosely connected to a previous vertex v,. Next, we propose an ex-
tension of node2vec that resolves this issue, by taking into account
of the edge weight w(v,, v)) in the bias factor.

Fig. 1. Illustration of different settings of return and in—out edges. vy, v. and v, indi-
cate the previous, current, and next vertices. The solid and dotted lines represent
edges with large and small edge weights, respectively. (a—c) return, out and in edges
considered by node2vec. (d—f) Variations of (c) when taking into account of edge
weights, where node2vec fail to distinguish from (c)

20z Ke 62 uo 1senb Aq G0Z8669/.0PEIG/|/6E/3I0IHE/SOIEWLIOIONG/ WO dNO"dIWBPEOE//:SA)Y WOy POPECIUMOC]

https://github.com/krishnanlab/PecanPy
https://github.com/krishnanlab/PecanPy

node2vec+

2.2 Node2vec+

The main idea of extending node2vec is to identify potential out
edges (vc,v,) € E coming from v, where v, is loosely connected to
vp. Intuitively, we can determine the ‘looseness’ of (v.,v,) based on
some threshold edge value. However, given that the distribution of
edge weights of any given node in the graph is not known a priori, it
is hard to come up with a reasonable threshold value for all net-
works. Instead, we define the looseness of (v.,v,) based on the edge
weight statistics for each node v.

Zz/e./\f(u) w(”v Ul)

N (O] 2

) S @o) —m@) .
@ = N

(v,) w(v,u)

"~ max{u(v) + y0(v), ¢}

Formally, we first define 1, (v, %), a normalized version of the
edge weight w(v,u), based on the mean u(v) and the standard devi-
ation o(v) of the edge weights connecting v, as in Equation (5). In
practice, we clip the denominator of 1, (v, %) by a small number ¢
(1e—6 by default) to prevent divide by zero in some cases when y is
set to be negative. Then, we say v € V is y -loosely connected (or
simply loosely connected if y=0) to ueV if w,(v,u) < 1.
Intuitively, we would like to treat an edge as being ‘not connected’ if
it is ‘small enough’. Finally, an edge (v,u) is y -loose if v is y-loosely
connected to #, and otherwise it is y -tight. Without loss of general-
ity, we consider the case of y = 0 in the subsequent sections to sim-
plify the notion of looseness.

Based on the definition of looseness of edges, and assuming
Up # Uy, there are four types of (v.,v,) edges (see Fig. lc—f).
Following node2vec, we categorize these edge types into in and out
edges. Furthermore, to prevent amplification of noisy connections,
we added one more edge type called the noisy edge, which is always
suppressed.

2.2.1 Out edge

As a direct generalization to node2vec, we consider (v.,v,) to be an
out edge if (v, v,) is tight and (v,,v,) is loose (Fig. 1b and d). The
in—out parameter g then modifies the out edge to differentiate ‘in-
ward’ and ‘outward’ nodes, and subsequently leads to Breadth First
Search or Depth First Search like searching strategies (Grover and
Leskovec, 2016). Unlike node2vec, however, we further parameter-
ize the bias factor o based on 1, (v,,v,). Any choice of monotonic
function should work, but we choose to use the linear interpolation
in this study for simplicity and leave it as future work to explore
more sophisticated interpolation functions such as the sigmoidal
functions. Specifically, for an out edge (v.,v,), the bias factor is
computed as g (Vp, Ve, Vn) = %—}— 1- %)d/y(vn,vp). Thus, the
amount of modification to the out edge depends on the level of
looseness of (v,,vp). When w(v,,v,) =0, or equivalently
(vn,vp) € E, the bias factor for (v.,v,) is %, same as that defined in
node2vec.

2.2.2 Noisy edge

We consider (vc,v,) to be a noisy edge if both (v.,v,) and (v,,vp)
are loose (Fig. le). Heuristically, the noisy edges are not very in-
formative and thus should be suppressed regardless of the setting of
q to prevent amplification of noise. Thus, the bias factor for a noisy
edge is set to be min{l,%}.

Notice that by introducing the noisy-edge term, we create dis-
continuity to the bias factor when w,(v,,v,) > 1 and w,(v,,v,)
switches from greater than one to less than one. We provide an alter-
native solution to node2vec+ in the Supplementary material, which
continuously extends the out edge term with the noisy edge term.
However, we empirically show that the continuous version of
node2vec+ performs no better than node2vec+. Hence, in the main
paper, we stick to the ‘discontinuous’ but simpler version of
node2vec+.

2.2.3 In edge
Finally, we consider (v¢,v,) to be an in edge if (v,,v,) is tight, re-
gardless of w(v,,v,) (Fig. 1c and f). The corresponding bias factor is
set to neutral as in node2vec.

Combining the above, the bias factor for node2vec+ is defined
as follows:

ifv, =v,
if w,(vy,vp) > 1

1
min<{ 1,— if i, (v,,0,) < 1
OQ,qu(Uprg,Un): { q} ,(n p) .
and ZI/',(UC,Z/,,) < 1
1

1+ (1 71)ﬂ/7(vn,vp) if w,(vy,vp) <
and 1w, (ve,v,) > 1
(6)

Note that the last two cases in Equation (6) include cases of
(vn,vp) € E. Based on the biased random walk searching strategy
using this bias factor, the embedding can be generated accordingly
using (2). One can verify, by checking Equation (6), that this is in-
deed a natural extension of node2vec in the sense that

* For an unweighted graph, the node2vec+ is equivalent to
nodeZvec.

* When p and q are set to 1, node2vec+ recovers a first-order ran-
dom walk, same as node2vec does.

Finally, by design, node2vec+ is able to identify potential out
edges that would have been obliviated by node2vec.

3 Experiments

3.1 Synthetic datasets
We start by demonstrating the ability of node2vec+ to identify po-
tential out edges in weighted graphs using a barbell graph and the
hierarchical cluster graphs. For simplicity, we fix y =0 for all
experiments in this section.

3.1.1 Barbell graph

A barbell graph, denoted as B, is constructed by connecting two
complete graphs of size 20 with a common bridge node (Fig. 2a). All
edges in B are weighted 1. There are three types of nodes in B, (i) the
bridge node; (ii) the peripheral nodes that connect the two modules
with the bridge node; and (iii) the interior nodes of the two modules.
By changing the in—out parameter g, node2vec could put the periph-
eral nodes closer to the bridge node or interior nodes in the embed-
ding space.

When ¢ is large, node2vec suppresses the out edges, e.g. an edge
connecting a peripheral node to the bridge node, coming from an in-
terior node. Consequently, the biased random walks are restricted to
the network modules. In this case, the transition from the peripheral
nodes to the bridge node becomes less likely compared to a first-
order random walk, thus pushing the embeddings between the
bridge node and the peripheral nodes away from each other.
Conversely, when ¢ is small, the transition between the peripheral
nodes and the bridge node is encouraged. In this case, the embed-
dings of the bridge node and the peripheral nodes are pulled to-
gether. To see this, we run node2vec with fixed p =1, and three
different settings of g = [1,100,0.01]. Indeed, for g = 100, node2-
vec tightly clusters interior nodes and pushes the bridge node away
from the peripheral nodes, and for g = 0.01, the peripheral nodes
are pushed away from the interior nodes (Fig. 2b). Since node2vec
and node2vec+ are equivalent when the graph is unweighted (see
Section 2), we omit the visualization of node2vec+ embeddings for
B in the main paper (see Supplementary material).

Next, we perturb the barbell graph by adding loose edges with edge
weights of 0.1, making the graph fully connected. This perturbed bar-
bell graph is denoted B. As expected, node2vec failed to make use of

20z AelN 6z uo 1senb Aq G0Z8669//F0PEIA/L/6E/2I0NIE/SONEULIOJUIOIG/ W00 dNO OlWapEIE//:SA)Y WO} PEPEO|UMOQ

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data

R.Liu et al.

(a) =

N4

Interior
(b) q=100 q=0.01
L
g .
o ° o
= ., <
2 ‘ &
< ? .o\
N
<
(c) L] L] .
; REIIEE IS o ¢
<] o, o . -
E o. o e .:o ’; .; o
§ \. i o® oe }. i‘
- R =N i 3
X .
. L]
(d) .
% o. LI
.g .:.'.o .
£ @ Ce
*Ree .
f‘ .o d i '0...0 o {.
S e ' 4 L) -
e . h A

Fig. 2. Barbell graph. (a) Illustration of the barbell graph, and three different types
of nodes indicated by the different marker styles. (b) Embedding of the barbell graph
B using node2vec. (c, d) Embedding of the noisy barbell graph B using node2vec
and node2vec+, respectively. Each one of (b—d) contains three different settings of
q: 1,100 and 0.01

the g parameter (Fig. 2c), since none of the edges are identified as an
out edge. On the other hand, node2vec+ can pick up potential out
edges and thus qualitatively recovers the desired outcome (Fig. 2d).
Note that both node2vec and node2vec+ have similar results for B
when g = 1. This confirms that #ode2vec+ and node2vec are equiva-
lent when p and q are set to neutral, corresponding to embedding with
unbiased random walks. Finally, when using non-neutral settings of g,
node2vec+ is able to suppress some noisy edges, resulting in less scat-
tered embeddings of the interior nodes (Fig. 2d).

3.1.2 Hierarchical CLUSTER graph

We use a modified version of the CLUSTER dataset (Dwivedi et al.,
2022) to further demonstrate the advantage of the node2vec+ due
to identifying potential out edges. Specifically, the hierarchical clus-
ter graph K3L2 contains L = 2 levels (3 including the root level) of
clusters, and each parent cluster is associated with K = 3 children
clusters (Fig. 3a). There are 30 nodes in each cluster, resulting in a
total of 390 nodes. To generate the hierarchical cluster graph, we
first generate point clouds via a Gaussian process in a latent space so
that the Euclidean distance between two points from two sibling
clusters is about twice (v/2 to be precise) the expected Euclidean dis-
tance from one of the two points to a point in the parent cluster,
which is set to be 1. The noisiness of the clusters is controlled by the
parameter ¢, which is set to 0.1 by default. These data points are
then turned into a fully connected weighted graph using a RBF ker-
nel (see Supplementary material). We consider two different tasks
(Fig. 3a), (i) cluster classification: identifying individual cluster iden-
tity of each node in the graph and (ii) level classification: identifying
the level to which the clusters correspond to. We split the nodes into
10% training and 90% testing and use the multinomial logistic

(@) -
Indiv/idu?ai/?

clugters K
’ N ’
1 N a
] NG
' l’r‘ - .
1 ’ AN
v/ \
N

(b) . K3L2 .
Cluster classification Level classification
1.0 e 0.34
0.9
- 032
Tos s
4 e
S 5]
0.30
o7 B
06 0.28
0.5
102 107! 10° 10* 102 102 107! 10° 10* 102
q q
(c) K3L2c45
1.00 —m8m8— 1.0

e

©

vl
=]
©

s [
5 0.90 °
S G o8
3 3
= 0.85 =
0.7
0.80
102 107' 10° 10! 10? 102 107' 10° 10* 10?
q q
—— Node2ec —— Node2vec+

Fig. 3. Hierarchical CLUSTER graph classification task. (a) Illustrations of the K3L2
hierarchical clusters. Left: top-down view of the clusters. Right: adjacency matrix of
K3L2; colored brackets indicate the corresponding cluster levels of the nodes. (b)
Classification evaluation on K3L2. (c) Classification evaluation on K3L.2c45

regression model with 12 regularization for prediction. The evalu-
ation process, including the embedding generation, is repeated 10
times, and the final results are reported by Macro F1 scores.

As shown in Figure 3b, the performance of node2vec is not
affected by the g parameter because the graph is fully connected.
Meanwhile, node2vec+ achieves significantly better performance
than node2vec for large q settings for both tasks, demonstrating the
ability of node2vec+ to identify potential out edges and use this in-
formation to perform localized biased random walks. Similar results
are observed on a couple of different hierarchical cluster graphs
K3L3, KSL1 and K512 (see Supplementary material).

On the other hand, one might suspect that the issue with the fully
connected graph can be alleviated by sparsifying the graph based on
certain edge weight thresholds. Such an approach is widely adopted
as a post-processing step for constructing functional gene interaction
networks. Here, we show that even after sparsifying the graph ag-
gressively, node2vec+ still outperforms node2vec. In particular, we
sparsify the K3L2 graph using the edge weight threshold 0.45, which
is the largest value that keeps the graph connected. We then perform
the same evaluation analysis above on this sparsified graph
K3L2c45. In this case, node2vec indeed performs significantly better
than before the sparsification for both tasks. Nonetheless,
node2vec+ achieves even better performance, still out-competing
node2vec (Fig. 3c).

Finally, we conduct a fine-grained evaluation analysis, showing
that node2vec+ consistently outperforms node2vec under a wide
range of conditions, including edge threshold, train-test ratio and
noise level (see Supplementary material).

3.2 Real-world datasets

Our primary motivation for developing node2vec+ stems from the
fact that many functional gene interaction networks are dense and
weighted. To systematically evaluate the ability of node2vec+ to

20z AelN 6z uo 1senb Aq G0Z8669//F0PEIA/L/6E/2I0NIE/SONEULIOJUIOIG/ W00 dNO OlWapEIE//:SA)Y WO} PEPEO|UMOQ

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data

node2vec+

embed such biological networks, we consider various challenging
gene classification tasks, including gene function and disease gene
predictions. Furthermore, we devise experiments with previously
benchmarked datasets BlogCatalog and Wikipedia (Grover and
Leskovec, 2016) and confirm that node2vec+ performs equal to or
better than node2vec, depending on whether the network is
weighted (see Supplementary material).

3.2.1 Datasets

Human functional gene interaction networks: We consider function-
al gene interaction networks, which is a broader class of gene inter-
action networks that are routinely used to capture gene functional
relationships.

* STRING (Szklarczyk et al., 2021) is an integrative gene inter-
action network that combines evidence of protein interactions
from various sources, such as text-mining, high-throughput
experiments, etc.

* HumanBase-global is a tissue-naive version of the HumanBase
(Greene et al., 2015) tissue-specific networks (previously known
as GIANT), which are constructed by integrating hundreds of
thousands of publicly available gene expression studies, protein—
protein interactions and protein-DNA interactions via a
Bayesian approach, calibrated against high-quality known func-
tional gene interactions.

* HumanBaseTop-global is a sparsified version of HumanBase-
global that eliminates all edges below the prior of 0.1.

Multi-label gene classification tasks: We follow the procedure
detailed in Liu ez al. (2020) to prepare the multi-label gene classifica-
tion datasets. More specifically, we prepare two collections of gene
classification tasks (each is called a gene set collection):

* GOBP: Gene function prediction tasks derived from the
Biological Processes gene sets from The Gene Ontology
Consortium (2018).

* DisGeNET: Disease gene prediction tasks derived from the dis-
ease gene sets from the DisGeNET database (Pifiero et al., 2016).

After filtering and cleaning up the raw gene set collections, we
end up with ~45 functional gene prediction tasks and ~100 disease
gene prediction tasks (Table 1). These gene classification tasks are
challenging primarily due to the scarcity of the labeled examples,
with on average 100 and 200 positive examples per task for GOBP
and DisGeNET, respectively, relative to the (order of) tens of thou-
sands of nodes in the networks.

We split the genes into 60% training, 20% validation and 20%
testing according to the level at which they have been studied in the
literature (based on the number of PubMed publications associated
with each gene). In particular, the top 60% most well-studied genes
are used for training; the 20% least-studied genes are used for test-
ing, and the rest are used for validation. For GNNs, we report the
test scores at the epoch where the best validation score is achieved.

3.2.2 Baseline methods
We exclude several popular node embedding methods, such as
DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015) and

Table 1. Number of tasks (i.e. gene sets or node classes) for each
combination of network and gene set collection

GOBP DisGeNET
HumanBase 46 (98.3) 103 (225.9)
STRING 41 (100.0) 97 (221.5)

Note: The number in the parenthesis is the average number of positive

examples.

GraRep (Cao et al., 2015), from our main analysis, as it has been
shown previously in various contexts (Ata et al., 2021; Grover and
Leskovec, 2016; Yue et al., 2019) that node2vec is superior.

On the other hand, we include two popular GNNs, GCN (Kipf
and Welling, 2016) and GraphSAGE (Hamilton ef al., 2017) in our
comparison. Both methods have shown exceptional performance on
many node classification tasks, but their performance on the gene
classification tasks here still needs to be better studied. For
GraphSAGE, we consider the full-batch training strategy with mean
pooling aggregation following the Open Graph Benchmark (Hu
etal.,2021).

3.2.3 Experiment setup

Evaluation metric: Following (Liu et al., 2020), we use the
log» ‘“;:?src as our evaluation metric, which represents the log, fold
change of the average precision compared to the prior. This metric
is more suitable than other commonly used metrics like AUROC as
it corrects for the class imbalance issue that is prevalent in the gene
classification tasks here, as well as emphasizes the correctness of top
predictions.

Tuning embeddings parameters: For node2vec and node2vec+,
we train a one versus rest logistic regression with 12 regularization
using the embeddings learned. The parameters for embeddings
including dimension, window-size, walk-length and number of
walks per node are set to 128, 10, 80 and 10, respectively, by de-
fault. We tune the hyperparameters for node2vec (p,q) and for
node2vec+ (p, q,y) via grid search using the validation sets. To keep
the grid search budget comparable, we search p and g over
{0.01,0.05,0.1,0.5, 1, 5,10, 50, 100}2 for node2vec (n=81); we
search p and g over {0.01,0.1,1,10, 100}2, together with y €
{0,1,2} for node2vec+ (n = 75).

Tuning GNN parameters: For both GNNs, we train one model
for each combination of a network and a gene set collection in an
end-to-end fashion. The architectures are fixed to five hidden layers
with a hidden dimension of 128. Since the gene interaction networks
here do not come with node features, we use the constant feature for
GCN and the degree feature for GraphSAGE, respectively. We use
the Adam optimizer (Kingma and Ba, 2014) to train the GNNs with
100 000 max number of epochs. The learning rates are tuned via
grid search from 107 to 107! based on the validation performance.
The optimal learning rates that result in a decent convergence rate
without diverging are 0.01 and 0.0005 for GCN and GraphSAGE,
respectively (see Supplementary material).

3.2.4 Experimental results

Tuning 7 significantly improves performance for dense graph: The y
parameter in node2vec+ (see Section 2.2) controls the threshold of
distinguishing iz edges and ouf edges. A small or negative valued y
considers most non-zero edges as out edges. Conversely, a large val-
ued y identifies less out edges. When the input graph is noisy and
dense, assigning a larger y (e.g. 1) can act as a stronger denoiser to
suppress spurious out edges. Figure 4 compares the gene classifica-
tion test performance between y = 0 and y = {1,2} with optimally
tuned p, g using the HumanBase-global network. Higher testing
scores are achieved by larger y settings, illustrating that, to properly
‘denoise’ the fully connected weighted graph HumanBase-global, we
need to increase the noisy edge thresholds. On the contrary, the dif-
ference in performance due to the y settings is less pronounced for
sparse networks like HumanBaseTop-global and STRING (see
Supplementary material).

GNN methods performs worse than node2vec(+): In all set-
tings, node2vec+ significantly outperforms both GNN methods
(Fig. 5). Notably, for the STRING network, both node2vec and
node2vec+ outperform the two GNNs by a large margin. The
sub-optimal GNN performance here illustrates that, despite being
powerful neural network architectures that can leverage the graph
structures, GNNs alone cannot learn effectively given a limited
number of labeled examples. On the contrary, the embedding
processes of node2vec(+) are task agnostic and can be carried out
effectively without labels. These results indicate that gene

20z Ke 62 uo 1senb Aq G0Z8669/.0PEIG/|/6E/3I0IHE/SOIEWLIOIONG/ WO dNO"dIWBPEOE//:SA)Y WOy POPECIUMOC]

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data

R.Liu et al.

classification tasks based on gene interaction network are more
effectively solved by unsupervised shallow embedding methods
than GNNs.#nod2vec+ matches or outperforms node2vec:
node2vec+ significantly outperforms node2vec [Wilcoxon paired
test (Wilcoxon, 1945) P < 0.05] except for the DisGeNET tasks
using HumanBaseTop-global and STRING networks, in which
cases the two methods perform equally (Fig. 5). The performance
differences are especially pronounced when using the fully con-
nected and noisy HumanBase-global network, demonstrating
node2vec+’s ability to learn robust node representations in the
presence of noise. Nevertheless, when the network is less dense
(e.g. HumanBaseTop-global), node2vec+ is still able to perform
at least as well as node2vec, indicating that node2vec+ is overall
a good replacement of node2vec.

3.2.5 Tissue-specific functional gene classification

A key feature of functional gene interaction networks constructed
using gene expression data is capturing biological context specifi-
city, such as tissue-specificity provided by the HumanBase networks.

6 '
2
/
L,
x S
2)
> A o z//
A A A ’
L A 7
A A £
= s 8 2, &
'-r: 4 A
= I " v
—) A &
I A : A . x 6 At A,,/A
A
3 R . ' LA R
+ 3 A x * A 4 it
9 A = a¥ = 7
) A g x o 5/
2 A o A% 5 7’
(El) ‘x* x 0% : “x/”‘ A
-8 2 A ox x"‘ e -
=4 x " nk, < a
x o ix xa?‘,;;; R
%5 0 % x
A‘"} "x&,;;}’}s" e » DisGeNet, y=1
1 g*«,gﬁ Nt « DisGeNet, y=2
é ey 5, 08 A4 GOBP, y=1
z&§‘§§: x:" x o GOBP,y=2
O . .
0 1 2 3 4 5 9

Node2vec+ (y=0)

Fig. 4. Comparison of different y settings in node2vec+ using HumanBase-global.
. i uPRC . ;
Each dot represents the testing performance (log, “p:ffr) of a specific gene set, with

optimally tuned p and g settings

HumanBase-global

7 * —
m

6 M *

5 ’
U |
gL4 L2
ol (2K}
o 3 }
° 44

2

) 1

5 ¢

GOBP DisGeNET GOBP

[GCN I GraphSAGE

HumanBaseTop-global

[Node2vec

Thus, we further demonstrate the use case of node2vec+ using
tissue-specific functional gene classification tasks derived from
Zitnik and Leskovec (2017). After processing, there are 25 tissue-
specific functional gene classification tasks, with 12 different tissues
found in the HumanBase database. We follow a similar experimen-
tal setup as above, and for each tissue-specific functional gene classi-
fication task, we report the followings: (i) matched: the prediction
performance using the corresponding tissue-specific network; (ii)
other: the average prediction performance using tissue-specific net-
works other than the corresponding tissue; (iii) global: the predic-
tion performance using the tissue-naive network.

Figure 6 shows that node2vec+ outperforms node2vec in most
scenarios, especially when using the full HumanBase networks. In
particular, node2vec+, using the matched tissue-specific full net-
works for the given functional gene classification tasks, results in
significantly better performance than using other (unrelated) tissue-
specific networks, as well as the global (tissue-naive) network. On
the contrary, node2vec cannot fully utilize the tissue-specific net-
works, as indicated by the lack of difference in performance between
matched and global networks.

We observe similar results using another collection of tissue-
specific co-expression networks, GTExCoExp, that are generated
using a benchmarked co-expression network generation workflow
by Johnson and Krishnan (2022) (see Supplementary material).

4 Discussion and conclusion

In this article, we proposed node2vec+ that improves upon the
second-order random walk in node2vec for weighted graphs by con-
sidering edge weights. Consequently, the corresponding node
embeddings are improved whenever the in-out walks positively in-
fluence the task (meaning that the optimal g setting is not 1).

We showed that node2vec+ better identifies potential out edges
on weighted graphs than node2vec using two synthetic datasets,
including the barbell graph and the hierarchical cluster graphs.
Furthermore, evaluations on various challenging gene classification
tasks demonstrated that embedding methods like node2vec(+) are
superior to GNNs. GNNs learn how to orient the nodes in a low-
dimensional space to maximize the separation between nodes of
different classes in an end-to-end fashion. The suboptimal GNN
performance here highlights their need for a much larger labeled
training dataset to fully exploit the expressive power of their archi-
tectures. Unfortunately, many real-world biological applications,
such as the function or disease gene classification problems here, still
lack large amounts of labeled data. For these applications, an un-
supervised approach like node2vec(+) may be more suitable as it
arranges the latent space purely based on the underlying graph

STRING
*
. ¢
¢
¢ ¢
¢ ¢ z
o ! ¢
DisGeNET GOBP DisGeNET

I Node2vec+

Fig. 5. Gene classification tasks using protein—protein interaction networks. Each panel corresponds to a specific protein—protein interaction network (HumanBase-global,
HumanBaseTop-global and STRING). Each point in a boxplot represents the final test score for a specific task (gene set) in the gene set collection (GOBP or DisGeNET).
Starred (*) pairs indicate that the performance between node2vec and node2vec+ are significantly different (Wilcoxon P < 0.05)

20z AelN 6z uo 1senb Aq G0Z8669//F0PEIA/L/6E/2I0NIE/SONEULIOJUIOIG/ W00 dNO OlWapEIE//:SA)Y WO} PEPEO|UMOQ

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad047#supplementary-data

node2vec+

35
3.0 7S
25
gls 20 U
B
S 15
2 (]
1.0
D
0.5
¢
0.0
¢
-0.5
ned onef 0 et gner e\
nBase’m:i;\aﬂBase; manaase’ \0 Base,(ov(\’\a;:ﬁase’(op © “6353109’9\0
Hume N urwe® Hur Hum?

[Node2vec I Node2vec+

Fig. 6. Tissue-specific functional gene classification performance comparison be-
tween node2vec and node2vec+ using HumanBase and HumanBaseTop tissue-spe-
cific networks

structure, after which a less data-hungry model, such as logistic re-
gression, can be applied to perform the classifications.

Dense weighted graphs are common in biology, directly based
on the experiment [e.g. genetic interactions (Costanzo et al., 2016)],
by construction [e.g. co-expression (Zhang and Horvath, 2005)] or
by integrating multiple network datasets sources [Greene et al.,
2015; Szklarczyk et al., 2021]. Network embedding has recently
found applications in studying co-expression networks, e.g. in the
context of evolutionary and cross-species network alignment (Ovens
et al., 2021a,b), cancer prognostic gene identification (Choi et al.,
2018) and gene functional interaction prediction (Du ez al., 2019).
These applications, especially the ones that leverage dense weighted
graphs, are likely to benefit from using node2vec+.

Sparsification using a hard threshold is a common technique for
dealing with fully connected weighted graphs like co-expression (Du
et al., 2019; Zhang and Horvath, 2005). However, finding the opti-
mal cut threshold could be quite challenging [usually relying on heu-
ristics (Ovens et al., 2021a)], and such thresholding may change the
graph significantly in terms of its spectrum (Spielman and Teng,
2010). Node2vec+, on the other hand, can be seen as a soft thresh-
olding approach that suppresses transitions over noisy edges.

Overall, node2vec+ is a natural extension of node2vec for
weighted graphs and has several desirable properties. With its general
procedure for biased random walks, node2vec+ can be easily adapted
into other methods such as KG2Vec (Wang et al., 2021b) and Het-
Node2vec (Valentini et al., 2021) that are built on top of node2vec.
Node2vec+ is available as an open-source software as part of the
PecanPy package: https://github.com/krishnanlab/PecanPy.

Funding

This work was supported by the US National Institutes of Health (NTH) [R35
GM128765 to A.K.] and [RO1 GM135929 to M.H.]; It was also supported
by the National Science Foundation (NSF) CAREER [1845856 to M.H.].

Confflict of Interest: none declared.

References

Ata,S.K. et al. (2018) Integrating node embeddings and biological annotations
for genes to predict disease-gene associations. BMC Syst. Biol., 12, 138.

Ata,S.K. et al. (2021) Recent advances in network-based methods for disease
gene prediction. Brief. Bioinform., 22, bbaa303.

Bronstein, M.M. et al. (2021) Geometric deep learning: grids, groups, graphs,
geodesics, and gauges. arXiv, arXiv:2104.13478 [cs, stat], preprint: not
peer reviewed.

Cao,S. et al. (2015) GraRep: learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, CIKM 15, pp.
891-900. Association for Computing Machinery, New York, NY, USA.

Chattopadhyay,S. and Ganguly,D. (2020) Community structure aware
embedding of nodes in a network. arXiv, arXiv:2006.15313 [physics], pre-
print: not peer reviewed.

Choi,]. et al. (2018) G2vec: distributed gene representations for identification
of cancer prognostic genes. Nat. Sci. Rep.

Costanzo,M. et al. (2016) A global genetic interaction network maps a wiring
diagram of cellular function. Science, 353, aaf1420.

Cui,P. et al. (2018) A survey on network embedding. IEEE Trans. Knowl.
Data Eng., 31(5), 833-852.

Davison,A. and Austern,M. (2021) Asymptotics of network embeddings learn-
ed via subsampling. arXiv, arXiv:2107.02363 [cs, math, stat], preprint: not
peer reviewed.

Du,]. et al. (2019) Gene2vec: distributed representation of genes based on
co-expression. BMC Genomics, 20.

Dwivedi,V.P. et al. (2022) Benchmarking graph neural networks. JMLR,
24(43), 1-48.

Greene,C.S. et al. (2015) Understanding multicellular function and disease
with human tissue-specific networks. Nat. Genet., 47, 569-576.

Grohe,M. (2020) word2vec, node2vec, graph2vec, X2vec: towards a theory of
vector embeddings of structured data. In: Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS20, pp.1-16. AMC, New York, NY, USA; Portland, Oregon, USA.

Grover,A. and Leskovec,]. (2016) Node2Vec: scalable feature learning for net-
works. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.
855-864. ACM, New York, NY, USA; San Francisco, California, USA.

Hacker,C. (2021) k-simplex2vec: a simplicial extension of node2vec. arXiv,
arXiv:2010.05636 [cs, math], preprint: not peer reviewed.

Hamilton,W.L. et al. (2017) Inductive representation learning on large graphs.
In: 31st Conference on Neural Information Processing Systems, Long
Beach, CA, USA.

Hu,F. et al. (2020) Community detection in complex networks using
Node2vec with spectral clustering. Physica A, 545,123633.

Hu,W. et al. (2021) Open graph benchmark: datasets for machine learning on
graphs. In: 34th Conference on Neural Information Processing Systems,
Vancouver, Canada.

Johnson,K.A. and Krishnan,A. (2022) Robust normalization and transform-
ation techniques for constructing gene coexpression networks from
RNA-seq data. Genome Biol., 23, 1-26.

Kingma,D.P. and Ba,]. (2014) Adam: a method for stochastic optimization.
In: 3rd International Conference on Learning Representations, San Diego,
CA, USA.

Kipf,T.N. and Welling,M. (2016) Semi-supervised classification with graph
convolutional networks. In: S5th International Conference on Learning
Representations, Toulon, France.

Krishnan,A. et al. (2016) Genome-wide prediction and functional character-
ization of the genetic basis of autism spectrum disorder. Nat. Neurosci., 19,
1454-1462.

Liu,R. and Krishnan,A. (2021) PecanPy: a fast, efficient and parallelized py-
thon implementation of node2vec. Bioinformatics, 37, 3377-3379.

Liu,R. et al. (2020) Supervised learning is an accurate method for
network-based gene classification. Bioinformatics, 36, 3457-3465.

Mikolov,T. et al. (2013a) Distributed representations of words and phrases
and their compositionality. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems, NIPS’13; Lake
Tahoe, Nevada, USA.

Mikolov,T. et al. (2013b) Efficient estimation of word representations in vec-
tor space. In: 1st International Conference on Learning Representations;
Scottsdale, Arizona, USA.

Nelson,W. et al. (2019) To Embed or not: network embedding as a paradigm
in computational biology. Front. Genet., 10, 381.

Ovens,K. et al. (2021a) Comparative analyses of gene co-expression networks:
implementations and applications in the study of evolution. Front. Genet.,
12,695399.

Ovens,K. et al. (2021b) Juxtapose: a gene-embedding approach for comparing
co-expression networks. BMC Bioinformatics, 22, 125.

Peng,]. et al. (2019) Predicting parkinson’s disease genes based on node2vec
and autoencoder. Front. Genet., 10, 226.

Perozzi,B. et al. (2014) DeepWalk: online learning of social representations.
Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD °14, pp. 701-710. arXiv:
1403.6652.

Pinero,]. et al. (2016) DisGeNET: a comprehensive platform integrating infor-
mation on human disease-associated genes and variants. Nucleic Acids Res.,
45,D833-D839.

20z AelN 6z uo 1senb Aq G0Z8669//F0PEIA/L/6E/2I0NIE/SONEULIOJUIOIG/ W00 dNO OlWapEIE//:SA)Y WO} PEPEO|UMOQ

https://github.com/krishnanlab/PecanPy

R.Liu et al.

Qiu,J. et al. (2018) Network embedding as matrix factorization: unifying
DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, WSDM
>18, pp. 459-467. Association for Computing Machinery, New York, NY,
USA.

Spielman,D.A. and Teng,S.-H. (2010) Spectral sparsification of graphs. SIAM
Journal on Computing, 40(4), 981-1025.

Szklarczyk,D. et al. (2021) The STRING database in 2021: customizable pro-
tein—protein networks, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Res., 49, D605-D612.

Tang,]. et al. (2015) LINE: large-scale information network embedding. In:
Proceedings of the 24th International Conference on World Wide Web, WWW>
15, pp. 1067-1077. Republic and Canton of Geneva, CHE. International
World Wide Web Conferences Steering Committee.; Florence, Italy

The Gene Ontology Consortium. (2018) The Gene Ontology Resource: 20
years and still GOing strong. Nucleic Acids Res., 47,D330-D338.

Valentini,G. et al. (2021) Het-node2vec: second order random walk sampling
for heterogeneous multigraphs embedding. arXiv, arXiv:2101.01425 [phys-
ics], preprint: not peer reviewed.

Wang,N. et al. (2021a) Essential protein prediction based on node2vec and
XGBoost. J. Comput. Biol., 28, 687-700.

Wang,Y. et al. (2021b) KG2Vec: a node2vec-based vectorization model for
knowledge graph. PLoS One, 16, ¢0248552.

Wilcoxon,F. (1945) Individual comparisons by ranking methods. Biometrics
Bull., 1, 80-83.

Wu,Z. et al. (2021) A comprehensive survey on graph neural networks. IEEE
Trans. Neural Netw. Learn. Syst., 32, 4-24.

Yue,X. et al. (2019) Graph embedding on biomedical networks: methods,
applications, and evaluations. Bioinformatics, 36(4), 1241-1251.

Zeng,M. et al. (2021) A deep learning framework for identifying essential pro-
teins by integrating multiple types of biological information. IEEE/ACM
Trans. Comput. Biol. Bioinform., 18,296-305.

Zhang,B. and Horvath,S. (2005) A general framework for weighted gene
co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 4.

Zhang,X.-M. et al. (2021) Graph neural networks and their current applica-
tions in bioinformatics. Front. Genet., 12, 1073.

Zitnik,M. and Leskovec,]. (2017) Predicting multicellular function through
multi-layer tissue networks. Bioinformatics, 33,1190-i198.

20z AelN 6z uo 1senb Aq G0Z8669//F0PEIA/L/6E/2I0NIE/SONEULIOJUIOIG/ W00 dNO OlWapEIE//:SA)Y WO} PEPEO|UMOQ

	tblfn1

